Частная гистология

Функциональное значение органов кроветворения и иммунной защиты в жизнедеятельности организма. Строение и функции сердечно-сосудистой и нервной систем. Отличия женской и мужской половых систем. Пищеварительная, дыхательная и мочевыделительная система.

Рубрика Медицина
Вид учебное пособие
Язык русский
Дата добавления 14.09.2017
Размер файла 343,1 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Вены

Вены подразделяются на безмышечные и мышечные (со слабым, средним или сильным развитием мышечных элементов средней оболочки). Вены безмышечного типа располагаются на уровне головы, и наоборот - вены с сильным развитием мышечной оболочки на нижних конечностях. Вены с хорошо развитой мышечной оболочкой имеют клапаны. Клапаны образуются внутренней оболочкой вен.

Кровоснабжение сосудов ограничено наружными слоями средней оболочки и адвентицией, в то время как в венах капилляры достигают внутренней оболочки. Иннервация сосудов обеспечивается вегетативными афферентными и эфферентными нервными волокнами. Они формируют адвентициальное сплетение. Эфферентные нервные окончания достигают, в основном наружных областей средней оболочки и являются преимущественно адренергическими. Афферентные нервные окончания барорецепторов, реагирующие на давление, формируют локальные подэндотелиальные скопления в магистральных сосудах.

Важную роль в регуляции сосудистого мышечного тонуса, наряду с вегетативной нервной системой, играют биологически активные вещества, в том числе гормоны (адреналин, норадреналин, ацетилхолин и т. д.).

Кровеносные капилляры

Кровеносные капилляры содержат эндотелиоциты, лежащие на базальной мембране. Эндотелий имеет аппарат для обмена веществ, способен вырабатывать большое количество биологически активных факторов, в том числе эндотелины, оксид азота, противосвертывающие факторы и т.д., контролирующие сосудистый тонус, проницаемость сосудов. Тесно прилежат к сосудам адвентициальные клетки. В образовании базальных мембран капилляров принимают участие перициты, которые могут находиться в расщеплении мембраны.

Различают капилляры:

Соматического типа. Диаметр просвета 4-8 мкм. Эндотелий непрерывный, не фенестрирован, с обилием плотных, десмосомальных, черепичных интердигитирующих и щелевидных контактов. Базальная мембрана непрерывная, хорошо выражена. Хорошо развит слой перицитов. Имеются адвентициальные клетки.

Висцерального типа. Просвет до 8-12 мкм. Эндотелий непрерывный, фенестрирован. Между эндотелиоцитами преобладают все типы контактов. Базальная мембрана истончена. Перицитов и адвентициальных клеток меньше.

Синусоидного типа. Диаметр просвета более 12 мкм. Эндотелиальный слой прерывистый. Эндотелиоциты образуют поры, люки, фенестры. Базальная мембрана прерывистая или отсутствует. Перицитов нет.

Артериолы и прекапилляры.
Артериолы имеют диаметр просвета до 50 мкм. Их стенка содержит 1-2 слоя гладких миоцитов. Эндотелий удлинен по ходу сосуда. Его поверхность ровная. Клетки характеризуются хорошо развитым цитоскелетом, обилием десмосомальных, замковых, черепичных контактов.
Перед капиллярами артериола суживается и переходит в прекапилляр. Прекапилляры имеют более тонкую стенку. Мышечная оболочка представлена отдельными гладкими миоцитами.
Посткапилляры и венулы.
Посткапилляры, имеют просвет меньшего диаметра, чем у венул. Строение стенки сходно со строением венулы.
Венулы имеют диаметр до 100 мкм. Внутренняя поверхность неровная. Цитоскелет развит слабее. Контакты, в основном простые, в «стык». Нередко эндотелий выше, чем в других сосудах микроциркуляторного русла. Через стенку венулы проникают клетки лейкоцитарного ряда, в основном в зонах межклеточных контактов. Наружные слои по особенностям строения аналогичны капиллярам.

Артериоло-венулярные анастомозы.

Кровь может поступать из артериальной систем в венозную, минуя капилляры, через артериоло-венулярные анастомозы (АВА). Выделяют истинные АВА (шунты) и атипичные АВА (полушунты). В полушунтах приносящий и выносящий сосуды соединены через короткий, широкий капилляр. В результате в венулу попадает смешанная кровь. В истинных шунтах обмена между сосудом и органом не происходит и в вену попадает артериальная кровь. Истинные шунты подразделяются на простые (один анастомоз) и сложные (несколько анастомозов). Можно выделить шунты без специальных запирательных устройств (роль сфинктера играют гладкие миоциты) и со специальным сократительным аппаратом (эпителиоидные клетки, которые при набухании сдавливают анастомоз, закрывая шунт).

Лимфатические сосуды.

Лимфатические сосуды представлены микрососудами лимфатической системы (капиллярами и посткапиллярами), внутриорганными и внеорганными лимфатическими сосудами.

Лимфатические капилляры начинаются в тканям слепо, содержат тонкий эндотелий и истонченную базальную мембрану.

В стенке средних и крупных лимфатических сосудов имеется эндотелий, подэндотелиальный слой, мышечная оболочка и адвентициальная. По строению оболочек лимфатический сосуд напоминает вену мышечного типа. Внутренняя оболочка лимфатических сосудов формирует клапаны, которые являются неотьемлемым атрибутом всех лимфатических сосудов после капиллярного отдела.

Клиническое значение.

В организме к атеросклерозу наиболее чувствительны артерии и особенно эластического и мышечно-эластического типов. Это связано с гемодинамикой и диффузным характером трофического обеспечения внутренней оболочки, значительным ее развитием в этих артериях.

В венах клапанный аппарат наиболее развит в нижних конечностях. Это значительно облегчает движение крови против градиента гидростатического давления. Нарушение структуры клапанного аппарата приводит к грубому нарушению гемодинамики, отекам и варикозному расширению нижних конечностей.

Гипоксия и низкомолекулярные продукты разрушения клеток и анаэробного гликолиза являются одними из самых мощных факторов стимулирующих формирование новых кровеносных сосудов. Таким образом, области воспаления, гипоксии и т. д., характеризуются последующим бурным ростом микрососудов (ангиогенезом), что обеспечивает восстановление трофического обеспечения поврежденного органа и его регенерацию.

Антиангиогенные факторы, препятствующие росту новых сосудов, по мнению ряда современных авторов, могли бы стать одной из эффективных противоопухолевых групп препаратов. Блокируя рост сосудов в быстро растущие опухоли, врачи, тем самым, могли бы вызвать гипоксию и гибель раковых клеток.

Строение различных сосудов.

Для более детального ознакомления с его структурами рекомендуем заполнить схему в соответствии с предложенными обозначениями.

Графическая схема

Обозначения структур.

Функции структурных элементов

Стенка капилляра соматического типа

Эндотелий

Базальная мембрана

Перицит

Адвентициальная клетка

Участие в гистогематическом барьере, где эндотелий является основным его компонентом.

Стенка капилляра висцерального типа

Эндотелий

Базальная мембрана

Перицит

Адвентициальная клетка

Фенестры

Обладают высокой степенью проницаемости для высокомолекулярных и низкомолекулярных веществ, но не проницаемы для эритроцитов и тромбоцитов.

Стенка капилляра синусоидного типа

Эндотелий

Прерывистая базальная мембрана

Поры и люки

Фенестры

Проницаемы как для высокомолекулярных веществ, для форменных элементов крови.

Стенка артериолы

Эндотелий

Базальная мембрана

Перицит

Адвентициальная клетка

Элементы внутренней эластической мембраны

Гладкий миоцит

Двигательное нервное окончание

Распределение крови по капиллярному руслу.

Стенка венулы

Эндотелий

Базальная мембрана

Перицит

Адвентициальная клетка

Лейкоцит, проходящий через стенку венулы

Область преимущественного обмен высокомолекулярных веществ и миграции лейкоцитов

Контрольные вопросы и задания.

Задание 1.

Заполните схему

Задание 2.

Обоснуйте, зачем нужны «окна» в окончатых мембранах и почему зоны их локализации в соседних мембранах различны.

Задание 3.

Обоснуйте, почему в артериях преобладают эластические, а венах коллагеновые волокна.

Задание 4.

Что обеспечивает клапанный аппарат в венах и лимфатических сосудах? Почему клапанов нет в венах безмышечного типа?

Контрольные вопросы.

Перечислите кровеносные сосуды микроциркуляторного русла.

Назовите оболочки и их слои в артериях? Особенности оболочек артерий мышечного, эластического и мышечно-эластического типов.

Перечислите основные особенности строения вен в сравнении с артериями. Назовите различия вен мышечного и безмышечного типов.

Назовите особенности васкуляризации артерий и вен.

Перечислите сосуды микроциркуляторного русла и дайте морфологическое описание каждого из них.

Назовите варианты АВА.

Опишите гормонопродуцирующую функцию эндотелия.

4. НЕРВНАЯ СИСТЕМА

4.1 ТЕМА: ЦЕНТРАЛЬНАЯ НЕРВНАЯ СИСТЕМА

Методические рекомендации по изучению материала из предшествующих тем:

Строение и классификация нейронов.

Классификация нейроглии. Строение астроцитов, олигодендроцитов, микроглиоцитов.

Строение и классификация синапсов

Нейрогенез.

Понятие капилляров соматического и висцерального типа. Представление о гистогематических барьерах.

Цели занятия. Научиться:

Определять на светооптическом уровне кору больших полушарий головного мозга, кору мозжечка, средний мозг и гипоталамус.

Узнавать и анализировать светооптическое строение белого и серого вещества, слои коры больших полушарий и мозжечка.

Находить и анализировать ядра спинного мозга и гипоталамуса.

Анализировать на электронно-оптическом уровне структуру нейронов, глиоцитов, синапсов.

Выявлять на электронно-оптическом уровне основные элементы гематоэнцефалического барьера. Знать основные особенности барьера в различных отделах мозга.

Структурно-функциональная характеристика ЦНС.

Входит головной и спинной мозг. Они покрыты оболочками. Наружная - твердая мозговая оболочка - образована плотной неоформленной соединительной тканью. Содержит крупные венозные коллекторы (синусы) с венами безмышечного типа. Затем располагается паутинная оболочка. Представлена соединительно-тканными тяжами (рыхлая волокнистая соединительная ткань с сосудами), покрытыми эпителиоподобными клетками. Между тяжами содержимое заполнено спинномозговой жидкостью (ликвором). Мягкая мозговая оболочка состоит из рыхлой волокнистой соединительной ткани с большим количеством кровеносных сосудов (второе называние сосудистая оболочка). В центральной нервной системе выделяют серое и белое вещество. Белое вещество представлено в основном отростками нейронов и глией. Серое вещество сформировано телами нейронов, их отростками и нейроглией. Серое вещество образует нервные центры. Различают нервные центры экранного и ядерного типа. Центрами экранного типа являются кора головного мозга и мозжечка. В них поступающая информация распределяется и анализируется на поверхностно лежащих структурах серого вещества (как на экране телевизора). Центры ядерного типа представляют собой скопление специализированных нейронов, лежащих в глубине паренхимы мозга.

Между нейронами и кровеносной системой имеется барьер (гематоэнцефалический). Он представлен стенкой капилляра соматического типа (непрерывная нефенестрированная эндотелиальная выстилка, непрерывная базальная мембрана, хорошо выраженный слой перицитов), периваскулярным пространством с отростками астроцитной глии и цитолеммой нейрона. Важную роль в ЦНС играет также гематоликворный (между кровью и спинномозговой жидкостью) и ликвороэнцефалический (спинномозговой жидкостью и нервной клеткой). В них, наряду с перечисленными выше структурами, важную роль играют эпендимоциты и танициты.

Кора мозжечка.

Кора мозжечка состоит из трех слоев.

Наружный слой молекулярный. Представлен в основном нервными волокнами, синапсами, глией и небольшим количеством звездчатых и корзинчатых клеток. Нейроны ассоциативные, тормозные. Звездчатые клетки делятся на 2 группы: на клетки с короткими и длинными отростками. Корзинчатые нейроны окружают своими отростками тела грушевидных клеток. Звездчатые нейроны с короткими отростками взаимодействуют с дендритами грушевидных клеток, которые ветвятся в молекулярном слое. Отростки звездчатых нейронов с длинными отростками обеспечивают взаимодействия с соседними участками коры.

Средний слой ганглионарный и содержит тела крупных грушевидных нейронов (клетки Пуркинье). Являются эфферентными по отношению к коре и взаимодействуют с другими нервными центрами ЦНС. Они преимущественно тормозные.

Внутренний слой зернистый и образован большим количеством клеток - зерен (мелкие клетки с крупным ядром и небольшим количеством цитоплазмы), звездчатыми клетками с короткими нейритами, а также веретенообразными горизонтальными клетками. Все клетки ассоциативные. Клетки-зерна являются возбуждающими и передают импульс от моховидных волокон к дендритам клеток Пуркинье. Их аксоны направляются в молекулярный слой. Звездчатые клетки тормозят передачу на уровне клеток-зерен.

Афферентные волокна, идущие в кору, делят на лазящие (из спинно-мозжечкового и вестибуломозжечкового путей) и моховидные (из оливо-мозжечкового и мостомозжечкового). Лазящие прямо возбуждают эффекторные грушевидные нейроны. Моховидные это делают через ассоциативные клетки-зерна и формируют сложные дивергентные синапсы.

Кора больших полушарий.

Порядок расположения нейронов в коре больших полушарий головного мозга называет цитоархитектоникой. Цитоархитектонически в коре полушарий головного мозга выделяют из 6 слоев.

При исследовании установили, что наружный молекулярный слой состоит из нервных волокон, нейроглии, синапсов и небольшого количества тел мелких ассоциативных веретенообразных нейронов.

Наружный зернистый слой имеет тела мелких нейронов (в основном звездчатые, но есть и округлые, пирамидные).

Пирамидный слой содержит мелкие, средние и крупные пирамидные клетки. В глубоких зонах нейроны крупнее.

Внутренний зернистый слой образован мелкими клетками, в основном, звездчатой формы.

Ганглионарный слой включает в себя гигантские пирамидные нейроны (клетки Беца).

В слое полиморфных клеток много различной формы нейроцитов (в основном веретенообразные).

Циторахитектонически кора значительно различается в разных полях. Можно видеть гранулярный (ассоциативные зоны) и агранулярный (моторные зоны) типы. В агранулярном развит ганглионарный слой, в гранулярном - зернистые слои.

Миелоархитектоника коры показывает порядок расположения в ней нервных волокон, сформирована радиальными волокнами и тангенциальными сплетениями. Тангенциальные сплетения (волокна распределяются параллельно поверхности полушарий) формируются на уровне молекулярного слоя, внутреннего зернистого и ганглионарного. Радиальные волокна (располагаются перпендикулярно поверхности) часто направляются в белое вещество, а тангенциальные обеспечивают связи в пределах коры.

В белом веществе мозга можно выделить ассоциативные (связь внутри полушария), комиссуральные (связь между полушариями), проекционные волокна (связь с ядрами нижних отделов).

В ассоциативных и чувствительных областях коры выделяют структурно-функциональную единицу модуль (колонку), образованную афферентными кортико-кортикальными и кортико-таламическими волокнами, эфферентными пирамидными нейронами и ассоциативными - возбуждающими и тормозными нервными клетками. Среди ассоциативных нейронов можно выделить несколько групп клеток. Ассоциативные возбуждающие - звездчатые шипиковые нейроны с короткими и длинными отростками. Ассоциативные тормозные нейроны - корзинчатые и аксо-аксональные нейроны. Ассоциативные тормозящие тормозные нейроны (вторично-возбуждающие) - клетки с двойным букетом дендритов.

Нервные центры ядерного типа.
В головном мозге по функции нервные центры ядерного типа делятся на чувствительные, двигательные, ассоциативные. Они подразделяются на в основном соматический и вегетативный отделы. По строению различают крупноклеточные, среднеклеточные и мелкоклеточные ядра. Их можно подразделить по медиатору, характерному для основной популяции нейронов ядра (норадренергические, холинергические и т.д.).
Ретикулярная формация мозга представляет собой комплекс около 30 ядерных центров, располагающихся от уровня продолговатого до промежуточного мозга. Среди них можно встретить нервные центры с мелкими, средними, крупными и даже гигантскими нейронами. Общим для них всех является то, что они являются ассоциативными, характеризуются слабыми ветвлениями дендритов, нервные волокна формируют сеть (reticulum), ядра широко взаимодействуют с остальными отделами головного мозга. Основной функцией является регуляция тонуса нервной системы, в том числе контроль суточных (циркадных ритмов).
В некоторых ядрах (особенно гипоталамуса) обнаруживаются особые нейросекреторные ядра (пептидохолинергические и пептидоадренергические). Примером могут служить крупноклеточные, пептидохолинергические (синтезируют ацетилхолин и пептиды) супраоптическое ядро (нейроны образуют антидиуретический гормон) и паравентрикулярное (образуют окситоцин). В этих ядрах слабо выражены барьерные свойства эндотелия (капилляры висцерального типа). Аксоны нейронов этих ядер направляются в нейрогипофиз (задняя доля) где формируют аксо-вазальные синапсы и выделяют гормоны в кровь.
Спинной мозг.
Спинной мозг, как и вся центральная нервная система, является производным нервной трубки, формирующейся из нервной пластинки первичной эктодермы. Спинной мозг состоит из белого вещества и центрально распложенного серого. В сером веществе выделяют крупные корешковые клетки в виде скоплений ядер переднего рога, несущих двигательную функцию. Корешковые нейроны имеются и в промежуточно-боковом ядре, где они являются вегетативными. Пучковые нейроны в основном средних размеров (несущие импульс в соседние сегменты или головной мозг). Их можно найти в так называемых чувствительных ядрах (собственное ядро заднего рога, ядро Кларка, срединно-промежуточное ядро). Аксоны пучковых нейронов направляются в головной мозг, формируя восходящие тракты (пучки). Внутренние нейроны мелкие, распределены во всем сером веществе и обеспечивают ассоциативные взаимодействия в пределах спинного мозга. Могут быть тормозными и возбуждающими. Центрально расположенный спинномозговой канал выстлан эпендимоцитами, отростки которого, наряду с соединительными септами и глиальными отростками образуют каркас.
Постнатальное (после рождения) развитие мозга.
К моменту рождения мозговые структуры анатомически сформированы, но продолжается бурный рост отростков, развитие нейроглии, происходит миелинизация. Так цитоархитектоника коры больших головного мозга приобретает черты, соответствующие взрослому человеку к 2-4 годам. Пирамидные пути в целом миелинизируются к 2 -4 годам жизни. К 25-32 годам мозг достигает максимального развития. С возрастом число нейронов уменьшается, часть из них увеличивается в размерах (гипертрофируется), происходит накопление продуктом метаболизма (гранул с липофусцином).
Строение гемоэнцефалического (гематоэнцефалического) барьера (барьер между нейроном и кровью). Для более детального ознакомления с его структурами рекомендуем заполнить схему в соответствии с предложенными обозначениями.

Графическая схема

Обозначения структур.

Функции структурных элементов

Кровь
Непрерывный нефенестрированный эндотелий капилляра соматического типа.
Непрерывная базальная мембрана.
Хорошо выраженный слой перицитов
Периваскулярное пространство с ножками и телами астроцитов.

Клеточная мембрана нейрона.

Низкая проницаемость. Избирательно проникает ограниченное число веществ (растворенные газы, неорганические ионы, вода, глюкоза, основная масса аминокислот, жирорастворимые вещества).
Препятствует проникновению клеток.

Астроциты способны к захвату веществ, как от сосудов, так и от нейронов.

Клинические примеры.

Важную роль в нормальном функционировании ЦНС играет миелинизация нервных проводников. Имеется большая группа заболеваний, которая приводит к нарушению структуры миелина и его разрушению Демиелинизация в ЦНС, например - при рассеянном склерозе, приводит к тяжелому нарушению функции головного мозга, а при прогрессирующем течении быстрой гибели человека. Одним из факторов, ведущих к этому повреждению, может быть нарушение накопления липидных фракций миелина, а также аутоиммунные заболевания с разрушением миелина лимфоцитами.

Большое значение в нормальной функциональной активности мозга играет стабильное состояние его структуры. Важную роль в поддержании стабильной формы играют структуры цитоскелета, стабилизирующее влияние макроглии. Так показано, что астроциты блокируют как рост новых отростков нейронов у взрослого человека, одновременно предотвращая апоптозы (запрограммированную гибель) нервных клеток. Это способствует сохранению структуры мозга, но в то же время, блокирует восстановление разрушенных нервных волокон при их разрыве в ЦНС.

Контрольные вопросы и задания.

Задание 1.

Заполните схему гемоэнцефалического барьера.

Задание 2.

По аналогии с гематооэнцефалическим оформите таблицу гематоликворного (между кровью и цереброспинальной жидкостью полостей мозга) и ликвороэнцефалическим барьером.

Контрольные вопросы.

Что такое серое и белое вещество ЦНС, нервные центры ядерного и экранного типов.

Цитоархитектоника коры больших полушарий. Слои коры больших полушарий.

Миелоархитектоника коры больших полушарий.

Понятие о модульной (колонковой) организации коры больших полушарий. Основные виды нейронов. Межнейрональные взаимодействия в колонке.

Цитоархитектоника коры мозжечка. Слои коры мозжечка.

Межнейрональные взаимодействия в коре мозжечка.

Общее представление о строении центров ядерного типа.

Строение пептидохолинергических ядер гипоталамуса.

Структурно-функциональные особенности ретикулярной формации.

Строение и функциональные особенности ядер спинного мозга.

4.2 ПЕРИФЕРИЧЕСКАЯ НЕРВНАЯ СИСТЕМА

Методические рекомендации по изучению материала из предшествующих тем:

Классификация нейронов Их строение.

Понятие о нейроглии периферической нервной системы. Строение и значение леммоцитов и мантийных глиоцитов.

Происхождение нейронов и нейроглии периферической нервной системы.

Представление о нервных волокнах. Миелиновые и безмиелиновые нервные волокна.

Миелинизация нервных волокон.

Синапсы. Классификация и строение.

Понятие об аксотоке.

Цели занятия: Научиться

Определять на светооптическом уровне спинномозговые, внеорганные симпатические и внутриорганные парасимпатические узлы, нерв, нервные окончания.

Узнавать и анализировать светооптическое строение ганглиев.

Находить и анализировать строение периферического нерва.

Находить и анализировать строение инкапсулированного нервного окончания (пластинчатое тельце)

Анализировать на электронно-оптическом уровне структуру нейронов, глиоцитов, нервных волокон, нервов, нервных окончаний.

Структурно-функциональная характеристика ПНС.

Под периферической нервной системой понимают структуры нервной ткани, располагающиеся вне головного и спинного мозга. В ней, можно выделить соматический и вегетативный (висцеральный) отделы. В свою очередь вегетативный подразделяется на симпатический и парасимпатический. В свою очередь, все отделы включают в себя нервные ганглии (узлы), нервные проводники (периферические нервы и нервные волокна) и нервные окончания.

Нервные узлы.

Нервные узлы - это нервные центры, вынесенные за пределы центральной нервной системе и представляющие собой скопление тел нейронов с их отростками и синапсами, нейроглии, стромально-сосудистых структур. Среди узлов выделяют чувствительные черепно-мозговые и спинномозговые узлы и вегетативные. Узлы окружены соединительно-тканной капсулой, образованной плотной волокнистой оформленной соединительной тканью пластинчатого типа, с уходящими вглубь соединительно-тканными перегородками (рыхлая волокнистая соединительная ткань), содержащими сосудистые коллекторы. Нейроны чувствительных узлов ложноуниполярные, вегетативных - мультиполярные. В обоих случаях нервные клетки окружены глиальной и тонкой соединительно-тканной капсулой. Глиальная капсула сформирована мантийными глиоцитами (сателлитоцитами).

Спинномозговые узлы. Отростки округлых ложно-униполярных нейронов спинномозговых узлов миелинизированы. Их аксон направляется в ЦНС, а дендрит на периферию. Глиальная капсула хорошо выражена. Нейроны в основном больших размеров, с округлыми ядрами и хорошо выраженным ядрышком. Тела нейронов в основном распределены на периферии.

Вегетативные узлы. Преганглионарные волокна вегетативных узлов миелинизированы, постганглионарные - безмиелиновые. Преганглионарные волокна обоих отделов вегетативной нервной системы, а также постганглионарные структуры парасимпатического отдела содержат ацетилхолин. В постганглионарных отделах симпатической нервной системы медиатором является норадреналин. В вегетативной нервной системе выделяют интра(внутри)- и экстра(вне)-органные ганглии. Внеорганные нервные узлы делятся на регионарные и удаленные (перед позвоночным столбом (превертебральные)) и вблизи позвоночного столба (паравертебральные) Паравертебральные образуют симпатическую нервную цепочку.

Внутриорганные (интрамуральные) ганглии характерны в основной для парасимпатического отдела. Они располагаются внутри органов. В парасимпатическом отделе выделяют эффекторные, длинноаксонные клетки Догеля 1 типа. Это клетки удлиненной, неправильной формы, с одним длинным аксоном и короткими ветвящимися дендритами. Афферентные равноотросчатые клетки Догеля II типа. Клетки округлой или овальной формы с ровными контурами. На светооптическом уровне аксоны и дендриты плохо различимы. Дендриты этих клеток направляются на периферию, формируя афферентные нервные окончания. Ассоциативные клетки Догеля III типа, объединяющие соседние ганглии, формируя отростки направленные в них.

Внеорганные симпатические ганглии. В симпатической нервной системе имеются две популяции нейронов: главная популяция нейронов и МИФ-клетки (мелкие - интенсивно флюоресцирующие клетки). Главная популяция клеток представлена мультиполярными нейронами средних размеров, накапливающих умеренное количество норадреналина и являющихся в основном эффекторными. МИФ-нейроны содержат большое количество адренергических медиаторов, имеют небольшие размеры и несут ассоциативную или нейросекреторную функцию.

Нервы.

Среди нервов выделяют преимущественно миелинизированные (мякотные) и немиелинизированные (безмиелиновые, безмякотные). Имеются крупные, средние, мелкие нервы. Среди них выделяют преимущественно чувствительные, двигательные, вегетативные. Все нервные стволики снаружи окружены периневрием, представленным плотной волокнистой оформленной соединительной тканью пластинчатого типа. Пластинки образованы коллагеновыми волокнами 4 типа, между которыми распределяются клетки фибробластического ряда. В крупных нервах находятся нервные стволики, окруженные периневрием. Эпиневрий сформирован волокнистой соединительной тканью. Каждое нервное волокно внутри стволика окружает эндоневрий. Эндоневрий образован рыхлой волокнистой соединительной тканью.

Периферические нервные окончания.

В периферических отделах нервной системы нейроны формируют нервные окончания. По функции они делятся на эффекторные (двигательные и секреторные) и чувствительные. По строению чувствительные нервные окончания делятся свободные и несвободные. Свободные нервные окончания являются продолжением слабомиелинизированных или безмиелиновых нервных волокон и в области терминали погружаются в окружающие ткани, не имея глиального окружения. Несвободные бывают инкапсулированные и неинкапсулированные. Инкапсулированные снаружи покрыты соединительно-тканной капсулой (наружная капсула), а изнутри нейроглией (внутренняя капсула или колба). Наружная капсула сформирована плотной волокнистой соединительной тканью. Выделяют пластинчатое тельце Фатера-Пачини - глубокая тактильная чувствительность; сухожильные органы Гольджи - восприятие растяжения; осязательные тельца Мейснера - осязание; колбы Краузе - восприятие температуры; нервно-мышечные веретена - мышечное чувство и другие. Они являются продолжением миелинизированных нервных волокон. Неинкапсулированные нервные окончания отделены от окружающих тканей нейроглией. Как несвободные неинкапсулированные, таки свободные нервные окончания по форме ветвлений могут быть кустиковыми, спиралевидными, древовидными, клубочковыми, ануло-спиральными и т.д.

Развитие и возрастные изменения.

К моменту рождения миелинизация нервов не завершена. Миелинизация внутричерепных нервов завершается к 3-4 годам, черепных - 1 году 3 месяцам, блуждающего нерва - к 3-4 годам. Строение спинномозговых узлов к моменту рождения является близким к взрослым. Нейроны более мелкие. Вегетативные же узлы представлены молодыми нейронами, и часто нейробластами (особенно внутриорганные узлы). Контроль со стороны ЦНС слабый. Симпатические узлы значительно отстают в развитии к парасимпатическим. Дифференцированные клетки занимают основную популяцию во всех узлах к 13-15 годам. К 20 годам остаются только единичные малодифференцированные нервные клетки.

При старении уменьшается число нервных волокон в нерве, разрастается соединительная ткань, происходит жировая инфильтрация, дегенерация аксонов. При старении в нейронах накапливается липофусцин, число клеток уменьшается, оставшиеся нейроны гипертрофируются. С возрастом происходит постепенная денервация внутренних органов (особенно снижается представительство симпатического нервного контроля).

Регенерация.

При повреждении нервного волокна дистальный участок отростка нейрона (осевой цилиндр) разрушается и фагоцитируется. Леммоциты делятся и образуют тяж клеток (бюнгнеровская лента). Проксимальный участок аксона в терминальном конце гипертрофируется. Это сопровождается увеличением размеров тела нейрона (набухание), тигролизом (распадом базофильного вещества цитоплазмы), вакуолизацией цитоплазмы. В дальнейшем происходит формирование тонких отростков от расширенной терминали аксона. Они определяют направление роста. Отросток растет со скоростью 0-25 мм/сутки. Достигнув бюнгнеровской ленты, аксон ускоряет рост до 2-4 мм/сутки. Достигнув места иннервации, аксон формирует нервное окончание, а нервное волокно миелинизируется. Микроглиоциты, макрофаги и леммоциты выделяют биологически активные факторы, препятствующие апоптозу нейрона и стимулирующие рост отростка (фактор роста нервов, фактор роста фибробластов и т.д.)

Строение нейронов нервных узлов. Для более детального ознакомления с его структурами рекомендуем заполнить схему в соответствии с предложенными обозначениями.

Графическая схема

Обозначения структур.

Функции структурных элементов

1. Биполярные нейроны спинномозговых узлов.

2. Нейроны вегетативных узлов.

2.1. Нейроны внутриорганных парасимпатических нервных узлов.

2.1.1. Клетка Догеля 1 типа

2.1.2. Клетка Догеля 2 типа.

2.1.3. Клетка Догеля 3 типа.

2.2. Нейроны внеорганных симпатических нервных узлов.

2.1.4. Главная популяция нейронов

2.1.5. МИФ-нейроны

1. Тело.

2. Ядро с ядрышком.

3. Миелинизированные волокна.

1. Тело.

2. Ядро с ядрышком.

3. Миелинизированные преганглионарные нервные волокна

4. Немиелинизированные постганглионарные нервные волокна.

1. Тело.

2. Ядро с ядрышком.

3. Миелинизированные преганглионарные нервные волокна

4. Немиелинизированные постганглионарные нервные волокна.

Чувствительные нейроны. Обеспечивают восприятие возбуждения от нервных окончаний и их передачу в ЦНС.

Эффекторные

Рецепторные

Ассоциативные

В основном эффекторные нейроны.

Ассоциативные или нейросекреторные нейроны.

Контрольные вопросы.

Назовите отделы периферической нервной системы.

Общее строение нервных узлов.

Особенности спинномозговых узлов.

Строение и медиаторы преганглионарных и постганглионарных нервных волокон вегетативных узлов.

Какое ядро спинного мозга формирует преганглионарные нервные волокна в симпатической нервной системе?

Функция и особенности строения МИФ-нейронов.

Как вы считаете, воспринимает ли ЦНС сигнал, формирующийся при возбуждении клеток Догеля 2 типа (равноотростчатых нейронов)?

Классификация чувствительных нервных окончаний.

Имеются ли несвободные инкапсулированные и неинкапсулированные двигательные нервные окончания?

Приведите пример двигательных нервных окончаний.

5. ОРГАНЫ ЧУВСТВ

Методические рекомендации по изучению материала из предшествующих тем:

Особенности строения и классификация эпителиальных тканей

Составные элементы и функциональное значение соединительной ткани

Гистофункциональные особенности нервных клеток и нервных волокон.

Органы чувств-периферические отделы анализаторов. Органы чувств обеспечивают восприятие раздражителей их преобразование и передачу по нервным путям в подкорковые и корковые центры, где анализируется поступившая информация, и формируются субъективные ощущения.

Анализатор состоит из рецептора (воспринимает раздражение), кондуктора (проводит раздражение) и центральной части (корковый конец), где происходит анализ поступившей информации.

В зависимости от вида рецептора органы чувств делятся на три типа:

1.Первичночувствующие. Рецептором является специализированные нейросенсорные клетки, которые преобразуют внешнюю энергию в нервный импульс (орган зрения и орган обоняния).

2.Вторичночувствующие. Рецептором является не нервная, а эпителиальная клетка. Раздражение передается дендритами чувствительных нейронов, которые воспринимают возбуждение сенсоэпителиальных клеток и возникающий нервный импульс достигает корковых или подкорковых центров.

3.Проприоцепивная кожная и висцеральная сенсорные системы. Инкапсулированные и неинкапсулированные рецепторы.

5.1 ОРГАН ЗРЕНИЯ И ОБОНЯНИЯ

Методические рекомендации по изучению материала из предшествующих тем:

1.Перечислить оболочки глазного яблока.

2.Перечислить внутреннее содержимое глазного яблока.

3.Что относится к вспомогательному аппарату?

4.Выработка и отток водянистой влаги. Ее функция.

5.Понятие об аккомодации.

6.С помощью чего фиксирован хрусталик?

7.Назвать рецепторы органа зрения. Где они находятся?

8.Чем отличаются зрительный нерв и зрительный тракт?

9.Как нарушается зрение при поражении зрительного нерва и зрительного тракта?

10. Где находится корковый конец зрительного анализатора?

Цель занятия:

Изучение микроскопического и ультрамикроскопического строения и морфо-функциональных особенностей органа зрения.

Развитие органа зрения

Из двустенного глазного бокала (парное впячивание переднего мозгового пузыря) формируется сетчатка. Сосудистая и фиброзная оболочка являются производными мезенхимы. Хрусталик является производным эктодермы. В основе хрусталиковые волокна (эпителиальные клетки без ядер). Сосуды и мезенхима принимают участие в образовании стекловидного тела. Мышцы радужки являются производными глазного бокала.

В органе зрения различают светопреломляющий аппарат, аккомодационный аппарат, рецепторный аппарат.

Светопреломляющий аппарат глаза.

Включает роговицу, хрусталик, стекловидное тело, жидкость передней и задней камеры глаза.

Роговица состоит из коллагеновых фибрилл, имеющих параллельную ориентацию. Микроскопически выделяют 5 слоев: 1.Передний многослойный плоский неороговевающий эпителий 2. Передняя пограничная мембрана (боуменова оболочка ) 3.Собственное вещество роговицы 4.Задняя пограничная мембрана (десцеметова оболочка) 5.Задний эпителий. Передний эпителий многослойный плоский неороговевающий, покрыт слезной жидкостью, в нем много рецепторных окончаний. Задний эпителий-однослойный плоский.

Хрусталик. В основе хрусталиковые волокна (каждое волокно - прозрачная шестиугольная призма), являющиеся производными эпителиальных клеток без ядер. В цитоплазме хрусталиковых волокон находится прозрачный белок кристаллин. Центральные волокна укорачиваются, накладываются друг на друга, образуя ядро хрусталика. Снаружи хрусталик покрыт прозрачной капсулой (аналогичной утолщенной базальной мембране). На задней поверхности хрусталика расположены камбиальные клетки. Фиксация хрусталика осуществляется с помощью волокон ресничного пояска, которые с одной стороны крепятся к цилиарному телу, а с другой - к капсуле хрусталика.

Стекловидное тело - прозрачная желеобразная масса. Заполняет полость между хрусталиком и сетчаткой. Содержит белок витреин и гиалуроновую кислоту.

Водянистая влага заполняет переднюю и заднюю камеры глаза. По составу влага близка к плазме крови, но она отделена от крови барьером, препятствующим проникновению в нее лейкоцитов.

Аккомодационный аппарат глаза.

Включает радужку, ресничное тело. Функция: 1.Изменение кривизны хрусталика в зависимости от дальности рассматриваемых объектов. 2.Фокусировка изображения на сетчатке. 3.Приспособление к разной интенсивности освещения.

Радужка. Расположена между роговицей и хрусталиком. Строма состоит из рыхлой волокнистой соединительной ткани, много пигментных клеток. Гладкомышечные клетки образуют мышцу, суживающую зрачок и мышцу, расширяющую зрачок, т.е. радужка, является диафрагмой глаза. Слои радужки: 1.Передний эпителий 2.Наружный пограничный (бессосудистый) слой 3.Сосудистый слой. 4.Внутренний пограничный слой 5.Пигментный эпителий.

Ресничное тело. Фиксирует хрусталик. Способствует изменению его кривизны. Имеет вид треугольника с основанием, обращенным в переднюю камеру глаза. Ресничная мышца образована пучками гладкомышечных клеток, которые расположены в трех направлениях: продольные волокна, циркулярные волокна, косые волокна. Преобладают волокна, которые при сокращении (видение вблизи) способствуют расслаблению связки и округлению хрусталика. От поверхности цилиарного тела отходят цилиарные отростки.

Рецепторный аппарат глаза.

Представлен зрительной частью сетчатки. В сетчатке различают наружный пигментный слой и внутренний-светочувствительный. В сетчатке выделяют заднюю зрительную часть, цилиарную (покрывает цилиарное тело), радужковую (покрывает заднюю поверхность радужки). В сетчатке различают три типа нейронов.

1.Фоторецепторные нейроны (палочковые и колбочковые). Палочковые клетки-рецепторы сумеречного зрения, их 130 млн., колбочки-рецепторы дневного зрения, их 7 млн. Это длинные цилиндрические клетки, состоящие из наружного сегмента, который представляет стопку фоторецепторных мембран. У палочковых нейронов фоторецепторный диск полностью отделен от плазматической мембраны, у колбочек в наружном сегменте диски не замкнуты и внутридисковое пространство сообщается с внеклеточной средой. С помощью ножки цилии наружный сегмент связан с внутренним сегментом, где происходит синтез белка. В цитоплазме много митохондрий, полирибосом, цистерны аппарата Гольджи, элементы гранулярного и гладкого эндоплазматического ретикулума. Тело клетки расположено проксимальнее внутреннего сегмента переходит в отросток аксон, который формирует синапс с дендритами биполярных и горизонтальных нейроцитов.

У палочковых нейронов основным белком фоторецепторной мембраны является зрительный пигмент родопсин, который определяет спектральный диапазон (длину волн) и запускает фоторецепторный процесс. Представляет собой хромогликопротеид. Недостаток витамина А нарушает процесс восстановления родопсина. Употребление алкоголя даже в небольших количествах изменяет активность алкогольдегидрогеназы, и замедляет восстановление родопсина, что крайне опасно в темное время суток, особенно у лиц с плохим зрением. Колбочковые нейроны содержат три типа зрительных пигментов - опсин. Различаются по структуре молекулы с чувствительностью к длинноволновой, средневолновой и коротковолновой части спектра. У длинно и средневолновых молекул опсина молекула содержит 364 аминокислоты.

2.Ассоциативные нейроны сетчатки. Горизонтальные нейроны-располагаются в один или два ряда. Соседние клетки связаны щелевыми контактами. Их отростки объединяют между собой фоторецепторы и задерживают сигнал в слое колбочек и палочек. Биполярные нервные клетки-соединяют палочковые и колбочковые нейроны с ганглиозными клетками сетчатки. Дендриты биполярных клеток связываются с аксонами фоторецепторов, а аксоны уносят информацию в нижележащие слои сетчатки к нейронам, формирующим зрительный нерв. Амакринные клетки-способствуют проведению сигнала от фоторецепторов к нейронам, которые формируют зрительный нерв. Клетки, как правило, не имеют аксонов, некоторые содержат аксоноподобные отростки. Выделяют 40 подтипов амакриновых клеток.

3.Ганглионарные нейроны. Очень крупные клетки, имеют большой диаметр аксонов, которые формируют зрительный нерв. По морфологическим и функциональным свойствам выделяют 18 типов.

Кроме нейронов сетчатка содержит Мюллеровские клетки. Разновидность глиальных клеток. Это крупные клетки, проходящие через все слои сетчатки. Наружные отростки заканчиваются микроворсинками, имеются внутренние отростки. Регулируют ионный гомеостаз сетчатки (перекачивают ионы калия из наружных отделов сетчатки в жидкость стекловидного тела).

...

Подобные документы

  • Анатомическое строение, физиологические и психические особенности организма человека. Системы органов: костная, пищеварительная, дыхательная, мочевыделительная, репродуктивная, сердечно-сосудистая, мышечная, нервная, покровная, имунная, эндокринная.

    реферат [23,0 K], добавлен 19.11.2013

  • Инфекционный процесс: общее понятие и формы. Расстройства функций органов и систем организма при инфекционном процессе: нервной, иммунной, сердечно-сосудистой систем, системы внешнего дыхания. Сепсис, септический шок: определения, этиология и патогенез.

    презентация [330,7 K], добавлен 06.04.2014

  • Значение сердечно-сосудистой системы для жизнедеятельности организма. Строение и работа сердца, причина автоматизма. Движение крови по сосудам, ее распределение и ток. Работа воспитателя по укреплению сердечно-сосудистой системы детей раннего возраста.

    курсовая работа [1,4 M], добавлен 10.09.2011

  • Регуляция функций организма, согласованная деятельность органов и систем, связь организма с внешней средой как основные функции деятельности нервной системы. Свойства нервной ткани - возбудимость и проводимость. Строение головного мозга и его зоны.

    реферат [2,7 M], добавлен 04.06.2010

  • Характеристика иммунной системы, ее структура, предназначение и функции основных органов. Механизм иммунной защиты, выработка антител, основные классы иммуноглобулинов. Особенности последствий дефицита витаминов, их значение для организма человека.

    реферат [20,1 K], добавлен 04.06.2010

  • Развитие сердечно-сосудистой системы – одной из интегрирующих систем, играющей важную роль в поддержании гомеостаза растущего организма ребёнка. Особенности кровеносных сосудов на разных этапах развития. Возрастные изменения в сердечной системе.

    контрольная работа [31,7 K], добавлен 03.11.2014

  • Строение мочевыделительной системы. Нормализация процесса переваривания пищи. Индекс массы тела, его диапазон, оптимальный для здоровья. Диеты при заболеваниях сердечно-сосудистой системы и почек. Меню для женщины со средней интенсивностью труда.

    контрольная работа [32,8 K], добавлен 28.09.2010

  • Основные моменты истории заболевания и жизни больного. Особенности общего состояния организма и отдельных его систем органов: дыхания, сердечно-сосудистой, пищеварения, мочевыделения, нервной. План обследования и лечения AL-амилоидоза с поражением почек.

    история болезни [25,4 K], добавлен 01.12.2010

  • Строение и расположение сердца человека. Особенности венозной и артериальной крови. Система автоматизма сердца. Типы кровеносных сосудов. Значение кислорода для человеческого организма. Причины возникновения заболеваний сердечно-сосудистой системы.

    презентация [862,3 K], добавлен 12.11.2015

  • Понятие репродуктивной системы как комплекса органов и систем воспроизводства человека. Строение мужской и женской репродуктивной системы. Оздоровительное, воспитательное и образовательное значение подвижных игр и упражнений на репродуктивную систему.

    презентация [717,9 K], добавлен 26.12.2014

  • Механизмы иммунных взаимодействий. Взаимосвязь факторов и механизмов неспецифической защиты организма и специфического иммунного ответа. Классификация и общие свойства цитокинов. Вилочковая железа. Гипоталамо-гипофизарно-надпочечниковая система.

    реферат [316,5 K], добавлен 24.02.2014

  • Основные симптомы неотложных состояний при заболеваниях сердечно-сосудистой системы. Определение и причины ишемической болезни сердца. Первая помощь при стенокардии, атеросклерозе. Управляемые и неуправляемые факторы риска. Подозрение на инфаркт миокарда.

    презентация [1,6 M], добавлен 05.09.2013

  • Строение половой системы человека и ее значение в жизнедеятельности организма и его воспроизведении. Отличительные особенности половых органов мужчины и женщины. Структура яичников и этапы процесса овуляции. Участие яичников в гормональной регуляции.

    контрольная работа [265,4 K], добавлен 08.07.2009

  • Строение, функции и значение эндокринной системы. Общие анатомо-физиологические свойства желез внутренней и внешней секреции; нейрогуморальная регуляция. Классификация эндокринных органов. Влияние гормонов на обмен веществ, рост и развитие организма.

    презентация [6,1 M], добавлен 19.04.2015

  • Наличие и степень выраженности декомпенсации жизненно важных функций организма. Определение функционального состояния сердечно-сосудистой системы и системы органов дыхания. Крайне тяжелое общее состояние больного. Оценка функционального состояния почек.

    презентация [197,9 K], добавлен 29.01.2015

  • Функции крови - жидкой ткани сердечно-сосудистой системы позвоночных. Ее состав и форменные элементы. Формирование эритроцитов, типы патологий. Главная сфера действия лейкоцитов. Лимфоциты - основные клетки иммунной системы. Возрастные изменения крови.

    презентация [2,3 M], добавлен 14.10.2015

  • Особенности адаптации организма человека к экологическим факторам. Исследования влияния погодных условий на функциональное состояние сердечно-сосудистой системы детей и подростков. Оценка влияния холодового фактора на военнослужащих и приезжих людей.

    реферат [33,0 K], добавлен 09.09.2014

  • Физиологические особенности нервной, сенсорных систем и высшей нервной деятельности детей 11-12 лет. Строение висцеральных систем и опорно-двигательного аппарата этой возрастной группы. Значение занятий хатха-йогой для развития детского организма.

    курсовая работа [41,9 K], добавлен 28.04.2012

  • Хронический алкоголизм, сердечно-сосудистая система, дыхательная система, имунная система, мочеполовая система, влияние алкоголя на женщину и плод. Алкоголизм хронический — заболевание, характеризующееся совокупностью расстройств.

    реферат [31,6 K], добавлен 08.04.2004

  • Общая характеристика организма собаки, особенности его анатомии и физиологии, функции отдельных органов. Описание основных систем организма: системы костей, мышечной, кожной и нервной. Особенности органов зрения, вкуса, слуха осязания и обоняния.

    реферат [17,2 K], добавлен 09.11.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.