Характеристика основных концепций развития естественнонаучных дисциплин

Естествознание - научная дисциплина, которая опирается на рациональные методы познания. Характеристика релятивистской концепции механического движения. Анализ специфических особенностей концепции корпускулярно-волнового дуализма в современной физике.

Рубрика Философия
Вид курс лекций
Язык русский
Дата добавления 08.10.2017
Размер файла 1,3 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Характеризуя функции гидросферы на нашей планете, В.И. Вернадский отмечал: «Вода определяет и создает всю биосферу. Она создает основные черты земной коры, вплоть до магматической оболочки».

Атмосфера.

Атмосфера (от греч. atmos -- пар, испарение и sphaira -- шар) -- оболочка Земли, состоящая из воздуха.

В состав воздуха входит ряд газов и взвешенные в них частицы твердых и жидких примесей -- аэрозолей. Масса атмосферы оценивается в 5,157 х 1015 т. Столб воздуха оказывает давление на поверхность Земли: среднее атмосферное давление на уровне моря -- 1013,25 гПа, или 760 мм рт. ст. Давление величиной 760 мм рт. ст. приравнено, к внесистемной единице давления -- 1 атмосфере (1 атм.). Средняя температура воздуха у поверхности Земли -- 15 °С, при этом температура изменяется примерно от 57 °С в субтропических пустынях до 89 °С в Антарктиде.

Атмосфера неоднородна. Различают следующие слои атмосферы: тропосферу, стратосферу, мезосферу, термосферу и экзосферу, которые отличаются по особенностям распределения температуры, плотности воздуха и некоторым другим параметрам. Участки атмосферы, занимающие промежуточное положение между этими слоями, соответственно называют тропопаузой, стратопаузой и мезопаузой.

Тропосфера -- нижний слой атмосферы высотой от 8-10 км в полярных широтах и до 16-18 км в тропиках. Тропосфера характеризуется падением температуры воздуха с высотой -- с удалением от поверхности Земли на каждый километр температура уменьшается примерно на 6°С. Плотность воздуха быстро убывает. В тропосфере сосредоточено около 80% всей массы атмосферы.

Стратосфера располагается на высотах в среднем от 10-15 км до 50-55 км от поверхности Земли. Стратосфера характеризуется повышением температуры с высотой. Возрастание температуры происходит по причине поглощения озоном, находящимся в этом слое атмосферы, коротковолновой радиации Солнца, прежде всего УФ (ультрафиолетовых) лучей. При этом в нижней части стратосферы до уровня около 20 км температура мало меняется с высотой и может даже незначительно уменьшаться. Выше температура начинает возрастать -- сначала медленно, а с уровня 34-36 км намного быстрее. В верхней части стратосферы на высоте 50-55 км температура достигает 260-270 К.

Мезосфера -- слой атмосферы, расположенный на высотах 55-85 км. В мезосфере температура воздуха с увеличением высоты уменьшается -- примерно с 270 К на нижней границе до 200 К на верхней границе.

Термосфера простирается на высотах примерно от 85 км до 250 км от поверхности Земли и характеризуется быстрым повышением температуры воздуха, достигающей на высоте 250 км 800-1200 К. Повышение температуры происходит вследствие поглощения этим слоем атмосферы корпускулярной и рентгеновской радиации Солнца; здесь тормозятся и сгорают метеоры. Таким образом, термосфера выполняет функцию защитного слоя Земли.

Выше тропосферы находится экзосфера, верхняя граница которой условна и отмечается высотой примерно 1000 км над поверхностью Земли. Из экзосферы атмосферные газы рассеиваются в мировое пространство. Так происходит постепенный переход от атмосферы к межпланетному пространству.

Атмосферный воздух вблизи поверхности Земли состоит, из различных газов, преимущественно из азота (78,1% по объему) и кислорода (20,9% по объему). В состав воздуха в небольшом количестве также входят следующие газы: аргон, углекислый газ, гелий, озон, радон, водяной пар. Кроме того, воздух может содержать различные переменные компоненты: оксиды азота, аммиак и др.

Помимо газов в состав воздуха входит атмосферный аэрозоль, который представляет собой взвешенные в воздухе очень мелкие твердые и жидкие частицы. Аэрозоль образуется в процессе жизнедеятельности организмов, хозяйственной деятельности человека, вулканических извержений, подъема пыли с поверхности планеты и из космической пыли, попадающей в верхние слои атмосферы.

Состав атмосферного воздуха до высоты порядка 100 км в .целом постоянен, во времени и однороден в разных районах Земли. При этом содержание переменных газообразных компонентов и аэрозолей неодинаково. Выше 100-110 км происходит частичный распад молекул кислорода, углекислого газа и воды. На высоте около 1000 км начинают преобладать легкие газы -- гелий и водород, а еще выше атмосфера Земли постепенно переходит в межпланетный газ.

Водяной пар -- важная составная часть воздуха. Он поступает в атмосферу при испарении с поверхности, воды и влажной почвы, а также путем транспирации растениями. Относительное содержание водяного пара в воздухе меняется у земной поверхности от 2,6% в тропиках до 0,2% в полярных широтах. С удалением от поверхности Земли количество водяного пара в атмосферном воздухе, быстро падает, и уже на высоте 1,5-2 км убывает наполовину. В тропосфере ввиду понижения температуры водяной пар конденсируется. При конденсации водяного пара образуются облака, из которых выпадают атмосферные осадки в виде дождя, снега, града. Количество осадков, выпавших на Землю, равно количеству испарившейся с поверхности. Земли воды. Избыток водяного пара над океанами переносится на континенты воздушными потоками. Количество водяного пара, переносимого в атмосфере с океана на континенты, равно объему стока рек, впадающих в океаны.

Озон сосредоточен на 90% в стратосфере, остальная его часть находится в тропосфере. Озон поглощает УФ-радиацию Солнца, которая негативно воздействует на живые организмы. Районы с пониженным содержанием озона в атмосфере называют озоновыми дырами.

Наибольшие колебания толщины озонового слоя наблюдаются в высоких широтах, поэтому вероятность возникновения озоновых дыр в районах, близких к полюсам, выше, чем у экватора.

Углекислый газ поступает в атмосферу в значительном количестве. Он постоянно выделяется в результате дыхания организмов, горения, извержения вулканов и других процессов, происходящих на Земле. Однако содержание углекислого газа в воздухе мало, поскольку основная его масса растворяется в водах гидросферы. Тем не менее отмечается, что за последние 200 лет содержание углекислого газа в атмосфере увеличилось на 35%. Причина такого существенного увеличения - активная хозяйственная деятельность человека.

Главным источником тепла для атмосферы является поверхность Земли. Атмосферный воздух достаточно хорошо пропускает к земной поверхности солнечные лучи. Поступающая на Землю солнечная радиация частично поглощается атмосферой - главным образом, водяным паром и озоном, но подавляющая ее часть достигает земной поверхности.

Суммарная солнечная радиация, достигающая поверхности Земли, частично отражается от нее. Величина отражения зависит от отражающей способности конкретного участка земной поверхности, так называемого альбедо. Среднее альбедо Земли -- около 30%, при этом разница между величиной альбедо от 7-9% для чернозема до 90% для свежевыпавшего снега. Нагреваясь, земная поверхность выделяет тепловые лучи в атмосферу и нагревает ее нижние слои. Помимо основного источника тепловой энергии атмосферы - теплоты земной поверхности; тепло в атмосферу поступает в результате конденсации водяного пара, а также путем поглощения прямой солнечной радиации.

Неодинаковый разогрев атмосферы в разных областях Земли вызывает неодинаковое распределение давления, что приводит к перемещению воздушных масс вдоль поверхности Земли. Воздушные массы перемещаются из областей с высоким давлением в области с низким давлением. Такое движение воздушных масс называют ветром. При определенных условиях скорость ветра может быть очень большой, до 30 м/с и более (более 30 м/с -- уже ураган).

Состояние нижнего слоя атмосферы в данном месте и в Данное время называют погодой. Погода характеризуется температурой воздуха, осадками, силой и направлением ветра, облачностью, влажностью воздуха и атмосферным давлением. Погода определяется условиями циркуляции атмосферы и географическим положением местности. Она наиболее устойчива в тропиках и наиболее изменчива в средних и высоких широтах. Характер погоды, ее сезонная динамика зависят от климата на данной территории.

Под, климатом понимаются наиболее часто повторяющиеся для данной местности особенности погоды, сохраняющиеся на протяжении длительного времени. Это усредненные за 100 лет характеристики -- температура, давление, количество осадков и др. Понятие климата (от греч, klima -- наклон) возникло еще в Древней Греции. Уже тогда понимали, что погодные условия зависят от угла, под которым солнечные лучи падают на поверхность Земли. Ведущим условием установления определенного климата на данной территории является количество энергии, приходящейся на единицу площади. Оно зависит от суммарной солнечной радиации, падающей на земную поверхность, и от альбедо этой поверхности. Так, в районе экватора и у полюсов температура мало меняется в течение года, а в субтропических областях и в средних широтах годовая амплитуда температур может достигать 65 °С. Основными климатообразующими процессами являются теплообмен, влагообмен и циркуляция атмосферы. Все эти процессы имеют один источник энергии -- Солнце.

Атмосфера является непременным условием для всех форм жизни. Наибольшее значение для жизнедеятельности организмов имеют следующие газы, входящие в состав воздуха: кислород, азот, водяной пар, углекислый газ, озон. Кислород необходим для дыхания подавляющему большинству живых организмов. Азот, усваиваемый из воздуха некоторыми микроорганизмами, необходим для минерального питания растений. Водяной пар, конденсируясь и выпадая в виде осадков, является источником воды на суше. Углекислый газ -- исходное вещество для процесса фотосинтеза. Озон поглощает вредное для организмов жесткое УФ-излучение.

Предполагают, что современная атмосфера имеет вторичное происхождение: она образовалась после завершения образования планеты около 4,5 млрд лет назад из газов, выделяемых твердыми оболочками Земли. В течение геологической истории Земли атмосфера под влиянием различных факторов претерпевала значительные изменения своего состава.

Развитие атмосферы зависит от геологических и геохимических процессов, происходящих на Земле. После возникновения жизни на нашей планете, то есть примерно 3,5 млрд лет назад, на развитие атмосферы начали оказывать существенное влияние и живые организмы. Значительная часть газов -- азот, углекислый газ, водяной пар -- возникла в результате извержения вулканов. Кислород появился около 2 млрд лет назад как результат деятельности фотосинтезирующих организмов, первоначально зародившихся в поверхностных водах океана.

В течение последнего времени происходят заметные изменения в атмосфере, связанные с активной хозяйственной деятельностью человека. Так, согласно наблюдениям, за последние 200 лет произошел существенный рост концентрации парниковых газов: содержание углекислого газа возросло в 1,35 раза, метана -- в 2,5 раза. Значительно увеличилось содержание многих других переменных компонентов в составе воздуха.

Происходящие изменения состояния атмосферы -- увеличение концентрации парниковых газов, озоновые дыры, загрязнение воздуха -- представляют собой глобальные экологические проблемы современности.

Общие представления о географической оболочке.

В.В. Докучаев, открывший закон географической зональности, отмечал, что в природе гармонично взаимодействуют друг с другом шесть природных компонентов: земная кора литосферы, воздух атмосферы, вода гидросферы, растительный и животный мир биосферы, а также почва постоянно обмениваются между собой веществом и энергией.

Обмен веществом происходит постоянно, и примеров таких можно привести множество:

¦ вода растворяет минералы и горные породы;

¦ вода гидросферы является частью живых организмов биосферы;

¦ вода в виде пара постоянно присутствует в нижнем слое атмосферы Земли;

¦ минералы и горные породы литосферы всегда находятся в живых организмах, в атмосфере (пыль, песок), в воде;

¦ углекислый газ воздуха растворяется в воде;

¦ организмы биосферы -- растения -- усваивают углекислый газ, выделяя кислород;

¦ накапливаясь на дне океанов, останки организмов биосферы образуют толщи осадочных пород литосферы;

¦ кислород в атмосфере и гидросфере является главным источником жизни организмов биосферы.

Все процессы на Земле происходят благодаря энергии Солнца и внутренней энергии Земли. В каждом из приведенных выше примеров предполагается и обмен энергией. Так, энергия растений биосферы, потребляемая животными, создает энергию животного мира. Вечные льды гидросферы охлаждают атмосферу и гидросферу. Благодаря этим процессам в природном комплексе сохраняется определенное равновесие между всеми, природными компонентами; Благодаря этим процессам природа имеет удивительную Способность к самовосстановлению, самоочищению, саморегуляции. Если в природном комплексе меняется один какой-нибудь компонент, то все другие меняются тоже, при этом стараясь восстановить свое равновесие. Стремление к самовосстановлению -- одно из главных свойств природы.

Географическая оболочка -- это целостная и непрерывная оболочка Земли, среда деятельности человека, в пределах которой соприкасаются, взаимно проникают друг в друга и взаимодействуют нижние слои атмосферы, поверхностные толщи литосферы, вся гидросфера и биосфера. Между этими частями происходит непрерывный обмен веществом и энергией. Таким образом, географическая оболочка -- это планетарный, охватывающий всю поверхность Земли, природный комплекс.

Суммарная толщина географической оболочки -- несколько десятков километров. Основным источником процессов, происходящих в географической оболочке, служит энергия Солнца. Ее неравномерное поступление и распределение по шарообразной поверхности Земли приводит к огромной пространственной дифференциации природных условий в географической оболочке, в результате чего ее можно разделить на более мелкие природные комплексы, среди которых есть сходные (однородные) и совершенно различные.

Наиболее крупные зональные подразделения географической оболочки -- географические (природные) пояса Земли, протягивающиеся в широтном или субширотном направлении. Они совпадают с климатическими поясами и имеют те же названия, так как выделяются по температурным условиям и преобладающим воздушным массам.

Однако природные комплексы географических поясов также неоднородны. Наиболее значительные изменения в природных условиях вызваны делением поверхности Земли на материки и океаны. Различное сочетание тепла и влаги в прибрежных и внутренних частях материков является причиной образования в географических поясах природных зон -- природных комплексов менее крупных размеров, которые в свою очередь можно подразделить на подзоны и другие бот лее мелкие природные комплексы, например ландшафты.

Ландшафт (от нем. Land -- земля и schaft -- взаимосвязанный) -- природный географический комплекс, в котором все основные компоненты (рельеф, климат, воды, почвы, растительность и живой мир) находятся в сложном взаимдействии и взаимообусловленности, образуя единую неразрывную систему. Многими учеными ландшафт рассматривается в качестве основной единицы в иерархии природно-территориальных комплексов.

Особенности различных ландшафтов формируются под воздействием как зональных, так и азональных факторов. К зональным относят климат, воду, почвы, растительный и животный мир; к азональным -- рельеф, геологическое строение, горные породы.

Еще одно важное положение в современных концепциях географии занимает понятие географическая среда, которая возникла в результате длительной эволюции географической оболочки под влиянием антропогенного воздействия, создания так называемой «вторичной природы», то есть городов, заводов, каналов, транспортных магистралей и др.

Географическая среда -- это часть природы Земли, с которой человеческое общество непосредственно взаимодействует в своей жизни и производственной деятельности на данном этапе исторического развития.

В последнее время наряду с понятием о географической среде в научный обиход вошло также понятие об окружающей природной среде (или окружающей среде).

Окружающая среда -- необходимое условие жизни и деятельности общества. Она служит средой его обитания, важнейшим источником ресурсов, оказывает большое влияние на духовный мир людей.

Природное окружение всегда было источником существования человека. Однако взаимодействие человека и природы менялось в разные исторические эпохи.

Два миллиона лет назад первобытные люди все необходимое для жизни находили в природном окружении, занимаясь охотой и собирательством: люди охотились на животных и птиц, ловили рыбу, выкапывали корни и луковицы растений, собирали ягоды, грибы, личинки насекомых, опустошали птичьи гнезда, забирали мед у пчел, вылавливали моллюсков и ракообразных на морском побережье, кочуя в поисках пищи с места на место.

Некоторые индийские племена Северной и Южной Америки, бушмены Африки, аборигены Австралии до сих пор живут собирательством.

Появление и развитие земледелия 7 тыс. лет назад положило начало массовой вырубке лесов на Земле. По оценкам ученых, к моменту появления человека на Земле леса занимали 60% ее поверхности, а сейчас -- только 30%. В настоящее время нетронутые человеком леса сохранились в тайге России, Канады, а также в тропических лесах Амазонии.

В наибольшей степени леса сведены в Евразии и Северной Америке. По мере расширения пахотных земель и пастбищ быстрыми темпами вырубаются тропические леса Африки, Юго-Восточной Азии, Амазонии. Древесина повсеместно используется в качестве дешевого топлива.

Пастбищные земли наиболее сильно подвержены опустыниванию. Этот процесс характерен для всех материков Земли.

По оценкам специалистов, человек радикально изменил и освоил 56% территории суши, причем это наиболее благоприятные для жизни районы.

Природу некоторых географических зон Земли можно наблюдать только в заповедниках.

К ним относятся в первую очередь североамериканские прерии и европейские степи. Они полностью освоены человеком.

Ученые-географы предложили классифицировать географические зоны по степени их преобразования человеком; неизмененные (арктические пустыни), слабо измененные (тундра, лесотундра, северная тайга, полупустыни и пустыни), сильно измененные (смешанные и широколиственные леса, южная тайга), преобразованные (лесостепи, степи).

В ландшафтоведении, в зависимости от степени антропогенного воздействия, выделяют первичные природные ландшафты, которые образованы действием лишь природных факторов; природно-антропогенные ландшафты, которые образованы действием как природных, так и антропогенных факторов; и антропогенные ландшафты, существование которых поддерживается лишь за счет деятельности людей.

9. Особенности биологического уровня организации материи

Общая характеристика живых систем

Живые объекты с точки зрения системных представлений. Природа жизни, разнообразие живых организмов, объединяющее их структурное и функциональное сходство всегда привлекали и привлекают пристальное внимание исследователей. С точки зрения системного подхода следует подчеркнуть, что живые системы на Земле - это открытые саморегулирующиеся, построенные из биополимеров - белков и нуклеиновых кислот (М.В. Волькенштейн). Им присущи закономерности развития, характерные для других сложных систем. Однако жизнь качественно превосходит другие формы существования материи в отношении многообразия и сложности, а также динамики протекающих в живых организмах процессов. Живые системы характеризуются гораздо более высоким уровнем пространственно-временной структурной и функциональной упорядоченности. Которая обеспечивает структурную компактность и энергетическую экономичность всего живого. Такая упорядоченность возможна только в макроскопической системе (наименьшая бактерия содержит около 109 атомов), иначе порядок разрушился бы флуктуациями, обусловленные тепловым движением.

Являясь открытыми системами, живые организмы обмениваются с окружающей средой энергией, веществом и информацией. При этом, в отличие от неживых систем, живым организмам присуща способность активно поддерживать упорядочение, противодействовать возрастанию энтропии внутри себя. Однако снижение энтропии в живых организмах возможно только за счет повышения энтропии в окружающей среде (в соответствии со вторым началом термодинамики для открытых систем). «Всеобщая борьба за существование живых организмов, не является борьбой за составные элементы - составные элементы всех организмов имеются налицо в избытке в воздухе, воде и недрах Земли - и не за энергию, ибо таковая содержится в изобилии во всяком теле, к сожалению, в форме непревращаемой теплоты. Но это - борьба за энтропию, которую можно использовать при переходе энергии с горячего Солнца к холодной земле» (Л. Больцман).

Все живые (биологические) системы разных уровней - организмы, популяции и т.д. - существуют в тесной взаимосвязи, обмениваясь веществом, энергией. Это позволяет рассматривать все живые системы и среду их обитания как одну масштабную разнородную систему - биосферу. Жизнь присуща только биосфере, вне ее - не существует.

Свойства живых объектов. Для решения вопроса о природе жизни, ее происхождении и эволюции на Земле целесообразно выделить основные отличительные свойства живых организмов. Следует отметить, что общепринятого определения фундаментального понятия «жизнь» сегодня нет. Однако имеют место характерные свойства, совокупность которых позволяет отличить живые организмы от объектов неживой материи:

- обмен веществом и энергией: живая система постоянно обменивается веществом и энергией с окружающей средой;

- дискретность и целостность: живые объекты относительно обособлены друг от друга (особи, популяции, виды), в то же время сложная организация немыслима без взаимодействия ее частей и структур - без целостности;

- структурность: на всех уровнях организации живые системы образуют упорядоченные структуры;

- единство химического состава: оно проявляется как на уровне химических элементов, так и на молекулярном уровне;

- подвижность;

- раздражимость;

- рост и развитие: избыточное самовоспроизведение лежит в основе роста клеток, и организмов;

- размножение и воспроизведение себе подобных;

- наследственность и изменчивость;

- адаптация: способность живых организмов приспосабливаться к внешним условиям, ассимилировать полученные извне вещества.

Еще раз подчеркнем, что весь комплекс этих свойств присущ живому объекту.

Химическая основа жизни. В состав живой клетки входят такие же элементы, какие имеются в неживой природе. Однако ряд из них выполняют важные биологические функции. Эти элементы называются биогенными: C, H, O, N, P, S. В частности, четыре из них - C, H, O, N - составляют 96% субстрата организма человека. C, H, O - находятся в составе всех биополимеров, N, S- добавляются к ним в составе белков; N, P- в составе нуклеиновых кислот. Имеются и другие элементы, входящие в состав тех или иных организмов: Fe - в составе гемоглобина, Mg - в составе хлорофилла, Сu - в составе некоторых ферментов; I- в составе тироксина- гормона щитовидной железы; Na, K - обеспечивают проводимость импульсов в нервных волокнах; Zn - в составе инсулина, Co - в составе витамина В12. По процентному составу в порядке его убывания элементы образуют последовательность: O, C, H, N, Ca, K, Mg, P, S, Cl, Na, Fe ,Zn, Сu, I, F,Co.

Важнейшим компонентом жизни является вода H2 O. Но все основные свойства жизни определяются органическими соединениями: белками, углеводами, жирами, нуклеиновыми кислотами.

Уровни организации живой материи. Проявления жизни на Земле чрезвычайно многообразны. Живые организмы представлены доядерными (прокариоты) и ядерными (эукариоты), одно- и многоклеточными существами. Описание разнообразных многоклеточных осуществляется на основе систематики, использующей таксоны - иерархически связанные множества. Самые масштабные таксоны - три царства: растения, грибы, животные. Эти царства объединяет разнообразные типы, классы, отряды, семейства, роды, виды, популяции и индивидуумы. Иерархическая организованность, свойственная различным сложным системам, прослеживается для живых систем. На ряду с таксономической систематикой, в настоящее время принято выделять следующие уровни организации живого: молекулярно-генетический, клеточный, организменный (онтогенетический), популяционно-видовой, биогеоценотический (экосистемный), биосферный. Понимание этого предполагает отказ от концепции редукцианизма, в соответствии с которой все высшее сводимо к низшему (процессы жизнедеятельности - к совокупности физико-химических реакций, а целостный организм - к взаимодействию составляющих его клеток, тканей, органов и т.д.). В многоуровневой иерархической системе ниже лежащий уровень входит в более высокий как единое целое. Каждый новый уровень возникает из предыдущего посредством процессов объединения и организации его единиц (элементов) в единую систему. При этом каждый уровень является структурно и функционально автономной системой.

Молекулярно-генетический уровень организации биологических систем.

На данном уровне биологические объекты представляют собой сложные биохимические полимерные структуры, основными из которых являются белки и нуклеиновые кислоты.

Белки: их структура и функции. Белки - макромолекулы, нерегулярные полимеры, мономерами которых являются аминокислоты. Аминокислота представляет собой органическое соединение, содержащее одновременно аминогруппу NH2 и карбоксильную группу COOH. При соединении двух аминокислот между этими двумя группировками соседних молекул возникает пептидная связь: NH-CO. Макромолекулы белков включают в себя сотни и тысячи аминокислотных остатков. В природных белках встречается 21 аминокислота. Расположение в сложной макромолекуле определенных частей (радикалов) может быть разным: правым и левым. Эта возможность существования двух зеркально симметричных форм молекул называется изомерией. Примечательно, что все аминокислоты в живых организмах являются левыми изомерами (L-изомерами). Такая асимметрия - проявление одного из характерных и особых свойств живого - хиральности.

Белки, в зависимости от последовательности аминокислот в их составе, образуют различные пространственные структуры, и реализуют в клетках самые разнообразные функции: двигательную (актин, миозин), структурообразующую т. е строительную (кератин, коллаген), энергетическую (казеин, яичный альбумин), каталитическую (ферменты), транспортную (гемоглобин, АТФаза), регуляторную (гормоны: инсулин, гормоны роста), защитную (антитела, ответственные за иммунитет - имунноглобулины, интерферон).

Нуклеиновые кислоты. Нуклеиновые кислоты подразделяются на два типа: рибонуклеиновые (РНК) и дезоксирибонуклеиновые (ДНК). И те, и другие состоят из различного числа мономерных звеньев - нуклеотидов. Нуклеотиды, в свою очередь, включают в себя остатки фосфорной кислоты и циклической формы углевода (рибозы - в РНК и дезоксирибозы - в ДНК), а также одно из гетероциклических азотистых оснований. Из этих оснований в состав ДНК входят аденин (А), гуанин (Г), цитозин (Ц) и тимин (Т), а в составе РНК тимин заменен на урацил (У).

Молекула ДНК - это двухцепочечная (двойная) спираль (две комплементарно связанные полимерные цепи, спирально закрученные вокруг общей оси), а РНК - одноцепочечный полимер. Следует отметить, что и в этом случае проявляется хиральность: в живых организмах присутствует только одна (правая) из двух возможных зеркально симметричных изомеров молекул нуклеотидов, т.е. они являются D-изомерами.

Нуклеиновые кислоты обеспечивают хранение, передачу из поколения в поколение и реализацию генетической программы развития и функционирования живых организмов, выполняют три основные функции - самовоспроизведение, хранение информации и реализацию этой информации в процессе жизнедеятельности клеток. Основная роль ДНК в клетках - долговременное хранение информации о структуре РНК и белков. Эта генетическая информация закодирована химическим способом в ДНК в виде определенной последовательности нуклеотидов. ДНК нередко сравнивают с набором чертежей для сборки живого организма, поскольку на основе информации, «записанной» в ней, синтезируются белки. Г.А. Гамов предположил, что для кодирования одной аминокислоты используется сочетание трех нуклеотидов. Только сочетания по 3 дает 64 возможных комбинации, что достаточно для синтеза 21-й аминокислоты (сочетания по 2 не дают нужного числа комбинаций). Триплет нуклеотидов, кодирующий аминокислоту, называется кодоном. Система записи информации с помощью кодонов называется генетическим кодом. Последовательность кодонов (в гене) определяет последовательность аминокислот в полипептидной цепи белка, (кодируемой этим геном). Такая модель легла в основу интерпретации результатов рентгеноструктурного анализа молекул ДНК, проведенного в 1953 г. Ф. Криком (1916 - 2004) и Дж. Уотсоном (р. 1928), и с этого времени является общепринятой. Следует отметить, что в ходе эволюции природа обеспечила возможность кодирования большинства аминокислот несколькими кодонами. Такой код в молекулярной биологии называется вырожденным, в нем несколько разных триплетов кодируют одну и ту же аминокислоту. Вместе с тем, в любых живых организмах генетический код универсален. Таким образом, в настоящее время достоверно установлено, что генетический код характеризуется: триплетностью, однозначностью (каждый кодон соответствует определенной аминокислоте), вырожденностью, наличием «знаков препинания» между генами (соответствующими кодонами), отсутствием их внутри гена, универсальностью.

ДНК - чрезвычайно емкий носитель информации. В клетке человека молекула ДНК содержит около 1 млрд пар оснований, длина ее около 1м. Если составить цепочку из ДНК всех клеток одного человека, то она может протянуться через всю Солнечную систему. Заметим, что в ДНК даже для простейшего организма содержится информация, объем которой эквивалентен информации во всех томах Российской государственной библиотеки.

Механизм реализации генетической информации. Как уже указывалось, в современной живой природе ДНК выполняет функцию хранения генетической информации организмов. Совокупность всех молекул ДНК организма образует его геном. ДНК находится в хромосомах в ядре клетки, отделена мембраной от цитоплазмы и непосредственно в синтезе белка не участвует. Сквозь мембрану проникает РНК. Она обеспечивает реализацию информации при построении (синтезе) белковых молекул в рибосомах - местах сборки белков. Рибосомы - очень сложно устроенные РНК-белковые комплексы. При этом матрицей, которая определяет последовательность соединения аминокислот в синтезируемом белке, является молекула РНК определенного типа (информационная или и-РНК). Аминокислоты доставляются на рибосому молекулами РНК другого типа (транспортными или т-РНК). Процесс осуществляется по схеме:

ДНК > и-РНК > белок

Эта схема называется центральной догмой молекулярной биологии. Смысл ее состоит в том, что генетическая информация, записанная в ДНК, реализуется в виде белков, но не непосредственно, а с помощью родственного полимера - РНК, и этот путь от нуклеиновых кислот к белкам необратим. В целом общий вид процесса воспроизводства и реализации генетической информации в большинстве живых организмов можно представить как триаду последовательных реакций:

- репликация: синтез дочерней ДНК на ДНК-матрице;

- транскрипция: синтез и-РНК на ДНК-матрице;

- трансляция: синтез белка на и-РНК-матрице.

Следует подчеркнуть, что некоторые виды РНК обладают выраженной способностью ускорять и направлять определенные биохимические реакции.

Итак, именно ДНК определяет . наследственность организмов (воспроизводящийся в поколениях набор белков и связанных с ними признаков). Биосинтез белка является центральным процессом живой материи, а нуклеиновые кислоты обеспечивают его, с одной стороны, программой, определяющей весь набор и специфику синтезируемых белков, а с другой - механизмом точного воспроизведения этой программы в поколениях. Следовательно, происхождение жизни в ее современной клеточной форме предполагает возникновение механизма наследуемого биосинтеза белков.

Гены. Участки ДНК, содержащие информацию о строении молекулы белка или РНК, называются генами. Ген - это участок молекулы ДНК и РНК со специфичным набором нуклеотидов, в последовательности которых закодирована генетическая информация о последовательности аминокислот в полипептидной цепи белка. Ген является элементарной единицей наследственности. Этот термин ввел в биологический обиход в 1909 г. датский ученый В. Иогансен (1857 - 1927). Обычно каждый ген отвечает за синтез определенного белка. Контролируя образование белков, гены управляют всеми химическими реакциями организма и определяют тем самым его признаки. Уникальными свойствами гена являются его высокая устойчивость (неизменяемость в ряду поколений - в этом суть самой наследственности) и способность к наследуемости изменений в результате мутаций.

Обычно молекулы ДНК, содержащие гены, присутствуют в виде структур ядра клетки, которые называются хромосомами. Основу хромосомы составляет одна непрерывная молекула ДНК, связанная со специализированными белками в единый комплекс. Хромосомы состоят из большого числа генов, которые расположены на ней в линейном порядке. Если отдельные гены определяют возможность развития одного элементарного признака или одной белковой молекулы, то распределение их в хромосомах и последующее распределение хромосом по дочерним клеткам при клеточном делении обеспечивают передачу совокупности наследственных свойств всего организма от поколения к поколению. Хромосомы как структурные образования клеточного ядра имеют специфичную форму и размер около 1 мкм. Число хромосом у разных видов варьируется от двух до нескольких сотен. Каждый вид организмов обладает характерным и постоянным набором хромосом в клетке, закрепленным в эволюции данного вида, а изменения в числе хромосом происходят только в результате мутаций. Так, у человека их 46 (а у обезьян, согласно последним исследованиям, их может быть и 48), у плодовой мушки дрозофилы (любимого объекта исследований генетиков) - 8, у некоторых видов растений - до 100. В клетках тела двуполых животных и растений все хромосомы присутствуют в двух экземплярах (т.н. гомологичные), происходящих одна - из материнского, а другая - из отцовского организма. Такой парный набор хромосом называется диплоидным, т.е. двойным. Его кодовый номер 2n, где n - число пар, или гаплоидное число (от греческого слова «гаплос» - половина). Для диплоидных организмов, к которым принадлежит и человек, каждый признак обеспечивается двумя генами. Они могут быть представлены на двух парных хромосомах разными вариантами, которые называются аллелями. В отличие от остальных клеток организма, половые клетки являются гаплоидными: они содержат по одной хромосоме, несущей ген какого-либо признака, благодаря чему происходит расщепление - образование новых клеток и особей с сохраненными или измененными признаками одного типа (цвет, размер и т.д.).Таким образом, аллели - это формы гена, ответственного за признак, расположенные в одинаковых участках парных хромосом, которые определяют варианты развития одного и того же признака. Гены, определяющие альтернативное развитие одного и того же признака, называются аллельными. Неаллельные гены (ответственные за разные признаки) могут быть комплиментарными (дополняющими друг друга) и их совместное проявление обуславливает развитие нового признака.

В генетике используют также понятия: геном и генофонд. Геном - это совокупность генов, содержащихся в одинарном наборе хромосом определенной животной или растительной клетки. А генофонд совокупность генов особей (фенотипов), составляющих данную популяцию. Он определяет относительную численность разных аллелей различных генов в популяции. Это видовой, а не индивидуальный признак.

Клеточный уровень организации жизни.

Развитие представлений о клетке. Клетка - основная структурно-функциональная единица всех живых организмов, элементарная живая система, которая может существовать как отдельный организм (клетки бактерий, простейших) или в составе тканей многоклеточных организмов. Лишь вирусы представляют собой особые неклеточные формы жизни, состоящие из молекулы нуклеиновой кислоты и белков. Клеточное строение организмов впервые в 1665 г. наблюдал Р. Гук (1635 - 1703) у растений. Ядро в растительной клетке впервые описал в 1831 г. Р. Броун (1831), но только в 1838 г. М. Шлейден сделал первые шаги к раскрытию и пониманию его роли. Основная заслуга в оформлении клеточной теории в 1839 г. принадлежит Т. Шванну, который, использовав собственные данные и результаты Шлейдена и сопоставив тканевые структуры животных и растений, указал на общий для них принцип клеточного строения и роста. В дальнейшем клеточная теория была распространена и на одноклеточные организмы. Р. Вирхов (1821 - 1902) в 1858 г. обосновал принцип преемственности клеток путем деления («каждая клетка - из клетки»).

Строение клетки. Все живые организмы в зависимости от строения клеток подразделяются на прокариот и эукариот. Прокариоты - примитивные и наиболее древние организмы (бактерии, сине-зеленые водоросли), клетки которых не имеют оформленного ядра. Эукариоты - одноклеточные или многоклеточные организмы, клетки которых имеют оформленное ядро, отделенное от остальной части клетки мембраной.

Рис. 9.1. Строение клетки

На рис. 9.1 представлен общий план строения эукариотной клетки. В центре клетки находится ядро. В нем сконцентрирован наследственный материал, который представлен хромосомами, способными к самовоспроизведению и являющимися носителями генов. Вязкое внутреннее содержимое клетки, окружающее ядро, носит название цитоплазмы.

Многообразные функции клеток, выполняются специализированными внутриклеточными структурами - органоидами. Универсальными органоидами эукариотных клеток являются: в ядре - хромосомы, в цитоплазме - рибосомы, на которых происходит синтез белка, митохондрии, содержащие «энергетические станции». преобразующие поступающую в клетку извне энергию питательных веществ в энергию нуклеотида АТФ (аденозинтрифосфата) -универсального аккумулятора клеточной энергии, которая затем расходуется на различные процессы жизнедеятельности, эндоплазматическая сеть (ЭПС) - система соединенных между собой канальцев и полостей, мембранные стенки которых служат местом прикрепления входящих из ядра рибосом, комплекс Гольджи - сетчатый аппарат, участвующий в формировании некоторых важных продуктов жизнедеятельности клетки (секретов, коллагена и др.), вакуоли - полости, служащие для регулирования осмотического давления и выведения из клетки продуктов распада, лизосомы, участвующие в расщеплении «старых» частей клеток и выполняющих защитную функцию, клеточная мембрана. В цитоплазме растительных клеток присутствуют также специальные органоиды - пластиды, в одном из типов которых (хлоропластах) осуществляется процесс фотосинтеза.

Важнейшие химические компоненты живых организмов - белки, включая ферменты, - синтезируются только в клетках. Характерной особенностью клеток является четкая пространственная организация происходящих в них химических процессов. Например, процесс клеточного дыхания у эукариот осуществляется только на мембранах митохондрий, синтез белка - на рибосомах и т.д. Концентрирование ферментов, упорядоченное их расположение в структурах ускоряет химические реакции, протекающие в клетках.

Единство и многообразие клеток. Все клетки эукариот имеют сходный набор органоидов, аналогично регулируют метаболизм, запасают и расходуют энергию, используют генетический код для синтеза белков. Общие признаки клеток свидетельствуют о единстве их происхождения, однако разные клетки организма значительно различаются по размерам, форме, числу тех или иных органоидов, набору ферментов, что обусловлено, с одной стороны, кооперированием клеток в многоклеточном организме, с другой - выполнением множества функций организма различными специализированными клетками. Размеры клеток варьируются от 0,1-0,25 мкм (бактерии) до 155 мм (яйцеклетка страуса), но диаметр большинства эукариотных клеток находится в пределах 10-100 мкм. Различия в структуре и функциях одноклеточных организмов в значительной степени связаны с их конкретными приспособлениями к определенной среде обитания.

У всех клеток одного организма геном не отличается по объему потенциальной информации. Различия в свойствах клеток многоклеточного организма обусловлены неодинаковой активностью генов, что вызывает различную дифференцировку клеток, в результате чего одни из них становятся возбудимыми (нервные клетки), другие приобретают сократимые белки, образующие миофибриллы (мышечные клетки), третьи начинают синтезировать пищеварительные ферменты или гормоны (клетки желез) и т.д. Клетки близкого происхождения и сходных функций образуют ткани (мышечную, эпителиальную и др.).

Клетка - самоорганизующаяся система. Регулирующими факторами внутри клеток являются метаболиты (продукты обмена веществ), ионы, которые действуют или на гены, приводя к изменению количества ферментов, или на сам фермент, изменяя его активность. Регуляция может осуществляться по принципу обратной связи, в результате чего поддерживается оптимальный уровень многих важных внутриклеточных процессов, иногда даже при значительных изменениях во внеклеточной среде.

Самовоспроизведение клеток. В организме человека около 1014 клеток, из которых ежедневно погибает около 70 млрд. Постоянство количества клеток поддерживается их постоянным самовоспроизведением - делением и дифференциацией. В основе самовоспроизведения диплоидных клеток лежит процесс клеточного деления - митоз. Митоз - способ деления эукариотных клеток, при котором каждая из двух вновь возникающих клеток идентична исходной клетке. Митоз сопровождается предварительным удвоением генетического материала материнской клетки, в результате чего в каждую новую дочернюю клетку попадает полный набор всей наследственной информации клетки-предшественницы. Однако клетки некоторых типов (клетки мышечного эпителия) не самовоспроизводятся, и продолжительность их жизни соответствует таковой всего организма. В то же время минимальная продолжительность жизни клеток человека - 1-2 дня (клетки кишечного эпителия). Во всех клетках происходит интенсивное обновление веществ и структур. Огромное количество клеток в каждой ткани, объединенных метаболическими и регуляторными процессами, их постоянное внутреннее обновление обеспечивают надежность работы органов многоклеточного организма.

Половые клетки обладают одинарным гаплоидным набором хромосом. Гаплоидные клетки образуются из диплоидных в результате специального процесса деления клеток - мейоза. Мейоз - тип деления диплоидных клеток, при котором происходит уменьшение числа хромосом и образование гаплоидных клеток.

Онтогенетический уровень организации биологических систем.

Разные виды организмов. Онтогенетический (организменный) уровень характеризует особенности существования отдельных (дискретных) индивидуумов (особей). Особи могут представлять собой одноклеточные микроорганизмы и многоклеточные организмы. Сложность многоклеточного индивидуума во много раз выше, по сравнению с одноклеточным, поскольку он образован миллионами или миллиардами клеток. Но и одноклеточная, и многоклеточная особь обладают системной организацией и функционируют как единое целое с момента возникновения до смерти. Индивид (особь) - элементарная неделимая единица жизни на Земле. Следует отметить, что в ряде случаев вопрос об определении границ особи не вполне очевиден. Например, не ясно, считать ли отдельными особями организмы, составляющие колонии коралловых полипов или такие комплексные существа как лишайники, являющиеся симбиотическим сообществом водорослей, грибов и специфических микроорганизмов. С эволюционной точки зрения особью следует считать все организмы, происходящие от одной клетки, споры, почки и индивидуально подлежащие действию элементарных эволюционных факторов.

Генотип и фенотип. Совокупность всех генов одного организма называется генотипом. Генотип реализуется в признаках конкретного индивидуума (особи). Совокупность всех признаков организма определяется как фенотип. Таким образом, фенотип, представляет собой результат взаимодействия генотипа и окружающей среды. Как отмечал известный советский генетик Н.П. Дубинин, «фенотип - это явление, а генотип - его сущность». Это означает, что генотип проявляется в фенотипе, поэтому фенотип как результат взаимодействия генотипа и среды всегда шире и разнообразней генотипа. Естественный отбор действует на фенотип, а не непосредственно на генотип, который лишь определяет реакции развивающегося организма на внешнюю среду. Заметим, что генетическая информация становится биологически осмысленной только в том случае, когда она «расшифровывается» в результате контакта с окружающей средой. В известном смысле фенотип включает в себя биологические задатки, природную и социальную среду, деятельность индивидуума, его сознание и все возможные взаимодействия между этими признаками. В ходе эволюции возникает и постепенно усложняется путь от генотипа к фенотипу, от гена, до признака. Онтогенез (индивидуальное развитие организма) совершается как реализация наследственных признаков под воздействием механизмов их согласования с условиями существования данного организма.

Аксиомы Медникова. Описанное выше соотношение генотипа и фенотипа обосновываются с помощью сформулированных Б.М. Медниковым аксиом теоретической биологии:

- все живые организмы представляют собой единство комплекса признаков (фенотипа) и наследственной программы для его построения (генотипа), передающееся из поколения в поколение;

- наследственные молекулы синтезируются матричным путем, в качестве матрицы, на которой строится ген будущего поколения, используется ген предыдущего поколения;

- в процессе передачи из поколения в поколение в результате многих причин генетические программы изменяются случайно и ненаправленно, и лишь случайно эти изменения оказываются приспособительными;

- случайные изменения генетических программ при становлении фенотипов многократно усиливаются и подвергаются отбору условиями внешней среды.

Популяционно-видовой уровень.

Объединение особей в популяции, а последних - в виды по степени генетического и экологического единства приводит к появлению новых свойств и особенностей в живой природе. Популяция - система особей одного вида, длительно занимающих определенное пространство и воспроизводящих себя в течение большого числа поколений. Вид -система популяций особей, обладающих рядом общих морфо-физиологических признаков, способных к скрещиванию с образованием плодовитого потомства. Популяция - элементарная структура на популяционно-видовом уровне, а элементарное явление на этом уровне - изменение генотипического состава популяции; элементарный материал на этом уровне - мутации. Особую роль играют отношения между особями внутри популяции и вида. При этом популяции выступают как основные эволюционные единицы, представляющие собой генетически открытые системы (особи из разных популяций иногда скрещиваются, - таким образом, происходит обмен генетической информацией). Популяции и виды способны к существованию в течение длительного времени и к самостоятельному эволюционному развитию. Жизнь отдельной особи при этом находится в зависимости от популяционных процессов. Популяционно-видовая целостность связана с взаимодействием особей внутри популяций и поддерживается обменом' генетического материала в процессе полового размножения.

Биогеоценотический (экосистемный) уровень. Принципы устойчивости биогеоценоза.

Популяции разных видов образуют сложные сообщества - биоценозы. Биоценозы - совокупность растений, животных, грибов и прокариот, населяющих участки суши или водоема и находящихся в определенных отношениях между собой. Вместе с конкретными участками земной поверхности, занимаемыми биоценозами, и прилежащей атмосферой они формирую экосистему (биогеоценоз). Экосистема - взаимообусловленный комплекс живых и неживых (косных) компонентов, связанных между собой обменом веществ и энергии. Название «биогеоценоз» используется только по отношению к природным системам. В целом жизнь биогеоценоза регулируется в основном силами, действующими внутри самой системы, т.е. можно говорить о саморегуляции биогеоценоза. Биогеоценоз представляет собой открытую систему, имеющую энергетические «входы» и «выходы», связывающие соседние биогеоценозы, обмен веществ между которыми может осуществляться как в газообразной, так и в жидкой и твердой фазах, а также в форме живого вещества (например, миграции животных). Нынешнее состояние экосистем - результат длительной эволюции и адаптации организмов друг к другу и к условиям существования. Все группы экосистемы - продукт совместного исторического развития различающихся и приспосабливающихся друг к другу видов. Первичной основой для функционирования экосистемы служат растения и прокариоты - автотрофы, синтезирующие из неорганических веществ (воды, двуокиси углерода, соединений азота) необходимые для жизни органические вещества. Автотрофы используют энергию фотосинтеза (зеленые растения) или хемосинтеза (бактерии). Они являются продуцентами, создающими жизненную среду для гетеротрофов, потребляющих готовые органические вещества и неспособные к их синтезу из неорганических. Гетеротрофами являются животные и грибы. Эти потребители в свою очередь подразделяются на консументы -(растительноядные животные и хищники) и редуценты (грибы, микроорганизмы, разлагающие органическое вещество.) Популяции разных видов в экосистемах воздействуют друг на друга по принципу прямой и обратной связи. В экосистемах выделяют пищевые (трофические) цепи - через них происходит трансформация вещества и энергии. При переходе энергии от одного звена к другому до 80-90% ее теряется в виде теплоты, поэтому цепи обычно включают не более 4-5 звеньев, и продукция каждого последующего звена меньше предыдущего. Совокупность всех организмов, объединенных единым типом питания образуют трофический уровень. В экосистеме реализуется правило пирамиды: продукция каждого последующего трофического уровня меньше предыдущего приблизительно в 10 раз. В состав пищи каждого вида могут входить другие разные виды, и каждый вид может служить пищей другим разным видам, т.е. трофические цепи переплетаются, образуя трофические сети. В экосистеме реализуются принципы устойчивости и равновесия:

- принцип устойчивости: чем больше трофических уровней в экосистеме и чем они разнообразнее, тем более устойчива экосистема;

- принцип равновесия: между видами в экосистеме существует равновесие, и отклонение от него в ту или другую сторону может привести к катастрофе.

...

Подобные документы

  • Естественно - научная и гуманитарная культуры. Научный метод. Логика и методология развития естествознания. Структурные уровни организации материи. Пространство и время в современной научной картине мира. Химическая наука.

    учебное пособие [63,1 K], добавлен 14.10.2002

  • Сущность и основные принципы мифогенной и гносеогенной концепции происхождения философии. Характеристика концепции фрейдизма и неофрейдизма. Особенности формирования и основные черты человеческой личности. Тенденции развития современной цивилизации.

    контрольная работа [32,4 K], добавлен 25.08.2012

  • Понятие, сущность и закономерности методов познания. Анализ взаимосвязи и особенностей правильности и истинности. Диалектика как всеобщий философский метод современной науки. Общая характеристика основных структурных элементов системы общенаучных методов.

    реферат [27,6 K], добавлен 11.10.2010

  • Характеристика многообразия подходов к изучению человека и дифференциации научных дисциплин. Кибернетический подход и философское обобщение знаний о человеке. Основные аспекты теоретического и практического человекознания, как центра научного развития.

    контрольная работа [41,8 K], добавлен 01.03.2011

  • Познание как высшая форма отражения. Пять ступеней бытия в эволюции мира согласно философской концепции В.С. Соловьева. Теория личности Л.П. Карсавина. Соотнесение методов в процессе познания. Частные, общенаучные и всеобщие методы научного познания.

    курсовая работа [26,2 K], добавлен 30.09.2009

  • Понятия и методы исследования натурфилософской картины мира через сравнение ее с современной моделью познания окружающего мира. Натурфилософия: основные идеи, принципы и этапы развития. Научная картина мира. Современная модель познания окружающего мира.

    реферат [28,4 K], добавлен 14.03.2015

  • Характеристика содержания и основных концепций современной философии науки. Исследование особенностей трансформации культуры западноевропейского Средневековья. Возникновение специфических художественных направлений - романского и готического стилей.

    реферат [27,8 K], добавлен 11.11.2011

  • Познавательный аспект осмысления понятия "научная истина". Классическая, когерентная, прагматическая, семантическая, фальсификационная и постмодернистская концепции истины. Проблема соответствия знаний действительности. Специфика научной истины.

    презентация [25,8 K], добавлен 29.09.2013

  • Методы познания как сложная система, их классификация. Роль диалектического метода познания для современной науки. Реализация и применение принципов диалектики. Общенаучные методы эмпирического познания. Потребность в единой системе единиц измерения.

    реферат [54,8 K], добавлен 12.12.2016

  • Значение современного научного познания. Эволюция проблемы обоснованности научных знаний. Научная проблема как осознание формулирование концепции о незнании. Различие проблем по степени их структуризации. Этапы порождения и критерии постановки проблемы.

    реферат [57,9 K], добавлен 25.01.2010

  • Философия права - высшая духовна форма познания права, постижение его смысла, ценности и значения в жизни людей. Обзор этапов, направлений и концепций всемирной и отечественной истории философско-правовой мысли. Междисциплинарная природа философии права.

    презентация [465,0 K], добавлен 08.08.2015

  • Понятие и содержание научного познания, его специфика и строение, элементы. Методы и методология познания. Общенаучные методы эмпирического и теоретического познания. Этапы познавательного цикла и формы научного познания. Научная теория и ее структура.

    контрольная работа [18,7 K], добавлен 30.12.2010

  • Рассмотрение основных современных подходов к вопросу развития человека. Изучение формационной и цивилизационной теории развития общества. Проведение сравнительного анализа данных концепций. Исследование единства социального и индивидуального в человеке.

    курсовая работа [28,0 K], добавлен 14.10.2014

  • Основные научные подходы к решению гносеологических вопросов. Сущность познания, его объект, субъект и структура. Понятие истины и различные толкования ее сути. Характеристика диалектической и метафизической концепций, их историческая эволюция.

    контрольная работа [20,2 K], добавлен 12.01.2011

  • Анализ эволюции концепции познания, понятие сознания. Основные положения концепции отражения. Творческая природа сознания, сознание как функция мозга. Историческая взаимосвязь общественного бытия и общественного сознания. Свойства человеческого сознания.

    контрольная работа [39,6 K], добавлен 25.01.2010

  • Изучение способа раскрытия диалектического характера движения человеческого познания. Характеристика сущности и основных видов индуктивного умозаключения. Анализ принципов учения об индукции, которое развил Ф. Бэкон, как универсального метода познания.

    контрольная работа [23,1 K], добавлен 15.11.2011

  • Системность феномена науки. Естественнонаучное и социокультурное познание: специфика и общность. Научная истина как социокультурный феномен. Универсальные принципы и общенаучные методы познания. Характеристика динамики сциентизма и антисциентизма.

    реферат [28,3 K], добавлен 25.04.2010

  • Проблема развития общества в истории философии. Исторический процесс в материалистической концепции Маркса. Вопрос смысла жизни человека. Понятие и виды социальной мобильности. Стратификация современной России. Форма правления, типы политических режимов.

    контрольная работа [47,2 K], добавлен 03.03.2011

  • Теория совпадения противоположностей Кузанеца. История развития гуманистического движения, направленного на "очеловечивание" религиозных взглядов в эпоху Возрождения. Основы философии Бекона. Концепции познания мира Декарта, Спинозы и Дж. Локка.

    реферат [50,5 K], добавлен 10.10.2010

  • Общая характеристика теории познания. Виды, субъекты, объекты и уровни познания. Сравнительный анализ чувственного, эмпирического и теоретического познания. Понятие, сущность и формы мышления. Описание основных философских методов и приемов исследования.

    контрольная работа [34,3 K], добавлен 12.11.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.