Понятие вектора. Метод координат. Соотношения между сторонами и углами треугольника. Длина окружности. Площадь круга. Движения
Понятие и равенство векторов. Законы сложения векторов. Произведение вектора на число. Применение векторов к решению задач. Средняя линия трапеции. Уравнение линии на плоскости. Теорема о площади треугольника. Вычисление площади многоугольника.
Рубрика | Математика |
Вид | курс лекций |
Язык | русский |
Дата добавления | 08.10.2017 |
Размер файла | 755,9 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
6. В равнобедренный треугольник АВС с основанием АС вписана окружность, касающаяся сторон АВ и ВС в точках М и Н.
1) Докажите, что треугольник МВН треугольнику АВС.
2) Найдите угол ВАС и радиус окружности, если АВ = 2 м, МН = 1 м.
Четырехугольники. Многоугольники
Основные вопросы программы: параллелограмм и его свойства; признаки параллелограмма; прямоугольник, ромб, квадрат и их свойства; трапеция, многоугольник, правильные многоугольники.
Задачи
1. На рисунке 1 АЕFС - прямоугольник; АС = 10 см, АЕ = 3 см,
ВМ = АМ.
1) Докажите, что МN - средняя линия треугольника АВС.
2) Найдите SАМNС. 3) Найдите S?АВС.
Рис. 1 Рис. 2 Рис. 3
2. В параллелограмме АВСD биссектриса угла А пересекает сторону ВС в точке Е; АВ = а; АD = b. Найдите: 1) отрезки ВЕ и ЕС; 2) отрезки ВK и KD и SАВЕ, если K - точка пересечения АЕ и ВD, а угол А равен 60°.
3. На рисунке 2 АВСD - параллелограмм, угол 1 равен углу 2.
1) Докажите, что четырехугольник ВFDK - параллелограмм, и найдите его площадь и периметр, если KF = 10 см, ВD = 6 см, KОD = 150°. 2) Каким условиям должны удовлетворять отрезки KF и ВD, чтобы параллелограмм ВFDK был прямоугольником (ромбом, квадратом)?
4. Меньшая диагональ параллелограмма перпендикулярна к его стороне, а высота, проведенная из вершины тупого угла, делит большую сторону на отрезки, равные 9 см и 16 см.
найдите: 1) стороны и высоту параллелограмма, проведенную из вершины тупого угла; 2) диагонали параллелограмма; 3) площадь параллелограмма.
5. В параллелограмме АВСD проведена биссектриса АK угла А, точка K делит сторону ВС на отрезки ВK = 4 см и KС = 2см. Расстояние между параллельными прямыми АD и ВС равно 2см.
Найдите: 1) углы параллелограмма; 2) площадь треугольника АВС; 3) радиус окружности, описанной около треугольника DКС.
6. На рисунке 3 точки М, N, Р и Q - середины сторон четырехугольника АВСD, АС = 10 см, ВD = 18 см.
1) Докажите, что MNPQ - параллелограмм, и найдите его периметр. 2) Найдите площади четырехугольников АВСD и MNPQ, если угол ВОС равен 60°.
7. В равнобедренную трапецию, основания которой равны 2 см и 8 см, вписана окружность.
Найдите: 1) боковую сторону трапеции; 2) радиус вписанной окружности; 3) площадь трапеции.
8. В равнобедренной трапеции с основаниями АD и ВС угол D равен 60°, ВС = 12 см, а угол ВСА равен 30°.
1) Докажите, что треугольник АВС равнобедренный. 2) Найдите радиус окружности, описанной около треугольника АСD. 3) Найдите площадь трапеции АВСD.
9. В ромб, сторона которого равна диагонали и равна а, вписана окружность, а в эту окружность вписан правильный треугольник.
Найдите: 1) радиус окружности; 2) сторону треугольника; 3) площади ромба, круга и правильного треугольника.
10. Каждый угол правильного п-угольника А1А2… Ап равен 150°.
1) Найдите число сторон этого многоугольника. 2) Найдите А2А3А10. 3) Докажите, что треугольник А1А3В подобен треугольнику А6А10В, где В - точка пересечения диагоналей А1А6 и А3А10 этого многоугольника.
11. Внешний угол правильного п-угольника А1А2… Ап в три раза меньше угла этого многоугольника.
1) Найдите число сторон этого многоугольника. 2) Найдите А3А1А6. 3) Докажите, что четырехугольник А1А3А4А8 - равнобедренная трапеция.
Векторы. метод координат. движения
Основные вопросы программы: вектор, длина вектора, сложение векторов и его свойства, умножение вектора на число и его свойства, коллинеарные векторы, прямоугольные координаты точек на плоскости, формула расстояния между двумя точками плоскости с заданными координатами, координаты середины отрезка, уравнения окружности и прямой, применение векторов и метода координат к доказательству теорем и решению задач. Движения.
Задачи
1. Четырехугольник АВСD задан координатами своих вершин: А (-3; -2), В (-1; 2), С (2; 2), D (4; -2).
1) Найдите координаты середин сторон этого четырехугольника.
2) Докажите, что середины сторон четырехугольника АВСD являются вершинами ромба, и найдите площадь этого ромба.
2. Дан четырехугольник АВСD.
1) Определите вид четырехугольника АВСD, если , и выразите вектор через векторы и .
2) Выразите векторы через векторы и , если М, N, Р и Q - середины сторон АВ, ВС, СD и АD.
3) Определите вид четырехугольника МNPQ.
3. Дан правильный шестиугольник АВСDЕF со стороной а. Найдите скалярное произведение векторов: 1) ; 2) ; 3) ; 4) .
4. Найдите косинусы углов треугольника АВС, если А (1; 3), В (8; 2), С (5; -1).
5. В параллелограмме АВСD диагональ ВD равна стороне ВС, точка М - середина стороны ВС, отрезок DМ перпендикулярен к диагонали АС. Найдите углы параллелограмма.
6. Две окружности радиуса r с центрами О1 и О2 касаются друг друга в точке М. На первой окружности отмечена точка А, а на второй - точка В так, что хорды АМ и ВМ взаимно перпендикулярны. Докажите, что: 1) при параллельном переносе на вектор отрезок АС отображается на отрезок ВМ; 2) АВ = 2r.
7. На сторонах правильного треугольника построены квадраты. Докажите, что центры этих квадратов являются вершинами правильного треугольника.
Литература
1. Геометрия. 7-9 классы : учеб. для общеобразоват. учреждений / Л. С. Атанасян [и др.]. - М. : Просвещение, 2009.
2. Бурмистрова, Н. В. Проверочные работы с элементами тестирования по геометрии / Н. В. Бурмистрова, Н. Г. Старостенкова. - М. : Лицей, 1998.
3. Саврасова, С. М. Упражнения по планиметрии на готовых чертежах / С. М. Саврасова, Г. А. Ястребинецкий. - М. : Просвещение, 1987.
Размещено на Allbest.ru
...Подобные документы
Сущность понятия "скалярное произведение векторов". Законы векторного произведения. Практический пример нахождения площади треугольника. Общее понятие о правой и левой тройке. Содержание закона круговой переместительности. Объём треугольной пирамиды.
презентация [373,9 K], добавлен 16.11.2014Схема и разность векторов. Умножение вектора на число. Координаты точки и вектора. Компланарные векторы и прямоугольная система координат. Длина, скалярное произведение, его свойства и угол между векторами. Переместительный и сочетательный законы.
творческая работа [481,5 K], добавлен 23.06.2009Аксиомы линейного векторного пространства. Произведение любого вектора на число 0. Аксиомы размерности, доказательство теоремы. Дистрибутивность скалярного произведения векторов относительно сложения векторов. Требования, предъявляемые к системе аксиом.
реферат [80,9 K], добавлен 28.03.2014Векторы на плоскости и в пространстве. Расстояние между началом и концом. Коллинеарные и нулевые векторы. Условие коллинеарности и перпендикулярности векторов. Определение суммы и разницы векторов. Свойства операций сложения и умножения вектора на число.
презентация [98,6 K], добавлен 21.09.2013Понятие треугольника и его роль в геометрии. Сумма углов треугольника, вычисление площади, свойства различных видов фигур. Признаки равенства и подобия треугольников, теорема Пифагора. Медианы, биссектрисы и высоты, соотношение между сторонами и углами.
курс лекций [3,7 M], добавлен 23.04.2011Меры площади, использовавшиеся в Древней Руси, их эволюция и современное состояние. Площадь многоугольника и прямоугольника. Определение и доказательство площади квадрата. Формула площади параллелограмма и треугольника, трапеции. Теорема Пифагора.
реферат [389,2 K], добавлен 05.02.2011Вектор - направленный отрезок, имеющий начало и конец, его свойства. Виды определения векторов, действия над ними. Правила сложения векторов, их сумма. Скалярное произведение векторов. Особенности использования векторов. Решение геометрических задач.
контрольная работа [640,1 K], добавлен 18.01.2013Основные определения и свойства скалярного произведения. Необходимое и достаточное условие перпендикулярности векторов. Проекция произвольного вектора. Геометрический смысл скалярного произведения. Проведение нормализации вектора, его направление.
курсовая работа [491,4 K], добавлен 13.01.2014Изучение свойств геометрических объектов при помощи алгебраических методов. Основные операции над векторами. Умножение вектора на отрицательное число. Скалярное произведение векторов. Нахождение угла между векторами. Нахождение координат вектора.
контрольная работа [56,3 K], добавлен 03.12.2014Вписанная и описанная окружности в треугольниках и четырехугольниках, их определение и построение. Теорема Пифагора. Определение площади треугольника, трапеции и параллелограмма. Решение типовых задач по изложенным темам с применением полученных знаний.
реферат [187,3 K], добавлен 28.05.2009Параллельность, коллинеарность, перпендикулярность. Коллинеарность векторов. Коллинеарность трёх точек. Перпендикулярность отрезков. Углы и площади. Угол между векторами. Площадь треугольника. Многоугольники. Прямая и окружность.
курсовая работа [157,0 K], добавлен 08.08.2007Свойства и численное значение площади геометрической фигуры. Вычисление площади квадрата, прямоугольника, трапеции, и треугольника. Измерение отрезков. Значение и область применения теоремы Пифагора. Алгебраическое и геометрическое доказательства Евклида.
презентация [267,8 K], добавлен 04.09.2014Понятие собственных векторов и собственных значений, их свойства и характеристики, порядок нахождения собственных векторов оператора. Критерии определения независимости и ортогональности собственных векторов. Факторы и теоремы положительных матриц.
реферат [350,1 K], добавлен 22.04.2010Метод координат. Основные задачи аналитической геометрии на прямой и на плоскости. Основные линии второго порядка. Алгебраическая и геометрическая интерпретация векторов. Уравнение поверхности и уравнение линии в пространстве. Общее уравнение плоскости.
учебное пособие [687,5 K], добавлен 04.05.2011Определение уравнения линии, уравнения и длины высоты, площади треугольника. Расчёт длины ребра, уравнения плоскости и объема пирамиды. Уравнение линии в прямоугольной декартовой системе координат. Тригонометрическая форма записи комплексных чисел.
контрольная работа [489,4 K], добавлен 25.03.2014Определение точки пересечения высот треугольника и координат вектора. Сущность базиса системы векторов и его доказательство. Определение производных функций, исследование ее и построение графика. Неопределенные интегралы и их проверка дифференцированием.
контрольная работа [168,7 K], добавлен 26.01.2010Доказательство коллинеарности и компланарности векторов. Проведение расчета площади параллелограмма, построенного на векторах а и в, объема тетраэдра, косинуса угла, точки пресечения прямой и плоскости. Определение канонических уравнений прямой.
контрольная работа [87,7 K], добавлен 21.02.2010Вычисление скалярного и векторного произведений векторов, заданных в прямоугольной декартовой системе координат. Расчет длины ребра пирамиды по координатам ее вершин. Поиск координат симметричной точки. Определение типа линии, описываемой уравнением.
контрольная работа [892,1 K], добавлен 12.05.2016Расчет площади равнобедренного и равностороннего треугольника. Если угол одного треугольника равен углу другого треугольника, то площади этих треугольников относятся как произведения сторон, заключающих равные углы. Расчет размеров медианы, биссектрисы.
презентация [68,7 K], добавлен 16.04.2011Биссектриса треугольника, центр вписанной окружности треугольника, точка Жергонна. Центр тяжести окружности треугольника. Решение задач на применение свойств биссектрисы. Окружность и прямая Эйлера, свойства окружности. Ортоцентр окружности треугольника.
курсовая работа [330,3 K], добавлен 13.05.2015