Механика. Молекулярная физика и термодинамика. Колебания и волны

Описание законов Ньютона и законов сохранения. Характеристика силы инерции, её центра. Основные представления кинетической теории. Изменение внутренней энергии. Первое начала термодинамики. Виды механических колебаний, волнового и вращательного движения.

Рубрика Физика и энергетика
Вид курс лекций
Язык русский
Дата добавления 29.09.2014
Размер файла 973,4 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Глава 1. Механика

Физика изучает явления, наблюдаемые в реальном мире, и свойства материальных объектов. Эти явления и свойства мы характеризуем с помощью физических величин. Например, движение характеризуется скоростью и ускорением, свойства тел притягивать друг друга характеризуются массой или зарядом. Наблюдаемые нами явления и физические свойства тел возникают вследствие взаимодействия между телами либо между частицами -- атомами и молекулами, из которых состоят материальные тела. В результате этих взаимодействий соответствующие физические величины не остаются постоянными, а испытывают всевозможные изменения. Эти изменения могут происходить как непрерывно, так и скачками, как по величине, так и по направлению. При наблюдении изменений физических величин возникает необходимость в их количественной и качественной оценке. Для этой цели физика использует математические методы.

В отличие от математики, которая изучает количественные и пространственные отношения между рассматриваемыми объектами, физика изучает материальные свойства тел и частиц, из которых состоят эти тела. Как показывает опыт, материальные свойства обусловлены взаимодействиями между телами либо между частицами. В природе существуют разные взаимодействия. Каждое из них имеет свои особенности, и поэтому физика разделяется на ряд областей, изучающих отдельные виды взаимодействий. На первый взгляд физика состоит из целого ряда независимых разделов -- механики, термодинамики, электродинамики, оптики и других. На самом деле эти области физики настолько связаны друг с другом, что не могут существовать друг без друга и, строго говоря, даже не могут быть разделены. Ведь сама природа не делит всевозможные взаимодействия на различные виды, в природе все происходит сразу и вместе. Возможность рассмотрения каждого вида взаимодействия по отдельности, как это делается в физике, связана с тем, что при изучении конкретного взаимодействия мы считаем, что другие взаимодействия отсутствуют или очень малы. Можно ли это делать или нельзя, в каждом отдельном случае показывает опыт. В этом заключается существо физического подхода к изучению явлений и свойств материальных объектов.

Наши знания о различных видах взаимодействий возникли не сразу, а развивались последовательно и постепенно. Сначала постигались наиболее простые механизмы взаимодействий, при этом все, что не соответствовало опыту, отбрасывалось, а то, что было нужно и полезно, закладывалось в фундамент Нового знания. Так -- от простого к сложному -- возводилась конструкция огромного и связанного воедино здания современной физики. При изучении физики мы тоже будем следовать этому естественному принципу.

Во многих случаях действие одного тела на другое или каких-либо частиц друг на друга мы, в конечном счете, обнаруживаем, аблюдая перемещение какого-либо макроскопического тела в пространстве. Макроскопическим мы называем тело, состоящее из большого числа микроскопических частиц -- атомов и молекул. На опыте мы всегда имеем дело с макроскопическими телами, хотя результаты опыта позволяют нам часто судить о свойствах составляющих тело микрочастиц (именно так мы узнали о существовании атомов и молекул).

Например, при столкновении одного шара с другим шар, который прежде находился в покое, переместился в пространстве. Изменение электрического тока в цепи мы отмечаем по перемещению стрёлки амперметра. Увеличение температуры мы обнаруживаем по перемещению ртутного столбика в термометре. Конечно, не всегда действие одного тела на другое обязательно приводит к перемещению последнего, во нас сейчас будет интересовать именно такой результат действия, поскольку он является наиболее простым из всех, которые встречаются в природе.

Как показывает опыт, никакое следствие не возникает без причины. В частности, причиной указанных выше перемещений макроскопических тел являются действия на них других тел. Таким образом, измеряя перемещение тела вследствие его взаимодействия с другими телами, мы можем судить о характере и величине этого взаимодействия. Поэтому так важно уметь описывать всевозможные перемещения тела в пространстве и характеризовать состояние тела в процессе его перемещения.

Перемещение тела в пространстве с течением времени представляет собой движение. Раздел физики, в котором изучается движение тел и его изменения в результате действия других тел, называется механикой. В свою очередь раздел механики, в котором изучают свойства движения тел, не рассматривая причин, приводящих к этому движению, называют кинематикой, а раздел механики, в котором изучается изменение движения под действием других тел называют динамикой.

Изучая физику, мы будем иметь дело с физическими величинами. Необходимо ясно представлять себе, что такое физическая величина, чем она отличается от математической иди от величин, рассматриваемых в других науках. ньютон инерция термодинамика кинетический

Физика -- опытная наука. Все, что мы узнали о материальном мире, возникло из опыта. И любые заключения и предположения, которые мы делаем о свойствах материальных объектов, в конечном счете проверяются на опыте. Другими словами, опыт является окончательным критерием правильности наших представлений. В процессе опыта мы определяем те или иные физические величины, например скорость или температуру. Таким образом, определить физическую величину означает указать способ ее измерения. Физические величины являются наблюдаемыми. Напротив, если мы говорим о какой-либо величине и не можем указать способ ее измерения, то она не является наблюдаемой. Такие величины просто не рассматриваются в физике, не являются ее предметом.

Далее, физические величины являются достоверными в том смысле, что физический опыт должен обладать свойством повторяемости. Это значит, что при повторении опыт, проведенный в равных условиях, должен приводить всякий раз к одинаковому результату. В других науках это не всегда так, и чем менее выполняется это требование, тем менее эта наука достоверна.

Физические величины обладают свойством размерности. Под размерностью физической величины понимают совокупность параметров, необходимых для ее определения. Другими словами, указать размерность физической величины означает указать, какие измерения нужно произвести, чтобы ее определить. Самые простые физические величины -- это длина, время и масса. Они имеют, как говорят, собственные размерности, обозначаемые соответственно буквами L, T и M, потому что для их определения никаких других измерений производить не нужно. Но уже, например, для определения скорости тела необходимо произвести два независимых измерения -- длины L и времени T. Поэтому размерность скорости есть отношение L/T. Как мы увидим, размерность физической величины находится с помощью формулы, которая служит ее определением.

Подчеркнем, что размерность физической величины и единицы ее измерения -- это разные понятия. Например, скорость может измеряться в см/с, или в м/с, или в км/ч, а размерность ее при этом не меняется -- она всегда есть L/T, потому что независимо от того, в каких единицах мы измеряем скорость, мы всегда производим измерения одних и тех же двух параметров -- длины L, и времени T. Размерность физической величины представляет ее важнейшее свойство. Часто приходится сравнивать между собой различные величины. Физические величины можно сравнивать, только если они обладают одинаковой размерностью. Например, нельзя сравнивать между собой длину пути и отрезки времени: это бессмысленно -- они обладают разной размерностью.

1.1 Кинематика материальной точки

Одним из основных понятий механики является понятие материальной точки, что означает тело, обладающее массой, размерами которого можно пренебречь при рассмотрении его движения. Движение материальной точки -- простейшая задача механики, которая позволит рассмотреть более сложные типы движений.

Перемещение материальной точки происходит в пространстве и изменяется со временем. Реальное пространство трехмерно, и положение материальной точки в любой момент времени полностью определяется тремя числами -- ее координатами в выбранной системе отсчета. Число независимых величин, задание которых необходимо для однозначного определения положения тела, называется числом его степеней свободы. В качестве системы координат выберем прямоугольную, или декартову, систему координат. Для описания движения точки, кроме системы координат, необходимо еще иметь устройство, с помощью которого можно измерять различные отрезки времени. Такое устройство назовем часами. Выбранная система координат и связанные с ней часы образуют систему отсчета.

Декартовы координаты X,Y,Z определяют в пространстве радиус-вектор z, острие которого описывает при его изменении со временем траекторию материальной точки. Длина траектории точки представляет собой величину пройденного пути S(t). Путь S(t)-- скалярная величина. Наряду с величиной пройденного пути, перемещение точки характеризуется направлением, в котором она движется. Разность двух радиус-векторов, взятых в различные моменты времени, образует вектор перемещения точки (рис.).

Для того чтобы характеризовать, как быстро меняется положение точки в пространстве, пользуются понятием скорости. Под средней скоростью движения по траектории за конечное время t понимают отношение пройденного за это время конечного пути S ко времени:

.(1.1)

Скорость движения точки по траектории -- скалярная величина. Наряду с ней можно говорить о средней скорости перемещения точки. Эта скорость -- величина, направленная вдоль вектора перемещения,

.(1.2)

Если моменты времени t1, и t2 бесконечно близки, то время t бесконечно мало и в этом случае обозначается через dt. За время dt точка проходит бесконечно малое расстояние dS. Их отношение образует мгновенную скорость точки

.(1.3)

Производная радиус-вектора r по времени определяет мгновенную скорость перемещения точки.

.(1.4)

Поскольку перемещение совпадает с бесконечно малым элементом траектории dr = dS, то вектор скорости направлен по касательной к траектории, а его величина:

.(1.5)

На рис. показана зависимость пройденного пути S от времени t. Вектор скорости v(t) направлен по касательной к кривой S(t) в момент времени t. Из рис. видно, что угол наклона касательной к оси t равен

.

Интегрируя выражение (1.5) в интервале времени от t0 до t, получим формулу, позволяющую вычислить путь, пройденный телом за время t-t0 если известна зависимость от времени его скорости v(t)

.(1.6)

Геометрический смысл этой формулы ясен из рис. По определению интеграла пройденный путь представляет собой площадь, ограниченную кривой v =v(t) в интервале от t0 до t. В случае равномерного движения, когда скорость сохраняет свое постоянное значение во все время движения, v=const; отсюда следует выражение

,(1.7)

где S0 _ путь, пройденный к начальному времени t0.

Производную скорости по времени, которая является второй производной по времени от радиус-вектора, называют ускорением точки:

.(1.8)

Вектор ускорения а направлен вдоль вектора приращения скорости dv. Пусть а = const. Этот важный и часто встречаемый случай носит название равноускоренного или равнозамедленного (в зависимости от знака величины а) движения. Проинтегрируем выражение (1.8) в пределах от t = 0 до t:

(1.9)

(1.10)

и используем следующие начальные условия: .

Таким образом, при равноускоренном движении

.(1.11)

В частности, при одномерном движении, например вдоль оси X, . Случай прямолинейного движения изображен на рис. При больших временах зависимость координаты от времени представляет собой параболу.

В общем случае движение точки может быть криволинейным. Рассмотрим этот тип движения. Если траектория точки произвольная кривая, то скорость и ускорение точки при ее движении по этой кривой меняются по величине и направлению.

Выберем произвольную точку на траектории. Как всякий вектор, вектор ускорения можно представить в виде суммы его составляющих по двум взаимно перпендикулярным осям. В качестве одной из осей возьмем направление касательной в рассматриваемой точке траектории, тогда другой осью окажется направление нормали к кривой в этой же точке. Составляющая ускорения, направленная по касательной к траектории, носит название тангенциального ускорения at, а направленная ей перпендикулярно -- нормального ускорения an.

Получим формулы, выражающие величины at, и an через характеристики движения. Для простоты рассмотрим вместо произвольной криволинейной траектории плоскую кривую. Окончательные формулы остаются справедливыми и в общем случае неплоской траектории.

Благодаря ускорению скорость точки приобретает за время dt малое изменение dv. При этом тангенциальное ускорение, направленное по касательной к траектории, зависит только от величины скорости, но не от ее направления. Это изменение величины скорости равно dv. Поэтому тангенциальное ускорение может быть записано как производная по времени от величины скорости:

.(1.12)

С другой стороны, изменение dvn, направленное перпендикулярно к v, характеризует только изменение направления вектора скорости, но не его величины. На рис. показано изменение вектора скорости, вызванное действием нормального ускорения. Как видно из рис. , и, таким образом, с точностью до величины второго порядка малости величина скорости остается неизменной v=v'.

Найдем величину an. Проще всего это сделать, взяв наиболее простой случай криволинейного движения -- равномерное движение по окружности. При этом at=0. Рассмотрим перемещение точки за время dt по дуге dS окружности радиуса R.

Скорости v и v' , как отмечалось, остаются равными по величине. Изображенные на рис. треугольники оказываются, таким образом, подобными (как равнобедренные с равными углами при вершинах). Из подобия треугольников следует , откуда находим выражение для нормального ускорения:

.(1.13)

Формула для полного ускорения при криволинейном движении имеет вид:

.(1.14)

Подчеркнем, что соотношения (1.12), (1.13) и (1.14) справедливы для всякого криволинейного движения, а не только для движения по окружности. Это связано с тем, что всякий участок криволинейной траектории в достаточно малой окрестности точки можно приближенно заменить дугой окружности. Радиус этой окружности, называемый радиусом кривизны траектории, будет меняться от точки к точке и требует специального вычисления. Таким образом, формула (1.14) остается справедливой и в общем случае пространственной кривой.

1.1.1 Угловая скорость и угловое ускорение

Пройденный путь S , перемещение dr, скорость v , тангенциальное и нормальное ускорение at, и an, представляют собой линейные величины. Для описания криволинейного движения наряду с ними можно пользоваться угловыми величинами.

Рассмотрим более подробно важный и часто встречаемый случай движения по окружности. В этом случае наряду с длиной дуги окружности движение можно характеризовать утлом поворота ц вокруг оси вращения. Величину

(1.15)

называют угловой скоростью. Угловая скорость представляет собой вектор, направление которого связывают с направлением оси вращения тела (рис.).

Обратим внимание на то, что, в то время как сам угол поворота ц является скаляром, бесконечно малый поворот dц -- векторная величина, направление которой определяется по правилу правой руки, или буравчика, и связано с осью вращения. Если вращение является равномерным, то щ=const и точка на окружности поворачивается на равные углы вокруг оси вращения за равные времена. Время, за которое она совершает полный оборот, т.е. поворачивается на угол 2р, называется периодом движения Т. Выражение (1.15) можно проинтегрировать в пределах от нуля до Т и получить угловую частоту

.(1.16)

Число оборотов в единицу времени есть величина, обратная периоду, -- циклическая частота вращения

н =1/T.(1.17)

Нетрудно получить связь между угловой и линейной скоростью точки. При движении по окружности элемент дуги связан с бесконечно малым поворотом соотношением dS = R·dц. Подставив его в (1.15), находим

v = щr.(1.18)

Формула (1.18) связывает величины угловой и линейной скоростей. Соотношение, связывающее векторы щ и v, следует из рис. А именно, вектор линейной скорости представляет собой векторное произведение вектора угловой скорости и радиуса-вектора точки r:

.(1.19)

Таким образом, вектор угловой скорости направлен по оси вращения точки и определяется по правилу правой руки или буравчика.

Угловое ускорение -- производная по времени от вектора угловой скорости щ (соответственно вторая производная по времени от угла поворота)

Выразим тангенциальное и нормальное ускорение через угловые скорости и ускорение. Используя связь (1.18),(1.12) и (1.13), получаем

at = в·R, a =щ2·R.(1.20)

Таким образом, для полного ускорения имеем

.(1.21)

Величина в играет роль тангенциального ускорения: если в = 0.полное ускорение при вращении точки не равно нулю, a =R·щ2 ? 0.

1.2 Законы Ньютона и законы сохранения

При рассмотрении кинематики использовалась неподвижная система отсчета. В природе не существует абсолютного движения, всякое движение имеет относительный характер: либо одного тела относительно другого, либо относительно выбранной системы отсчета. Возникает вопрос, все ли системы отсчета являются равноправными, а если нет, то какие являются предпочтительными. Единственное и естественное требование к системе отсчета состоит в том, что ее выбор не должен вносить усложнения в описание движения тел, т.е. законы движения в выбранной системе отсчета должны иметь наиболее простой вид. В частности, в такой системе должны оставаться неизменными свойства пространства и времени: пространство должно быть однородным и изотропным, а время однородным.

Однородность пространства и времени означает, что наблюдаемые физические свойства и явления должны быть одинаковы в любой точке пространства и в любой момент времени. Не существует выделенных в каком-либо отношении точек пространства и моментов времени.

Изотропность пространства означает, что все направления в пространстве равнозначны. Физические явления в замкнутой системе не должны изменяться при ее повороте в пространстве.

Система отсчета, которая использовалась до сих пор, отвечала этим требованиям, но возникает вопрос, как ее реализовать, т.е. с какими объектами, реально существующими в природе, можно ее связать. Оказывается, что выбор подобной системы отсчета является непростым делом, так как требуемым условиям отвечает специальный класс физических объектов. Если «привязать» неподвижную систему координат к какому-либо произвольно движущемуся объекту, например к вагону поезда, можно заметить, что в данной системе отсчета сразу произойдут странные явления, например груз, подвешенный на нити, будет время от времени отклоняться от вертикали (что связано с действием различных ускорений вагона: при торможении или ускорении и при поворотах). В результате для описания этих явлений в данной системе координат придется прибегнуть к представлениям о взаимодействиях, внешних по отношению к системе, и включить их в рассмотрение. В то же время ясно, что в другой системе координат, не испытывающей указанных ускорений, описание механических явлений будет гораздо проще.

Другой пример не очень подходящей системы отсчета -- неподвижная система, связанная с Землей. В этой системе можно, напри мер, обнаружить вращение плоскости колебаний физического маятника (на самом деле связанное с вращением Земли вокруг своей оси), для объяснения которого нам также придется привлекать физические причины, являющиеся посторонними по отношению к данной системе отсчета. Вместе с тем, как показывает опыт, по отношению к Солнцу и звездам маятник будет вести себя стабильно, т.е. Солнце и звезды являются подходящими физическими объектами для выбора указанной системы отсчета.

Как показывает опыт, нужным требованиям удовлетворяют системы отсчета, которые связаны с физическими объектами, не испытывающими внешних воздействий, т.е. не подвергающимися каким-либо ускорениям. В таких системах отсчета тела находятся в состоянии покоя или равномерного прямолинейного движения до тех пор, пока на них не действуют другие тела. Свойство тела сохранять такое состояние называется инерцией, и поэтому системы отсчета, о которых "идет речь, носят название инерциальных. Если наряду с выбранной инерциальной системой, рассмотреть другую, движущуюся относительно первой прямолинейно и равномерно, то свободное движение тела в новой системе будет также происходить с постоянной скоростью. Таким образом, существует бесконечное множество инерциальных систем отсчета. Во всех этих системах свойства пространства и времени одинаковы и одинаковы законы механики. Не существует никакой абсолютной системы отсчета, которую можно было бы предпочесть другим системам. В этом состоит принцип относительности Галилея. Его можно сформулировать и так: никакими механическими опытами невозможно установить, движется ли данная инерциальная система или покоится: оба состояния эквивалентны. Координаты точки в двух системах отсчета, одна из которых K' движется равномерно и прямолинейно относительно другой (K) со скоростью V, связаны соотношением (рис.)

.(1.22)

При этом считается, что время абсолютно, т.е. течет одинаково в обеих системах: t' = t. Скорость точки в системе К связана со скоростью в системе К' формулой:

.(1.23)

Математически принцип относительности Галилея можно сформулировать как требование инвариантности (неизменности) уравнений механики по отношению к преобразованию (1.23)

1.2.1 Законы Ньютона

Законы Ньютона образуют основу динамики -- раздела механики, рассматривающего взаимодействие тел.

Первый закон Ньютона отражает свойство инерции, тел и часто называется законом инерции. Он утверждает, что всякое тело сохраняет состояние покоя или равномерного прямолинейного движения, пока воздействие со стороны других тел не заставит его изменить это состояние. Ясно, во-первых, что этот закон выполняется только в инерциальных системах отсчета. Во-вторых, отсюда следует важное заключение, что, поскольку изменение состояния покоя или равномерного движения связано с наличием в системе ускорения, последнее, в свою очередь, возникает как результат воздействия других тел. Это утверждение создает предпосылки для формулирования второго закона Ньютона.

Воздействие одного физического тела на другое характеризуется физической величиной, называемой силой. Сила, действующая на тело, сообщает ему ускорение. Величина полученного ускорения пропорциональна приложенной силе. Но разные тела под влиянием одинаковых сил приобретают разные ускорения. Данный опытный факт есть проявление уже упоминавшегося свойства инерции тела. Это свойство количественно характеризуется инертной массой тела -- коэффициентом пропорциональности между приложенной к телу силой и полученным им ускорением.

Таким образом, второй закон Ньютона может быть записан в форме:

,(1.24)

где фигурируют вновь введенные физические величины: вектор силы F и инертная масса тела m. В таком виде его можно сформулировать следующим образом: ускорение, приобретаемое телом, прямо пропорционально силе, действующей на тело, и обратно пропорционально массе тела. Третий закон Ньютона имеет дело со взаимодействующими, телами. Он утверждает, что силы, с которыми действуют друг на друга взаимодействующие тела, равны по величине и противоположны по направлению. Важно подчеркнуть, что силы, о которых идет речь, приложены к разным взаимодействующим друг с другом телам.

1.2.2 Законы сохранения

Запишем уравнение (1.24) в виде

.(1.25)

Выражение (2.25) представляет собой уравнение движения частицы. Если его проинтегрировать, то можно найти траекторию частицы r = r(t, F). Однако часто это не является необходимым. Оказывается, уравнения Ньютона обладают тем свойством, что некоторые величины, характеризующие движение частицы, остаются неизменными во все время движения. О таких величинах принято говорить, что они сохраняются. Их также называют интегралами движения. Знание интегралов движения позволяет получить ряд важных следствий без фактического решения уравнений движения. Получим некоторые сохраняющиеся величины.

Перепишем уравнение (1.25) в виде

.(1.26)

Величина называется импульсом тела. Внеся величину m под знак дифференциала в (1.26), закон Ньютона можно записать в форме:

.(1.27)

Физический смысл импульса становится очевидным, если уравнение (1.27) проинтегрировать на конечном интервале времени от 0 до t:

.(1.28)

Изменение импульса служит мерой величины силы, действующей на тело в течение конечного промежутка времени. Численно величина импульса

.(1.29)

Рассмотрим тело или систему тел в отсутствие внешних сил. Система тел, на которую не действуют внешние силы (или векторная сумма этих сил равна нулю), является замкнутой. В этом случае F=0; как видно из уравнений (1.26) или (1.27),

, т.е. величина ,(1.30)

остается постоянной во все время движения. Полученный результат представляет собой закон сохранения импульса, который имеет место как для одного тела, так и для системы тел в отсутствие внешних сил.

В отсутствие внешних сил сохраняется еще одна скалярная величина. Если умножить уравнение (1.26) одновременно слева и справа на вектор скорости, в левой части окажется производная от полного дифференциала, и уравнение примет вид

.(1.31)

Пусть F = 0. Тогда постоянной во время движения является величина

.(1.32)

Она называется кинетической энергией частицы. При отсутствии внешних сил, т. е. в замкнутой системе, сохраняется кинетическая энергия как в случае одного тела, так и для системы тел. Когда на частицу действует внешняя сила F, кинетическая энергия не остается постоянной. В этом случае согласно (1.31) приращение кинетической энергии за время dt равно скалярному произведению . Величина dA = -- это работа, совершаемая силой F на пути dr .

Проинтегрируем соотношение (1. 31) вдоль некоторой траектории от точки 1 до точки 2:

.

Левая часть представляет собой приращение кинетической энергии на пути между точками 1 и 2, а величина

(1.33)

есть работа силы на пути 1--2.

Таким образом, работа сил, действующих на частицу, расходуется на изменение ее кинетической энергии:

.(1.34)

Соответственно, изменение кинетической энергии частицы служит мерой работы, произведенной над частицей.

Если частица в каждой точке пространства подвержена действию других тел, то говорят, что эта частица находится в поле сил. В случае силового поля действие силы распределено по всему пространству. Рассмотрим такое поле сил, действие которого на частицу зависит только от положения частицы в пространстве. Такое поле можно описать с помощью некоторой скалярной функции ц(r), зависящей, а соответствии со сказанным, только от координат. Это случай специального, но часто встречаемого в природе потенциального поля, а функция ц(r), характеризующая поле, является потенциалом поля. Сила связана с потенциалом в каждой точке соотношением

,(1.35)

где постоянная определяется свойствами частицы, взаимодействующей с полем сил.

Подставим соотношение (1.35) в (1.33) и опять проинтегрируем вдоль траектории от точки 1 до точки 2. Получим

T2 - T1 +const(ц2 - ц1) = О,

т.е. величина T2 +const·ц2 = T1 +const·ц1

остается постоянной при движении вдоль траектории. Таким образом, для частицы в потенциальном поле внешней силы сохраняется, т. е. является интегралом движения, величина

E = T+const·ц(r).(1.36)

Величина U = const·ц(r) называется потенциальной энергией частицы в поле ц(r), а выражение (1.36) представляет собой полную механическую энергию частицы

E = T + U.(1.37)

1.2.3 Равновесие механической системы

Из выражения (1.37) следует, что при постоянной величине полной энергии кинетическая энергия частицы может возрастать только за счет уменьшения потенциальной энергии. Поэтому, если потенциальная энергия имеет минимальное значение, кинетическая энергия не может измениться без внешнего воздействия. Таким образом, условием механического равновесия системы является минимум ее потенциальной энергии

,(1.38)

что эквивалентно равенству нулю сил, действующих на частицу.

1.3 Движение в гравитационном поле

В 1687 г. Ньютон на основании уже обнаруженных к тому времени на опыте законов движения планет установил, что всякие два тела притягиваются друг к другу с силой, прямо пропорциональной квадрату расстояния между ними. Например, материальная точка с массой m, находящаяся на расстоянии r от другой материальной точки с массой M, будет притягиваться последней с силой

,(1.39)

где г-- размерная постоянная, необходимая для того, чтобы величина F имела размерность силы. В случае наличия тел сложной формы, когда их нельзя рассматривать как материальные точки, формула (1.39) видоизменяется, но основной характер взаимодействия сохраняется. Постоянная в уравнении (1.39) была впервые определена в 1798г. английским физиком Кавендишем в поразительном по точности опыте. Ее численное значение очень мало г = 6.6·lO-11н·м2/кг2 -- это значит, что с силой столь малой величины притягиваются друг к другу две массы в 1кг каждая на расстоянии в 1м. Огромное значение, которое имеют силы гравитации в природе, обусловлено с одной стороны, большими массами небесных тел, а с другой -- отсутствием сил иного происхождения.

Соотношение (1.39) носит название закона всемирного тяготения. Оно хорошо описывает движение тяготеющих масс.

С физической точки зрения соотношение (1.39) описывает взаимодействие массы m с полем тяготения, или, как принято говорить, с гравитационным полем, создаваемым в пространстве массой M. Хотя способ передачи гравитационного взаимодействия нам неизвестен, опыт показывает, что с каждой массой в пространстве связано гравитационное поле.

Гравитационное поле, создаваемое в пространстве массой M, будем характеризовать потенциалом

. (1.40)

Потенциальная энергия, приобретенная телом с массой в этом поле, согласно результатам предыдущего раздела, может быть записана в виде

,(1.41)

т. е. потенциальная энергия поля в гравитационном поле равна потенциалу поля в точке нахождения тела, умноженному на массу тела.

Сила притяжения (1.39) может быть найдена по формуле (1.35):

(1.42)

( -- единичный вектор в направлении радиус-вектора r).

Зная потенциал поля, можно вычислить работу, совершаемую силами поля над телом с массой т при перемещении его из положения 1 в положение 2. Эта работа может быть выражена через разность значений потенциала поля в указанных точках

(1.43)

Отсюда видно, что работа в поле сил тяготения не зависит от пути, т. е. от того, каким образом тело было перемещено из положения 1 в 2.

Массы, фигурирующие в законе всемирного тяготения, характеризуют способность тел создавать поле тяготения и в свою очередь испытывать на себе их действие. Поэтому масса, о которой идет здесь речь, может быть названа тяготеющей, или гравитационной, массой, в отличие от инертной массы, фигурирующей во втором законе Ньютона. Хотя их физический смысл различен и ниоткуда не следует их равенство, тем не менее они все же тождественны. Невозможность различить обе массы является следствием большого числа самых совершенных опытов. Таким образом, во втором законе Ньютона и в законе тяготения проявляются различные свойства одной и той же величины -- физической массы.

1.3.1 Движение в поле тяготения Земли

Из закона всемирного тяготения следует, что у поверхности Земли все тела должны падать с одинаковым ускорением. В самом деле, по второму закону Ньютона ускорение, приобретаемое телом с массой m у поверхности Земли a = F/m, где F -- сила, с которой тело притягивается земным шаром. По закону тяготения

, (1.44)

M3 -- масса Земли и R3 -- радиус земного шара. Отсюда

и не зависит от массы падающего тела. Таким образом, все тела у поверхности Земли независимо от их массы падают с одинаковым ускорением

, (1.45)

которое называется ускорением свободного падения. Подставляя сюда известные значения констант, получим значение 9,8 м/c2. В действительности значения g слегка различаются при учете сил сопротивления и реальной формы Земли. По второму закону Ньютона это означает, что в поле тяжести Земли все тела испытывают силу тяжести, равную mg. При перемещении массы с одной высоты на другую эта сила тяжести совершает работу, которую можно вычислить как изменение потенциальной энергии тела.

1.3.2 Космические скорости

Определим скорость, которую необходимо иметь телу дли того, чтобы оно могло стать спутником Земли, т. е. первую космическую скорость. Величину этой скорости можно определить из условия равенства сил, действующих на тело при его вращении вокруг Земли. Сила притяжения должна быть уравновешена центробежной силой mv2/R. Таким образом,

(1.46)

откуда находим значение первой космической скорости

Подставляя численные значения величин, получаем v1 = 8 км/с.

Вторая космическая скорость -- это скорость, которую нужно сообщить телу для того, чтобы оно покинуло область земного притяжения. Для определения второй космической скорости следует вычислить работу, которую необходимо совершить против сил земного притяжения для удаления тела с поверхности Земли на бесконечность. Эта работа равна разности потенциальных энергий тела в начальном и в конечном положениях:

A = Uк _ Uн.

Потенциальная энергия тела в гравитационном поде Земли на ее поверхности согласно (1.41) имеет вид:

а на бесконечности равна нулю. Таким образом,

(1.47)

Величина этой потенциальной энергии определяет кинетическую энергию, которую должно иметь тело для того, чтобы быть в состоянии совершить указанную работу

Отсюда вторая космическая скорость определяется выражением:

.

Ее численное значение приблизительно 11 км/с. Пусть перемещение происходит вдоль оси Z. При этом сила тяжести совершает работу

.

Согласно определению потенциальной энергии А = U1_U2. Отсюда следует, что потенциальная энергия тела в поле силы тяжести Земли может быть записана в виде

U(z) = mgz + const, (1.48)

где постоянная связана с выбором начала отсчета энергии. Эту формулу можно получить и непосредственно из закона всемирного тяготения. Запишем его в виде

,

где z-- высота тела с массой m над поверхностью Земли. При малых

, , откуда находим U =U0 + mgz = U(R3) +mgz

1.4 Силы инерции

Основным положением механики Ньютона является утверждение о том, что действие на тело со стороны других тел вызывает их ускорение. В системах координат, движущихся с ускорением относительно выбранной нами инерциальной системы, так называемых неинерциальных системах, формально справедливо и обратное -- возникают силы, связанные не с реальным действием других тел, а с наличием указанных ускорений. Такие силы называют силами инерции. Рассмотрим несколько примеров.

1. Прямолинейное движение системы координат с ускорением a0 относительно инерциальной системы. В этом случае на тело с массой m в неинерциальной системе координат действует сила инерции, равная

fи = -ma0. (1.49)

2. Центробежная сила инерции. Рассмотрим движение тела во вращающейся системе координат. Сначала рассмотрим вращение тела в неподвижной системе. В ней тело будет испытывать центростремительное ускорение, которое, и будет заставлять его вращаться. По третьему закону Ньютона центростремительной силе соответствует центробежная сила, приложенная к нити, удерживающей вращающееся тело. Во вращающейся системе координат тело покоится, но центростремительное ускорение по-прежнему отлично от нуля. Это ускорение может быть связано теперь с существованием центробежной силы , направленной от центра вращения.

3. Свободно падающий лифт. Пусть ускорение свободно падающего лифта -- неинерциальной системы отсчета -- g. Сила инерции, действующая на материальную точку с массой m, в системе отсчета, связанной с лифтом, равна mg. На тело в падающем лифте действуют, таким образом, две силы: -- сила тяжести и сила инерции. Суммарная сила, действующая в свободно падающем лифте на материальную точку, равна нулю, т. е. сила инерции уравновешивает силу тяготения -- в лифте возникает состояние невесомости. Аналогия между поведением тел в гравитационном поле и в неинерциальной системе отсчета составляет принцип эквивалентности сил тяготения и инерции: он используется в теории тяготения, основанной на теории относительности. В основе принципа эквивалентности лежит равенство инертной и гравитационной масс, о котором шла речь в начале данной главы.

1.5 Упругое и неупругое взаимодействия

При взаимодействии тел друг с другом изменяются их энергия и импульс. Это изменение, однако, может происходить по-разному.

Когда речь идет о взаимодействии массивных тел, которые состоят из большого числа частиц, атомов или молекул, имеет смысл наряду с кинетической и потенциальной энергией говорить о внутренней энергии тела. Внутренняя энергия -- это энергия всех частиц, составляющих тело, при заданных его температуре и объеме.

В результате взаимодействия тела с другими телами может измениться его температура, а также (необратимым образом) его объем. Ясно, что эти изменения связаны с расходом энергии, т. е. в результате взаимодействия тела с внешними объектами меняется его внутренняя энергия. Такое взаимодействие является неупругим. Оно, очевидно, не сохраняет полной механической энергии тела -- суммы кинетической и потенциальной. Напротив, если в результате взаимодействия внутреннее состояние тела не меняется, взаимодействие является упругим. В процессе упругого взаимодействия выполняется закон сохранения механической энергии. Рассмотрим в связи с этими соображениями столкновения двух тел. Столкновение тел заключается в их кратковременном взаимодействии, происходящем при соприкосновении тел. Поскольку вне этого момента времени тела не взаимодействуют, их потенциальная энергия относительно друг друга равна нулю. Взаимодействие при столкновении состоит, таким образом, в передаче от одного тела другому импульса и кинетической энергии. Рассмотрим удар двух шаров, центры которых движутся вдоль одной прямой, т. е. центральный удар. Пусть массы шаров m1 и m2, скорости до удара v1, и v2, после удара u1 и u2. Для определенности возьмем случай движения шаров, изображенный на рис.

Рис. Центральный удар шаров

Сначала рассмотрим упругий удар шаров. В применении к данной задаче закон сохранения импульса системы шаров имеет вид:

m1v1 + m2v2 =m1u1 + m2u2, 1.50)

т.е. импульс системы до столкновения равен импульсу системы после столкновения.

Закон сохранения энергии дает

. (1.51)

Перенося члены, относящиеся к первому шару влево, а ко второму шару вправо, и разделив одно из полученных уравнений на другое, находим:

, .

Решая полученную систему уравнений совместно, получаем:

,(1.52)

.(1.53)

Исследуем полученный результат в частных случаях.

1. Соударение одинаковых шаров. Тогда m1 = m2 и

u1 = v2, u2 = v1.(1.54)

т. е. при упругом центральном ударе двух тел одинаковой массы они просто обмениваются скоростями. Если, в частности, до удара второй шар покоился (v2 = 0), то после удара остановится первый шар (u1 = 0), а второй будет двигаться с той же скоростью и в том же направлении, в котором двигался до удара первый шар (u2 = v1,).

2. Удар шара о массивную стенку. В этом случае m2 >> m1 и приближенно будем иметь:

(1.55)

.

Как видно отсюда, скорость массивного тела после удара меняется незначительно. В результате удара стенке передается значительный импульс, но передача энергии при ударе сравнительно мала:

.

Если стенка была первоначально неподвижна (v2 = 0), то упруго ударившийся о нее шарик малой массы отскочит обратно практически с теми же скоростью (u1 = _ v1) и энергией.

При ударе о движущуюся стенку происходит обмен энергией между стенкой и шариком тем больший, чем больше скорость стенки. В зависимости от направления движения стенки (v2 больше или меньше 0) шарик отскакивает от стенки с большими или меньшими, чем до столкновения, кинетической энергией и импульсом.

Рассмотрим теперь абсолютно неупругий удар шаров. При таком ударе энергия налетающего шара полностью расходуется на изменение внутренней энергии другого шара и на сообщение ему некоторой скорости . Закон сохранения механической энергии не выполняется, и для определения скорости после удара достаточно закона сохранения импульса.

m1v1 + m2v2 =(m1 + m2)u1,(1.56)

откуда

.(1.57)

Потеря механической энергии, перешедшей во внутреннюю энергию шаров, равна разности энергий до и после удара:

.(1.58)

Подставляя сюда (1.57), находим

.(1.59)

Если ударяемое тело было первоначально неподвижно (v2 = 0), то

(1.60)

1.61)

Когда неподвижное тело имеет большую массу (m2 > m1), то почти вся кинетическая энергия переходит при ударе во внутреннюю анергию. Напротив, при m1 >> m2 изменение внутренней энергии мало и большая часть кинетической энергии идет на сообщение движения ударяемому телу.

1.6 Сила упругости

В законе Ньютона сила есть физическая величина, характеризующая действие одного тела на другое и сообщающая последнему ускорение. Сила может также приводить к изменению формы и объема тела. В этом случае происходит деформация тела. Что происходит в действительности при приложении силы -- ускорение тела или его деформация -- определяется самими свойствами тела. Более того, свойства тела определяют и характер деформации, которая может быть упругой и неупругой. Неупругая деформация характеризуется тем, что она не исчезает после снятия нагрузки. С неупругой деформацией связано изменение внутренней энергии тела. Напротив, если после снятия нагрузки деформация исчезает и тело возвращается к своей прежней форме, то деформация является упругой. Сила, возвращающая тело к своей прежней форме, -- упругая сила. Как показывает опыт, упругая сила пропорциональна созданной в теле деформации. Соответствующий закон называется законом Гука:

F=-k x,(1.62)

где k-- коэффициент пропорциональности, а x -- величина деформации тела (см. рис.): x > 0 при растяжении тела, x < 0 -- при сжатии.

Вычислим работу, совершаемую против упругой силы, при деформации одномерного стержня на dx:

(1.63)

Эта работа идет на изменение взаимного расположения отдельных частей тела, т. е. на изменение его потенциальной энергии. Следовательно, зависимость потенциальной энергии стержня имеет вид:

.(1.64)

График зависимости U от x показан на рис.

Закон Гука. Упругая сила пропорциональна смещению пружины.

Потенциальная энергия упругого тела при одномерной деформации.

1.7 Сила трения

Наряду с силами тяготения и упругими силами существуют силы, обусловленные молекулярными взаимодействиями между соприкасающимися поверхностями тел и зависящие от их скоростей. Опыт показывает, что сила трения, действующая на тело, направлена в сторону, противоположную его скорости. Поэтому работа сил трения всегда отрицательна:

dA=FTP·dr = FTP·v·dt = _FTP·v·dt = _FTP·dr.(1.65)

Следовательно, при наличии в системе сил трения полная механическая энергия системы уменьшается, переходя в другие формы энергии, а силы, приводящие к потере (диссипации) энергии, называются диссипативными. Таким образом, силы трения являются диссипативными силами. При наличии силы трения закон Ньютона приобретает вид:

(1.66),

откуда

(1.67)

Если сила трения уравновешивает внешнюю силу, то тело будет двигаться равномерно и прямолинейно. Примером является свободное падение тела с учетом сопротивления воздуха, которое происходит с постоянной скоростью, зависящей от формы и размеров тела.

Рассмотрим трение скольжения (рис.). Силу тяжести P можно разложить на две составляющие F и N, соответственно параллельно и перпендикулярно направлению скольжения. Сила N , прижимающая тело к поверхности, увеличивает взаимодействие между трущимися поверхностями. Сила трения скольжения противоположна направлению силы , заставляющей тело скользить. В то время как сила F = P sin a, сила трения

FTP = м·N = м·P·cosб.(1.68)

где м -- коэффициент трения, зависящий от формы и состояния соприкасающихся поверхностей, а также от скорости движения.

1.8 Центр инерции

Импульс замкнутой механической системы имеет различные значения по отношению к различным инерциальным системам отсчета. Если система отсчета K' движется относительно системы K со скоростью V, то скорости частиц v'б и vб в этих системах связаны соотношением vб = v'б + V . Поэтому связь между значениями P и P' импульса в этих системах дается формулой:

(1.69)

или

(1.70)

Всегда можно подобрать такую систему отсчета K', в которой полный импульс обращается в нуль. Положив P' =0, находим, что скорость этой системы отсчета

.(1.71)

Если полный импульс механической системы равен нулю, то говорят, что она покоится относительно соответствующей системы координат. Скорость V имеет смысл скорости движения механической системы как целого с отличным от нуля импульсом. Связь между импульсом P и скоростью V системы как целого такая же, какая была бы между импульсом и скоростью одной материальной точки с массой, равной сумме масс в системе, .

Правая сторона формулы (1.71) может быть представлена как полная производная по времени от выражения:

(1.72)

Можно сказать, что скорость V системы как целого есть скорость перемещения в пространстве точки, радиус-вектор которой дается формулой (1.72). Такая точка является центром инерции системы.

Закон сохранения импульса замкнутой системы можно сформулировать как утверждение о том, что ее центр инерции движется прямолинейно и равномерно. Это есть обобщение закона инерции для свободной материальной точки.

Энергию покоящейся как целое механической системы обычно называют ее внутренней энергией Eвн. Она состоит из кинетической энергии движения частиц относительно друг друга и потенциальной энергии их взаимодействия. Полная же энергия системы, движущейся как целое со скоростью V,

(1.73)

1.9 Момент импульса. Момент силы

Мы видели, что механические свойства замкнутой системы не изменяются при ее параллельном переносе в пространстве. Это свойство является следствием однородности пространства, то есть отсутствием каких-либо выделенных точек пространства, физические свойства системы не должны изменяться также и при ее поворотах в пространстве, ввиду отсутствия в пространстве выделенных направлений, что означает изотропность пространства. Оказывается, что неизменность физических свойств системы при ее поворотах в пространстве также приводит к сохранению некоторой новой механической величины -- момента импульса системы.

Рассмотрим систему, состоящую из двух взаимодействующих частиц, на которую действуют также внешние силы. Уравнения движения частиц имеют вид:

1.74

Умножим первое уравнение векторно слева на r1, а второе на r2.

1.75

Поскольку, т.к. и F12 = _ F21, получим

1.76.

Сложим полученные уравнения:

.

Векторы r1 - r2 и F12 коллениарны, поэтому

.1.77.

Если система замкнута . Еще одна сохраняющаяся величина, которую называют моментом импульса.

Примеры:

Рис. Момент импульса материальной точки, движущейся по прямой, относительно оси О

M = mvr

Рис. Момент импульса точки, движущейся по окружности

Моментом силы называют1.77

N = r·F·sinб = F·1.78.

Рис. Момент силы. относительно точки О

; N = R·F·sinб.1.79

Рис. Пара сил

Продифференцируем 1.74 по времени:

1.80

Поступательное движение

Вращательное движение

Поступательное движение

Вращательное движение

Основной закон динамики

Работа и мощность

F?Дt = mv2 _ mv1

M?Дt = J?щ2 _ J?щ1

A=F•s

A=М•ц

F = m•a

M = J?е

N = F•v

N = M?щ

Закон сохранения

Кинетическая энергия

момента импульса

импульса

1.10 Вращательное движение твердого тела

Твердое тело -- это система материальных точек, расстояние между которыми остается неизменным при взаимодействии системы с другими телами. Движение твердого тела бывает поступательным и вращательным. Всякое движение твердого тела можно представить как сумму движения названных двух типов. Покажем это для случая плоского движения, т. е. такого, при котором все точки тела перемещаются в параллельных плоскостях. В качестве примера плоского движения возьмем качение цилиндра по плоскости (рис.).

Рис. Качение цилиндра по плоскости. Стрелками обозначены линейные скорости различных точек цилиндра.

Скорость каждой точки цилиндра может быть представлена в виде:

(1.81)

где v0 -- скорость поступательного движения, одинаковая для всех точек тела, а v' линейная скорость точки, обусловленная вращением тела и разная для разных точек тела. Линейная скорость точки с радиусом-вектором r:

.(1.82)

Таким образом, скорость точки при сложном движении тела имеет вид:

.(1.83)

Отсюда следует, что существуют точки, суммарная скорость которых равна нулю относительно неподвижной системы отсчета (рис. 46).

Скорость точки А цилиндра равна нулю относительно неподвижной системы отсчета

Геометрическое место точек, неподвижных в каждый рассматриваемый момент времени, образует прямую, которая является мгновенной осью вращения (рис.).

Проекции всех векторов r, лежащих на прямой 00', одинаковы. Прямая. 00' образует мгновенную ось вращения цилиндра.

В случае цилиндра, перемещающегося по плоскости, мгновенная ось совпадает с линией касания цилиндра плоскости. Видно, что мгновенная ось вращения не остается постоянной, а перемещается по мере движения тела. Скорости всех точек тела в каждый момент времени можно считать обусловленными вращением вокруг соответствующей мгновенной оси. Таким образом, плоское движение твердого тела можно рассматривать как ряд последовательных вращении вокруг мгновенных осей. В общем случае движение тела можно представлять как вращение вокруг мгновенной оси и одновременно поступательное движение вдоль этой же оси.

1.10.1 Момент инерции твердого тела

Рассмотрим твердое тело, которое может вращаться относительно некоторой оси (рис.). Момент импульса i-й точки тела относительно этой оси определяется формулой:

.(1.84)

Выражая линейную скорость точки через угловую скорость тела и используя свойства векторного произведения, получим

(1.85)

Спроектируем момент импульса на ось вращения: -- эта проекция определяет момент относительно этой оси. Получим

.(1.86)

где zi,- координата i--точки вдоль оси Z, a Ri, -- расстояние точки от оси вращения. Суммируя по всем частицам тела, получим момент импульса всего тела относительно оси вращения:

.(1.87)

Величина

(1.88)

является моментом инерции тела относительно оси вращения. Момент импульса тела относительно данной оси вращения принимает, таким образом, вид:

Mz = J·щ.(1.89)

Полученная формула аналогична формуле Pz = mVz для поступательного движения. Роль массы играет момент инерции, роль линейной скорости -- угловая скорость. Подставив выражение (1.89) в уравнение для момента импульса (2.74), получим

J·вz = Nz.(1.90)

где вz. -- проекция на ось вращения углового ускорения . Это уравнение эквивалентно по форме второму закону Ньютона.

В общем случае несимметричного тела вектор M не совпадает по направлению с осью вращения тела и поворачивается вокруг этой ocи вместе с телом, описывая конус. Из соображений симметрии ясно что для однородного тела, симметричного относительно оси вращения, момент импульса относительно точки, лежащей на оси вращения, совпадает с направлением оси вращения. В этом случае имеет место соотношение:

...

Подобные документы

  • Законы механики и молекулярной физики, примеры их практического использования. Сущность законов Ньютона. Основные законы сохранения. Молекулярно-кинетическая теория. Основы термодинамики, агрегатные состояния вещества. Фазовые равновесия и превращения.

    курс лекций [1,0 M], добавлен 13.10.2011

  • Механика, молекулярная физика и термодинамика. Перемещение точки и пройденный путь, скорость, вычисление пройденного пути, кинематика вращательного движения. Электризация тел, закон сохранения электрического заряда. Работа сил электростатического поля.

    шпаргалка [250,6 K], добавлен 29.11.2009

  • Механика и элементы специальной теории относительности. Кинематика и динамика поступательного и вращательного движений материальной точки. Работа и механическая энергия, законы сохранения в механике. Молекулярная физика и термодинамика, теплоемкость.

    курс лекций [692,1 K], добавлен 23.09.2009

  • Механическая работа и энергия. Закон сохранения энергии. Динамика материальной точки, движущейся по окружности. Следствия уравнения Бернулли. Молекулярная физика и термодинамика. Молекулярно-кинетическая теория газов. Первое начало термодинамики.

    учебное пособие [5,8 M], добавлен 13.10.2013

  • Механика, ее разделы и абстракции, применяемые при изучении движений. Кинематика, динамика поступательного движения. Механическая энергия. Основные понятия механики жидкости, уравнение неразрывности. Молекулярная физика. Законы и процессы термодинамики.

    презентация [2,0 M], добавлен 24.09.2013

  • Алгоритмы решения задач по физике. Основы кинематики и динамики. Законы сохранения, механические колебания и волны. Молекулярная физика и термодинамика. Электрическое поле, законы постоянного тока. Элементы теории относительности, световые кванты.

    учебное пособие [10,2 M], добавлен 10.05.2010

  • Первое начало термодинамики. Однозначность внутренней энергии как функции термодинамического состояния. Понятие энтропии. Второе начало термодинамики для равновесных систем. Третье начало термодинамики.

    лекция [197,4 K], добавлен 26.06.2007

  • Правила выполнения контрольных работ. Кинематика поступательного движения. Силы в механике. Закон сохранения импульса. Затухающие и вынужденные колебания. Волны, механизм их возникновения. Звук, его характеристики. Распределения Максвелла и Больцмана.

    методичка [253,8 K], добавлен 02.06.2011

  • Кинетическая энергия, работа и мощность. Консервативные силы и системы. Понятие потенциальной энергии. Закон сохранения механической энергии. Условие равновесия механических систем. Применение законов сохранения. Движение тел с переменной массой.

    презентация [15,3 M], добавлен 13.02.2016

  • Термодинамика - раздел физики об общих свойствах макроскопических систем с позиций термодинамических законов. Три закона (начала) термодинамики в ее основе. Теплоемкость газа, круговые циклы, энтропия, цикл Карно. Основные формулы термодинамики.

    реферат [1,7 M], добавлен 01.11.2013

  • Изучение истории формирования термодинамики как научной дисциплины на основе молекулярно-кинетической теории. Ознакомление с содержанием теоремы сохранения, превращения энергии (Гельмгольц, Майер, Джоуль) и законом возрастания энтропии (Клаузиус, Томсон).

    контрольная работа [44,4 K], добавлен 03.05.2010

  • Основные концепции классической механики Ньютона: принципы относительности и инерции, законы всемирного тяготения и сохранения, законы термодинамики. Прикладное значение классической механики: применение в пожарной экспертизе, баллистике и биомеханике.

    контрольная работа [29,8 K], добавлен 16.08.2009

  • Характеристика законов Ньютона и законов сил в механике. Инерциальные системы отсчета. Принцип относительности Галилея. Принцип суперпозиции. Фундаментальные взаимодействия. Система частиц. Центр масс (центр инерции). Алгоритм решения задач динамики.

    презентация [3,0 M], добавлен 25.05.2015

  • Работа идеального газа. Определение внутренней энергии системы тел. Работа газа при изопроцессах. Первое начало термодинамики. Зависимость внутренней энергии газа от температуры и объема. Основные способы ее изменения. Сущность адиабатического процесса.

    презентация [1,2 M], добавлен 23.10.2013

  • Передача энергии от одного тела к другому. Внутренняя энергия и механическая работа. Первое начало термодинамики. Формулировки второго закона термодинамики. Определение энтропии. Теоремы Карно и круговые циклы. Процессы, происходящие во Вселенной.

    реферат [136,5 K], добавлен 23.01.2012

  • Демонстрация первого закона Ньютона о сохранении телом состояния покоя или равномерного движения при скомпенсированных действиях на него других тел. Формулирование и математическое представление основных законов, лежащих в основе классической механики.

    презентация [588,4 K], добавлен 05.10.2011

  • Теоремы об изменении кинетической энергии для материальной точки и системы; закон сохранения механической энергии. Динамика поступательного и вращательного движения твердого тела. Уравнение Лагранжа; вариационный принцип Гамильтона-Остроградского.

    презентация [1,5 M], добавлен 28.09.2013

  • Колебания - один из самых распространенных процессов в природе и технике. Процесс распространения колебаний среди множества взаимосвязанных колебательных систем называют волновым движением. Свойства свободных колебаний. Понятие волнового движения.

    презентация [5,0 M], добавлен 13.05.2010

  • Анализ механической работы силы над точкой, телом или системой. Характеристика кинетической и потенциальной энергии. Изучение явлений превращения одного вида энергии в другой. Исследование закона сохранения и превращения энергии в механических процессах.

    презентация [136,8 K], добавлен 25.11.2015

  • Изучение кинематики и динамики поступательного движения на машине Атвуда. Изучение вращательного движения твердого тела. Определение момента инерции махового ко-леса и момента силы трения в опоре. Изучение физического маятника.

    методичка [1,3 M], добавлен 10.03.2007

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.