Актуальные вопросы теоретической механики

Элементы векторной алгебры и основные понятия статики. Определение зависимости между моментами силы относительно центра и относительно оси. Поступательное и вращательное движение твердого тела. Рассмотрение плоскопараллельного движения твердого тела.

Рубрика Производство и технологии
Вид курс лекций
Язык русский
Дата добавления 20.09.2017
Размер файла 3,4 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Рис. 38

Как известно модуль момента пары равен моменту одной из ее сил относительно точки, где приложена другая сила, т. е. ; по направлению же векторы этих моментов совпадают. Следовательно

Момент силы относительно оси

Чтобы перейти к решению задач статики для случая произвольной пространственной системы сил, необходимо ввести еще понятие о моменте силы относительно оси.

Момент силы относительно оси характеризует вращательный эффект, создаваемый силой, стремящейся повернуть тело вокруг данной оси. Рассмотрим твердое тело, которое может вращаться вокруг некоторой оси z (рис. 39).

Рис. 39

Пусть на это тело действует сила , приложенная в точке А. Проведем через точку А плоскость ху, перпендикулярную оси z, и разложим силу на составляющие: , параллельную оси z, и , лежащую в плоскости ху ( является одновременно проекцией силы на плоскости ху). Сила , направленная параллельно оси z, очевидно, не может повернуть тело вокруг этой оси (она только стремится сдвинуть тело вдоль оси z). Весь вращательный эффект, создаваемый силой , будет совпадать с вращательным эффектом ее составляющей . Отсюда заключаем, что , где символ ) обозначает момент силы относительно оси z.

Для силы же , лежащей в плоскости, перпендикулярной к оси z, вращательный эффект измеряется произведением модуля этой силы на ее расстояние h от оси. Но этой же величиной измеряется момент силы относительно точки О, в которой ось z пересекается с плоскостью . Следовательно, или, согласно предыдущему равенству, .

В результате приходим к следующему определению: моментом силы относительно оси называется скалярная величина, равная моменту проекции этой силы на плоскость, перпендикулярную оси, взятому относительно точки пересечения оси с плоскостью.

Рис. 40

Момент будем считать положительным, если с положительного конца оси z поворот, который сила , стремится совершить, виден происходящим против хода часовой стрелки, и отрицательным, если по ходу часовой стрелки.

Из чертежа (рис.40) видно, что при вычислении момента плоскость ху можно проводить через любую точку оcи z. Таким образом, чтобы найти момент силы относительно оси z (рис. 40) надо:

1) провести плоскость ху, перпендикулярную к оси z (в любом месте);

2) спроектировать силу на эту плоскость и вычислить величину ;

3) опустить из точки О пересечения оси с плоскостью перпендикуляр на направление и найти его длину h;

4) вычислить произведение ;

5) определить знак момента.

При вычислении моментов надо иметь в виду следующие частные случаи:

1) Если сила параллельна оси, то ее момент относительно оси равен нулю (так как ).

2) Если линия действия силы пересекает ось, то ее момент относительно оси также равен нулю (так как h = 0).

Объединяя оба случая вместе, заключаем, что момент силы относительно оси равен нулю, если сила и ось лежат в одной плоскости.

3) Если сила перпендикулярна к оси, то ее момент относительно оси равен произведению модуля силы на расстояние между силой и осью.

Пример 4. Определим моменты сил и относительно осей (рис.41).

Рис. 41

Моменты силы находятся просто:

Моменты сил и - посложнее.

В тех случаях, когда вектор силы направлен под углом к осям, полезно разложить вектор силы на составляющие параллельные осям и, затем, находить сумму моментов этих составляющих.

Зависимость между моментами силы относительно центра и относительно оси

Пусть на тело действует приложенная в точке А сила (рис. 42). Проведем какую-нибудь ось z и возьмем на ней произвольную точку О. Момент силы относительно центра О будет изображаться вектором перпендикулярным плоскости ОАВ, причем по модулю.

Рис. 42

Проведем теперь через любую точку O1 на оси z плоскость ху, перпендикулярную к оси; проектируя силу на эту плоскость, найдем

Но треугольник О1А1В1 представляет собою проекцию треугольника ОАВ на плоскость ху. Угол между плоскостями этих треугольников равен углу между перпендикулярами к плоскостям, т. е. равен . Тогда, по известной геометрической формуле

Умножая обе части этого равенства на 2 и замечая, что удвоенные пощади треугольников О1А1В1 и ОАВ равны соответственно mz() и , найдем окончательно:

Так как произведение дает проекцию вектора на ось z, то равенство можно еще представить в виде В результате мы доказали, что между моментом силы относительно оси и ее моментом относительно какого-нибудь центра, лежащего на этой оси, существует следующая зависимость: момент силы относительно оси равен проекции на эту ось вектора, изображающего момент данной силы относительно любого центра, лежащего на оси.

Приведение пространственной системы сил к данному центру

Полученные выше результаты позволяют решить задачу о приведении любой системы сил к данному центру. Эта задача, решается с помощью теоремы о параллельном переносе силы. Для переноса действующей на абсолютно твердое тело силы из точки А (рис. 43, а) в точку О прикладываем в точке О силы = и = -. Тогда сила = окажется приложенной в точке О и к ней будет присоединена пара (, ) с моментом , что можно показать еще так, как на рис. 43, б. При этом

Рис. 43

Рассмотрим теперь твердое тело, на которое действует какая угодно система сил , ,…, (рис. 44, а). Выберем произвольную точку О за центр приведения и перенесем все силы системы в этот центр, присоединяя при этом соответствующие пары. Тогда на тело будет действовать система сил

= Размещено на http://www.allbest.ru/

, = , …, = .

приложенныхРазмещено на http://www.allbest.ru/

в центре О, и система пар, моменты которых будут равны

= Размещено на http://www.allbest.ru/

(), = (), …, = (),

Силы, приложенные в точке О, заменяются одной силой , приложенной в той же точке. При этом или,

Чтобы сложить все полученные пары, надо геометрически сложить векторы моментов этих пар. В результате система пар заменится одной парой, момент которой или,

.

Как и в случае плоской системы, величина , равная геометрической сумме всех сил, называется главным вектором системы; величина , равная геометрической сумме моментов всех сил относительно центра О, называется главным моментом системы относительно этого центра.

Рис. 44

Таким образом мы доказали следующую теорему, любая система сил, действующих на абсолютно твердое тело, при приведении к произвольно взятому центру О заменяется одной силой , равной главному вектору системы и приложенной в центре приведения О, и одной парой с моментом , равным главному моменту системы относительно центра О (рис. 36, б).

Векторы и обычно определяют аналитически, т.е. по их проекциям на оси координат.

Выражения для Rx, Ry, Rz нам известны. Проекции вектора на оси координат будем обозначать Mx, My, Mz. По теореме о проекциях суммы векторов на ось будет или, . Аналогично находятся величины My и Mz.

Окончательно для определения проекций главного вектора и главного момента получаем формулы:

Условия равновесия произвольной пространственной системы сил

Произвольную пространственную систему сил, как и плоскую, можно привести к какому-нибудь центру О и заменить одной результирующей силой и парой с моментом . Рассуждая так, что для равновесия этой системы сил необходимо и достаточно, чтобы одновременно было R = 0 и Mо = 0. Но векторы и могут обратиться в нуль только тогда, когда равны нулю все их проекции на оси координат, т. е. когда Rx = Ry = Rz = 0 и Mx = My = Mz = 0 или, когда действующие силы удовлетворяют условиям

Таким образом, для равновесия произвольной пространственной системы сил необходимо и достаточно, чтобы суммы проекций всех сил на каждую из трех координатных осей и суммы их моментов относительно этих осей были равны нулю.

Задачи на равновесие тела под действием пространственной системы сил

Принцип решения задач этого раздела остается тем же, что и для плоской системы сил. Установив, равновесие, какого тела будет рассматриваться, заменяют наложенные на тело связи их реакциями и составляют условия равновесия этого тела, рассматривая его как свободное. Из полученных уравнений определяются искомые величины.

Для получения более простых систем уравнений рекомендуется оси проводить так, чтобы они пересекали больше неизвестных сил или были к ним перпендикулярны (если это только излишне не усложняет вычисления проекций и моментов других сил).

Новым элементом в составлении уравнений является вычисление моментов сил относительно осей координат.

В случаях, когда из общего чертежа трудно усмотреть, чему равен момент данной силы относительно какой-нибудь оси, рекомендуется изобразить на вспомогательном чертеже проекцию рассматриваемого тела (вместе с силой) на плоскость, перпендикулярную к этой оси.

В тех случаях, когда при вычислении момента возникают затруднения в определении проекции силы на соответствующую плоскость или плеча этой проекции, рекомендуется разложить силу на две взаимно перпендикулярные составляющие (из которых одна параллельна какой-нибудь координатной оси), а затем воспользоваться теоремой Вариньона.

Пример 6. Прямоугольная полка весом Р удерживается в горизонтальном положении двумя стержнями СЕ и СD, прикреплёнными к стене в точке Е. Стержни одинаковой длины, Определим усилия в стержнях и реакции петель А и В.

Рис. 46

Рассматриваем равновесие плиты. Строим расчётную схему (рис.46). Реакции петель принято показывать двумя силами перпендикулярными оси петли: , и , .

Силы образуют систему сил, произвольно расположенных в пространстве. Можем составить 6 уравнений. Неизвестных - тоже шесть.

Какие уравнения составлять - надо подумать. Желательно такие, чтобы они были попроще и чтобы в них было поменьше неизвестных.

Составим такие уравнения:

Лекция 4 Центр тяжести

Сложение параллельных сил. Центр параллельных сил

Параллельные силы, распределенные по отрезку прямой

Центр тяжести твердого тела

Координаты центров тяжести неоднородных тел

Координаты центров тяжести однородных тел

Способы определения координат центров тяжести

Центры тяжести некоторых однородных тел

Сложение параллельных сил. Центр параллельных сил

Пусть даны две параллельные силы и , направленные в одну сторону и приложенные к точкам и (рис.34).

Рис. 34

Конечно, величина их равнодействующей . Вектор её параллелен силам и направлен в ту же сторону. С помощью теоремы Вариньона найдём точку приложения равнодействующей - точку С. По этой теореме

Значит

Отсюда То есть точка приложения равнодействующей делит расстояние между точками и на части обратно пропорциональные силам.

Если параллельные силы направлены в противоположные стороны (рис.35), то аналогично можно доказать, что равнодействующая по величине будет равна разности сил: (если ), параллельна им, направлена в сторону большей силы и расположена за большей силой - в точке С. А расстояния от точки С до точек приложения сил обратно пропорциональны силам:

Рис. 35

Следует заметить, что если точка приложения равнодействующей расположена на одной прямой с точками и , точками приложения сил, то, при повороте этих сил в одну сторону на одинаковый угол, равнодействующая также повернётся вокруг точки приложения С в том же направлении, и останется параллельной им.

Такая точка приложения равнодействующей называется центром параллельных сил.

Конечно, если хотя бы одну из сил перенести по своей линии действия в другую точку, то и точка приложения равнодействующей, центр параллельных сил, тоже переместится по линии действия.

Следовательно, положение центра параллельных сил зависит от координат точек приложения сил.

Центром нескольких параллельных сил, найденный последовательным сложением каждых двух сил, будем называть точку С, радиус-вектор которой определяется формулой

, (1)

где - радиусы-векторы точек приложения сил; - величина равнодействующей параллельных сил, равная алгебраической сумме этих сил (знак силы определяется направлением, которое заранее выбирается и считается положительным).

Используя (1), нетрудно найти координаты центра параллельных сил. Если радиусы-векторы откладывать из начала координат, то проекции радиусов-векторов точек на оси будут равны их координатам. Поэтому, проектируя векторное равенство (1) на оси, получим

где - координаты точек приложения сил.

Параллельные силы, распределенные по отрезку прямой

а) общий случай

- интенсивность распределенной силы [Н/м],

- элементарная сила.

- длина отрезка

Распределенная по отрезку прямой сила интенсивности эквивалентна сосредоточенной силе .

Сосредоточенная сила прикладывается в точке С (центре параллельных сил) с координатой

б) постоянная интенсивность

в) интенсивность, меняющаяся по линейному закону

.

Центр тяжести тел

На все точки тела, находящегося вблизи поверхности Земли, действуют силы - силы тяжести этих точек или их вес . Вообще эти силы будут сходящимися - линии действия их пересекаются в центре Земли. Но, если пренебречь размерами тела в сравнении с размерами Земли, то можно считать их параллельными.

Центр этих параллельных сил, сил тяжести точек, называется центром тяжести тела.

Значит находить центр тяжести тел можно как центр параллельных сил. Например, координаты его

(2)

где - вес каждой точки тела, а - вес всего тела.

Рис. 36

При определении центра тяжести полезны несколько теорем.

1) Если однородное тело имеет плоскость симметрии, то центр тяжести его находится в этой плоскости.

Если оси х и у расположить в этой плоскости симметрии (рис.36), то для каждой точки с координатами можно отыскать точку с координатами . И координата по (2), будет равна нулю, т.к. в сумме все члены имеющие противоположные знаки, попарно уничтожаются. Значит центр тяжести расположен в плоскости симметрии.

2) Если однородное тело имеет ось симметрии, то центр тяжести тела находится на этой оси.

Действительно, в этом случае, если ось z провести по оси симметрии, для каждой точки с координатами можно отыскать точку с координатами и координаты и , вычисленные по формулам (2), окажутся равными нулю.

Аналогично доказывается и третья теорема.

3) Если однородное тело имеет центр симметрии, то центр тяжести тела находится в этой точке.

И ещё несколько замечаний.

Первое. Если тело можно разделить на части, у которых известны вес и положение центра тяжести, то незачем рассматривать каждую точку, а в формулах (2) - определять как вес соответствующей части и - как координаты её центра тяжести.

Второе. Если тело однородное, то вес отдельной части его , где - удельный вес материала, из которого сделано тело, а - объём этой части тела. И формулы (1) примут более удобный вид. Например,

И аналогично, где - объём всего тела.

Третье замечание. Если тело состоит из однородных пластин одинаковой, малой толщины, то объём каждой пластины где - площадь пластины, d - толщина. И координаты центра тяжести будут определяться только с помощью площадей:

где - координаты центра тяжести отдельных пластин; - общая площадь тела.

Четвёртое замечание. Если тело состоит из стержней, прямых или криволинейных, однородных и постоянного сечения, то вес их где li - длина, - вес единицы длины (погонного метра), а координаты центра тяжести будут определяться с помощью длин отдельных участков:

где - координаты центра тяжести -го участка;

Отметим, что согласно определению центр тяжести - это точка геометрическая; она может лежать и вне пределов данного тела (например, для кольца).

Координаты центров тяжести неоднородных тел

Координаты центра тяжести неоднородного твердого тела в выбранной системе отсчета определяются следующим образом:

где - вес единицы объема тела (удельный вес)

- вес всего тела.

Если твердое тело представляет собой неоднородную поверхность, то координаты центра тяжести в выбранной системе отсчета определяются следующим образом:

где - вес единицы площади тела,

- вес всего тела.

Если твердое тело представляет собой неоднородную линию, то координаты центра тяжести в выбранной системе отсчета определяются следующим образом:

где- вес единицы длины тела,

- вес всего тела.

Координаты центров тяжести однородных тел

Для однородного тела вес любой его части пропорционален объему этой части: , а вес Р всего тела пропорционален объему V этого тела , где - вес единицы объема.

Подставив эти значения Р и в предыдущие формулы, мы заметим, что в числителе как общий множитель выносится за скобку и сокращается с в знаменателе. В результате получим:

Как видно, центр тяжести однородного тела зависит только от его геометрической формы, а от величины не зависит. По этой причине точку С, координаты которой определяются формулами, называют центром тяжести объема V.

Путем аналогичных рассуждений легко найти, что если тело представляет собой однородную плоскую и тонкую пластину, то для нее

где S - площадь всей пластины, a - площади ее частей.

Точку, координаты которой определяются формулами называют центром тяжести площади S.

Точно так же получаются формулы для координат центра тяжести линии:

где L -- длина всей линии, l -- длины ее частей.

Таким образом, центр тяжести однородного тела определяется, как центр тяжести соответствующего объема, площади или линии.

Способы определения координат центра тяжести

Исходя из полученных выше общих формул, можно указать конкретные способы определения координат центров тяжести тел.

1. Симметрия. Если однородное тело имеет плоскость, ось или центр симметрии, то его центр тяжести лежит соответственно в плоскости симметрии, оси симметрии или в центре симметрии.

2. Разбиение. Тело разбивается на конечное число частей, для каждой из которых положение центра тяжести и площадь известны.

.

3. Дополнение. Частный случай способа разбиения. Он применяется к телам, имеющим вырезы, если центры тяжести тела без выреза и вырезанной части известны.

.

Центры тяжести некоторых однородных тел

1) Центр тяжести дуги окружности. Рассмотрим дугу АВ радиуса R с центральным углом . В силу симметрии центр тяжести этой дуги лежит на оси Ox (рис. 37).

Рис. 37

Найдем координату по формуле . Для этого выделим на дуге АВ элемент ММ' длиною , положение которого определяется углом . Координата х элемента ММ' будет . Подставляя эти значения х и и имея в виду, что интеграл должен быть распространен на всю длину дуги, получим:

где L - длина дуги АВ, равная . Отсюда окончательно находим, что центр тяжести дуги окружности лежит на ее оси симметрии на расстоянии от центра О, равном

где угол измеряется в радианах.

2) Центр тяжести площади треугольника. Разобьем площадь треугольника ABD (рис. 38) прямыми, параллельными AD, на узкие полоски; центры тяжести этих полосок будут лежать на медиане BE треугольника.

Рис. 38

Следовательно, и центр тяжести всего треугольника лежит на этой медиане. Аналогичный результат получается для двух других медиан. Отсюда заключаем, что центр тяжести площади треугольника лежит в точке пересечения его медиан.

При этом, как известно,

3) Центр тяжести площади кругового сектора. Рассмотрим круговой сектор ОАВ радиуса R с центральным углом (рис. 39). Разобьем мысленно площадь сектора ОАВ радиусами, проведенными из центра О, на п секторов. В пределе, при неограниченном увеличении числа , эти секторы можно рассматривать как плоские треугольники, центры тяжести которых лежат на дуге DE радиуса . Следовательно, центр тяжести сектора ОAB будет совпадать с центром тяжести дуги DE. Окончательно получим, что центр тяжести площади кругового сектора лежит на его центральной оси симметрии на расстоянии от начального центра О, равном

Рис. 39

Пример 1. Определим центр тяжести однородного тела, изображённого на рис. 40.

Рис. 40

Тело однородное, состоящее из двух частей, имеющих симметричную форму. Координаты центров тяжести их:

Объёмы их: .

Поэтому координаты центра тяжести тела

Пример 2. Найдем центр тяжести пластины, согнутой под прямым углом. Размеры - на чертеже (рис.41).

Рис. 41

Координаты центров тяжести:

Площади:

Поэтому:

Пример 3. У квадратного листа см вырезано квадратное отверстие см (рис.42). Найдем центр тяжести листа.

Рис. 42

В этой задаче удобнее разделить тело на две части: большой квадрат и квадратное отверстие. Только площадь отверстия надо считать отрицательной. Тогда координаты центра тяжести листа с отверстием:

координата так как тело имеет ось симметрии (диагональ).

Пример 4. Проволочная скобка (рис.43) состоит из трёх участков одинаковой длины l.

Рис. 43

Координаты центров тяжести участков: , ; , Поэтому координаты центра тяжести всей скобки:

Лекция 1 Кинематика точки и твердого тела

Кинематика точки. Введение в кинематику

Способы задания движения точки

Вектор скорости точки

Вектор ускорения точки

Определение скорости и ускорения точки при координатном способе задания движения точки

Определение скорости и ускорения точки при естественном способе задания движения точки. Касательное и нормальное ускорение точки

Некоторые частные случаи движения точки

Кинематика точки. Введение в кинематику

Кинематикой называется раздел механики, в котором изучаются геометрические свойства движения тел без учета их инертности (массы) и действующих на них сил.

Под движением мы понимаем в механике изменение, с течением времени положения данного тела в пространстве по отношению к другим телам.

Для определения положения движущегося тела (или точки) в разные моменты времени с телом, по отношению к которому изучается движение, жестко связывают какую-нибудь систему координат, образующую вместе с этим телом систему отсчета.

Изображать систему отсчета будем в виде трех координатных осей (не показывая тело, с которым они связаны).

Движение тел совершается в пространстве с течением времени. Пространство в механике мы рассматриваем, как трехмерное евклидово пространство.

Время является скалярной, непрерывно изменяющейся величиной. В задачах кинематики время принимают за независимое переменное (аргумент). Все другие переменные величины (расстояния, скорости и т. д.) рассматриваются как изменяющиеся с течением времени, т, е. как функции времени .

Для решения задач кинематики надо, чтобы изучаемое движение было как-то задано (описано).

Кинематически задать движение или закон движения тела (точки) - значит задать положение этого тела (точки) относительно данной системы отсчета в любой момент времени.

Основная задача кинематики точки и твердого тела состоит в том, чтобы, зная закон движения точки (тела), установить методы определения всех кинематических величин, характеризующих данное движение.

Способы задания движения точки

Для задания движения точки можно применять один из следующих трех способов:

1) векторный, 2) координатный, 3) естественный.

1. Векторный способ задания движения точки.

Пусть точка М движется по отношению к некоторой системе отсчета Oxyz. Положение этой точки в любой момент времени можно определить, задав ее радиус-вектор , проведенный из начала координат О в точку М (рис. 1).

Рис. 1

При движении точки М вектор будет с течением времени изменяться и по модулю, и по направлению. Следовательно, является переменным вектором (вектором-функцией), зависящим от аргумента :

.

Размещено на http://www.allbest.ru/

РавенствоРазмещено на http://www.allbest.ru/

определяет закон движения точки в векторной форме, так как оно позволяет в любой момент времени построить соответствующий вектор и найти положение движущейся точки.

Геометрическое место концов вектора , т.е. годограф этого вектора, определяет траекторию движущейся точки.

2. Координатный способ задания движения точки.

Положение точки можно непосредственно определять ее декартовыми координатами х, у, z (рис.1), которые при движении точки будут с течением времени изменяться. Чтобы знать закон движения точки, т.е. ее положение в пространстве в любой момент времени, надо знать значения координат точки для каждого момента времени, т. е. знать зависимости

, , .

Уравнения представляют собой уравнения движения точки в прямоугольных декартовых координатах. Они определяют закон движения точки при координатном способе задания движения.

Чтобы получить уравнение траектории надо из уравнений движения исключить параметр .

Нетрудно установить зависимость между векторным и координатным способами задания движения.

Разложим вектор на составляющие по осям координат:

где - проекции вектора на оси; - единичные векторы направленные по осям, орты осей.

Так как начало вектора находится в начале координат, то проекции вектора будут равны координатам точки M. Поэтому

Пример 1. Движение точки задано уравнениями

Чтобы исключить время, параметр t, найдём из первого уравнения из второго Затем возведём в квадрат и сложим. Так как получим Это уравнение эллипса с полуосями 2 см и 3 см (рис.2).

Начальное положение точки M0 (при t=0) определяется координатами

Рис.2 Через 1 сек. точка будет в положении M1 с координатами

Примечание.

Движение точки может быть задано с помощью и других координат. Например, цилиндрических или сферических. Среди них будут не только линейные размеры, но и углы. При необходимости, с заданием движения цилиндрическими и сферическими координатами можно познакомиться по учебникам.

3. Естественный способ задания движения точки.

Рис. 3

Естественным способом задания движения удобно пользоваться в тех случаях, когда траектория движущейся точки известна заранее. Пусть кривая АВ является траекторией точки М при ее движении относительно системы отсчета Oxyz (рис.3) Выберем на этой траектории какую-нибудь неподвижную точку О', которую примем за начало отсчета, и установим на траектории положительное и отрицательное направления отсчета (как на координатной оси).

Тогда положение точки М на траектории будет однозначно определяться криволинейной координатой s, которая равна расстоянию от точки О' до точки М, измеренному вдоль дуги траектории и взятому с соответствующим знаком. При движении точка М перемещается в положения M1, М2,.... следовательно, расстояние s будет с течением времени изменяться.

Чтобы знать положение точки М на траектории в любой момент времени, надо знать зависимость

.

Уравнение выражает закон движения точки М вдоль траектории.

Пример 2. Точка движется по прямой линии, по закону (рис. 4).

Рис. 4

В начале движения, при Положение точки M0 называется начальным положением. При

Конечно, за 1 сек. точка прошла расстояние M0M1=2 см. Так что s - это не путь пройденный точкой, а расстояние от начала отсчёта до точки.

Вектор скорости точки

Одной из основных кинематических характеристик движения точки является векторная величина, называемая скоростью точки.

Известно, что при движении точки по прямой линии с постоянной скоростью, равномерно, скорость её определяется делением пройденного расстояния s на время: . При неравномерном движении эта формула не годится. Введем сначала понятие о средней скорости точки за какой-нибудь промежуток времени. Пусть движущаяся точка находится

Рис. 5

в момент времени t в положении М, определяемом радиусом-вектором , а в момент приходит в положение M1 определяемое вектором (рис.5). Тогда перемещение точки за промежуток времени определяется вектором который будем называть вектором перемещения точки. Из треугольника ОММ1 видно, что ; следовательно, .

Отношение вектора перемещения точки к соответствующему промежутку времени дает векторную величину, называемую средней по модулю и направлению скоростью точки за промежуток времени :

.

Скоростью точки в данный момент времени называется векторная величина , к которой стремится средняя скорость при стремлении промежутка времени к нулю:

, .

Итак, вектор скорости точки в данный момент времени равен первой производной от радиуса-вектора точки по времени.

Так как предельным направлением секущей ММ1 является касательная, то вектор скорости точки в данный момент времени направлен по касательной к траектории точки в сторону движения.

Определение скорости точки при координатном способе задания движения

Вектор скорости точки , учитывая, что , , , найдем:

, , .

Таким образом, проекции скорости точки на координатные оси равны первым производным от соответствующих координат точки по времени.

Зная проекции скорости, найдем ее модуль и направление (т.е. углы , , , которые вектор образует с координатными осями) по формулам

;

, , .

Итак, численная величина скорости точки в данный момент времени равна первой производной от расстояния (криволинейной координаты) s точки по времени.

Направлен вектор скорости по касательной к траектории, которая нам наперед известна.

Определение скорости точки при естественном способе задания движения

Величину скорости можно определить как предел (- длина хорды ):

где - длина дуги . Первый предел равен единице, второй предел - производная

Следовательно, скорость точки есть первая производная по времени от закона движения:

Направлен вектор скорости, как было установлено ранее, по касательной к траектории. Если величина скорости в данный момент будет больше нуля, то вектор скорости направляется в положительном направлении

Вектор ускорения точки

Ускорением точки называется векторная величина, характеризующая изменение с течением времени модуля и направления скорости точки.

Пусть в некоторый момент времени движущаяся точка находится в положении М и имеет скорость , а в момент приходит в положение и имеет скорость (рис. 6).

Рис. 6

Тогда за промежуток времени скорость точки получает приращение . Для построения вектора отложим от точки М вектор, равный , и построим параллелограмм, в котором диагональю будет , a одной из сторон . Тогда, очевидно, вторая сторона и будет изображать вектор . Заметим, что вектор всегда направлен в сторону вогнутости траектории.

Отношение приращения вектора скорости к соответствующему промежутку времени определяет вектор среднего ускорения точки за этот промежуток времени:

.

Вектор среднего ускорения имеет то же направление, что и вектор , т. е. направлен в сторону вогнутости траектории.

Ускорением точки в данный момент времени t называется векторная величина , к которой стремится среднее ускорение при стремлении промежутка времени к нулю: Вектор ускорения точки в данный момент времени равен первой производной от вектора скорости или второй производной от радиуса-вектора точки по времени.

Найдем, как располагается вектор по отношению к траектории точки. При прямолинейном движении вектор направлен вдоль прямой, по которой движется точка. Если траекторией точки является плоская кривая, то вектор ускорения , так же как и вектор , лежит в плоскости этой кривой и направлен в сторону ее вогнутости. Если траектория не является плоской кривой, то вектор направлен в сторону вогнутости траектории и лежит в плоскости, проходящей через касательную к траектории в точке М и прямую, параллельную касательной в соседней точке M1 (рис. 4). В пределе, когда точка М стремится к М, эта плоскость занимает положение так называемой соприкасающейся плоскости, т.е. плоскости, в которой происходит бесконечно малый поворот касательной к траектории при элементарном перемещении движущейся точки. Следовательно, в общем случае вектор ускорения лежит в соприкасающейся плоскости и направлен в сторону вогнутости кривой.

Определение ускорения при координатном способе задания движения

Вектор ускорения точки в проекции на оси получаем:

, ,

Или

, , ,

т.е. проекция ускорения точки на координатные оси равны первым производным от проекций скорости или вторым производным от соответствующих координат точки по времени. Модуль и направление ускорения найдутся из формул

;

, , ,

где , , - углы, образуемые вектором ускорения с координатными осями.

Пример 3. Движение точки задано уравнениями .

Из первого уравнения . Подставив во второе, получим уравнение траектории:

Это уравнение параболы. В начале движения, при , точка находилась на самом верху, в положении M0 ().

А, например, при t =0,5 c она будет в положении M с координатами

Проекции скорости на оси

При

И модуль скорости

Составляющие скорости по осям и вектор её показаны в масштабе на рис. 7.

Рис. 7

Проекции ускорения . Так как проекция вектора ускорения на ось x равна нулю, а на ось y - отрицательна, то вектор ускорения направлен вертикально вниз, и величина его постоянна, не зависит от времени.

Определение ускорения при естественном способе задания движения. Касательное и нормальное ускорение точки

При естественном способе задания движения вектор определяют по его проекциям на оси , имеющие начало в точке М и движущиеся вместе с нею (рис.8). Эти оси, называемые осями естественного трехгранника (или скоростными (естественными) осями), направлены следующим образом: ось - вдоль касательной к траектории в сторону положительного отсчета расстояния s; ось - по нормали, лежащей в соприкасающейся плоскости и направленной в сторону вогнутости траектории; ось - перпендикулярно к первым двум так, чтобы она образовала с ними правую тройку. Нормаль , лежащая в соприкасающейся плоскости (в плоскости самой кривой, если кривая плоская), называется главной нормалью, а перпендикулярная к ней нормаль - бинормалью.

Рис. 8

Было показано, что ускорение точки лежит в соприкасающейся плоскости, т.е. в плоскости ; следовательно, проекция вектора на бинормаль равна нулю ().

Вычислим проекции , на две другие оси. Пусть в момент времени t точка находится в положении М и имеет скорость , a в момент приходит в положение М1 и имеет скорость .

Тогда по определению

.

Перейдем в этом равенстве от векторов к их проекциям на оси и , проведенные в точке М (рис.8). Тогда на основании теоремы о проекции суммы (или разности) векторов на ось получим:

, .

Учитывая, что проекция вектора на параллельные оси одинаковы, проведем через точку М1 оси параллельные и обозначим угол между направлением вектора и касательной через . Этот угол между касательными к кривой в точках М и М1 называется углом смежности.

Напомним, что предел отношения угла смежности к длине дуги определяет кривизну k кривой в точке М. Кривизна же является величиной, обратной радиусу кривизны в точке М. Таким образом,

.

Обращаясь теперь к чертежу (рис.9), находим, что проекции векторов и на оси будут равны:

,

где и - численные величины скорости точки в моменты и .

Следовательно,

.

Заметим что при точка М1 неограниченно приближается к М и одновременно

.

Тогда, учитывая, что в пределе , получим для выражение

.

Правую часть выражения преобразуем так, чтобы в нее вошли отношения, пределы которых нам известны. Для этого умножим числитель и знаменатель дроби, стоящей под знаком предела, на . Тогда будем иметь

,

так как пределы каждого из стоящих в скобке сомножителей при равны:

Окончательно получаем:

.

Итак, мы доказали, что проекция ускорения точки на касательную равна первой производной от численной величины скорости или второй производной от расстояния (криволинейной координаты) s no времени, а проекция ускорения на главную нормаль равна квадрату скорости деленному на радиус кривизны траектории в данной точке кривой; проекция ускорения на бинормаль равна нулю (). Эти результаты выражают собою одну из важных теорем кинематики точки.

Рис. 9

Отложим вдоль касательной и главной нормали векторы и , численно равные и (рис. 9). Эти векторы изображают касательную и нормальную составляющие ускорения точки. При этом составляющая будет всегда направлена в сторону вогнутости кривой (величина a всегда положительна), а составляющая может быть направлена или в положительном, или в отрицательном направлении оси в зависимости от знака проекции (см. рис.9, а и б).

Вектор ускорения точки изображается диагональю параллелограмма, построенного на составляющих и . Так как эти составляющие взаимно перпендикулярны, то по модулю:

.

Некоторые частные случаи движения точки

Пользуясь полученными результатами, рассмотрим некоторые частные случаи движения точки.

1) Прямолинейное движение. Если траекторией точки является прямая линия, то . Тогда и все ускорение точки равно одному только касательному ускорению:

.

Так как в данном случае скорость изменяется только численно, то отсюда заключаем, что касательное ускорение характеризует изменение скорости по численной величине.

2) Равномерное криволинейное движение. Равномерным называется такое криволинейное движение точки, в котором численная величина скорости все время остается постоянной: .

Тогда и все ускорение точки равно одному только нормальному:

.

Вектор ускорения направлен при этом все время по нормали к траектории точки.

Так как в данном случае ускорение появляется только за счет изменения направления скорости, то отсюда заключаем, что нормальное ускорение характеризует изменение скорости по направлению. Найдем закон равномерного криволинейного движения.

Из формулы имеем .

Пусть в начальный момент () точка находится от начала отсчета на расстоянии . Тогда, беря от левой и правой части равенства определенные интегралы в соответствующих пределах, получим

или ,

так как . Окончательно находим закон равномерного криволинейного движения в виде

.

Если , то s даст путь, пройденный точкой за время t. Следовательно, при равномерном движении путь, пройденный точкой, расчет пропорционального времени, а скорость движения равна отношению пути ко времени

.

3) Равномерное прямолинейное движение. В этом случае , а значит и . Заметим, что единственным движением, в котором ускорение точки все время равно нулю, является равномерное прямолинейное движение.

4) Равнопеременное криволинейное движение. Равнопеременным называется такое криволинейное движение точки, при котором касательное ускорение остается все время величиною постоянной: . Найдем закон этого движения, считая, что при : , а , где - начальная скорость точки. Согласно формуле имеем .

Так как , то, беря от обеих частей последнего равенства интегралы в соответствующих пределах, получим:

.

Формулу представим в виде

или .

Вторично интегрируя, найдем закон равнопеременного криволинейного движения точки в виде

.

Если при криволинейном движении точки модуль скорости возрастает, то движение называется ускоренным, а если убывает - замедленным.

Пример 4. Точка движется по окружности радиуса по закону . При . Значит, движение началось из M0 (рис.10).

Рис. 10

Судя по этим результатам, точка сначала двигалась в положительном направлении, а затем пошла обратно. В крайнем положении скорость точки станет равной нулю.

Так как то положив , найдём время когда точка окажется в этом крайнем положении: Значит определяет это положение точки.

Найдём скорость и ускорение точки при Скорость . Направлен вектор скорости в положительном направлении ().

Касательное ускорение . Вектор направлен в отрицательном направлении. Нормальное ускорение (радиус кривизны дуги окружности равен её радиусу ). Полное ускорение

Так как вектор скорости и вектор касательного ускорения направлены в противоположные стороны, точка в этот момент движется замедленно.

Лекция 2 Поступательное и вращательное движение твердого тела

Степени свободы твердого тела

Поступательное и вращательное движения твердого тела

Поступательное движение

Вращательное движение твердого тела вокруг оси

Угловая скорость и угловое ускорение

Равномерное и равнопеременное вращения

Скорости и ускорения точек вращающегося тела

Вращение тела вокруг неподвижной точки

Степени свободы твердого тела

Числом степеней свободы твердого тела называется число независимых параметров, которые однозначно определяют положение тела в пространстве относительно рассматриваемой системы отсчета. Движение твердого тела во многом зависит от числа его степеней свободы.

Рассмотрим пример. Если диск, не вращаясь, может скользить вдоль неподвижной в данной системе отсчета оси (рис.а), то в данной системе отсчета он, очевидно, обладает только одной степенью свободы - положение диска однозначно определяется, скажем, координатой x его центра, отсчитываемой вдоль оси. Но если диск, кроме того, может еще и вращаться (рис.б), то он приобретает еще одну степень свободы - к координате x добавляется угол поворота диска вокруг оси. Если ось с диском зажата в рамке, которая может поворачиваться вокруг вертикальной оси (рис.в), то число степеней свободы становится равным трем - к x и добавляется угол поворота рамки .

Свободная материальная точка в пространстве имеет три степени свободы: например декартовы координаты x, y и z. Координаты точки могут определяться также в цилиндрической (r, , z) и сферической (r, , ) системах отсчета, но число параметров, однозначно определяющих положение точки в пространстве всегда три.

Материальная точка на плоскости имеет две степени свободы. Если в плоскости выбрать систему координат xОy, то координаты x и y определяют положение точки на плоскости, а координата z тождественно равна нулю.

Свободная материальная точка на поверхности любого вида имеет две степени свободы. Например: положение точки на поверхности Земли определяется двумя параметрами: широтой и долготой.

Материальная точка на кривой любого вида имеет одну степень свободы. Параметром, определяющим положение точки на кривой, может быть, например, расстояние вдоль кривой от начала отсчета.

Рассмотрим две материальные точки в пространстве, соединенные жестким стержнем длины l. Положение каждой точки определяется тремя параметрами, но на них наложена связь.

Уравнение является уравнением связи. Из этого уравнения любая одна координата может быть выражена через остальные пять координат (пять независимых параметров). Поэтому эти две точки имеют () пять степеней свободы.

Рассмотрим три материальные точки в пространстве, не лежащие на одной прямой, соединенные тремя жесткими стержнями. Число степеней свободы этих точек равно () шести.

Свободное твёрдое тело в общем случае имеет 6 степеней свободы. Действительно, положение тела в пространстве относительно какой-либо системы отсчета, определяется заданием трех его точек, не лежащие на одной прямой, и расстояния между точками в твердом теле остаются неизменными при любых его движениях. Согласно выше сказанному, число степеней свободы должно быть равно шести.

...

Подобные документы

  • Определение реакций опор твердого тела, реакций опор и сил в стержнях плоской фермы. Равновесие сил с учетом сцепления. Определение положения центра тяжести тела. Определение скорости и ускорения материальной точки по заданным уравнениям ее движения.

    курсовая работа [4,0 M], добавлен 05.11.2011

  • Статика как раздел механики. Определение силы в теоретической механике. Аксиомы статики. Связи и реакции связей. Система сходящихся сил. Теория моментов. Кинематикой как раздел теоретической механики. Уравнения движения и скорость точки. Законы динамики.

    контрольная работа [286,1 K], добавлен 13.05.2015

  • Соответствие математических моделей твердого тела свойствам реальных машиностроительных материалов. Вывод условия равновесия для осесимметричного напряженного состояния. Распределение напряжений в зоне контакта при осадке полосы неограниченной длины.

    контрольная работа [1,7 M], добавлен 13.01.2016

  • Структурный анализ кривошипно-ползунного механизма, который преобразует возвратно-поступательное движение ползуна (поршня) во вращательное движение кривошипа. Планы скоростей и ускорений. Определение сил тяжести и инерции. Условные обозначения звеньев.

    курсовая работа [2,4 M], добавлен 27.03.2013

  • Характеристика системы сертификации Росии. История и особенности происхождения твердого мыла. Сущность порядка проведения декларирования соответствия и проведение подтверждения соответствия мыла туалетного твердого требованиям нормативных документов.

    курсовая работа [108,2 K], добавлен 25.10.2012

  • Оценка характеристик контактного взаимодействия. Влияние анизотропии поверхности твердого тела и наличие волнистости на параметры контактирования. Определение топографических параметров и фрактальной размерности эквивалентной изотропной поверхности.

    реферат [567,0 K], добавлен 23.12.2015

  • Зависимость работоспособности машин и агрегатов от свойств материалов. Прочность, твердость, триботехнические характеристики. Внедрение в материал более твердого тела – индентора. Температурные, электрические и магнитные характеристики материалов.

    реферат [56,6 K], добавлен 30.07.2009

  • Определение коэффициента устойчивости водоудерживающей стенки относительно ребра "О" при заданных переменных. Вычисление давления силы на участки стенки. Нахождение точек приложения сил, площади эпюр и силы давления. Определение опрокидывающих моментов.

    контрольная работа [337,1 K], добавлен 13.10.2014

  • Расчет винта, гайки, рукоятки с храповым механизмом и корпуса с целью проектирования конструкции самолетного домкрата по заданным параметрам. Определение коэффициента полезного действия устройства, преобразующего вращательное движение в поступательное.

    курсовая работа [121,4 K], добавлен 09.02.2012

  • Сверление как процесс образования отверстий в сплошном материале с помощью инструмента, называемого сверлом. Определение основных факторов, влияющих на точность технологического процесса, существующие движения: вращательное и поступательное направленное.

    реферат [264,9 K], добавлен 18.11.2014

  • Виды и происхождение твердых топлив. Строение, свойства и классификация каменных углей. Общая схема коксохимического производства. Улавливание и разделение летучих продуктов коксования. Основные проблемы гидрирования (гидрогенизации) твердого топлива.

    реферат [2,3 M], добавлен 19.11.2009

  • Построение эпюр для консольных балок. Величина максимального изгибающего момента. Момент сопротивления круглого поперечного сечения относительно центральной оси и прямоугольника относительно нейтральной оси. Поперечные силы и изгибающие моменты.

    курсовая работа [63,3 K], добавлен 13.03.2011

  • Закономерности деформации при повышенных температурах. Возврат и рекристаллизация. Закон постоянства объема пластически деформируемого твердого тела. Степень деформации металла при пластическом формоизменении. Расчет параметров штамповки выдавливанием.

    курсовая работа [634,1 K], добавлен 22.01.2016

  • Виды движений, их основные характеристики и передаточные механизмы. Вращательное движение в машинах. Разновидности передач, особенности устройства, специфика работы и сфера применения в технике. Достоинства и недостатки механизмов, их назначение.

    реферат [5,7 M], добавлен 10.11.2010

  • Методика определения твердости и измерения отпечатка, схемы испытания различными способами. Сопротивление материала проникновению в него более твердого тела. Расчеты определения твердости; перевод твердость по Бринелю в твердость по Раквеллу, Виккерсу.

    лабораторная работа [567,3 K], добавлен 12.01.2010

  • Расчет параметров электрохимической обработки детали. Изучение процессов на поверхности твердого тела при вакуумном ионно-плазменном напылении порошка борида циркония. Анализ показателей температурных полей при наплавке покрытия плазменно-дуговым методом.

    курсовая работа [2,5 M], добавлен 06.12.2013

  • Основные характеристики, способ действия и виды механизмов преобразования вращательного движения в поступательное или наоборот: винтовой, зубчато-реечный, кулачковый, кривошипно-шатунный, кулисный, эксцентриковый, храповой, мальтийский и планетарный.

    презентация [3,7 M], добавлен 28.12.2010

  • Деформация – изменение формы и размеров твердого тела под воздействием приложенных к нему нагрузок. Упругой деформацией называют такую, при которой тело восстанавливает свою первоначальную форму, а при пластической деформации тело не восстанавливается.

    реферат [404,2 K], добавлен 18.01.2009

  • Преобразование возвратно-поступательного движения поршней во вращательное движение коленчатого вала в двигателях внутреннего сгорания. Назначение, характеристика и элементы кривошипно-шатунного механизма; принцип осуществления рабочего процесса двигателя.

    презентация [308,4 K], добавлен 07.12.2012

  • Исследование и анализ динамического поведения механической системы с упругими связями с помощью основных теорем и принципов теоретической механики. Составление дифференциального уравнения движения механической системы и определение реакций движения.

    контрольная работа [1,0 M], добавлен 23.09.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.