Организм как открытая саморегулирующаяся система

Единство организма и внешней среды. Транспорт через биологические мембраны, виды транспорта. Факторы гуморальной регуляции: гормоны, местные гормоны, метаболиты. Регуляция и саморегуляция эндокринной системы. Биологические мембраны, их строение и функции.

Рубрика Медицина
Вид шпаргалка
Язык русский
Дата добавления 13.04.2022
Размер файла 3,1 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Таким образом:

Последовательность основных процессов при мышечном сокращении:

• Раздражение.

• Возникновение ПД.

• Проведение возбуждения вдоль клеточной мембраны до Z-мембраны и вглубь волокна по трубочкам Т-систем.

• Деполяризация мембраны саркоплазматического ретикулума.

• Освобождение Са++ из триад и диффузия его к миофибриллам.

• Взаимодействие Са++ с тропонином, изменение его конформации и выделение энергии АТФ.

• Скольжение тропомиозина в желобке между двумя субъединицами актиновой нити (внутри неё), обнажая участки прикрепления поперечных мостиков миозина

• Скольжение актиновых вдоль миозиновых нитей.

• Сокращение саркомера, миоцита и мышцы в целом.

Последовательность основных процессов при мышечном расслаблении:

• Прекращение действия раздражителя.

• Инактивация электровозбудимых Са-каналов саркоплазматческого ретикулума.

• Понижение концентрации Са++ в межфибриллярном пространстве из-за работы Са-насоса.

• Высвобождение Са++ из комплекса с тропонином.

• Возвращение исходной конформации тропонина.

• Скольжение тропомиозина на поверхность актиновой нити и блокирование активных центров взаимодействия с миозином.

• Разрушение акто-миозиновых мостиков.

• Увеличение длины саркомера, миоцита и мышцы в целом.

• Расслабление мышцы.

48. Одиночное мышечное сокращение и его характеристика

При раздражении мышцы одиночным импульсом тока возникает одиночное мышечное сокращение.

Амплитуда одиночного сокращения мышцы зависит от количества сократившихся в этот момент миофибрилл. Возбудимость отдельных групп волокон различна, поэтому пороговая сила тока вызывает сокращение лишь наиболее возбудимых мышечных волокон. Амплитуда такого сокращения минимальна. При увеличении силы раздражающего тока в процесс возбуждения вовлекаются и менее возбудимые группы мышечных волокон; амплитуда сокращений суммируется и растет до тех пор, пока в мышце не останется волокон, не охваченных процессом возбуждения. В этом случае регистрируется максимальная амплитуда сокращения, которая не увеличивается, несмотря на дальнейшее нарастание силы раздражающего тока.

Фазы одиночного сокращения:

- латентная (10 мс)

- укорочения (50 мс)

- расслабления (50 мс)

49. Сопоставить фазы потенциала действия с фазами изменения возбудимости и одиночного цикла сокращения. Отметить особенности рефрактерного периода

При нанесении одиночного порогового и сверхпорогового раздражения на мышцу, мышца сокращается, а затем расслабляется, то есть наблюдается одиночное сокращение мышц.

Имеет место ряд последовательных явлений:

* после нанесения раздражения сокращение мышцы наступает не сразу, а через некоторый интервал 2,5 мс (латентный период).

* Реакция мышцы на раздражение начинается с генерации ПД продолжительностью 3-5 мс и в это же время

* начинается сокращение мышцы, приблизительно 50 мсек. (фаза сокращения),

* затем следует фаза расслабления, по продолжительности либо равна или может быть несколько больше фазного сокращения. Длительность зависит от морфофункциональных свойств.

* Так, у наиболее быстро сокращающихся волокон глазных мышц фаза напряжения равна 7-10 мс, а у медленных волокон камбаловидной мышцы равна 50-100 мс.

50. Суммация сокращений, виды суммации. Условия суммации

В режиме одиночного сокращения мышца способна работать длительное время без утомления, но его сила незначительна. Поэтому в организме такие сокращения встречаются редко, например так могут сокращаться быстрые глазодвигательные мышцы. Чаще одиночные сокращения суммируются.

Суммация - образование ПД в фазе расслабления.

Суммация это сложение 2-х последовательных сокращений при нанесении на нее 2-х пороговых или сверхпороговых раздражений, интервал между которыми меньше длительности одиночного сокращения, но больше продолжительности рефрактерного периода. Различают 2 вида суммации: полную и неполную суммацию. Неполная суммация возникает в том случае, если повторное раздражение наносится на мышцу, когда он уже начала расслабляться. Полная возникает тогда, когда повторное раздражение действует на мышцу до начала периода расслабления, т.е. в конце периода укорочения.(рис 1,2). Амплитуда сокращения при полной суммации выше, чем неполной. Если интервал между двумя раздражениями еще больше уменьшить. Например нанести второе в середине периода укорочения, то суммации не будет, потому что мышца находится в состоянии рефрактерности.

51. Тетанус, его виды. Теории тетануса. Оптимум и пессимум частоты раздражения

В естественных условиях к мышечным волокнам поступают не одиночные, а ряд нервных импульсов, на которые мышца отвечает длительным, тетаническим сокращением, или тетанусом. К тетаническому сокращению способны только скелетные мышцы. Гладкие мышцы и поперечнополосатая мышца сердца не способны к тетаническому сокращению из-за продолжительного рефрактерного периода.

Тетанус возникает вследствие суммации одиночных мышечных сокращений. Чтобы возник тетанус, необходимо действие повторных раздражений (или нервных импульсов) на мышцу еще до того, как закончится ее одиночное сокращение.

Если раздражающие импульсы сближены и каждый из них приходится на тот момент, когда мышца только начала расслабляться, но не успела еще полностью расслабиться, то возникает зубчатый тип сокращения (зубчатый тетанус).

Если раздражающие импульсы сближены настолько, что каждый последующий приходится на время, когда мышца еще не успела перейти к расслаблению от предыдущего раздражения, то есть происходит на высоте ее сокращения, то возникает длительное непрерывное сокращение, получившее название гладкого тетануса.

Гладкий тетанус - нормальное рабочее состояние скелетных мышц обусловливается поступлением из ЦНС нервных импульсов с частотой 40-50 в 1с.

Зубчатый тетанус возникает при частоте нервных импульсов до 30 в 1с. Если мышца получает 10-20 нервных импульсов в 1с, то она находится в состоянии мышечного тонуса, т.е. умеренной степени напряжения.

Теории тетануса:

* Механическая теория суперпозиции сокращений (Г. Гельмгольц). При этом каждое последующее сокращение формируется как бы с исходного уровня.

* Теория изменения состояния мышцы при воздействиях (Н. Е. Введенский), согласно которой предыдущее состояние мышцы определяет ее ответ на последующее раздражение.

Амплитуда тетанического сокращения зависит от частоты импульсов, раздражающих мышцу. Оптимумом частоты называют такую частоту раздражающих импульсов, при которой каждый последующий импульс совпадает с фазой повышенной возбудимости (рис. 4, A) и соответственно вызывает тетанус наибольшей амплитуды. Пессимумом частоты называют более высокую частоту раздражения, при которой каждый последующий импульс тока попадает в фазу рефрактерности (рис. 4, A), в результате чего амплитуда тетануса значительно уменьшается.

52. Морфо-функциональные особенности гладких мышц

Гладкие мышцы и их особенности

n Тонические - не способны развивать «быстрые» сокращения

n Фазно-тонические (обладающие автоматией и не обладающие автоматией) - способны быстро сокращаться

Морфологические особенности:

n Образованы гладкомышечными клетками веретенообразной формы.

n Хаотично расположены и окружены соединительной тканью (поэтому лишены поперечной исчерченности).

n Контактируют друг с другом при помощи нексусов.

n Сократительный аппарат представлен миофибриллами, состоящими в основном из актина. Миозин представлен только в дисперсной и агрегированной формах.

Физиологические особенности:

n В основе сокращения - процесс превращения энергии АТФ в механическую энергию сокращения.

n Сокращения медленные с использованием скользящего механизма.

n Сокращение протекает с малыми энерготратами.

n Обладают выраженной пластичностью (длительное сохранение изменённой длины).

n Обладают автоматией.

Раздражители, вызывающие сокращение гладких мышц:

n Быстрое и сильное растяжение гладких мышц.

n Химические вещества (особенно гормоны и медиаторы, к которым гладкие мышцы обладают высокой чувствительностью).

Особенности электрических процессов гладких мышц

n Потенциал покоя в гладких мышцах меньше, чем в скелетных.

n Это связано с более высокой проницаемостью мембраны для ионов Na.

n В клетках не обладающих автоматией он стабилен и =- 60-70 мВ.

n В клетках, обладающих автоматией, он неустойчивый с колебаниями от -30 до -70 мВ.

n Потенциал действия имеет длительный латентный период.

n Ниже, чем в скелетных мышцах.

n Бывает двух типов: пикоподобная форма и форма «плато».

n Связан с повышением проницаемости для ионов Са.

n Несколько опережает сокращение.

n Проведение возбуждения возникает, если приложенный стимул одновременно возбуждает некоторое минимальное количество мышечных клеток.

n Может распространяться на соседние мышечные волокна (из-за малого сопротивления в области контактов) распространяется лишь на определённое расстояние, которое зависит от силы раздражителя скорость значительно меньше, чем в скелетной мышце и составляет от 2 до 15 см/с.

53. Моторные синапсы, строение, функциональные свойства, механизм передачи возбуждения. Фармакологическая коррекция работы мионеврального синапса

Нервно-мышечный синапс - соединение концевой ветви аксона мотонейрона спинного мозга с мышечной клеткой.

• Соединение состоит из предсинаптических структур, образованных концевыми ветвями аксона мотонейрона и постсинаптических структур, образованных мышечной клеткой. Предсинаптические и постсинаптические структуры разделены синаптической щелью.

• Предсинаптические структуры: концевая ветвь аксона, концевая пластинка концевой ветви (аналог синаптической бляшки), предсинаптическая мембрана (концевой пластинки).

Постсинаптические структуры: постсинаптическая мембрана (мышечной клетки), субсинаптическая мембрана (постсинаптической мембраны). По структуре и функции нервно-мышечный синапс является типичным химическим синапсом.

Мионевральный (нервно-мышечный) синапс - образован аксоном мотонейрона и мышечной клеткой.Нервный импульс возникает в тригерной зоне нейрона, по аксону направляется к иннервируемой мышце, достигает терминали аксона и при этом деполяризует пресинаптическую мембрану.После этого открываются натриевые и кальциевые каналы, и ионы Ca из среды, окружающей синапс, входят внутрь терминали аксона. При этом процессе броуновское движение везикул упорядочивается по направления к пресинаптической мембране. Ионы Ca стимулируют движение везикул. Достигая пресинап-тическую мембрану, везикулы разрываются, и освобождается ацетилхолин (4 иона Ca высвобождают 1 квант ацетилхолина). Синаптическая щель заполнена жидкостью, которая по составу напоминает плазму крови, через нее происходит диффузия АХ с преси-наптической мембраны на постсинаптическую, но ее скорость очень мала. Кроме того, диффузия возможна еще и по фиброзным нитям, которые находятся в синаптической щели. После диффузии АХ начинает взаимодействовать с хеморецепторами (ХР) и холи-нэстеразой (ХЭ), которые находятся на постсинаптической мембране.Холинорецептор выполняет рецепторную функцию, а холинэстераза выполняет ферментативную функцию. На постсинаптической мембране они расположены следующим образом: ХР--ХЭ--ХР--ХЭ--ХР--ХЭ.ХР + АХ = МПКП - миниатюрные потенциалы концевой пластины.

Затем происходит суммация МПКП. В результате сум-мации образуется ВПСП - возбуждающий постсинап-тический потенциал. Постсинаптическая мембрана за счет ВПСП заряжается отрицательно, а на участке, где нет синапса (мышечного волокна), заряд положительный. Возникает разность потенциалов, образуется потенциал действия, который перемещается по проводящей системе мышечного волокна.ХЭ + АХ = разрушение АХ до холина и уксусной кислоты.В состоянии относительного физиологического покоя синапс находятся в фоновой биоэлектрической активности. Ее значение заключается в том, что она повышает готовность синапса к проведению нервного импульса тем самым значительно облегчает передачу нервного возбуждения по синапсу. В состоянии покоя 1-2 пузырька в терминале аксона могут случайно подойти к пресинаптической мембране, в результате чего вступят с ней в контакт. Везикула при контакте с пресинап-тической мембраной лопается, и ее содержимое в виде 1 кванта (10000 молекул) АХ поступает в синаптическую щель, попадая при этом на постсинаптическую мембрану, где будет образовываться МПКН.

Мионевральный синапс обладает следующими основными свойствами.

1. Синапс проводит возбуждение только в одном направлении - в направлении от пресинаптической мембраны к постсинаптической.

2. В синапсе имеет место синаптическая задержка возбуждения, т. е. скорость проведения возбуждения по синапсу значительно меньше, чем по нервному волокну. Это связано с определенной продолжительностью времени, необходимого для выделения медиатора и взаимодействия его с рецепторами.

3. В синапсе отмечается облегчение проведения каждого последующего возбуждения, что, по всей вероятности, связано с накоплением медиатора в синаптической щели.

4. При длительном возбуждении синапса в нем может наблюдаться снижение чувствительности рецепторов к медиатору, обусловленное закрытием части натриевых каналов, за счет включения системы инактивации.

5. В синапсах быстро развивается процесс утомления, связанный с быстрым метаболическим истощением запасов медиатора в везикулах пресинаптических утолщений.

Фармакологическая коррекция:

- миастения Гравис - образование антител к АХ-рецепторам > АХ не связывается с рецепторами. Лечение - АХэстеразные препараты, блокирующие активность ацетилхолинэстеразы > усиление действия АХ, что позволяет ему свзяваються с заблокированными рецепторами

- ботулотоксины (Ботокс, LANTOX) - местные релаксанты. Блокируют высвобождение ацетилхолина из окончания нервного волокна в области нервно-мышечного синапса. Предполагается, что ингибирование высвобождения ацетилхолина приводит к прорастанию новых нервных окончаний, вследствие чего восстанавливается нервно-мышечный синапс.:

• Синаптические пузырьки аккумулируются близ внутренней поверхности клеточной мембраны.

• Конусы роста исходят от окончания аксона и перехватов Ранвье.

• Прорастание происходит внутрь мышечной ткани. Число нервных окончаний, связанных с отдельным мышечным волокном, увеличивается, в результате восстанавливается нервно-мышечное соединение.

• Восстанавливается гистологическая структура нервно-мышечного синапса, нормализуется концентрация ацетилхолина в окончаниях моторных нейронов.

54. Структурно-функциональные особенности скелетных мышц. Понятие о моторной единице. Виды моторных единиц

Анатомической и функциональной единицей скелетных мышц является моторная единица - двигательный нейрон и иннервируемая им группа мышечных волокон. Импульсы, посылаемые мотонейроном, приводят в действие все образующие ее мышечные волокна.

По характеру возбуждения, возникающего в мышечных волокнах все нейромоторные единицы делятся на 2 группы.

Фазные нейромоторные единицы - образуются альфа-мотонейронами. Это самые крупные мотонейроны (диаметр 10-20 мкм). Скорость проведения возбуждения по отростку этого аксона - 120 м/с. Аксон обеспечивает одиночную иннервацию, образуя на каждом волокне 1-2 синапса. В каждом синапсе при возбуждении возникает достаточный потенциал концевой пластинки, который обеспечивает возникновение потенциала действия в мышце (импульсное возбуждение). Лучше работают под действием одиночного возбуждения (импульса), при котором возникает распространяющееся возбуждение.

Среди фазных нейромоторных единиц выделяют быстрые и медленные.

1. Быстрые - продолжительность потенциала действия в 2 раза меньше, чем в медленных. Волна сокращения в 5 раз меньше, чем в медленных. Скорость распространения возбуждения в быстрых нейромоторных единицах в 2 раза больше, чем в медленных. Таким образом, быстрые фазные нейромоторные единицы обеспечивают динамическую работу, когда быстрое сокращение сменяется быстрым расслаблением. Для этого вида нейромоторных единиц характерно анаэробное образование энергии. Эти мышечные волокна практически не содержат миоглобина - светлые, белые мышцы;

2. Медленные - обеспечивают в основном статическую работу, медленное, длительное сокращение мышц. Основной поставщик энергии окислительно-восстановительные процессы. Содержит миоглобин, который депонирует кислород. По цвету темные, красные мышцы.

Тонические нейромоторные единицы - образуются гамма-мотонейронами передних рогов спинного мозга (самые мелкие, диаметр 4-6 мкм). Скорость проведения импульса по отросткам этих нейронов - 30 м/с, в синапсах возникает местный потенциал концевой пластинки (местное возбуждение). Аксоны тонических нейронов обеспечивают множественную иннервацию, т. е. на каждом мышечном волокне образуются несколько десятков синапсов и за счет суммации местных потенциалов и возникает потенциал действия. Возбуждение тонической нейромоторной единицы происходит под влиянием серии импульсов (частота около 10 Гц). Тонические нейромоторные единицы обеспечивают медленное сокращение мышц, участвуют в возникновении тонуса.

Скелетные мышцы образуются различными мышечными волокнами, которые входят в состав фазных и тонических нейромоторных единиц. Попеременное включение нейромоторных единиц обеспечивает изменение функционального состояния мышцы. В состоянии покоя работают тонические нейромоторные единицы, в состоянии активности - фазные нейромоторные единицы.

Кроме двигательной иннервации присутствует вегетативная. Все скелетные мышцы получают импульсы из симпатической нервной системы, которая регулирует обменные процессы.

Скелетные мышцы состоят из большого количества мышечных волокон. Волокно поперечнополосатой мышцы имеет вытянутую форму, диаметр его от 10 до 100 мкм, длина волокна от нескольких сантиметров до 10-12 см. Мышечная клетка окружена тонкой мембраной - сарколеммой, содержит саркоплазму (протоплазму) и многочисленные ядра. Сократительной частью мышечного волокна являются длинные мышечные нити - миофибриллы, состоящие в основном из актина, проходящие внутри волокна от одного конца до другого, имеющие поперечную исчерченность.

Основной функцией скелетных мышц является сокращение, которое выражено различными движениями человека. Скелетные мышцы выполняют также рецепторную, обменную и терморегулирующую функции. Они образуются большим количеством многоядерных мышечных волокон. Сократительной частью мышечного волокна являются длинные мышечные нити -- миофибриллы, которые проходят внутри волокна от одного конца к другому и имеют поперечную очерченность. Последняя образована чередованием темных (анизотропных) А-дисков и светлых (изотропных) 1-дисков (см. рис. 53). Через середину 1-диска проходит Z-линия; две соседние Z-линии ограничивают саркомер, структурно-фунциональную единицу. При электронной микроскопии волокон видно, что в составе А-диска есть более светлый участок (Н-зона), а в центре этот диск пересекает темная полоса -- М-линия. Темный диск образован толстыми нитями белка миозина, а светлый 1-диск -- тонкими нитями белка актина. В мышечном волокне содержатся также фибриллярный палочковидный белок -- тропомиозин и глобулярный белок -- тропонин.

55. Режимы сокращений скелетных мышц (изотоническое, изометрическое, ауксотоническое). Лестничная зависимость между силой раздражения и амплитудой сокращения скелетной мышцы

Во время выполнения работы мышца может сокращаться:

* изотонически - мышца укорачивается при постоянном напряжении (внешней нагрузке); изотоническое сокращение воспроизводится только в эксперименте;

* изометричеки - напряжение мышцы возрастает, а ее длина не изменяется; мышца сокращается изометрически при совершении статической работы;

* ауксотонически - напряжение мышцы изменяется по мере ее укорочения; ауксотоническое сокращение выполняется при динамической преодолевающей работе.

Амплитуда одиночного сокращения изолированного мышечного волокна от силы раздражения не зависит, т.к. подчиняется закону «все или ничего». А сокращение целой мышцы, состоящей из множества волокон, при ее прямом раздражении находится в большей зависимости от силы раздражения.

При пороговой силе тока в реакцию вовлекается лишь небольшое число волокон, поэтому сокращение мышцы едва заметно. С увеличением силы раздражения число волокон, охваченных возбуждением, возрастает, сокращение усиливается до тех пор, пока все волокна не оказываются сокращенными («максимальное сокращение»). После этого усиление раздражающего стимула на амплитуду сокращения мышцы не влияет.

Таким образом, скелетная мышца отвечает на раздражение градуально (в зависимости от раздражительного стимула).

56. Сила мышцы. Факторы, влияющие на силу мышцы.

Максимальная сила мышц - это величина максимального напряжения, которое может развить мышца. Она зависит от строения мышцы, ее функционального состояния, исходной длины, пола, возраста, степени тренированности человека.

Сила сокращения скелетной мышцы определяется 2 факторами:

* числом моторных единиц, участвующих в сокращении;

* частотой сокращения мышечных волокон.

Работа скелетной мышцы совершается за счет согласованного изменения тонуса (напряжения) и длины мышцы во время сокращения.

Для сравнения силы различных мышц определяют их удельную или абсолютную силу. Она равна максимальной, деленной на кв. см. площади поперечного сечения мышцы. Удельная сила икроножной мышцы человека составляет 6,2 кг/см2, трехглавой - 16,8 кг/см2, жевательных - 10 кг/см 2.

57. Работа мышцы при разных нагрузках. Правило средних нагрузок

Работа мышцы - её способность сокращаться.

Виды работы скелетной мышцы:

* динамическая преодолевающая работа совершается, когда мышца, сокращаясь, перемещает тело или его части в пространстве;

* статическая (удерживающая) работа выполняется, если благодаря сокращению мышцы части тела сохраняются в определенном положении;

* динамическая уступающая работа совершается, если мышца функционирует, но при этом растягивается, так как совершаемого ею усилия недостаточно, чтобы переместить или удержать части тела.

Правило средних нагрузок - мышца может совершить максимальную работу при средних нагрузках.

58. Утомление мышц, теории утомления. Утомление изолированной мышцы. Утомление нервно-мышечного препарата. Утомление моторной единицы в условиях организма

Утомление - физиологическое состояние мышцы, которое развивается после совершения длительной работы и проявляется снижением амплитуды сокращений, удлинением латентного периода сокращения и фазы расслабления. Причинами утомления являются: истощение запаса АТФ, накопление в мышце продуктов метаболизма. Утомляемость мышцы при ритмической работе меньше, чем утомляемость синапсов. Поэтому при совершении организмом мышечной работы утомление первоначально развивается на уровне синапсов ЦНС и нейро-мышечных синапсов.

В прошлом веке, на основании опытов с изолированными мышцами, было предложено 3 теории мышечного утомления.

1.Теория Шиффа: утомление является следствием истощения энергетических запасов в мышце.

2.Теория Пфлюгера: утомление обусловлено накоплением в мышце продуктов обмена.

3.Теория Ферворна: утомление объясняется недостатком кислорода в мышце.

Утомление изолированной мышцы можно вызвать ее ритмическим раздражением. В результате этого сила сокращений прогрессирующе уменьшается (рис). Чем выше частота, сила раздражения, величина нагрузки тем быстрее развивается утомление. При утомлении значительно изменяется кривая одиночного сокращения. Увеличивается продолжительность латентного периода, периода укорочения и особенно периода расслабления, но снижается амплитуда (рис.). Чем сильнее утомление мышцы, тем больше продолжительность этих периодов. В некоторых случаях полного расслабления не наступает. Развивается контрактура. Это состояние длительного непроизвольного сокращения мышцы. Работа и утомление мышц исследуются с помощью эргографии.

В условиях организма развитие утомления самой мышцы - явление крайне редкое, так как прежде всего утомление развивается в структурах центральной нервной системы и нервно-мышечном синапсе. Однако независимо от того, где произошло утомление, зарегистрированная кривая мышечного утомления носит одинаковый характер. Так, на свежем нервно-мышечном препарате при длительном ритмическом раздражении нерва даже в редком ритме можно получить характерную кривую утомления мышцы. Некоторое время после начала раздражения амплитуда сокращения мышцы увеличивается. Наблюдаемое явление называется "лестницей Боудича" и объясняется активированием процессов обмена в результате перехода мышцы в рабочее состояние. После стадии лестницы амплитуда мышечных сокращений держится некоторое время на постоянном уровне - стадия плато. Эта стадия сменяется стадиями быстрого и медленного спада, во время которых амплитуда сокращений уменьшается, так как наступает утомление. Одновременно с развитием утомления в мышце возникает контрактура - явление, связанное с замедлением процессов расслабления.

Однако главная роль в утомлении двигательного аппарата принадлежит моторным центрам ЦНС. В прошлом веке И.М.Сеченов установил, что если наступает утомление мышц одной руки, то их работоспособность восстанавливается быстрее при работе другой рукой или ногами. Он считал, что это связано с переключением процессов возбуждения с одних двигательных центров на другие. Отдых с включением других мышечных групп он назвал активным. В настоящее время установлено, что двигательное утомление связано с торможением соответствующих нервных центров, в результате метаболических процессов в нейронах, ухудшением синтеза нейромедиаторов, и угнетением синаптической передачи.

59. Кривая утомления. Эргография. Локальное и общее утомление. Пассивный отдых. Роль активного отдыха по Сеченову

Эргография. Для изучения мышечного утомления у человека в лабораторных условиях пользуются эргографами -- приборами для записи амплитуды движения, ритмически выполняемого группой мышц.

Примером такого прибора может служить эргограф Моссо, записывающий движение нагруженного пальца при сгибании и разгибании и дающий суммарные сведения о работе собственного сгибателя этого пальца и общего сгибателя всех пальцев руки. Исследуемый, сгибая и разгибая палец, поднимает и опускает подвешенный к пальцу груз в ритме ударов метронома. Особый интерес представляют эргографы, воспроизводящие те или иные рабочие движения человека. Первым таким прибором был эргограф, примененный И. М. Сеченовым для изучения рабочих движений при пилке ручной пилой.

Меняя величину груза и частоту ударов метронома, можно установить тот ритм и груз, при которых данный индивидуум в данных условиях эксперимента выполняет наибольшую работу в кратчайший срок.

Рис. Две кривые утомления (эргограммы), записанные до и после приема в течение 6 часов зачетов от студентов (по Моссо).

Форма кривой утомления и величина произведенной работы чрезвычайно варьируют у разных исследуемых и даже у одного и того же исследуемого при различных условиях. В этом отношении показательны эргограммы, записанные А. Моссо на самом себе до и после приема зачета у студентов. Эти эргограммы показывают резкое уменьшение работоспособности после напряженной умственной работы (рис. 150).

Утомление, возникающее при физической работе, в которую вовлечены обширные мышечные группы, называется общим. Для общего утомления характерно нарушение регуляторной функции ЦНС, координации двигательной и вегетативной функций, снижение эффективности волевого контроля за качеством выполнения движений. Общее утомление сопровождается расстройствами вегетативных функций: неадекватным нагрузке увеличением ЧСС, падением пульсового давления, уменьшением легочной вентиляции. Субъективно это ощущается как резкий упадок сил, одышка, сердцебиение, невозможность продолжать работу.

Когда чрезмерная нагрузка падает на отдельные мышечные группы, развивается так называемое локальное утомление. В отличие от общего утомления, при локальном утомлении страдает не столько центральный аппарат управления, сколько местные структурные элементы регуляции движений: терминали двигательных нервов, нервно-мышечный синапс. Нарушения в нервно-мышечной передаче возбуждения развиваются задолго до того, как сами исполнительные приборы перестают нормально функционировать. В пресинаптической мембране уменьшается количество ацетилхолина, вследствие чего падает потенциал действия постсинаптической мембраны. Происходит частичное блокирование эфферентного нервного сигнала, передаваемого на мышцу. Сократительная функция мышцы ухудшается.

Различают два вида отдыха: пассивный и активный. Пассивный -- это полный покой.Активный отдых представляет собой отдых от деятельности, вызвавшей утомление. Долгое время господствовало мнение, что быстро восстановить работоспособность можно только при полном покое организма. И. М. Сеченов, исследуя рабочие движения человека, опроверг это представление. Он сравнил быстроту восстановления работоспособности утомленной правой руки при полном покое и в случае, когда правая рука отдыхала, а левая работала. Оказалось, что во втором случае работоспособность восстанавливается быстрей.Происходит это потому, что обратный поток импульсов, идущий от левой руки в центральную нервную систему, возбуждает утомленные (заторможенные) нервные клетки, управляющие работой уставшей руки. И восстановление происходит быстрее. Значит, под влиянием нервных импульсов от неутомленных органов работоспособность утомленных участков мозга восстанавливается быстрее. При полном покое в центральную нервную систему импульсы, возбуждающие заторможенные нервные клетки, не поступают. Вот почему активный отдых более эффективен, чем полный покой.

60. Адаптационно-трофический феномен Орбели-Гинецинского. Роль высших отделов ЦНС в развитии утомления

Если стимуляцией двигательного нерва довести скелетную мышцу до утомления, а затем одновременно раздражать симпатический нерв, то работоспособность утомленной мышцы повышается (феномен Орбели-Гинецинского) - адаптационно-трофическое действие симпатической нервной системы).

Мышечная работа - это целостная деятельность всего организма. Функционирование организма как целого и его взаимодействие с внешним миром осуществляется посредством нервной системы при ведущей роли ее высшего отдела -- коры больших полушарий. Утомление организма вследствие мышечной работы является прежде всего результатом сдвигов в функциональном состоянии центральной нервной системы.

Исследования отечественных физиологов -- И. М. Сеченова, И. П. Павлова, Н. Е. Введенского, А. А. Ухтомского, Л. А. Орбели, Г. В. Фольборта и др. -- убедительно обосновывают то важное положение, что в возникновении и развитии утомления нервная система играет ведущую роль.

Утомление организма при мышечной работе, прежде всего, связано с утомлением центральной нервной системы, так как интенсивная мышечная деятельность является в то же время и интенсивной деятельностью нервных центров. Последняя в результате длительной напряженной работы нарушается. Выражением этого нарушения является изменение нормального взаимоотношения процессов возбуждения и торможения, причем тормозной процесс начинает преобладать. В результате расстраивается нормальное течение рефлекторных процессов, нарушаются регуляция вегетативных функций и координация движений, двигательный аппарат постепенно приходит в недеятельное состояние.

Нервная система наиболее чувствительна к изменениям внутренней среды. Такие факторы утомления, как накопление в крови продуктов работы клеток, уменьшение содержания в крови сахара, недостаток при некоторых условиях кислорода в крови, понижают работоспособность организма не прямо, а главным образом опосредствованно -- через центральную нервную систему.

Эти возможности коры больших полушарий и других отделов мозга, осуществляемые через посредство интрацентральных путей и вегетативных нервов, реализуются с помощью регулирующих влияний на все органы и ткани, в том числе также и на центральную нервную систему. В активизации этих влияний ведущая роль принадлежит рефлекторным реакциям, возникающим при действии самых разнообразных сигнальных раздражителей.

61. Методы изучения функций центральной нервной системы. Электроэнцефалография

Существуют следующие методы исследования функций ЦНС:

1. Метод перерезок ствола мозга на различных уровнях. Например, между продолговатым и спинным мозгом.

2. Метод экстирпации (удаления) или разрушения участков мозга.

3. Метод раздражения различных отделов и центров мозга.

4. Анатомо-клинический метод. Клинические наблюдения за изменениями функций ЦНС при поражении ее каких-либо отделов с последующим патологоанатомическим исследованием.

5. Электрофизиологические методы:

а. электроэнцефалография - регистрация биопотенциалов мозга с поверхности кожи черепа. Методика разработана и внедрена в клинику Г. Бергером.

б. регистрация биопотенциалов различных нервных центров; используется вместе со стереотаксической техникой, при которой электроды с помощью микроманипуляторов вводят в строго определенное ядро.

в. метод вызванных потенциалов, регистрация электрической активности участков мозга при электрическом раздражении периферических рецепторов или других участков;

6. метод внутримозгового введения веществ с помощью микроинофореза;

7. хронорефлексометрия - определение времени рефлексов.

Электроэнцефалография (ЭЭГ)-это регистрация электрической активности мозга с поверхности кожи головы. Впервые ЭЭГ человека зарегистрировал в 1929 г. немецкий психиатр Г.Бергер. При снятии ЭЭГ на кожу накладывают электроды, сигналы от которых усиливаются и подаются на осциллограф и пишущее устройство.

В норме регистрируются следующие типы спонтанных колебаний:

1. Альфа-ритм. Это волны с частотой 8-13 Гц. Наблюдается в состоянии бодрствования, полного покоя и при закрытых глазах. Если человек открывает глаза a-ритм сменяется b-ритмом. Это явление называется блокадой a-ритма.

2. Бета-ритм. Его частота от 14 до 30 Гц. Наблюдается при деятельном состоянии мозга и учащается по мере повышения интенсивности умственной работы.

3. Тета-ритм (и-ритм). Колебания с частотой 4-8 Гц. Регистрируется во время засыпания, поверхностного сна и неглубоком наркозе.

4. Дельта-ритм. Частота 0,5-3,5 Гц. Наблюдается при глубоком сне и наркозе.

Чем ниже частота ритмов ЭЭГ, тем больше их амплитуда. Помимо этих основных ритмов регистрируются и другие ЭЭГ феномены. Например, по мере углубления сна появляются сонные веретена. Это периодическое увеличение частоты и амплитуды тета - ритма. При ожидании команды к действию возникает отрицательная Е - волна ожидания и т.д.

В эксперименте ЭЭГ используют для определения уровня активности мозга, а в клинике для диагностики эпилепсии (особенно скрытых форм), а также для выявление смерти мозга (кора живет 3-5 мин., стволовые нейроны 7-10, сердце 90, почки 150).

62. Нейрон, его физиологические свойства, классификация. Особенности возникновения и распространения возбуждения в нейроне

Нейрон - структурно-функциональная единица нервной системы.

Основное свойство нейрона - это способность возбуждаться, то есть образовывать электрический импульс, и передавать (проводить) это возбуждение другим нейронам, мышечным или железистым клеткам. Электрический заряд на мембране имеют не только нейроны, но и многие другие клетки организма, но только в нейронах образуется потенциал действия, который может распространяться по нервному волокну.

Нейрон имеет тело (сому), как и все другие клетки, а также отростки - короткие (дендриты) и длинный (аксон). В соме содержатся ядро и органеллы - митохондрии, эндоплазматический ретикулум и др. На поверхности мембраны нейрона имеются сотни и тысячи синапсов, то есть мест контактов окончаний аксонов других нейронов с данной клеткой. Только 2% синапсов находится на мембране сомы, остальные - на мембране дендритов.

В теле нейрона у основания аксона выделяют аксонный холмик. В этом месте мембрана нейрона обладает наиболее высокой возбудимостью. Тело и дендриты нейрона в основном воспринимают импульсы от других нервных клеток, а по аксону возбуждение передается к другому нейрону или эффекторной клетке.

Мембрана тела нейрона и его отростков обладает избирательной проницаемостью к веществам, находящимся внутри и снаружи нейрона, причем в зависимости от состояния нервной клетки эта проницаемость меняется. В мембране находятся ферментативные комплексы, с помощью которых осуществляется активный транспорт (за счет использования энергии АТФ) определенных веществ, а также молекулярные комплексы (так называемые рецепторы), которые обладают высокой чувствительностью к определенным химическим веществам.

Классификация нейронов:

1. По количеству отростков:

Униполярные, биполярные и мультиполярные (звездчатые).

2. По основному медиатору (т.е. веществу, выделяющемуся в синапсах):

Адренергические, холинергические, глутаматергические и т.д.

3. По отделу нервной системы:

Центральные, спинномозговые, соматические, вегетативные.

4. По характеру оказываемого воздействия:

Возбуждающие или тормозные.

5. По назначению:

а) афферентные (чувствительные) - воспринимающие информацию с помощью рецепторов о внешней и внутренней среде и передающие ее в ЦНС;

б) эфферентные (эффекторные) - передающие информацию из ЦНС к исполнительным органам - эффекторам;

в) вставочные нейроны, или интернейроны.

6. По активности:

Фоново-активные и молчащие, возбуждающиеся только в ответ на раздражение.

Особенности возникновения возбуждения в нейроне

Нервная клетка усыпана тысячами синаптических окончаний. Например, клетка Пуркинье коры мозжечка имеет более 200 000 синапсов. Часть синапсов является возбуждающими, а часть - тормозными. На дендритах нейронов большей частью формируются возбуждающие синапсы, а на теле клетки - тормозные. Если возбуждающие и тормозные синапсы активируются одновременно, то возникающие локальные токи электротонически достигают аксонного холмика и там суммируются. Суммация не является линейной. В случае изменения мембранного потенциала аксонного холмика до критического уровня деполяризации на аксоне возникает потенциал действия (процесс возбуждения). Если же в процессе суммации возбуждающих и тормозных постсинаптических токов сдвиг мембранного потенциала оказался ниже критического, то потенциал действия не образуется; нейрон будет заторможен.

63. Синапсы в центральной нервной системе. Строение, классификация, функциональные свойства

Синапс - это морфофункциональное образование ЦНС, которое обеспечивает передачу сигнала с нейрона на другой нейрон или с нейрона на эффекторную клетку (мышечное волокно, секреторную клетку).

У всех позвоночных и у многих беспозвоночных животных нервные клетки в ЦНС связаны друг с другом посредством синапсов. Аксон каждого нейрона, подходя к другим нервным клеткам, ветвится и образует многочисленные окончания на телах, дендритах и аксонах этих клеток. Так, на теле мотонейрона может быть около 3500 (в ретикулярной формации до 40 000 синапсов. Одно нервное волокно может образовать до 10 000 синапсов на телах многих нервных клеток.

Cтруктура синапса:

1) пресинаптическая мембрана (электрогенная мембрана в терминале аксона, образует синапс на мышечной клетке);

2) постсинаптическая мембрана (электрогенная мембрана иннервируемой клетки, на которой образован синапс);

3) синаптическая щель (пространство между пресинаптической и постсинаптической мембраной, заполнена жидкостью, которая по составу напоминает плазму крови).

Существует несколько классификаций синапсов.

1. По локализации:

1) центральные синапсы;

2) периферические синапсы.

Центральные синапсы лежат в пределах центральной нервной системы, а также находятся в ганглиях вегетативной нервной системы. Центральные синапсы - это контакты между двумя нервными клетками, причем эти контакты неоднородны и в зависимости от того, на какой структуре первый нейрон образует синапс со вторым нейроном, различают:

1) аксосоматический, образованный аксоном одного нейрона и телом другого нейрона;

2) аксодендритный, образованный аксоном одного нейрона и дендритом другого;

3) аксоаксональный (аксон первого нейрона образует синапс на аксоне второго нейрона);

4) дендродентритный (дендрит первого нейрона образует синапс на дендрите второго нейрона).

Различают несколько видов периферических синапсов:

1) мионевральный (нервно-мышечный), образованный аксоном мотонейрона и мышечной клеткой;

2) нервно-эпителиальный, образованный аксоном нейрона и секреторной клеткой.

2. Функциональная классификация синапсов:

1) возбуждающие синапсы;

2) тормозящие синапсы.

3. По механизмам передачи возбуждения в синапсах:

1) химические;

2) электрические.

Особенность химических синапсов заключается в том, что передача возбуждения осуществляется при помощи особой группы химических веществ - медиаторов.

Различают несколько видов химических синапсов:

1) холинэргические. В них происходит передача возбуждения при помощи ацетилхолина;

2) адренэргические. В них происходит передача возбуждения при помощи трех катехоламинов;

3) дофаминэргические. В них происходит передача возбуждения при помощи дофамина;

4) гистаминэргические. В них происходит передача возбуждения при помощи гистамина;

5) ГАМКэргические. В них происходит передача возбуждения при помощи гаммааминомасляной кислоты, т. е. развивается процесс торможения.

Особенность электрических синапсов заключается в том, что передача возбуждения осуществляется при помощи электрического тока. Таких синапсов в организме обнаружено мало.

Природа возбуждающих и тормозных медиаторов в ЦНС выяснена пока еще недостаточно. Известно, что в некоторых синапсах ЦНС медиатором служит АХ, в других глютаминовая кислота, есть указание на медиаторную роль ГАМК (тормозный медиатор), глицина, АТФ, пептидов и др. веществ. Медиаторный механизм определяет ряд особенностей проведения возбуждения через синапсы. К числу этих особенностей относятся одностороннее проведение, синаптическая задержка, суммация возбуждений в синапсах и др.

Связи между нейронами могут быть последовательными, кольцевыми, конвергентными, дивергентными, а также разнообразными сочетаниями этих форм.

Синапсы имеют ряд физиологических свойств:

1) клапанное свойство синапсов, т. е. способность передавать возбуждение только в одном направлении с пресинаптической мембраны на постсинаптическую;

2) свойство синаптической задержки, связанное с тем, что скорость передачи возбуждения снижается;

3) свойство потенциации (каждый последующий импульс будет проводиться с меньшей постсинаптической задержкой). Это связано с тем, что на пресинаптической и постсинаптической мембране остается медиатор от проведения предыдущего импульса;

4) низкая лабильность синапса (100-150 имульсов в секунду).

64. Химические синапсы. Медиаторные механизмы передачи возбуждения в центральной нервной системе. Фармакологическая коррекция работы химического синапса

Химические синапсы - возбуждение от пре- к постсинаптической мембране передается с помощью перечисленных медиаторов. Более специализированы, чем электрические.

Свойства химических синапсов:

• Нервно-химический механизм передачи возбуждения (передача возбуждения осуществляется с помощью специфического химического вещества - медиатора, который выделяется нервным окончанием и количество которого пропорционально частоте приходящей нервной импульсации).

• Принцип Дейла (во всех синапсах, образованных нервными окончаниями одного нейрона, выделяется только один вид медиатора - либо возбуждающий, либо тормозный).

• Одностороннее проведение возбуждения (возбуждение передается только в одном направлении - от пресинаптической мембраны к постсинаптической мембране).

• Синаптическая задержка (скорость проведения возбуждения в синапсе значительно медленнее, чем в нервном и мышечном волокне; задержка от 0,5 до 1-3 мс).

• Низкая функциональная лабильность синапса.

Механизм передачи возбуждения:

• Деполяризация (возбуждение) пресинаптической мембраны.

• Повышение проницаемости для ионов кальция за счёт открытия электровозбудимых Ca-каналов.

• Ионы кальция или его ионизированные комплексы по концентрационному градиенту поступают в нервное окончание (антагонистами кальция являются ионы магния и токсины ботулинуса).

• Уменьшение электростатических влияний (одноименных зарядов) между пресинаптической мембраной и везикулами.

• Приближение и слияние везикул с пресинаптической мембраной.

• Изменение поверхностного натяжения везикул.

• Разрыв везикул.

• Выход медиатора в синаптическую щель.

• Медиатор (возбуждающий в нервно-мышечном синапсе - ацетилхолин) диффундирует через синаптическую щель к рецепторам постсинаптической мембраны.

• Ацетилхолин вступает во взаимодействие с холинорецепторами (обладают избирательной чувствительностью к ацетилхолину).

• При одновременном участии ионов кальция и макроэргического фосфата происходят конформационные изменения белковых молекул рецептора.

• Ионы Na+ по концентрационному градиенту поступают внутрь постсинаптического окончания через хемовозбудимые Na-каналы.

• Развивается деполяризация - возбуждающий постсинаптический потенциал, который носит местный характер, по форме и свойствам напоминает локальный ответ (не подчиняется закону «всё или ничего» и способен суммироваться).

• Суммация возбуждающих постсинаптических потенциалов

• Потенциал концевой пластинки.

• Когда он достигает опредёленной (критической величины) возникают местные токи между возбуждёнными участками постсинаптической мембраны и невозбуждёнными участками прилегающей к ней обычной (электровозбудимой) мембраны.

• На прилегающем участке электровозбудимой мембраны возникает потенциал действия.

Фармакологическая коррекция - см. мионевральный синапс (ацетилхолинэстераза, ботулотоксин).

65. Электрические синапсы. Функциональные свойства, механизмы передачи возбуждения

Существование таких синапсов предполагалось давно, но выявлены и изучены они были лишь в самое последнее время. Электрические синапсы имеются в нервной системе как беспозвоночных, так и позвоночных животных, но наиболее изученными являются такие синапсы у беспозвоночных. Всем синапсам электрического типа свойственны

а) очень узкая синаптическая щель (5 нм, иначе 50 А) и

б) очень низкое удельное сопротивление пре- и постсинаптических мембран, что связано с существованием транссинаптических каналов (D=l -1,5 нм), проходящих поперек синаптической щели в специальных тельцах, связывающих пре- и постсинаптическую мембраны.

Например, в простейшем возбуждающем электрическом синапсе - в так называемом септальном синапсе соседних сегментов гигантского аксона рака - удельное сопротивление перегородки (септы) составляет 1,0 Ом * см2, в то время как сопротивление наружной мембраны каждого сегмента - 1000-3000 Ом * см2. В таком синапсе ПД возбужденного пресинаптического сегмента посредством петли электрического тока, входящего через септальную мембрану и выходящего через наружную мембрану постсинаптического сегмента, раздражает этот последний и вызывает ПД. При этом все же имеется некоторая потеря силы раздражающего тока на перегородке, поскольку она имеет очень малую площадь и ее общее сопротивление достигает 0,2-0,4 МОм.

Проведение ПД через септальный синапс осуществляется с синаптической задержкой порядка 0,1 мс, которая гораздо короче, чем задержка в химических синапсах.

• В септальных синапсах, как и в непрерывном нервном проводнике, проведение осуществляется в обе стороны.

• Некоторые электрические возбуждающие синапсы работают как "вентильные" механизмы, т. е. передают возбуждение, по существу, односторонне, что объясняется выпрямляющими свойствами их синаптических мембран, т. е., по-видимому, тем, что их каналы открыты лишь для электрического тока одного определенного направления. При этом сопротивления прямому и обратному токам могут различаться в 50 раз.

• электрическим синапсам свойственно чрезвычайное быстродействие и высокая надежность передачи. Однако эти синапсы как не включающие никакого инерционного звена мало приспособлены для интегрирования серии импульсов возбуждения.

• Специализированные тормозящие электрические синапсы встречаются крайне редко. Они описаны Фурукавой, Фуршпаном на маутнеровских клетках рыб. Здесь пресинаптическое волокно не образует контакта, а лишь близко подходит к аксонному холмику - выходному участку маутнеровской клетки, будучи окруженным относительно высокоомным материалом аксонной чашечки ПД волокна, направляющийся в терминаль, видимо, останавливаясь в начале терминали, создает ток, входящий в аксонный холмик. Этим током мембрана аксонного холмика, наиболее возбудимая зона маутнеровской клетки, гиперполяризуется, чем и достигается очень быстрый кратковременный тормозящий эффект.

Синапсы с электрической передачей возбуждения

• В ЦНС наряду с химическими синапсами имеются области тесного контакта между нервными клетками, где ширина синаптической щели составляет не 20 нм, как обычно, а только 2-5 нм, но без слияния мембран.

• Электрические синапсы менее характерны для НС млекопитающих, чем химические. Большинство электрических синапсов являются возбуждающими, но при определенных морфологических характеристиках могут быть тормозными. Всем синапсам этого типа свойственно очень низкое удельное сопротивление сближенных пре- и постсинаптических мембран для проходящего через них электрического тока.

• Это низкое сопротивление, как правило, связано с наличием поперечных каналов, пересекающих обе мембраны, в d прибл.=1нм. Каналы образуются белковыми молекулами каждой из мембран, которые соединяются комплементарно. Эта структура легко проходима для электрического тока. При этом петля тока, порождаемого пресинаптическим ПД раздражает постсинаптическую мембрану.

• Важно заметить, что поперечные каналы объединяют клетки не только электрически, но и химически, т.к. они проходимы для многих низкомолекулярных метаболитов.

Электрические синапсы, передающие возбуждение различаются по значению коэффициента передачи электрического сигнала, т.е. по отношению получаемого изменения потенциала на постсинаптической мембране к задаваемому на пресинаптической мембране и по отсутствию или наличию выпрямляющих свойств, т.е. по тому, передается ли в них электр. сигнал одно- или двусторонне.

Электрический синапс может иметь высокий коэффициент передачи и обеспечивать распространение ПД лишь в тех случаях, когда постсинаптическая мембрана меньше пресинаптической или не слишком превосходит ее по размерам. Иначе происходит резкое падение плотности пресинаптического тока на постсинаптической мембране.

Общими свойствами возбуждающих электрических синапсов являются:

1)быстродействие

2)слабость следовых эффектов при передаче, что делает непригодными их для суммации последовательных сигналов

3)высокая надежность передачи возбуждения

4)однако не лишены пластичности (могут возникать при благоприятных условиях и исчезать при неблагоприятных, например при повреждении одной из контактных клеток ее электр. синапсы с другими клетками ликвидируются).

...

Подобные документы

  • Гормоны как биологически высокоактивные вещества, оказывающие регулирующее влияние на функции удаленных от места их секреции органов и систем организма, их общие свойства и эффекты. Принципы организации гуморальной регуляции. Место выработки, стимуляция.

    презентация [5,9 M], добавлен 05.01.2014

  • Что такое гормоны? Транспорт гормонов. Основные органы эндокринной системы. Гипоталамус. Гипофиз. Эпифиз. Щитовидная железа. Паращитовидные железы. Тимус. Поджелудочная железа. Надпочечники. Половые железы.

    реферат [39,6 K], добавлен 06.05.2002

  • Свойства, механизмы действия и классификация гормонов. Синтез катехоламинов и пролактина. Гормоны гипофиза и аденогипофиза. Функции вазопрессина, окситоцина. Структура щитовидной железы. Физиологическое значение и регуляция образования клюкокортикоидов.

    презентация [5,9 M], добавлен 20.04.2015

  • Гормоны. Периферические эндокринные железы. Управляющие эндокринные железы. Анатомия и физиология эпифиза. Влияние эпифиза на различные функции организма. Биологические ритмы организма. Связь эпифиза и психики человека. Влияние эпифиза на старение.

    научная работа [286,5 K], добавлен 08.02.2007

  • Строение, функции и значение эндокринной системы. Общие анатомо-физиологические свойства желез внутренней и внешней секреции; нейрогуморальная регуляция. Классификация эндокринных органов. Влияние гормонов на обмен веществ, рост и развитие организма.

    презентация [6,1 M], добавлен 19.04.2015

  • Гипоталамо-гипофизарная система. Функции гипофиза. Основные гормоны и их эффекты. Функции надпочечников. Железы внутренней секреции. Классификация гормонов по их химической природе по В. Розену. Прямые и обратные связи в регуляции эндокринных желез.

    презентация [4,4 M], добавлен 13.12.2013

  • Назначение и молекулярная структура цитоплазматических мембран. Перенос молекул через них, уравнение Фика. Электродиффузионное уравнение Нернста-Планка. Анализ механизмов транспорта веществ через Биологические мембраны. Биоэлектрические потенциалы.

    презентация [1,1 M], добавлен 21.05.2017

  • Гормоны как биологически активные вещества, вырабатываемые эндокринными железами. Основные свойства и механизм действия гормонов. Главные эндокринные железы. Особенности мужских и женских гормонов. Функции паращитовидных желез в организме человека.

    презентация [774,8 K], добавлен 06.02.2013

  • Функции щитовидной железы. Основные группы гормонов. Гипоталамус и эндокринная система. Периферические эндокринные железы. Регуляция секреции гонадотропинов. Гормоны эпифиза, нейрогипофиза, аденогипофиза, гонадотропные гормоны (гонадотропины).

    презентация [2,0 M], добавлен 05.06.2012

  • Этиология, патогенез, клиника, диагностика, лечение, профилактика заболеваний эндокринной системы. Классический опыт Бертольда. Теория о внутренней секреции Ш. Секара. Эндокринные железы и секретируемые ими гормоны. Основные патологические факторы.

    презентация [4,4 M], добавлен 06.02.2014

  • Гормоны как продукты внутренней секреции. Стероидные гормоны, эффективность кальмодулина, гормон роста (соматотропин): его строение и синтез, воздействие на ряд систем организма. Особенности тиреоидных гормонов. Система ренин-ангиотензин-альдостерон.

    реферат [318,8 K], добавлен 07.06.2010

  • Строение организма человека. Нервная и гуморальная регуляции. Клетки и ткани человеческого тела. Органы и системы органов. Биологически активные элементы. Интересные факты об организме человека. Факторы, обеспечивающие определённую коррекцию фенотипа.

    презентация [194,8 K], добавлен 06.03.2013

  • Функции единой нейроэндокринной системы организма. Основные эндокринные железы. Схема гипоталамо-гипофизарных механизмов регуляции их активности. Поджелудочная железа и образование инсулина. Эпифиз и восприятие света. Гормоны "неэндокринных" органов.

    презентация [1,9 M], добавлен 29.08.2013

  • Железы внутренней секреции и их гормоны. Классификация гормонов по их химической природе по В. Розену. Прямые и обратные связи в регуляции эндокринных желез. Взаимодействие гипоталамуса и гипофиза. Основные гормоны коры надпочечников, их метаболизм.

    презентация [4,5 M], добавлен 06.12.2016

  • Тироидные гормоны, катехоламины. Действие эндокринных органов и клеток. Центральный и периферический отделы эндокринной системы. Симпатическая нервная система. Клубочковая и пучковая зона надпочечников. Строение гипофиза, гипоталамуса и эпифиза.

    реферат [17,8 K], добавлен 18.01.2010

  • Гормоны поджелудочной железы. Физиологическое значение инсулина, регуляция секреции. Гормоны коркового слоя надпочечников. Регуляция образования глюкокортикоидов и минералкортикоидов. Роль надпочечников адаптационного синдрома. Половые железы (гонады).

    лекция [114,9 K], добавлен 25.09.2013

  • Организация мембран. Транспорт веществ через мембраны. Центральный механизм регуляции орагнов дыхания. Нефрон - структурно-функциональная единица почки. Функциональные связи гипоталамуса с гипофизом. Проблема локализации функций в коре большого мозга.

    контрольная работа [39,4 K], добавлен 03.02.2008

  • Определение понятия иммунного ответа организма. Пути и механизмы регуляции иммунного ответа с помощью нейромедиаторов, нейропептидов и гормонов. Основные клеточные регуляторные системы. Глюкокортикоидные гормоны и иммунологические процессы в организме.

    презентация [405,1 K], добавлен 20.05.2015

  • Характеристика и классификация видов гормонов. Характеристика анаболических стероидов. Механизм действия стероидов. Влияние анаболических стероидов на организм. Регуляция деятельности органов и тканей живого организма. Пептидные и белковые гормоны.

    презентация [10,9 M], добавлен 01.03.2013

  • Регуляция функций организма, согласованная деятельность органов и систем, связь организма с внешней средой как основные функции деятельности нервной системы. Свойства нервной ткани - возбудимость и проводимость. Строение головного мозга и его зоны.

    реферат [2,7 M], добавлен 04.06.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.