Статистический анализ

Суть основных методов проведения статистического анализа данных при помощи программного пакета SPSS версии 11-12, используемого в практике проведения маркетинговых исследований. Особенности составления схемы кодировки анкеты и ввод данных в компьютер.

Рубрика Маркетинг, реклама и торговля
Вид учебное пособие
Язык русский
Дата добавления 18.07.2014
Размер файла 4,6 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Сначала мы рассмотрим пример применения коэффициента корреляции Пирсона. Предположим, что у нас есть ответы респондентов на следующие два вопроса. Каков Ваш среднемесячный доход в расчете на одного члена семьи? с вариантами ответа:

¦ до $100;

¦ от $ 100 до $ 300;

¦ от $ 300 до $ 600;

¦ от $ 600 до $ 1000;

¦ от $ 1000 до $ 1500;

¦ свыше $1500.

Как часто Вы посещаете рестораны? с вариантами ответа:

¦ более 1 раза в день;

¦ примерно 1 раз в день;

¦ 2-3 раза в неделю;

¦ примерно 1 раз в неделю;

¦ 2-3 раза в месяц;

¦ примерно 1 раз в месяц;

¦ реже 1 раза в месяц.

В результате ввода в компьютер заполненных анкет респондентов были получены две переменные: q3 (первый вопрос) и q28 (второй вопрос). Необходимо установить, зависит ли частота посещения ресторанов от дохода респондентов, и если да, то каким образом. В связи с тем, что в ходе опроса при ответе на каждый вопрос респондентам предлагалось на выбор несколько вариантов ответа, тип шкалы у полученных переменных получился порядковым (в файле данных есть только коды ответов, но не сами числовые значения, отражающие частоту посещения ресторана или уровень дохода).

Далее мы рассмотрим не только как использовать коэффициент корреляции Пирсона, но также как использовать данный коэффициент для анализа квазипорядковых переменных. Дело в том, что некоторые переменные, хотя они и закодированы как порядковые, по сути являются интервальными (как в нашем случае). Это делается специально, чтобы, с одной стороны, увеличить долю респондентов, ответивших на вопрос, а с другой стороны, уменьшить число возможных ошибок при вводе в компьютер текстовых полей (для открытых вопросов). Интервалы также полезны при анализе, поскольку нет необходимости кодировать текстовые (или интервальные) переменные, а можно сразу увидеть группы (интервалы) значений. Практика показывает, что подобное составление анкет для маркетинговых исследований является стандартным, поэтому корреляционный анализ редко проводится на изначально интервальных переменных (текстовые поля анкеты).

Для описываемых квазипорядковых переменных следует применять именно коэффициент корреляции Пирсона. Использование коэффициентов Спирмана или Кендала в этом случае является некорректным. Более подробно эти два коэффициента представлены ниже; пока же в общих чертах о них можно сказать следующее. Коэффициенты Спирмана или Кендала показывают только степень соответствия порядка следования вариантов ответа в ранжированных списках (есть отсутствие инверсий). При этом корреляции по Спирману и Кендалу используются в основном, когда элементы ранжированных списков представлены мнемоническими, а не числовыми константами. Таким образом, данные коэффициенты не помогут нам в характеристике зависимости между частотой посещения ресторанов и доходом респондентов. Однако в нашем случае нельзя применять и коэффициент корреляции Пирсона, так как в этом случае анализировались бы коды интервалов (1 -6 -- в первом вопросе и 1 -7 -- во втором), а не действительные ответы респондентов на вопросы1.

Итак, сначала мы должны преобразовать имеющиеся у нас порядковые переменные к интервальному виду. Лучше всего сделать это при помощи замены кодов интервалов (1-6) на средние значения данных интервалов. Например, среднее значение для интервала 3 в переменной q3 -- это $ 450 (450 = (300 + 600) / 2). Преобразовав обе переменные к данному виду, мы получим следующие интервальные переменные q3_i и q28_i (табл. 4.5)2.

Таблица 4.5. Схема перекодировки порядковых переменных (q3 и q28) в интервальные (q3_i и q28_i)

Порядковые переменные

Интервальные переменные

Каков Ваш среднемесячный доход в расчете на одного члена семьи?

до $ 100

$50

от $ 100 до $ 300

$200

от $ 300 до $ 600

$450

от $ 600 до $ 1000

$ 800

от $ 1000 до $ 1500

$ 1250

свыше $ 1500

$ 1750

Как часто Вы посещаете рестораны?

более 1 раза в день

60 раз в месяц

примерно 1 раз в день

30 раз в месяц

2-3 раза в неделю

10 раз в месяц

примерно 1 раз в неделю

4 раза в месяц

2-3 раза в месяц

2,5 раза в месяц

примерно 1 раз в месяц

1 раз в месяц

реже 1 раза в месяц

0,5 раза в месяц

Теперь мы можем приступить непосредственно к корреляционному анализу (описанию зависимости между частотой посещения ресторанов и уровнем дохода). Для этого выберите пункт меню Analyze > Correlate > Bivariate. В открывшемся диалоговом окне (рис. 4.17) выберите в левом списке всех доступных переменных две интересующие нас (q3_i и q28_i) и перенесите их в область Variables. Остальные параметры в этом диалоговом окне, установленные по умолчанию, следует оставить неизменными: вывод коэффициентов корреляции Пирсона (параметр Pearson в области Correlation Coefficients) и статистической значимости коэффициентов (параметр Two-tailed в области Test of Significance). Кнопка Options не предлагает исследователю каких-либо существенных параметров. Чтобы запустить процедуру построения корреляционной таблицы, щелкните на кнопке ОК.

Рис. 4.17. Диалоговое окно Bivariate Correlations (корреляция Пирсона)

В окне SPSS Viewer появится таблица Correlations с результатами расчетов коэффициента корреляции Пирсона и статистической значимости данного коэффициента. Как видно из рис. 4.18, в нашем случае коэффициент корреляции Пирсона между двумя исследуемыми переменными (q3_i и q28_i) равен +0,665, а его статистическая значимость меньше 0,001. Следовательно, можно сделать вывод о том, что между среднемесячным доходом респондентов и частотой посещения ими ресторанов существует статистически значимая умеренная (средняя) линейная возрастающая зависимость. То есть частота посещения ресторанов в достаточно высокой степени (коэффициент Пирсона = 0,7) зависит от уровня доходов потребителей, причем при росте среднемесячного дохода частота посещения ресторанов линейно возрастает.

Существует возможность проводить корреляционный анализ сразу для нескольких переменных. Для этого необходимо поместить эти переменные в область Variables диалогового окна Bivariate Correlations. В таблице Correlations будут показаны коэффициенты корреляции для каждой пары исследуемых переменных.

Теперь рассмотрим процедуру проведения корреляционного анализа при помощи ранговых коэффициентов Спирмана и Кендала. В данных методах одна переменная (эталонная) представлена в виде ранжированной последовательности мнемонических категорий, а другой переменной присваиваются ранговые места. Корреляционные коэффициенты рассчитываются исходя из количества инверсий, то есть числа нарушений порядка следования рангов по сравнению с первым рядом. В большинстве случаев рекомендуется применять коэффициент корреляции Спирмана. Использование коэффициента Кендала оправдано только в том случае, когда в структуре данных имеются выбросы.

Рис. 4.18. Таблица Correlations (корреляция Пирсона)

В практике маркетинговых исследований наиболее часто коэффициенты корреляции Спирмана применяются для анализа не всей выборочной совокупности респондентов (базы данных в целом), а агрегированных ранжированных перечней, полученных в результате других преобразований1. Приведем пример. Предположим, что в результате опроса посетителей магазинов одежды были получены ответы на следующие два вопроса. Какие факторы для Вас наиболее важны при выборе одежды? с вариантами ответа:

¦ Высокое качество одежды.

¦ Доступные цены.

¦ Широта ассортимента одежды.

¦ Близость к дому или работе.

¦ Высокое качество обслуживания.

¦ Красивый интерьер магазина.

Оцените, пожалуйста, следующие характеристики данного магазина одежды (в котором происходит опрос) по пятибалльной шкале (от 1 -- очень плохо до 5 -- отлично) с вариантами ответа:

¦ Высокое качество одежды.

¦ Доступные цены.

¦ Широта ассортимента одежды.

¦ Близость к дому или работе.

¦ Высокое качество обслуживания.

¦ Красивый интерьер магазина.

¦ Ваша общая оценка работы данного магазина.

Над результатами второго вопроса был проведен множественный линейный регрессионный анализ. Анализировалось влияние оценок частных параметров всех исследованных магазинов одежды на их общую оценку. В разделе 4.3 подробно рассматривается процедура линейного регрессионного анализа, позволяющая, в частности, построить ранжированный перечень частных параметров по силе их влияния на общую оценку.

Таким образом, были получены два ранжированных списка с одинаковыми категориями: две схемы выбора магазина одежды. Затем оба списка были введены в SPSS под кодами, представленными выше: от 1 (наиболее важный фактор) до 6 (наименее важный фактор) (рис. 4.19). На рис. 4.20 представлены данные списки в мнемонической форме. Первый список представлен в переменной sc_l; второй -- в sc_2.

Рис. 4.19. Окно SPSS Data Editor с двумя ранжированными перечнями наиболее значимых для респондентов факторов выбора магазинов одежды

Рис. 4.20. Окно SPSS Data Editor с двумя ранжированными перечнями наиболее значимых для респондентов факторов выбора магазинов одежды одежды

Как вы видите на рис. 4.20, две схемы выбора, составленные на основании прямого метода (вопрос 1) и на основании регрессионного анализа (вопрос 2), соответствуют друг другу не полностью, различаясь в порядке следования первой и второй категорий. Проанализируем эти схемы выбора магазинов одежды на предмет соответствия при помощи коэффициента корреляции Спирмана.

Для этого снова откройте диалоговое окно Bi variate Correlations, выбрав пункт меню Analyze > Correlate > Bivariate. Перенесите две интересующие нас переменные -- Схема №1 (составленная по вопросу 1) и Схема №2 (составленная по вопросу 2) -- из левого списка всех доступных переменных в область Variables (рис. 4.21). Отмените вывод корреляции Пирсона и вместо него выберите параметр Spearman (корреляция Спирмана). После этого начните расчет при помощи щелчка на кнопке ОК.

Рис. 4.21. Диалоговое окно Bivariate Correlations (корреляция Спирмана)одежды

В окне SPSS Viewer появится таблица Correlations с результатами расчета коэффициента ранговой корреляции (Спирмана) по двум анализируемым переменным. Как следует из рис. 4.22, две рассматриваемые схемы выбора различаются несущественно. Данный вывод можно сделать из сильной корреляции между переменными sc_l и sc_2 (коэффициент корреляции Спирмана = 0,9), характеризующейся весьма высокой статистической значимостью (0,005).

Рис. 4.22. Таблица Correlations (корреляция Спирмана)

В заключение напомним, что ранговый коэффициент корреляции Спирмана (в отличие от Кендала) может применяться и в качестве аналога корреляции Пирсона при исследовании зависимостей между переменными, не приводимыми к интервальному виду и потому не являющимися ранжированными списками. В качестве примера можно привести гипотетический случай, рассмотренный выше, когда анализируется влияние пола респондентов (дихотомическая шкала) на уровень образования (порядковая по сути, но номинальная по виду шкала).

4.2.2 Частные корреляции. Выявление ложных корреляций

На практике иногда возникают ситуации, когда в результате корреляционного анализа обнаруживаются логически необъяснимые, противоречащие объективному опыту исследователя корреляции между двумя переменными (например, оказывается, что между уровнем дохода респондентов и количеством детей в семье существует статистически значимая зависимость). В этом случае говорят о так называемой ложной корреляции, исследовать которую помогают частные коэффициенты корреляции.

Рассмотрим процедуру исследования частных корреляций на следующем примере из маркетингового исследования поведения посетителей залов игровых автоматов. В результате обработки анкет респондентов были, в частности, получены три интервальные переменные:

¦ q47 -- возраст;

¦ q49 -- количество членов семьи;

¦ q50 -- среднемесячный доход на 1 члена семьи.

Над данными переменными был проведен корреляционный анализ (Пирсона), который выявил логически необъяснимую, но статистически значимую зависимость между переменными: Доход и Количество членов семьи (рис. 4.23).

Рис. 4.23. Коэффициенты корреляции (Пирсона) для трех переменных: возраст, уровень доходов и количество членов семьи

Как видно из таблицы, обе рассматриваемые переменные коррелируют с третьей переменной Возраст. В такой ситуации корреляция между уровнем дохода респондентов и численностью их семей может объясняться влиянием третьей переменной: возраста респондентов. То есть связанными (коррелирующими), на самом деле, являются пары возраст/уровень дохода и возраст/количество членов семьи. Проверим данную гипотезу при помощи частных коэффициентов корреляции.

Рис. 4.24. Диалоговое окно Partial Correlations

Откройте диалоговое окно Partial Correlations (меню Analyze > Correlate > Partial). В левом списке всех доступных переменных выберите переменные, между которыми обнаружена странная корреляция (q50 Доход и q49 Количество членов семьи), и поместите их в область Variables. Переменную, с которой коррелируют обе исследуемые переменные (q47 Возраст), поместите в область Controlling for (рис. 4.24). В этом диалоговом окне больше ничего не изменяйте -- просто запустите программу на исполнение, щелкнув на кнопке ОК.

В окне SPSS Viewer появятся результаты расчетов частных коэффициентов корреляции (рис. 4.25). В данной таблице первая строка каждой ячейки содержит коэффициент корреляции Пирсона, а третья -- статистическую значимость данного коэффициента. Из таблицы вы видите, что между количеством членов семьи (q49) и уровнем дохода (q50) больше не наблюдается статистически значимой корреляции (Р = 0,520), а коэффициент Пирсона сильно уменьшился (0,0256). Следовательно, корреляция, представленная на рис. 4.23, объясняется влиянием третьей переменной Возраст и, таким образом, является ложной.

4.3 Линейный регрессионный анализ и статистическое прогнозирование

Линейная регрессия является наиболее часто используемым видом регрессионного анализа. Ниже перечислены три основные задачи, решаемые в маркетинговых исследованиях при помощи линейного регрессионного анализа.

1. Определение того, какие частные параметры продукта оказывают влияние на общее впечатление потребителей от данного продукта. Установление направления и силы данного влияния. Расчет, каким будет значение результирующего параметра при тех или иных значениях частных параметров. Например, требуется установить, как влияет возраст респондента и его среднемесячный доход на частоту покупок глазированных сырков.

2. Выявление того, какие частные характеристики продукта влияют на общее впечатление потребителей от данного продукта (построение схемы выбора продукта потребителями). Установление соотношения между различными частными параметрами по силе и направлению влияния на общее впечатление. Например, имеются оценки респондентами двух характеристик мебели производителя X -- цены и качества, -- а также общая оценка мебели данного производителя. Требуется установить, какой из двух параметров является наиболее значимым для покупателей при выборе производителя мебели и в каком конкретном соотношении находится значимость для покупателей данных двух факторов (параметр Цена в х раз более значим для покупателей при выборе мебели, чем параметр Качество).

3. Графическое прогнозирование поведения одной переменной в зависимости от изменения другой (используется только для двух переменных). Как правило, целью проведения регрессионного анализа в данном случае является не столько расчет уравнения, сколько построение тренда (то есть аппроксимирующей кривой, графически показывающей зависимость между переменными). По полученному уравнению можно предсказать, каким будет значение одной переменной при изменении (увеличении или уменьшении) другой. Например, требуется установить характер зависимости между долей респондентов, осведомленных о различных марках глазированных сырков, и долей респондентов, покупающих данные марки. Также требуется рассчитать, насколько возрастет доля покупателей сырков марки х при увеличении потребительской осведомленности на 10 % (в результате проведения рекламной кампании).

В зависимости от типа решаемой задачи выбирается вид линейного регрессионного анализа. В большинстве случаев (1 и 2) применяется множественная линейная регрессия, в которой исследуется влияние нескольких независимых переменных на одну зависимую. В случае 3 применима только простая линейная регрессия, в которой участвуют только одна независимая и одна зависимая переменные. Это связано с тем, что основным результатом анализа в случае 3 является линия тренда, которая может быть логически интерпретирована только в двухмерном пространстве. В общем случае результатом проведения регрессионного анализа является построение уравнения регрессии вида: у = а + Ь,х, + Ь2х2 + ... + Ь„хп, позволяющего рассчитать значение зависимой переменной при различных значениях независимых переменных.

В табл. 4.6 представлены основные характеристики переменных, участвующих в анализе.

Таблица 4.6. Основные характеристики переменных, участвующих в линейном регрессионном анализе

Линейная регрессия

Зависимые переменные

Независимые переменные

Количество

Тип

Количество

Тип

Одна

Интервальная

Любое

Интервальная

Порядковая

Порядковая

Дихотомическая

В связи с тем что и множественная и простая регрессии строятся в SPSS одинаковым способом, рассмотрим общий случай множественной линейной регрессии как наиболее полно раскрывающий суть описываемого статистического метода. Давайте рассмотрим, как построить линию тренда с целью статистического прогнозирования.

Исходные данные:

В ходе опроса респондентов, летающих одним из трех классов (первым, бизнес- или эконом-классом), просили оценить по пятибалльной шкале -- от 1 (очень плохо) до 5 (отлично) -- следующие характеристики сервиса на борту самолетов авиакомпании X: комфортабельность салона, работа бортпроводников, питание во время полета, цена билетов, спиртные напитки, дорожные наборы, аудиопрограммы, видеопрограммы и пресса. Также респондентам предлагалось поставить общую (итоговую) оценку обслуживания на борту самолетов данной авиакомпании.

Для каждого класса полета требуется:

1) Выявить наиболее значимые для респондентов параметры обслуживания на борту.

2) Установить, какое влияние оказывают оценки частных параметров обслуживания на борту на общее впечатление авиапассажиров от полета.

Откройте диалоговое окно Linear Regression при помощи меню Analyze > Regression > Linear. Из левого списка выберите зависимую переменную для анализа. Это будет Общая оценка сервиса на борту. Поместите ее в область Dependent. Далее в левом списке выберите независимые переменные для анализа: частные параметры сервиса на борту -- и поместите их в область Independent(s).

Существует несколько методов проведения регрессионного анализа: enter, stepwise, forward и backward. He вдаваясь в статистические тонкости, проведем регрессионный анализ посредством пошагового метода backward как наиболее универсального и релевантного для всех примеров из маркетинговых исследований.

Так как задача анализа содержит требование провести регрессионный анализ в разрезе трех классов полета, выберите в левом списке переменную, обозначающую класс (q5) и перенесите ее в область Selection Variable. Затем щелкните на кнопке Rule, чтобы задать конкретное значение данной переменной для регрессионного анализа. Следует отметить, что за одну итерацию можно построить регрессию только в разрезе какого-то одного класса полета. В дальнейшем следует повторить все этапы сначала по количеству классов (3), каждый раз выбирая следующий класс.

Если нет необходимости проводить регрессионный анализ в каком-либо разрезе, оставьте поле Selection Variable пустым.

Итак, на экране открылось диалоговое окно Set Rule, в котором вы должны указать, для какого именно класса полета вы хотите построить регрессионную модель. Выберите экономический класс, закодированный как 3 (рис. 4.26).

Рис. 4.26. Диалоговое окно Set Rule

В более сложных случаях, когда требуется построить регрессионную модель в разрезе трех и более переменных, следует воспользоваться условным отбором данных (см. раздел 1.5.1). Например, если кроме класса полета есть еще и необходимость раздельного построения регрессионной модели для респондентов (мужчин и женщин), необходимо перед открытием диалогового окна Linear Regression произвести условный отбор анкет респондентов, являющихся мужчинами. Далее проводится регрессионный анализ по описываемой схеме. Для построения регрессии для женщин следует повторить все этапы сначала: вначале выбрать только анкеты респондентов-женщин и затем уже для них построить регрессионную модель.

Щелкните на кнопке Continue в диалоговом окне Set Rule -- вы вновь вернетесь к основному диалоговому окну Linear Regression. Последним шагом перед запуском процедуры построения регрессионной модели является выбор пункта Collinearity Diagnostics в диалоговом окне, появляющемся при щелчке на кнопке Statistics (рис. 4.27). Установление требования провести диагностику наличия коллинеарности между независимыми переменными позволяет избежать эффекта мульти-коллинеарности, при котором несколько независимых переменных могут иметь настолько сильную корреляцию, что в регрессионной модели обозначают, в принципе, одно и то же (это неприемлемо).

Рис. 4.26. Диалоговое окно Set Rule

Теперь основное диалоговое окно Linear Regression примет вид, показанный на рис. 4.28. Щелчок на кнопке О К приведет к запуску процедуры построения линейной регрессии.

Рис. 4.28. Диалоговое окно Linear Regression

Рассмотрим основные элементы отчета о построении регрессионной модели (окно SPSS Viewer), содержащие наиболее значимые для исследователя данные. Необходимо отметить, что все таблицы, представленные в отчете Output, содержат несколько блоков, соответствующих количеству шагов SPSS при построении модели. На каждом шаге при используемом методе backward из полного списка независимых переменных, введенных в модель изначально, при помощи наименьших частных коэффициентов корреляции последовательно исключаются переменные -- до тех пор, пока соответствующий коэффициент регрессии не оказывается незначимым (Sig > 0,05). В нашем примере таблицы состоят из трех блоков (регрессия строилась в три шага). При интерпретации результатов регрессионного анализа следует обращать внимание только на последний блок (в нашем случае 3).

Первое, на что следует обратить внимание, -- это таблица ANOVA (рис. 4.29). На третьем шаге статистическая значимость (столбец Sig) должна быть меньше или равна 0,05.

Затем следует рассмотреть таблицу Model Summary, содержащую важные сведения о построенной модели (рис. 4.30). Коэффициент детерминации R является характеристикой силы общей линейной связи между переменными в регрессионной модели. Он показывает, насколько хорошо выбранные независимые переменные способны определять поведение зависимой переменной. Чем выше коэффициент детерминации (изменяющийся в пределах от 0 до 1), тем лучше выбранные независимые переменные подходят для определения поведения зависимой переменной. Требования к коэффициенту R такие же, как к коэффициенту корреляции (см. табл. 4.4): в общем случае он должен превышать хотя бы 0,5. В нашем примере R = 0,66, что является приемлемым показателем.

Рис. 4.29. Таблица ANOVA

Также важной характеристикой регрессионной модели является коэффициент R2, показывающий, какая доля совокупной вариации в зависимой переменной описывается выбранным набором независимых переменных. Величина R2 изменяется от 0 до 1. Как правило, данный показатель должен превышать 0,5 (чем он выше, тем показательнее построенная регрессионная модель). В нашем примере R2 =¦ 0,43 -- это значит, что регрессионной моделью описано только 43 % случаев (дисперсии в итоговой оценке полета). Таким образом, при интерпретации результатов регрессионного анализа следует постоянно иметь в виду существенное ограничение: построенная модель справедлива только для 43 % случаев.

Третьим практически значимым показателем, определяющим качество регрессионной модели, является величина стандартной ошибки расчетов (столбец Std. Error of the Estimate). Данный показатель варьируется в пределах от 0 до 1. Чем он меньше, тем надежнее модель (в общем случае показатель должен быть меньше 0,5). В нашем примере ошибка составляет 0,42, что является завышенным, но в целом приемлемым результатом.

На основании таблиц AN OVA и Model Summary можно судить о практической пригодности построенной регрессионной модели. Учитывая, что AN OVA показывает весьма высокую значимость (менее 0,001), коэффициент детерминации превышает 0,6, а стандартная ошибка расчетов меньше 0,5, можно сделать вывод о том, что с учетом ограничения модель описывает 43 % совокупной дисперсии, то есть построенная регрессионная модель является статистически значимой и практически приемлемой.

Рис. 4.30. Таблица Model Summary

После того как мы констатировали приемлемый уровень качества регрессионной модели, можно приступать к интерпретации ее результатов. Основные практические результаты регрессии содержатся в таблице Coefficients (рис. 4.31). Под таблицей вы можете видеть, какая переменная была зависимой (общая оценка сервиса на борту) и для какого класса полета происходило построение регрессионной модели (эконом-класс). В таблице Coefficients практически значимыми являются четыре показателя: VIF, Beta, В и Std. Error. Рассмотрим последовательно, как их следует интерпретировать.

Рис. 4.31. Таблица Coefficients

Прежде всего необходимо исключить возможность возникновения ситуации мультиколлинеарности (см. выше), при которой несколько переменных могут обозначать почти одно и то же. Для этого необходимо посмотреть на значение VIF возле каждой независимой переменной. Если величина данного показателя меньше 10 -- значит, эффекта мультиколлинеарности не наблюдается и регрессионная модель приемлема для дальнейшей интерпретации. Чем выше этот показатель, тем более связаны между собой переменные. Если какая-либо переменная превышает значение в 10 VIF, следует пересчитать регрессию без этой независимой переменной. В данном примере автоматически уменьшится величина R2 и возрастет величина свободного члена (константы), однако, несмотря на это, новая регрессионная модель будет более практически приемлема, чем первая.

В первом столбце таблицы Coefficients содержатся независимые переменные, составляющие регрессионное уравнение (удовлетворяющие требованию статистической значимости). В нашем случае в регрессионную модель входят все частные характеристики сервиса на борту самолета, кроме аудиопрограмм. Исключенные переменные содержатся в таблице Excluded Variables (здесь не приводится). Итак, мы можем сделать первый вывод о том, что на общее впечатление авиапассажиров от полета оказывают влияние семь параметров: комфортабельность салона, работа бортпроводников, питание во время полета, спиртные напитки, дорожные наборы, видеопрограммы и пресса.

После того, как мы определили состав параметров, формирующих итоговое впечатление от полета, можно определить направление и силу влияния на него каждого частного параметра. Это позволяет сделать столбец Beta, содержащий стандартизированные - коэффициенты регрессии. Данные коэффициенты также дают возможность сравнить силу влияния параметров между собой. Знак (+ или -) перед -коэффициентом показывает направление связи между независимой и зависимой переменными. Положительные -коэффициенты свидетельствуют о том, что возрастание величины данного частного параметра увеличивает зависимую переменную (в нашем случае все независимые переменные ведут себя подобным образом). Отрицательные коэффициенты означают, что при возрастании данного частного параметра общая оценка снижается. Как правило, при определении связи между оценками параметров это свидетельствует об ошибке и означает, например, что выборка слишком мала.

Например, если бы перед - коэффициентом параметра работы бортпроводников стоял знак -, его следовало бы интерпретировать следующим образом: чем хуже работают бортпроводники, тем лучше становится общее впечатление пассажиров от полета. Такая интерпретация является бессмысленной и не отражающей реального положения вещей, то есть ложной. В таком случае лучше пересчитать регрессию без данного параметра; тогда доля вариации в итоговой оценке, описываемой исключенным параметром, будет отнесена на счет константы (увеличивая ее). Соответственно уменьшится и процент совокупной дисперсии, описываемой регрессионной моделью (величина R2). Однако это позволит восстановить семантическую релевантность.

Еще раз подчеркнем, что сделанное замечание справедливо для нашего случая (оценки параметров). Отрицательные - коэффициенты могут быть верными и отражать семантические реалии в других случаях. Например, когда уменьшение дохода респондентов приводит к увеличению частоты покупок дешевых товаров. В таблице вы видите, что в наибольшей степени на общее впечатление пассажиров от полета влияют два параметра: работа бортпроводников и комфортабельность салона (- коэффициенты по 0,21). Напротив, в наименьшей степени формирование итоговой оценки сервиса на борту происходит за счет впечатления от обслуживания спиртными напитками (0,08). При этом два первых параметра оказывают почти в три раза более сильное влияние на итоговую оценку полета, чем спиртные напитки. На основании стандартизированных (3-коэффициентов регрессии можно построить рейтинг влияния частных параметров сервиса на борту на общее впечатление авиапассажиров от полета, разделив их на три группы по силе влияния:

¦ наиболее значимые параметры;

¦ параметры, имеющие среднюю значимость;

¦ параметры, имеющие низкую значимость для респондентов (рис. 4.32).

В крайнем правом столбце содержатся - коэффициенты, умноженные на 100, -- для облегчения сравнения параметров между собой.

Рис. 4.32. Рейтинг значимости параметров сервиса на борту

Данный рейтинг также можно интерпретировать и как рейтинг значимости для респондентов различных параметров сервиса на борту (в общем случае -- схема выбора). Так, наиболее важными факторами являются первые два (1-2); среднюю значимость для пассажиров имеют следующие три параметра (3-5); относительно малое значение имеют последние два фактора (6-7).

Регрессионный анализ позволяет выявить истинные, глубинные мотивы респондентов при формировании общего впечатления о каком-либо продукте. Как показывает практика, такого уровня приближения нельзя достичь обычными методами -- например, просто спросив респондентов: Какие факторы из нижеперечисленных оказывают наибольшее влияние на Ваше общее впечатление от полета самолетами нашей авиакомпании?. Кроме того, регрессионный анализ позволяет достаточно точно оценить, насколько один параметр более-менее значим для респондентов, чем другой, и на этом основании классифицировать параметры на критические, имеющие среднюю значимость и малозначимые.

Столбец В таблицы Coefficients содержит коэффициенты регрессии (нестандарти-зированные). Они служат для формирования собственно регрессионного уравнения, по которому можно рассчитать величину зависимой переменной при разных значениях независимых.

Особая строка Constant содержит важную информацию о полученной регрессионной модели: значение зависимой переменной при нулевых значениях независимых переменных. Чем выше значение константы, тем хуже подходит выбранный перечень независимых переменных для описания поведения зависимой переменной. В общем случае считается, что константа не должна быть наибольшим коэффициентом в регрессионном уравнении (коэффициент хотя бы при одной переменой должен быть больше константы). Однако в практике маркетинговых исследований часто свободный член оказывается больше всех коэффициентов вместе взятых. Это связано в основном с относительно малыми размерами выборок, с которыми приходится работать маркетологам, а также с неаккуратным заполнением анкет (некоторые респонденты могут не поставить оценку каким-либо параметрам). В нашем случае величина константы меньше 1, что является весьма хорошим результатом.

Итак, в результате построения регрессионной модели можно сформировать следующее регрессионное уравнение:

СБ = 0,78 + 0,20К + 0.20Б + 0,08ПП + 0.07С + 0Д0Н + 0,08В + 0Д2П,

где

¦ СБ -- общая оценка сервиса на борту;

¦ К -- комфортабельность салона;

¦ Б -- работа бортпроводников;

¦ ПП -- питание во время полета;

¦ С -- спиртные напитки;

¦ Н -- дорожные наборы;

¦ В -- видеопрограмма;

¦ П -- пресса.

Последний показатель, на который целесообразно обращать внимание при интерпретации результатов регрессионного анализа, -- это стандартная ошибка, рассчитываемая для каждого коэффициента в регрессионном уравнении (столбец Std. Error). При 95%-ном доверительном уровне каждый коэффициент может отклоняться от величины В на ±2 х Std.Error. Это означает, что, например, коэффициент при параметре Комфортабельность салона (равный 0,202) в 95 % случаев может отклоняться от данного значения на ±2 х 0,016 или на ±0,032. Минимальное значение коэффициента будет равно 0,202 - 0,032 = 0,17; а максимальное - 0,202 + 0,032 = 0,234. Таким образом, в 95 % случаев коэффициент при параметре «комфортабельность салона» варьируется в пределах от 0,17 до 0,234 (при среднем значении 0,202). На этом интерпретация результатов регрессионного анализа может считаться завершенной. В нашем случае следует повторить все шаги еще раз: сначала для бизнес -, потом для эконом-класса.

Теперь давайте рассмотрим другой случай, когда необходимо графически представить зависимость между двумя переменными (одной зависимой и одной независимой) при помощи регрессионного анализа. Например, если мы примем итоговую оценку полета авиакомпанией X в 2001 г. за зависимую переменную S,, а тот же показатель в 2000 г. -- за независимую переменную So, то для построения уравнения тренда (или регрессионного уравнения) нужно будет определить параметры соотношения S, = а + b x So. Построив данное уравнение, также можно построить регрессионную прямую и, зная исходную итоговую оценку полета, спрогнозировать величину данного параметра на следующий год.

Эту операцию следует начать с построения регрессионного уравнения. Для этого повторите все вышеописанные шаги для двух переменных: зависимой Итоговая оценка 2001 и независимой Итоговая оценка 2000. Вы получите коэффициенты, при помощи которых можно в дальнейшем строить линию тренда (как в SPSS, так и любыми другими средствами). В нашем случае полученное регрессионное уравнение имеет вид: S{ = 0,18 + 0,81 х So. Теперь построим уравнение линии тренда в SPSS.

Диалоговое окно Linear Regression имеет встроенное средство для построения графиков -- кнопку Plots. Однако это средство, к сожалению, не позволяет на одном графике построить две переменные: S, и So- Для того чтобы построить тренд, необходимо использовать меню Graphs > Scatter. На экране появится диалоговое окно Scatterplot (рис. 4.32), которое служит для выбора типа диаграммы. Выберите вид Simple. Максимально возможное число независимых переменных, которое можно изобразить графически, -- 2. Поэтому при необходимости графического построения зависимости одной переменной (зависимой) от двух независимых (например, если бы в нашем распоряжении были данные не по двум, а по трем годам), в окне Scatterplot следует выбрать 3-D. Схема построения трехмерной диаграммы рассеяния не имеет существенных отличий от описываемого способа построения двухмерной диаграммы.

Рис. 4.33. Диалоговое окно Scatterplot

После щелчка на кнопке Define на экране появится новое диалоговое окно, представленное на рис. 4.34. Поместите в поле Y Axis зависимую переменную (Итоговая оценка 2001), а в поле X Axis -- независимую (Итоговая оценка 2000). Щелкните на кнопке 0 К, что приведет к построению диаграммы рассеяния.

Для того чтобы построить линию тренда, дважды щелкните мышью на полученной диаграмме; откроется окно SPSS Chart Editor. В этом окне выберите пункт меню Chart > Options; далее пункт Total в области Fit Line; щелкните на кнопке Fit Options. Откроется диалоговое окно Fit Line, выберите в нем тип аппроксимирующей линии (в нашем случае Linear regression) и пункт Display R-square in legend. После закрытия окна SPSS Chart Editor в окне SPSS Viewer появится линейный тренд, аппроксимирующий наши наблюдения по методу наименьших квадратов. Также на диаграмме будет отражаться величина R2, которая, как было сказано выше, обозначает долю совокупной вариации, описываемой данной моделью (рис. 4.35). В нашем примере она равна 53 %.

Рис. 4.34. Диалоговое окно Simple Scatterplot

С линейным регрессионным анализом связано множество интегральных показателей, рассчитываемых на основании коэффициентов регрессии (чаще всего стандартизированных). В качестве примера приведем расчет коэффициента потребительской привлекательности продукта/марки (Consumer Attractiveness), или коэффициента СА.

Рис. 4.35. Диаграмма Scatterplot с построенной линией тренда

Этот коэффициент вводится в маркетинговых исследованиях для удобства сравнения привлекательности для респондентов анализируемых продуктов/марок. В анкете должны присутствовать вопросы типа Оцените представленные параметры продукта/ марки X, в которых респондентам предлагается дать свои оценки частным параметрам продукта или марки X, скажем, по пятибалльной шкале (от 1 -- очень плохо до 5 -- отлично). В конце списка оцениваемых частных параметров респонденты должны поставить итоговую оценку продукту/марке X. При анализе полученных в ходе опроса ответов респондентов на основании оценок респондентов формируются:

¦ матрица средневзвешенных оценок по параметрам продукта/марки;

¦ список стандартизированных - коэффициентов регрессии (оценка влияния частных параметров продукта/марки X на его/ее общую оценку).

Далее коэффициент СА рассчитывается по следующей формуле:

где n -- число параметров, формирующих итоговую оценку продукта или марки:

- -- значимость для респондентов параметра с индексом i (стандартизированный -коэффициент регрессии, оценивающей влияние частных параметров на общую оценку продукта/марки, подробнее см. выше); -- уровень средневзвешенной оценки продукта/марки по параметру с индексом i (при наличии пятибалльной шкалы):

= 2 при высоком уровне оценки (средневзвешенный балл ? 4,5)

= 1 при среднем уровне оценки (средневзвешенный балл ?4,0 и < 4,5)

= -1 при низком уровне оценки (средневзвешенный балл ?3,0 и < 4,0)

= -2 при неудовлетворительной оценке (средневзвешенный балл < 3,0)

Рассчитанный для каждого конкурирующего продукта/марки коэффициент СА показывает его/ее относительную позицию в структуре потребительских предпочтений. Данный интегральный показатель учитывает уровень оценок по каждому параметру, скорректированный на их значимость. При этом он может изменяться в пределах от -1 (наихудшая относительная позиция среди всех рассматриваемых продуктов/марок) до 1 (наилучшее положение); 0 означает, что данный продукт/ марка ничем особенным не выделяется в глазах респондентов.

Итогом расчета коэффициента СА является рейтинг конкурентов по данному показателю. На основании рейтинга можно сделать важные выводы относительно лидерства и аутсайдерства конкретных продуктов/марок на потребительском рынке.

Мы завершаем рассмотрение ассоциативного анализа. Данная группа статистических методов применяется в отечественных компаниях в настоящее время достаточно широко (особенно это касается перекрестных распределений). Вместе с тем хотелось бы подчеркнуть, что только лишь перекрестными распределениями ассоциативные методы не ограничиваются. Для проведения действительно глубокого анализа следует расширить спектр применяемых методик за счет методов, описанных в настоящей главе.

Глава 5. Классификационный анализ

Цель классификационного анализа -- классификация респондентов и/или переменных по определенным целевым группам. Наиболее распространенными примерами использования классификационного анализа в маркетинговых исследованиях являются:

¦ сегментирование респондентов по заранее известным (логистическая регрессия и дискриминантный анализ) или не известным (факторный и кластерный анализ) целевым группам;

¦ классификация переменных по макрокатегориям, то есть сокращение их числа до нескольких значимых групп (факторный и кластерный анализ).

Далее в разделе мы рассмотрим эти статистические методики в указанном порядке, а также приведем примеры задач из практики маркетинговых исследований, решаемых с помощью классификационного анализа.

5.1 Логистическая регрессия и дискриминантный анализ

Логистическая регрессия и дискриминантный анализ применяются в том случае, когда необходимо классифицировать (сегментировать) респондентов по целевым группам, которые, в свою очередь, представлены уровнями (вариантами ответа) одной одновариантной переменной.

Примером задачи, решаемой при помощи этих статистических методов, может служить задача классифицировать респондентов по двум группам -- покупающие горчицу и не покупающие горчицу -- на основании их социально-демографических характеристик (пол, возраст, доход, количество членов семьи и т. п.). Как вы видите, в процедурах логистической регрессии и дискриминантного анализа присутствуют переменные -- критерии сегментирования и одна переменная, кодирующая целевые группы, на которые следует разделить респондентов на основании критериев сегментирования.

Необходимо отметить, что спектр возможностей применения логистической регрессии уже, чем для дискриминантного анализа, поэтому использование дискриминантного анализа в качестве универсального метода предпочтительнее. Боле того, рекомендуется всегда начинать классификационное исследование именно с дискриминантного анализа, а не с логистической регрессии, -- и применять последнюю в случае неуверенности в результатах дискриминантного анализа. Это связано, в частности, с тем, что при применении методов логистической регрессии еле дует четко представлять, какой тип имеют зависимая и независимые переменные и, исходя из этого, выбирать одну из трех возможных процедур логистической регрессии: бинарную, мультиномиальную или порядковую. При дискриминантном анализе мы всегда имеем дело только с одной статистической процедурой, в которой принимают участие одна категориальная зависимая переменная и несколько независимых переменных с любым типом шкалы. Таким образом, дискриминантный анализ является более универсальной методикой (что особенно важно для исследователей, имеющих незначительный опыт в статистическом анализе данных).

В разделах 5.1.1 и 5.1.2 мы на конкретных примерах покажем, как молено использовать процедуры логистической регрессии и дискриминантного анализа в маркетинговых исследованиях. При этом мы увидим, что, несмотря на преимущества универсального дискриминантного анализа, логистическая регрессия в некоторых случаях дает наивысшую четкость классификации.

5.1.1 Бинарная и мультиномиальная логистические регрессии

В настоящем разделе мы рассмотрим два основных типа логистической регрессии -- бинарную и мультиномиальную, а также дадим общий обзор порядковой логистической регрессии. Цель статистического анализа при применении методов логистической регрессии -- определить вероятность того, что тот или иной респондент (на основании определенных характеристик) попадет в ту или иную целевую группу. На практике описываемые методы, согласно значениям одной или нескольких независимых переменных (факторов), позволяют классифицировать респондентов по двум (бинарная) или более (мультиномиальная) группам, которые выражаются уровнями (вариантами ответа) какой-либо одной переменной.

Например, имеются ответы респондентов на вопрос Интересно ли Вам предложение о покупке земельного участка недалеко от Москвы? с вариантами ответа Да и Нет. Требуется выяснить, какие факторы в наибольшей степени определяют решение потенциальных покупателей о приобретении земельного участка. Для этого респондентам задается ряд вопросов с просьбой указать, какие элементы инфраструктуры им необходимы на данном участке, какое расстояние от Москвы является для них оптимальным, каков должен быть размер данного участка, должен ли на участке быть дом и т. п. Используя в данном случае метод бинарной логистической регрессии, можно классифицировать всех респондентов по двум целевым группам: заинтересованные в покупке земельного участка (потенциальные покупатели) и не заинтересованные. Также для каждого респондента в выборке будет рассчитана вероятность попадания в ту или иную группу.

Различие между рассматриваемыми двумя методами логистической регрессии заключаются в количестве категорий и типе зависимой переменной, а также типе независимых переменных. Так, в случае бинарной логистической регрессии исследуется зависимость дихотомической переменной от одной или нескольких независимых переменных, имеющих любой тип шкалы. Мультиномиальная логистическая регрессия является разновидностью бинарной, в которой зависимая переменная имеет более двух категорий. Независимые переменные должны относиться либо к номинальной, либо к порядковой шкале.

Еще в версии SPSS 11-12 был введен новый метод логистической регрессии: порядковая. Он используется в том случае, когда зависимая переменная относится к порядковой шкале. Причем независимые переменные должны быть либо номинальными, либо порядковыми. Мультиномиальный логистический регрессионный анализ является наиболее универсальным и, в целом, способен заменить собой два других метода. Однако наиболее качественное приближение статистических моделей может быть достигнуто только при использовании именно трех описываемых методов: для каждого случая -- свой. В табл. 5.1 систематизированы основные характеристики переменных, участвующих в рассматриваемых трех типах логистического регрессионного анализа.

Таблица 5.1. Основные характеристики переменных, участвующих в анализе

Бинарная логистическая регрессия

Зависимые переменные

Независимые переменные

Количество

Тип

Количество

Тип

Она

Дихотомическая

Любое

Любой

Мультиноминальная логическая регрессия

Зависимые переменные

Независимые переменные

Количество

Тип

Количество

Тип

Одна

Номинальная

Порядковая

Любое

Номинальная

Порядковая

Порядковая логистическая регрессия

Зависимые переменные

Независимые переменные

Количество

Тип

Количество

Тип

Одна

Порядковая

Любое

Номинальная

Порядковая

Необходимо отметить, что ранее в SPSS отсутствовала стандартная возможность проведения специализированного логистического регрессионного анализа для зависимых переменных с порядковой шкалой. Для любых переменных с числом категорий больше двух применялся мультиномиальный регрессионный анализ. Дело в том, что недавно введенная в практику анализа порядковая логистическая регрессия имеет некоторые особенности, учитывающие именно специфику порядковой шкалы (связанных упорядоченных категорий). Однако в настоящем пособии порядковая логистическая регрессия не рассматривается отдельно -- в первую, очередь из-за того, что она не обладает какими-либо существенными преимуществами над мультиномиальным методом. Вы можете спокойно применять мультиномиальную регрессию и в случае номинальной, и в случае порядковой зависимой переменной. Если вы все же решите провести порядковый логистический регрессионный анализ, вы без труда в нем разберетесь, так как данный процесс практически не отличается от построения мультиномиальной логистической регрессии.

Далее мы рассмотрим примеры проведения статистического анализа с использованием логистической регрессии отдельно для бинарной и мультиномиальной логистической регрессии.

Начнем с наиболее простого случая -- бинарной логистической регрессии. Предположим, в ходе маркетингового исследования проводится оценка востребованности выпускников одного из московских вузов. В анкете респондентам в числе прочих задаются три вопроса:

¦ Работаете ли вы? (ql);

¦ В каком году Вы окончили вуз? (q21);

¦ Каков был Ваш средний балл при выпуске из вуза? (aver), а также уточняется пол опрошенных (q22).

В ходе логистического анализа мы оценим влияние независимых переменных q21, q22 и aver на зависимую переменную ql. Другими словами, мы попытаемся предсказать трудоустройство выпускников вуза на основании пола, года окончания вуза и среднего балла, полученного за годы обучения.

Для того чтобы задать параметры построения регрессионной модели при помощи бинарного логистического метода, воспользуемся меню Analyze > Regression > Binary Logistic. В открывшемся диалоговом окне Logistic Regression (рис. 5.1) выберите в левом списке всех доступных переменных зависимую (в нашем случае ql) и поместите ее в поле Dependent. Затем в область Covariates поместите исследуемые независимые переменные (q21, q22, aver) и выберите метод их включения в регрессионный анализ. При числе независимых переменных больше двух следует выбрать не установленный по умолчанию метод одновременного включения всех переменных (Enter), а один из пошаговых. Наиболее часто используемым пошаговым методом является Backward:LR. Кнопка Select позволяет включить в анализ не всех респондентов из выборочной совокупности, а только отдельную целевую группу.

Рис. 5.1. Диалоговое окно Logistic Regression

Кнопкой Categorical следует воспользоваться, если в качестве одной из независимых переменных выступает номинальная переменная с числом категорий больше двух. В данном случае в диалоговом окне Define Categorical Variables (рис. 5.2) следует поместить в область Categorical Covariates такую переменную (в нашем случае таких переменных нет). Далее следует выбрать в раскрывающемся списке Contrast пункт Deviation и щелкнуть на кнопке Change. В результате из каждой номинальной переменной будет создано несколько дихотомических переменных (по числу категорий исходной переменной).

Рис. 5.2. Диалоговое окно Define Categorical Variables

При помощи кнопки Save в главном диалоговом окне анализа (рис. 5.3) можно задать создание новых переменных, содержащих значения, рассчитанные в ходе регрессионного анализа. Так давайте создадим две новые переменные, содержащие:

¦ принадлежность к определенной группе классификации (параметр Group membership);

¦ вероятность попадания респондента в каждую из двух рассматриваемых групп (параметр Probabilities).

Рис. 5.3. Диалоговое окно Save New Variables

Кнопка Options не предоставляет исследователю никаких важных возможностей, поэтому ее можно не использовать. После щелчка на кнопке О К в главном диалоговом окне Logistic Regression в окне SPSS Viewer будут выведены результаты бинарного логистического регрессионного анализа.

...

Подобные документы

  • Цели, задачи и основные понятия маркетинговых исследований. Формулирование целей и выбор методов проведения маркетинговых исследований. Определение типа требуемой информации, особенности источников ее получения. Общая характеристика методов сбора данных.

    курсовая работа [30,3 K], добавлен 01.10.2010

  • Цели, задачи и этапы проведения маркетинговых исследований. Определение типа требуемой информации и источников ее получения. Определение методов сбора данных. Общая характеристика магазина. Анализ проведения маркетинговых исследований на предприятии.

    курсовая работа [310,8 K], добавлен 27.10.2012

  • Классификация и особенности основных методов маркетинговых исследований. Характеристика качественных и количественных методик. Оценка ёмкости и доли рынка "ОАО Минский мясокомбинат" посредством проведения маркетинговых исследований и анализа результатов.

    контрольная работа [48,5 K], добавлен 21.09.2011

  • Характеристика маркетинговых исследований. Роль этапов исследований: формулирования целей, сбора информации, планирования и анализа результатов. Характеристика источников данных и методов сбора информации. Особенности проведения интернет-опросов.

    курсовая работа [285,3 K], добавлен 18.01.2014

  • Цели, задачи, основные понятия маркетингового исследования. Формулирование целей маркетингового исследования. Выбор методов проведения, определение типа требуемой информации, источников ее получения, специфика методов сбора данных. Примеры решения задач.

    контрольная работа [147,4 K], добавлен 21.02.2010

  • Маркетинговые исследования. Использование программы статистической обработки SPSS при анализе результатов маркетинговых исследований. Построение таблиц сопряженности. Вычисление корреляционных функций. Регрессионный анализ.

    дипломная работа [71,0 K], добавлен 03.04.2003

  • Определение содержания маркетинговых исследований. Выявление источников информации, необходимых для проведения маркетинговых исследований (маркетинговая информационная среда). Принципы и технология проведения маркетинговых исследований в корпорации.

    курсовая работа [73,5 K], добавлен 18.06.2010

  • Изучение сущности и основных понятий маркетинговых исследований, последовательность их проведения, роль в системе управления. Получение и анализ данных. Рассмотрение основных методов сбора информации для маркетингового исследования. Mix-методики.

    курсовая работа [135,8 K], добавлен 14.10.2011

  • Выбор совокупностей объектов исследований, выделение генеральной совокупности, определение метода выборки и определение объема выборки. Статистические методы анализа данных. Типология методов прогнозирования. Эвристические и экстраполяционные методы.

    реферат [77,4 K], добавлен 27.01.2009

  • Сущность опросов, анкетирования, интервью и холл-тестов как основных количественных методов маркетинговых исследований. Прямое наблюдение в маркетинговых системах, его преимущества и недостатки. Обработка эмпирических данных маркетинговых исследований.

    презентация [542,9 K], добавлен 22.12.2014

  • Процесс маркетинговых исследований и этапы их проведения. Сущность, виды, достоинства и недостатки опроса, наблюдения и эксперимента как методов сбора информации. Структура и последовательность составления анкеты, виды вопросов и требования к ним.

    курсовая работа [259,1 K], добавлен 21.03.2015

  • Этапы проведения маркетинговых исследований. Количественные и качественные исследования рынка телекоммуникаций. Особенности использования метода интернет-опросов. Анализ двух основных типов качественного исследования: фокус-группы и глубинного интервью.

    реферат [102,6 K], добавлен 03.11.2011

  • Классификация маркетинговых исследований, а также организация и процесс проведения. Предпочтения покупателей периодических печатных изданий. Практика проведения исследований чтения в СССР. Обработка полученных статистических данных анкетирования.

    дипломная работа [1,0 M], добавлен 12.12.2013

  • Сущность и типы маркетинговых исследований. Характеристика хозяйственной деятельности ТОО "Тай". Анализ методов маркетинговых исследований в оптовой и розничной торговле, проводимых на мясоперерабатывающем предприятии. Основные пути их совершенствования.

    курсовая работа [44,8 K], добавлен 26.10.2010

  • Этапы проведения маркетинговых исследований. Анализ, интерпретация данных и презентация результатов исследования. Структура маркетинговой информации. Методы первичной и вторичной информации. Эксперименты и их роль в проведении маркетинговых исследований.

    курсовая работа [30,0 K], добавлен 29.01.2009

  • Методические основы маркетинговых исследований как основы разрабатываемой предприятием стратегии и тактики выступления на рынках, проведения целенаправленной товарной политики. Методика проведения маркетинговых исследований, их достоверность и полнота.

    курсовая работа [50,8 K], добавлен 17.09.2010

  • Общая характеристика последовательности этапов проведения маркетинговых исследований. Определение потребности в проведении маркетингового исследования и его целей. Направления выявления проблем-причин. Выбор методов проведения маркетинговых исследований.

    курсовая работа [1,8 M], добавлен 15.11.2010

  • Типы маркетинговых исследований, этапы их проведения. Различные факторы макро и микросреды маркетинга. Типы целей и основные требования к ним. Анкеты для сбора данных и методы коммуникации. Закрытые и открытые вопросы. Шкала важности и оценочная шкала.

    лекция [15,3 K], добавлен 12.04.2009

  • Сущность и понятие анкеты, структура и цели, разработка вопросников. Вопросы, входящие в анкету: правила, которых следует придерживаться при формировании. Анализ деятельности СП ООО "Инвижер", предложения по совершенствованию маркетинговых исследований.

    курсовая работа [38,0 K], добавлен 17.10.2010

  • Методы полевых исследований в маркетинге, их сущность и особенности. Технология проведения опросов. Изучение преимуществ проведения кабинетных исследований. Шесть типов контент­анализа по Р. Мертону. Формализованный анализ документов, его этапы.

    контрольная работа [37,2 K], добавлен 21.05.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.