Механика разрушения

Представления древних о прочности. Сущность современных представлений о физике процесса разрушения. Теоретическая и реальная прочность твердых тел. Классические схемы хрупкого, квазихрупкого, вязкого разрушения. Основные механизмы образования трещин.

Рубрика Физика и энергетика
Вид учебное пособие
Язык русский
Дата добавления 21.01.2015
Размер файла 664,3 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

По характеру разрушения можно выделить четыре класса (причем некоторые из них могут состоять из подклассов):

1. Упругая деформация.

2. Пластическая деформация.

3. Разрыв, или разделение на части.

4. Изменение материала: (А) металлургическое; (В) химическое; (C) ядерное.

По причинам разрушения можно определить четыре класса:

1. Нагрузки: (А) установившиеся; (В) неустановившиеся; (С) циклические; (D) случайные.

2. Время процесса: (А) очень малое; (В) малое; (С) продолжительное.

3. Температуры: (А) низкие; (В) комнатные; (С) повышенные; (D) установившиеся; (Е) неустановившиеся; (F) циклические; (G) случайные.

4. Воздействия окружающей среды: (А) химические; (В) ядерные.

По месту разрушения существует два типа разрушения: (А) объемное; (В) поверхностное.

Для точного описания какого-либо вида разрушения необходимо выбрать характеристики процесса из указанного перечня, не упуская из виду ни одного из трех основных факторов. Например, для описания разрушения в качестве характерного проявления можно выбрать пластическую деформацию, в качестве причин -- установившуюся нагрузку и комнатную температуру, а в качестве типа -- объемный тип разрушения. Таким образом, указанный вид разрушения можно определить как объемное пластическое деформирование под действием установившейся нагрузки при комнатной температуре. Такой вид разрушения обычно называется течением. Отметим, однако, что термин течение обычно определяет не только указанный вид разрушения: этот термин имеет более общий смысл.

Используя перечисленные классы и подклассы трех основных факторов, определяющих вид разрушения, можно дать определение многих других видов разрушения. Приведенный перечень характеристик процесса разрушения нуждается в дополнительном пояснении и конкретизации, особенно применительно к наиболее опасным видам разрушения. Ниже перечислены двадцать три таких вида разрушения.

Нижеследующий перечень содержит наиболее часто встречающиеся на практике виды разрушения. Глядя на этот перечень, можно заметить, что некоторые виды разрушения являются простым процессом, в то время как другие представляют собой сложные явления. Например, в этом перечне в качестве видов разрушения указаны коррозия и усталость, а наряду с этим в качестве еще одного вида разрушения указана коррозионная усталость. Это сделано потому, что и коррозия, и усталость часто оказывают существенное влияние на поведение конструкций, причем механизмы их действия взаимосвязаны. Это означает, например, что при коррозионной усталости коррозия ускоряет процесс усталости, а действие циклических усталостных нагрузок в свою очередь ускоряет процесс коррозии. В приведенном перечне содержатся все обычно наблюдаемые виды механического разрушения.

1. Упругая деформация, вызванная действием внешних нагрузок и (или) температуры.

2. Текучесть.

3. Бринелирование.

4. Вязкое разрушение.

5. Хрупкое разрушение.

6. Усталость: (А) многоцикловая; (В) малоцикловая; (С) термическая; (D) поверхностная; (Е) ударная; (F) коррозионная; (Q) фреттинг-усталость.

7. Коррозия: (А) химическая; (В) электрохимическая; (С) щелевая; (D) точечная (питтинговая); (Е) межкристаллическая; (F) избирательное выщелачивание; (G) эрозионная; (Н) кавитационная; (I) водородное повреждение; (J) биологическая; (К) коррозия под напряжением.

8. Износ: (А) адгезионный; (В) абразивный; (С) коррозионный; (D) поверхностный усталостный; (Е) деформационный; (F) ударный; (G) фреттинг-износ.

9. Разрушения при ударе: (А) разрыв при ударе; (В) деформирование при ударе; (С) ударный износ; (D) ударный фреттинг; (Е) усталость при ударе.

10. Фреттинг: (А) фреттинг-усталость; (В) фреттинг-износ; (С) фреттинг-коррозия.

11. Ползучесть.

12. Термическая релаксация.

13. Разрыв при кратковременной ползучести.

14. Тепловой удар.

15. Заедание и схватывание.

16. Откол.

17. Радиационное повреждение.

18. Выпучивание.

19. Выпучивание при ползучести.

20. Коррозия под напряжением.

21. Коррозионный износ.

22. Коррозионная усталость.

23. Ползучесть с усталостью.

Ниже дается краткое определение с соответствующими пояснениями видов механического разрушения.

Упругая деформация, вызванная действием внешних нагрузок и (или) температур. Этот вид разрушения имеет место, когда упругая (обратимая) деформация элемента, возникающая при действии эксплуатационных нагрузок и температур, становится настолько большой, что элемент утрачивает способность выполнять предназначенную ему функцию.

Текучесть имеет место, когда пластическая (необратимая) деформация пластичного элемента, возникающая при действии эксплуатационных нагрузок, становится настолько большой, что элемент утрачивает способность выполнять предназначенные ему функции.

Бринелирование, или разрушение вдавливанием, происходит, когда статические усилия в месте контакта криволинейных поверхностей приводят к появлению локальных пластических деформаций у одного или у обоих соприкасающихся элементов, в результате чего происходит необратимое изменение формы поверхности. Например, если шарикоподшипник статически нагружен так, что шарик вдавливается в обойму, пластически деформируя ее, то поверхность обоймы становится волнистой. При дальнейшем использовании подшипника могут возникнуть недопустимые вибрации, шум и перегрев, т. е. налицо его разрушение.

Вязкое разрушение наблюдается, когда пластическая деформация пластичного элемента достигает такой величины, что он разделяется на две части. Разрушение происходит в результате процесса зарождения, слияния и распространения внутренних пор, поверхность разрушения при этом гладкая и волнистая.

Хрупкое разрушение происходит, когда упругая деформация элемента из хрупкого материала достигает такой величины, что разрушаются первичные межатомные связи и элемент разделяется на две или более части. Внутренние дефекты и образующиеся трещины быстро распространяются до полного разрушения; поверхность разрушения при этом неровная, зернистая.

Термин усталость применяется для обозначения разрушения в виде неожиданного внезапного разделения детали или элемента машины на две или более части в результате действия в течение некоторого времени циклических нагрузок или деформаций. Разрушение происходит путем зарождения и распространения трещины, которая после достижения некоторого критического размера становится неустойчивой и быстро увеличивается, вызывая разрушение. Нагрузки и деформации, при которых обычно происходит усталостное разрушение, намного ниже тех, которые приводят к разрушению в статических условиях. Когда величины нагрузок и перемещений таковы, что разрушение происходит более чем через 10 000 циклов, явление обычно называется многоцикловой усталостью. Когда же величины нагрузок и перемещений таковы, что разрушение происходит менее чем через 10 000 циклов, явление называется малоцикловой усталостью.

Когда циклические нагрузки и деформации возникают в детали в результате действия циклически меняющегося температурного поля, явление обычно называется термической усталостью. Разрушение, называемое поверхностной усталостью, обычно происходит при наличии вращающихся контактирующих поверхностей. Проявляется оно в виде питтинга, растрескивания и выкрашивания контактирующих поверхностей в результате действия контактных напряжений, под влиянием которых на небольшой глубине у поверхности возникают максимальные по величине циклические касательные напряжения. Эти напряжения приводят к возникновению трещин, которые выходят на поверхность, при этом некоторые частицы материала отделяются. Это явление часто считается разновидностью износа. Ударная усталость, коррозионная усталость и фреттинг-усталость будут описаны ниже.

Коррозия -- термин, используемый для обозначения широкого класса видов разрушения, при которых деталь или элемент машины утрачивает способность исполнять свою функцию из-за нежелательной порчи материала в результате химического или электрохимического взаимодействия с окружающей средой. Коррозионное разрушение часто проявляется во взаимодействии с другими видами разрушения, такими, как износ или усталость. Среди многих типов коррозии отметим следующие. Химическая коррозия представляет собой, по-видимому, наиболее общий тип коррозии вследствие непосредственного контакта поверхности детали с коррозионной средой. Химическая коррозия происходит более или менее равномерно по всей открытой поверхности детали. Электрохимическая коррозия происходит, когда два разнородных металла образуют часть электрической цепи, замыкаемой раствором или пленкой электролита или коррозионной средой.

Щелевая коррозия -- в значительной степени локализованный быстропротекающий процесс в щелях, трещинах или стыках, т. е. в местах, где задерживаются малые количества раствора, соприкасающегося с корродирующим металлом. Точечная (питтинговая) коррозия представляет собой локализованные воздействия, в результате которых происходит образование углублений и ямок на поверхности металла. Межкристаллическая коррозия характеризуется локальными воздействиями на границах зерен некоторых медных, хромовых, никелевых, алюминиевых, магниевых и цинковых сплавов после неправильной термообработки или сварки. Образование локальных гальванических ячеек, в которых осаждаются продукты коррозии, приводит к существенному снижению прочности материала в результате межкристаллической коррозии.

Избирательное выщелачивание представляет собой коррозионный процесс, в результате которого из сплава удаляется какой-либо элемент. Примерами могут служить процессы обесцинкования латуни и графитизации чугуна. Эрозионная коррозия -- это быстропротекающий химический процесс, при котором в результате воздействия абразивных веществ или потоков вязких материалов на поверхности материала постоянно в месте контакта с коррозионной средой обнажается свежий незащищенный материал. Кавитационная коррозия наблюдается, когда под влиянием давления пара пузырьки и каверны в жидкости лопаются у поверхности сосуда давления, в результате чего удаляются частицы материала и открывается доступ коррозионной среде к свежему, незащищенному материалу.

Водородное повреждение, хотя само и не является какой-либо разновидностью коррозии, вызывается ею. К этому виду повреждения относятся насыщение водородом, водородное охрупчивание и обезуглероживание. Биологическая коррозия представляет собой процесс коррозии вследствие активности живых организмов, а именно процессов поглощения ими пищи и выделения отходов. Отходами являются вызывающие коррозию кислоты и гидроокиси. Коррозия под напряжением -- очень важная разновидность коррозии (она будет отдельно рассмотрена ниже).

Износ является нежелательным процессом постепенного изменения размеров вследствие удаления отдельных частиц с контактирующих поверхностей при их движении, обычно скользящем, относительно друг друга. Износ является в основном результатом механического действия. Это сложный процесс, точнее даже ряд различных процессов, которые могут протекать как независимо, так и взаимосвязано. Результатом этих процессов является удаление материала с контактирующих поверхностей вследствие сложного взаимодействия локальных сдвигов, вдавливаний, сваривания материала, разрывов и других механизмов.

Адгезионный износ происходит в результате действия высоких локальных давлений, сваривания между собой шероховатостей поверхностей, последующей пластической деформации, возникающей при их относительном перемещении, разрушения локальных сцеплений шероховатостей, удаления или переноса металла. При абразивном износе частицы удаляются с поверхности в результате режущего или царапающего действия неровностей более твердой из контактирующих поверхностей или твердых частиц, задержавшихся между поверхностями. Когда одновременно возникают условия как для адгезионного, так и для абразивного износа и коррозии, эти процессы взаимодействуют между собой и происходит коррозионный износ.

Поверхностный усталостный износ представляет собой изнашивание вращающихся или скользящих относительно друг друга криволинейных поверхностей. При этом в результате действия циклических касательных напряжений на небольшой глубине у поверхности возникают микротрещины, выходящие на поверхность, откалываются макрочастицы материала и на поверхности образуются ямки. Деформационный износ происходит в результате повторного пластического деформирования изнашиваемых поверхностей, приводящего к образованию сетки трещин, при росте и объединении которых образуются частицы износа. Деформационный износ часто наблюдается при действии ударных нагрузок. Ударный износ имеет место при повторном упругом деформировании в процессе действия ударных нагрузок, образовании сетки трещин, которые растут так же, как при поверхностной усталости. Фреттинг-износ описан ниже.

Разрушение при ударе происходит, когда в результате действия неустановившихся нагрузок в детали возникают такие напряжения или деформации, что деталь уже не в состоянии выполнить предназначенную ей функцию. Разрушение происходит в результате взаимодействия волн напряжений и деформаций, являющихся следствием динамического или внезапного приложения нагрузок. Взаимодействие волн может приводить к возникновению локальных напряжений и деформаций, во много раз превышающих возникающие при статическом приложении тех же самых нагрузок. Если величины напряжений и деформаций таковы, что происходит разделение детали на две или более частей, то налицо разрыв при ударе. Если удар приводит к возникновению недопустимых упругих или пластических деформаций, такое разрушение называется деформированием при ударе. Если при повторных ударах возникают циклические упругие деформации, в результате чего появляется сетка усталостных трещин, при росте которых наблюдается описанное ранее явление поверхностной усталости, то процесс называется ударным износом.

Если в результате малых относительных поперечных смещений двух поверхностей при ударе, которые могут вызываться поперечными деформациями или действием случайных малых боковых составляющих скоростей, происходит фреттинг, то разрушение называется ударным фреттингом. Усталость при ударе наблюдается, когда разрушение происходит при повторном действии ударных нагрузок вследствие образования и распространения усталостных трещин.

Фреттинг может происходить на поверхности контакта двух твердых тел, прижатых друг к другу нормальной силой и совершающих относительно друг друга циклические движения малой амплитуды. Фреттинг обычно имеет место в местах соединений, там, где движения не должно быть, но в результате действия вибрационных нагрузок или деформаций незначительные циклические смещения все-таки есть. Обычно отколовшиеся при фреттинге частицы материала задерживаются между контактирующими поверхностями, поскольку относительные смещения их малы.

Фреттинг-усталость представляет собой преждевременное усталостное разрушение детали машины, на которую действуют циклические нагрузки или деформации в условиях, способствующих фреттингу. Поверхностные повреждения и микротрещины, появляющиеся в результате фреттинга. играют роль зародышей усталостных трещин, в результате роста которых усталостное разрушение происходит при таких нагрузках, которые в других условиях не вызывали бы разрушения. Фреттинг-усталость - очень опасный и коварный вид разрушения, поскольку фреттинг обычно происходит в местах соединений, не доступных для наблюдения, и приводит к преждевременному или даже неожиданному (внезапному) катастрофическому усталостному разрушению.

Фреттинг-износ наблюдается, когда изменения размеров контактирующих деталей в результате фреттинга становятся недопустимо большими или такими, что появляются концентраторы напряжений и локальные напряжения превышают допустимый уровень. Фреттинг-коррозия происходит, когда в результате фреттинга свойства материала детали ухудшаются настолько, что она не может выполнять своих функций.

Разрушение в результате ползучести происходит, когда пластическая деформация элемента машины или конструкции, накопленная в течение некоторого времени действия напряжений и температуры, приводит к изменениям размеров, вследствие которых элемент не может удовлетворительно выполнять предназначенную ему функцию. Процесс ползучести, как правило, можно разделить на три стадии: (1) неустановившуюся, или первичную, ползучесть, во время которой скорость деформации уменьшается; (2) установившуюся, или вторичную, ползучесть, во время которой скорость деформации практически постоянна, и (3) третичную ползучесть, при которой скорость деформации ползучести увеличивается (часто довольно быстро) вплоть до разрушения. Такой вид разрушения часто называется разрывом при ползучести. Произойдет или нет такое разрушение -- зависит от характера изменения во времени напряжений и температуры.

Термическая релаксация наблюдается, когда в процессе ползучести, приводящей к релаксации предварительно напряженной или деформированной детали, ее размеры изменяются так, что деталь уже не может выполнять предназначенной ей функции. Например, если предварительно напряженные болты сосуда давления, работающего в условиях высоких температур, релаксируют вследствие ползучести так, что нагрузка от максимального давления превышает предварительную нагрузку и герметичность соединения нарушается, говорят, что болты разрушаются вследствие термической релаксации.

Разрыв при кратковременной ползучести тесно связан с процессом ползучести, однако при этом зависимость напряжений и температуры от времени такова, что элемент разделяется на две части. При этом напряжения и температура, как правило, таковы, что период установившейся ползучести очень непродолжителен или совсем отсутствует.

Тепловой удар происходит, когда градиенты возникающего в детали температурного поля настолько велики, что вследствие перепадов температурных деформаций начинается текучесть или разрушение.

Заедание наблюдается в случае, когда на две скользящие друг по другу поверхности действуют такие нагрузки и температуры, а скорость скольжения, смазка и условия окружающей среды таковы, что в результате значительной пластической деформации шероховатостей поверхностей, их сваривания, отламывания и царапающего действия происходит существенная деструкция поверхности и перенос металла с одной поверхности на другую. Заедание можно считать очень интенсивным процессом адгезионного износа. Когда указанные процессы приводят к значительному ослаблению соединения или, наоборот, к схватыванию, говорят, что соединение разрушается в результате заедания. Схватывание является, по существу, интенсивным процессом заедания, при котором контактирующие детали практически свариваются и их относительное перемещение становится невозможным.

Разрушение отколом происходит, когда от поверхности детали самопроизвольно отделяется часть материала, в результате чего нормальная работоспособность элемента машины утрачивается. Например, бронеплита разрушается в результате откола, когда при ударе снаряда о наружную поверхность бронезащиты в плите возникают волны напряжений, приводящие к отколу с внутренней стороны части материала, которая сама становится смертоносным снарядом. Другим примером разрушения отколом может служить разрушение подшипников качения или зубьев шестерен вследствие описанного ранее явления поверхностной усталости.

Разрушение вследствие радиационного повреждения означает, что при радиационном облучении произошли такие изменения свойств материала, что деталь уже не может выполнить своих функций. Обычно эти изменения связаны с потерей пластичности в результате облучения и служат причиной начала процесса разрушения того или иного вида. Эластомеры и полимеры обычно более подвержены радиационному повреждению, чем металлы, причем прочностные характеристики последних после радиационного облучения иногда улучшаются, хотя пластичность, как правило, уменьшается.

Разрушение выпучиванием наблюдается, когда при некоторой критической комбинации величины и (или) места приложения нагрузки, а также формы и размеров детали ее перемещения или прогибы внезапно резко увеличиваются при малом изменении нагрузки. Такое нелинейное поведение приводит к разрушению выпучиванием, если потерявшая устойчивость деталь уже не может выполнять своих функций.

Разрушение вследствие выпучивания при ползучести происходит, когда по истечении некоторого времени в результате процесса ползучести возникает неустойчивое состояние, т. е. нагрузки и геометрические параметры детали становятся такими, что теряется устойчивость и происходит разрушение.

Разрушение в результате коррозии под напряжением наблюдается, когда действующие напряжения приводят к возникновению локальных поверхностных трещин, располагающихся обычно вдоль границ зерен, в детали, находящейся в коррозионной среде. Часто образование трещин инициирует начало процессов разрушения других видов. Разрушение в результате коррозии под напряжением представляет собой очень опасный вид коррозионного разрушения, поскольку ему подвержены многие металлы: Например, разнообразные чугуны, стали, нержавеющие стали, медные и алюминиевые сплавы подвержены коррозионному растрескиванию под напряжением в некоторых коррозионных средах.

Разрушение вследствие коррозионного износа является сложным видом разрушения, при котором неблагоприятные последствия коррозии и износа приводят совместно к потере работоспособности детали. В процессе коррозии часто образуются твердые абразивные частицы, которые ускоряют изнашивание, а в процессе изнашивания в свою очередь с поверхности постоянно удаляются защитные слои и обнажается свежий металл, что ускоряет коррозию. Взаимное влияние этих процессов друг на друга существенно повышает опасность разрушения.

Коррозионная усталость представляет собой сложный вид разрушения, при котором совместно сказываются неблагоприятные эффекты коррозии и усталости, приводящие к разрушению. В процессе коррозии на поверхности металла часто образуются ямки, служащие концентраторами напряжений. В результате концентрации напряжений процесс усталостного разрушения ускоряется. Кроме того, трещины в хрупком слое продуктов коррозии служат зародышами усталостных трещин, распространяющихся в основной металл. С другой стороны, в результате действия циклических напряжений или деформаций происходит растрескивание и отслаивание продуктов коррозии, т. е. открывается доступ коррозионной среде к свежему металлу. Таким образом, оба процесса ускоряют друг друга, и опасность разрушения может быть очень большой.

Разрушение вследствие ползучести с усталостью является видом разрушения, происходящего в условиях, вызывающих одновременно и усталость, и ползучесть. Взаимодействие процессов ползучести и усталости изучено пока недостаточно, но, по-видимому, оно синергично.

Еще одна распространенная классификация - классификация Я.Б.Фридмана. Первый классификационный признак в этой таблице - характер силового воздействия - является наиболее формальным, но в то же время он достаточно четко делит процессы разрушения на несколько видов, которые следует рассматривать раздельно. В пределах каждого из этих видов разрушения, конечно, необходимо подразделение по другим используемым в классификации признакам. Так, кратковременное однократное статическое разрушение может быть хрупким и пластическим (вязким), соответственно может изменяться ориентировка макроскопической поверхности разрушения и размер зоны пластической деформации. Трещина может проходить преимущественно по телу или, наоборот, по границам зерен; могут быть зафиксированы различные стадии процесса (начальное, развитое, полное разрушение), возможно одновременное воздействие среды и т.д.

Возможны и другие классификации видов разрушения.

Классификационный признак

Разрушение

Характер силового воздействия:

нагрузка в основном монотонно изменяется, периода постоянной нагрузки нет или, он мал относительно периода разрушения

период неменяющейся нагрузки соизмерим с периодом разрушения

нагрузка периодически и многократно изменяется в процессе разрушения

Кратковременное однократное статическое

Длительное однократное статическое и замедленное

Усталостное

Ориентировка макроскопической поверхности разрушения при разных способах. нагружения (растяжение, изгиб, сжатие, кручение, вдавливание и т. п.):

макроскопическая поверхность разрушения перпендикулярна направлению +max или +max при крайне малом пластически деформированном объеме в зоне разрушения

поверхность наклонена под углом примерно 45° к направлению +max

Отрыв

Срез

Локальность разрушения, оцениваемая по соотношению размеров разрушаемой зоны и структурных элементов

Субмикроскопическое третьего рода; микроскопическое второго рода; макроскопическое первого рода

Пластическая деформация, предшествующая разрушению

Хрупкое; макрохрупкое, но микропластическое; пластическое

Структурное расположение поверхности разрушения

Внутрикристаллитное; межкристаллитное; смешанное

Степень развития разрушения

Начальное - поверхность трещины значительно меньше площади сечения тела; развитое, в том числе полное

Влияние внешней среды

Вызванное понижением поверхностной энергии (наличие легкоплавких покрытий); вызванное коррозией; связанное с облучением

Механизмы, микромеханизмы, карты разрушения

Во всех случаях процессы повреждения и разрушения определяются материалом, напряженно-деформированным состоянием и средой. Необходимо идентифицировать микромеханизмы, способные вызвать разрушение, и определить области температур и напряжений, в которых эти механизмы действуют.

В макроскопических теориях прочности различают два вида разрушения: 1) отрыв в результате действия растягивающих напряжений и 2) срез под действием касательных напряжений.

В таблице (рис. 21) представлены соответствующие схемы для ряда испытаний.

Рис. 21. Схемы разрушения путем отрыва и среза при различных механических испытаниях (по Я.Б.Фридману)

Для чистого железа, ферритных и аустенитных сталей, тугоплавкой керамики, а также льда можно выделить семь основных микромеханизмов разрушения: 1) раскол (cleavage), тип 1; 2) раскол, тип 2; 3) раскол, тип 3; 4) вязкое разрушение; 5) разрушение в результате внутризеренной ползучести (transgranular creep fracture); 6) разрушение в результате межзеренной ползучести (intergranular creep fracture); 7) пластический разрыв (rupture).

При особых обстоятельствах существуют еще два микромеханизма разрушения: динамический и диффузионный.

Важнейшей задачей является установление доминирующего механизма при статическом или динамическом нагружении, особенно при одновременном воздействии временных и циклических процессов, что, например, типично для суперпозиции ползучести и усталости. Все детали и конструкции в целом содержат некоторые геометрические дефекты, например, пустоты (поры), маркировочные знаки и т.д. Все они вызывают концентрацию напряжений при нагружении.

В таких локальных областях зарождаются и начинают расти микроскопические дефекты. С другой стороны, большие трещины могут зарождаться уже в процессе обработки, например, при сварке из-за непроваров или возникновения остаточных напряжений. В результате, когда конструкция или деталь, содержащая такие врожденные дефекты, подвергается нагружению, материал в области вершины трещины испытывает значительные деформации и трещины начинают распространяться по одному из микромеханизмов, которые будут подробно рассмотрены ниже.

Следует отметить, что чистота материала, вариации легирования, процесс изготовления, размер зерна, текстура лишь незначительно влияют на границы областей разрушения, показанные на прилагаемых картах механизмов. Конструкторы должны, помимо прочего, иметь в виду, что при прогнозировании долговечности и поведения реальных деталей на основе результатов лабораторных испытаний особое внимание следует удалять информации о режимах, так как, например, при высоких напряжениях и температурах активны одни механизмы, а при низких - другие. Также необходимо учитывать возможность независимого накопления двух видов повреждений в случае суперпозиции процессов, зависящих от времени и циклического нагружения.

Механизмы разрушения. Разрушение (Separation) материала происходит в результате зарождения и роста (или увеличения числа) дефектов типа дислокации, пор и трещин. Эти дефекты могут приводить к хрупкому или вязкому разрушению, усталости, разрушению в процессе ползучести, причем в одних случаях разрушение носит межзеренный, а в других - внутризеренный характер. Поэтому весьма важно уметь выделить доминирующий механизм.

На рис. 22 показан широкий спектр механизмов разрушения при низких и высоких температурах - от чисто хрупкого до чисто пластического.

Рис. 22. Классификационная схема механизмов разрушения:

1 - раскол; 2 - хрупкое межзеренное разрушение; 3 - вязкий рост пор;

4 -внутризеренный рост пор; 5 - межзеренный рост пор; 6 - разрыв в результате пластического сужения или среза; 7 - межзеренная ползучесть; 8 - порообразование;

9 - клиновидные трещины; 10 - рост пор но механизму степенной ползучести;

11 -разрыв в результате сужения при динамическом возврате или рекристаллизации.

В области низких температур (Т < 0,25 Тпл) пластическое течение больше зависит от напряжения, чем от времени. При высоких температурах на деформацию в основном влияют температура и время, доминируют процессы ползучести.

Хрупкое поведение. Хрупкое разрушение может происходить либо по телу зерна (раскол), либо по границам зерен. В этих случаях разрушающее напряжение ниже предела текучести материала.

По мере повышения температуры и снижения напряжения течения возникает пластическая деформация, но разрушение может быть связано только с микропластическими явлениями - образованием пор или клиновидных трещин, которые затем распространяются по границам зерен. Эти процессы требуют для своего развития значительного времени, и поэтому такой тип хрупкого поведения рассматривается как межзеренное разрушение при ползучести.

Пластическое поведение. При низких температурах могут быть оперативны несколько систем скольжения, что особенно характерно для металлов с г-ц.к.-решеткой - Ag, Au, Pt, Al, Cu, Pb. В этом случае раскол становится невозможным и разрушение происходит за счет разрыва в результате сужения поперечного сечения до нуля при образовании шейки (сужение до точки, necking) или сдвига (сужение до лезвия, shearing off). При высоких температурах могут иметь место динамический возврат или рекристаллизация, которые приводят к накоплению деформаций и окончательному разрушению в результате уменьшения сечения, несущего нагрузку.

Переходная зона. Между двумя описанными крайними случаями хрупкого и вязкого разрушения возможны различные случаи ограниченного пластического течения, которое вызывает рост внутризеренных или межзеренных пор.

Микромеханизмы. На представленных ниже картах показаны области, в которых доминирует тот или иной микромеханизм. По осям этих карт откладывается нормализованная (по Тпл температура и нормализованные (по модулю нормальной упругости Е, соответствующему температуре) напряжения.

За верхнюю границу напряжения принимается идеальная (теоретическая) прочность материала, примерно равная 0.1Е.

Рассматриваемые далее границы действия механизмов являются довольно условными, так как во многих случаях одновременное действие нескольких механизмов приводит к разрушению по смешанному типу.

Типы микромеханизмов

Раскол (тип 1). При достаточно низкой температуре пластическое течение снижается до минимума и разрушение происходит в результате быстрого развития врожденного (inherent) дефекта размером 2а. Разрушающее напряжение при этом

,

где Gс - вязкость разрушения, 2а - размер дефекта или наиболее длинной трещины.

Раскол (тип 2). Если ни один из дефектов не достигает критического размера, то в результате микропластической деформации (скольжения или двойникования) могут образоваться мелкие трещины, и разрушающее напряжение будет равно

,

где d - размер зерна. Отметим, что здесь f > y (y - напряжение микротечения) и деформация при разрушении f < 1 %.

Раскол (тип 3). С повышением температуры и снижением напряжения текучести могут развиваться значительные пластическое деформации (до 1--10 %), прежде чем произойдет внезапное катастрофическое разрушение в результате раскола. Пластическая деформация в этом случае вызывает возрастание Gс , а следовательно и f , в результате чего трещина притупляется, что может привести к стабильному росту трещины без катастрофического внезапного разрушения.

Весьма незначительные изменения текстуры, содержания примесей и температуры могут способствовать развитию либо внутри-, либо межзеренного разрушения; в дальнейшем будем называть первый случай расколом (типы 1, 2, 3), а второй - хрупким межзеренным разрушением (BIF, Brittle intergranular fracture, 1, 2, 3).

Вязкое разрушение. Вязкое разрушение начинается с зарождения и быстрого роста внутризеренных пор. Отсюда следует, что оно определяется размером дефектов (поры, включения) и расстоянием между ними. Их росту способствует концентрация напряжений; наблюдающееся при этом слияние пор в области локального сужения ведет к разрушению.

Вязкое разрушение обычно идет по телу зерна, но если включения выделяются преимущественно по границам зерен, становится возможным волокнистое вязкое межзеренное разрушение.

Твердые включения в мягкой матрице вызывают искажения локальных полей напряжений, и создающиеся концентрации напряжений могут привести к разрушению включения или к его отделению (отрыву) от матрицы. Возникшая таким способом пора первоначально удлиняется со скоростью примерно в 2 раза превышающей скорость удлинения образца, но эта скорость постепенно уменьшается по мере того, как пора принимает эллипсоидальную форму. Окончательное разрушение происходит, когда высота эллипсоида 2h приближается к величине расстояния между порами 2l в результате локального сужения пластичной матрицы между порами. Исходя из этих предпосылок, можно показать, что деформация при разрушении пластичного материала равна

,

где f - объемная доля пор, - постоянная материала, близкая к 1, С - разность скоростей деформации поры и матрицы.

Внутризеренное разрушение при ползучести. Если Т > 0,3 Tпл, металл деформируется посредством ползучести, развитие которой зависит от времени; напряжение течения зависит при этом от деформации. Простейшее выражение для скорости деформации имеет вид (степенная ползучесть, power low creep), где В и п -- материальные постоянные; поры зарождаются в этом случае внутри зерен. Однако вследствие того, что пластическое течение при температурах Т > 0,3 Тпл зависит от времени, оно может происходить при весьма низких напряжениях, и процесс зарождения пор оказывается длительным. Более того, может замедляться также и процесс слияния пор. В итоге разрушение оказывается зависящим от времени.

Межзеренное разрушение при ползучести. В условиях долговременного действия низкого напряжения и, соответственно, при больших долговечностях может развиваться межзеренное разрушение. В такой ситуации проскальзывание по границам способствует зарождению пор и клиновидных трещин, нормальных к направлению действия растягивающего напряжения. Поведение материала в таком режиме с хорошим приближением может быть описано уравнением , где - долговечность (время до разрушения), - скорость установившейся ползучести. В основе этого соотношения лежит предположение о том, что разрушение происходит в результате степенной ползучести, которая контролирует зернограничное скольжение и, следовательно, зарождение пор, которое при этом занимает основную долю жизни металла. Если же основную долю жизни занимает процесс роста пор, то это контролируется диффузионными процессами, которые в свою очередь определяются степенной ползучестью окружающей матрицы.

Разрыв. Если все другие моды разрушения исключены, возможно значительное пластическое сужение площади поперечного сечения. Зарождение и слияние пор может оказаться подавленным динамическим возвратом и рекристаллизацией. Деформация локализуется в шейке или в полосах сдвига и продолжается до тех пор, пока площадь поперечного сечения не приблизится к нулю.

Динамическое разрушение. Это - мгновенное разрушение в результате быстрого приложения нагрузки, вызывающего образование в материале упругих и пластических волн.

Чисто диффузионное разрушение. Это - предельный случай разрушения при межзеренной ползучести, имеющий место при низких напряжениях и высоких температурах, когда становится возможным долговременная диффузия дислокации. Этот случай разрушения возможен лишь в определенных случаях.

Карты разрушения

На рис. 23, 24 представлены примеры карт механизмов разрушения для разных материалов.

Рис. 23. Карта механизмов разрушения никеля технической чистоты (г.ц.к.-решетка): 1 - динамическое разрушение; 2 - вязкое внутризеренное разрушение;

3 - внутризеренная ползучесть; 4 - разрыв (при динамической рекристаллизации);

5 -разрушение в результате внутризеренной ползучести; б - клиновидные трещины; 7- поры

Рис. 24. Карта механизмов разрушения вольфрама технической чистоты (о.ц.к.-решетка); d=100 мкм: 1 - динамическое разрушение; 2 - раскол типа 1; 3 - раскол типа 2 или BIF 2; 4 - раскол типа 3 или BIF3; 5 - вязкое разрушение; 6 - внутризеренное разрушение в результате ползучести; 7 - разрыв; 8 - поры; 9 - клиновидные трещины; 10 - межзеренное разрушение в результате ползучести

Области разрушения, характеризуемые разными микромеханизмами, определяются обычно путем фрактографических исследований, но в некоторых случаях они могут быть найдены по резкому изменению и . Карты справедливы лишь для уровней напряжений, соответствующих скорости деформации ~106 с-1, т.е. для долговечностей порядка 10-6 с, так как при более жестких условиях характерно разрушение за счет динамической деформации, при которой через металл распространяются упругие и пластические волны. Это не следует смешивать с быстрым разрушением при низких напряжениях материалов, имеющих врожденные острые и крупные дефекты.

Металлы г.ц,к. Карта (рис. 23), построенная на основе испытаний на растяжение никеля технической чистоты, является типичной для многих г.ц-к.-сплавов и металлов.

На карте выделено четыре области механизмов разрушения. При высоких напряжениях и низких температурах разрушение носит вязкий характер. Повышение температуры приводит к ползучести и уменьшению разрушающего напряжения. Быстрое разрушение происходит за счет внутризеренной ползучести аналогично вязкому разрушению, при этом мода пластической деформации изменяется от скольжения до степенной ползучести. Однако само разрушение происходит в результате роста и объединения пор. При более низких напряжениях и, следовательно, больших долговечностях доминируют процессы межзеренной ползучести, причем можно выделить две подобласти, в одной из которых основной причиной разрушения является зарождение клиновидных трещин, а в другой - преимущественное образование пор по границам зерен. Для обеих форм межзеренной ползучести характерна низкая пластичность и разрушение после весьма малых деформаций. Зона перехода от внутризеренного разрушения к межзеренному на диаграмме заштрихована; здесь можно наблюдать разрушение смешанного типа.

При дальнейшем повышении температуры ползучести сопутствует динамическая рекристаллизация, и разрушение происходит с образованием шейки или при сужении сдвигом до лезвия (chisel edge).

Легирование влияет на механизмы, а значит и на области их действия. Стабильные дисперсные выделения подавляют рекристаллизацию и тем самым сдерживают разрушение, в то время как некоторые весьма чистые металлы могут разрушаться по механизму разрыва при комнатной температуре. При одновременном наличии дисперсных выделений и твердого раствора прочность возрастает и имеется тенденция к расширению зоны разрушения по механизму межзеренной ползучести на области, в других ситуациях свойственные иным механизмам разрушения.

Металлы о. ц. к. На рис. 24 представлены детализированные характеристики разрушения вольфрама технической чистоты, который является типичным представителем о.ц.к.-металлов.

При наличии в образце внутренних дефектов происходит низкотемпературный раскол типа 1 без пластической деформации. Однако обычно трещины зарождаются в результате двойниковаиия или скольжения; в дальнейшем они распространяются по механизму либо внутризереиного раскола типа 2, либо BIF2. Уже небольшое повышение температуры делает возможным некоторое пластическое течение, так как предел текучести снижается при этом быстро, однако разрушение происходит расколом по типу 3, несмотря на повышение вязкости разрушения, о котором свидетельствует возрастание пластичности при разрушении е у примерно да 10 %. При Т > 0,3 Тпл наблюдается вязкое разрушение при повышенных напряжениях. И здесь снова небольшое снижение напряжения делает доминирующим процесс ползучести, хотя характер разрушения остается вязким.

При низких напряжениях характерна межзеренная ползучесть. В области 0,5 Тпл и /Е = 10-4 типичны клиновидные трещины, а при более низких напряжениях и одновременно высоких температурах разрушение связано с развитием пор; в области температур, близких к точке плавления, и относительно высоких напряжениях происходит разрушение разрывом.

Таким образом, как видно, процесс разрушения является чрезвычайно сложным, многоступенчатым, зависящим от условий, и это все проявляется как на субмикроскопическом и микроскопическом уровнях (физика, материаловедение, металлургия), так и на макроуровне (механика разрушения, конструкционная прочность). Механика разрушения преимущественно рассматривает феноменологические модели на макроуровне и поэтому не оперирует столь большим разнообразием физических механизмов и видов разрушения, а в качестве основных рассматривает хрупкое, квазихрупкое, упругопластическое и усталостное разрушения.

Классические схемы хрупкого, квазихрупкого, вязкого разрушения

Граница между различными видами разрушения до сих пор размыта и не является четко очерченной. До сих пор нет общепринятого определения хрупкого разрушения. Вот некоторые из них.

1. Разрушение является хрупким, если для его протекания и завершения достаточно упругой энергии разрушаемой конструкции.

2. Хрупким является разрушение, при котором нестабильный рост трещины происходит при напряжениях, меньших предела текучести.

3. Хрупким является разрушение без заметных пластических деформаций.

4. Разрушение хрупкое, если достаточно велика доля хрупкого составляющего в изломе

5. Качественное различие между разрушениями связано со скоростью распространения трещины. При хрупком разрушении эта скорость очень велика - достигает 0.4…0.5 скорости распространения звука в материале образца. В случае же вязкого разрушения трещина распространяется с относительно малой скоростью, соизмеримой со скоростью деформации образца.

В зависимости от условий состояние материала и характер разрушения меняется. Известны несколько классических схем, связывающих характер разрушения с внешними условиями, показывающих условия перехода материалов из пластического в хрупкое состояние.

Схема П.Людвика (1909 г.). Схема (рис. 25) построена в координатах напряжение - деформация, но в качестве фактора, влияющего на сопротивление пластической деформации и на пластичность, принята скорость деформации.

Рис. 25. Схема П.Людвика

Схема А.Ф.Иоффе (1924 г.). Состояния материала были представлены Иоффе в виде удобной схемы (рис. 26), носящей его имя.

Рис. 26. Схема А.Ф.Иоффе, т - предел текучести; от - сопротивление отрыву

Здесь кривая т есть изменение начального предела текучести в зависимости от абсолютной температуры. Прямой от изображено сопротивление отрыву стали при низких температурах при отсутствии общей пластической деформации. Рассмотрение причин возникновения трещин показывает, что для достижения приложенным напряжением величины сопротивления отрыву от даже при отсутствии общей пластической деформации необходима небольшая величина местной пластической деформации. Эти две кривые (т и от) пересекаются при температуре хрупкого перехода ТR(1). Ниже ТR(1) напряжение в образце станет равным сопротивлению отрыву до достижения напряжения общей текучести и поэтому произойдет хрупкое разрушение. Выше температуры ТR(1) сначала будет достигнут предел текучести и поэтому произойдет большая или меньшая пластическая деформация. Увеличение скорости деформации, большая степень трехосности напряженного состояния приводят к повышению предела текучести, в результате чего кривая т смещается в положение кривой т. Пересечение кривых от и т происходит при более высокой температуре ТR(2), т.е. температура изменения вида разрушения увеличивается от ТR(1) до ТR(2). С другой стороны, предварительная пластическая деформация при умеренных температурах увеличивает работу разрушения и, следовательно, сопротивление отрыву от от до от, уменьшая тем самым температуру хрупкого перехода при обычных изменениях т.

Схема построена на основании опытов, проводившихся на каменной соли, и относится либо к однородному напряженному состоянию, либо к элементу объема. Такие важнейшие факторы, как вид напряженного состояния и существование у одного и того же материала двух физически различных сопротивлений разрушению, в этой схеме вовсе не отражены. Хотя схема Иоффе построена в координатах напряжение - температура испытания, а схема Людвика в координатах напряжение - деформация (при различных скоростях деформации), по сути дела в обоих схемах выражена одна и та же идея - материал имеет практически не изменяющееся (от температуры в схеме Иоффе или от скорости в схеме Людвика) сопротивление разрушению (отрыву) и сильно изменяющееся от тех же факторов сопротивление пластической деформации, которое характеризуется в схеме Иоффе пределом текучести, а в схеме Людвика - текущими ординатами кривой деформации).

Схема А.Ф.Иоффе сыграла важную роль в понимании механических свойств, в особенности при изучении хладноломкости металлов в работах Н.Н.Давиденкова и его школы. Применение и развитие этой схемы для металлов принадлежит Н.Н.Давиденкову. Он отмечал, что одни металлы являются хладноломкими, т.е. разрушаются хрупко при понижении температуры, а другие нет. Потеря пластичности и переход в хрупкое состояние при определенной критической температуре (или в интервале температур) свойственны не всем металлам. С одной стороны, малоуглеродистые стали, цинк, кадмий, магний, подвержены хладноломкости, с другой стороны, медь, алюминий, никель, свинец, аустенитные стали даже при испытании на ударный изгиб с надрезом при низких температурах не теряют своей пластичности. Можно предположить, что различное поведение зависит от типа кристаллической решетки и что решетки объемноцентрированного куба и гексагональная склонны к хладноломкости, а решетка гранецентрированного куба ее не обнаруживает. Для металлов с решеткой объемноцентрированного куба и гексагональной повышение диаграммы сжатия, главным образом, вызывается одним охлаждением и проявляется в повышении предела текучести, тогда как для металлов с решеткой гранецентрированного куба следствием понижения температуры является повышение коэффициента упрочнения. При этом повышение предела текучести у первых металлов при растяжении может привести к хрупкому разрушению, если только предел текучести поднимется выше сопротивления отрыву (по схеме А.Ф.Иоффе). Напротив, для второй группы металлов сопротивление отрыву при наличии растягивающих напряжений могло бы быть достигнуто (впрочем, никогда не достигается) только после определенной степени пластической деформации, поэтому совершенно хрупкое разрушение невозможно.

Схема Н.Н.Давиденкова (1936 г.)(рис.27). Основываясь на результатах исследования монокристаллов -железа, которые в зависимости от температуры и других условий опыта могут разрушаться пластичски, по плоскостям, проходящим через диагональ куба, и хрупко по граням куба, было предложено учитывать не только два вида разрушения, но и два сопротивления разрушению, названные Давиденковым вязким и хрупким отрывом.

Рис. 27. Схема Н.Н.Давиденкова.

Кривая CL - сопротивление хрупкому разрушению,

MB - сопротивление вязкому разрушению.

Введенные Давиденковым в схему механического состояния две различные ветви разрушения положили начало разграничению между характеристиками разрушения - сопротивлением отрыву и сопротивлением срезу. В дальнейшем выяснилось, что каждая из этих характеристик связана с различными по характеру напряжениями: сопротивление отрыву с растягивающими, сопротивление срезу с касательными. На схеме наносится семейство истинных кривых деформирования для различных напряженных состояний. Концевые точки кривых (соответствующие разрушению) располагаются на ветви CL - хрупких разрушений и ветви MB - вязких разрушений.

Схема перехода из вязкого в хрупкое состояние (рис. 28), предложенная Е.М.Шевандиным (1953 г.), состоит из кривых истинных напряжений s=f(), полученных при температуре испытания от +20 до -1960С для сталей, склонных к хрупкому разрушению. Схема похожа на схему Н.Н.Давиденкова, однако кривая, огибающая конечные точки кривых истинных напряжений, состоит не из двух ветвей, как у Давиденкова, а из трех. Ветвь DC определяет область вязких разрушений с изломами волокнистого строения, ветвь CB - область полухрупких смешанных разрушений с изломами частично кристаллического строения, ветвь BA - хрупкие разрушения с изломами кристаллического строения.

Рис. 28. Схема Е.М.Шевандина

Во всех этих схемах не отражено влияние одного из наиболее важных (если не самого важного) факторов: напряженного состояния, которое оказывает огромное влияние на механические свойства.

Различными авторами был предложен ряд схем (рис. 29-34), в которых в отличие от описанных схем учтено также и напряженное состояние, причем в большинстве этих схем принято, что разрушение путем отрыва описывается I, а путем среза - III теорией прочности.

Рис. 29. Схема П.Людвика (1929 г.)

Рис. 30. Схема Э.Зибеля (1932 г.)

Рис. 31. Схема Г.Фромма (1931 г.)

Рис. 32. Схема А.И.Дымова (1933 г.)

Рис. 33. Схема М.Генсамера (1941 г.)

Рис. 34. Схема Н.Ф.Лашко (1951 г.)

В качестве основы для расчетов прочности при сложном напряженном состоянии предлагались различные принципы, обычно называемые теориями прочности. Неоднократно делавшиеся попытки применить ко всем материалам при различных напряженных состояниях какую-либо одну теорию неизменно кончались неудачей, т.к. I теория оказывалась неудовлетворительной для пластичных материалов, а III - для хрупких. Поэтому было предложено разграничить выбор теорий прочности в зависимости от свойств материалов, а именно: для хрупких материалов (чугун, бетон и т.п.) применять I и II, а для пластичных (большинство металлов) - III и IV теории.

Однако в настоящее время можно считать установленным, что хрупкость и пластичность - состояния, в которые при определенных условиях может быть переведено большинство материалов (например, чугун может быть пластически деформирован при сжатии, а многие стали из пластичных становятся хрупкими при переходе от кручения к растяжению). Отсюда, естественно, вытекает, что для одного и того же материала, в зависимости от того, находится ли он в хрупком или в пластическом состоянии, должны применяться разные теории прочности. Поэтому можно говорить о синтезе теорий прочности, которые отражают различные виды нарушения прочности.

...

Подобные документы

  • Энергетическая теория прочности Гриффитса. Растяжение и сжатие как одноосные воздействия нагрузки. Деформированное состояние в стержне. Зависимость компонентов тензора напряжения от ориентации осей. Теория Ирвина и Орована для квазехрупкого разрушения.

    курс лекций [949,8 K], добавлен 12.12.2011

  • Изучение масс-зарядовых спектров многозарядных ионов и морфологии разрушения оптических материалов, при многократном облучении их лучом лазера. Рассмотрение и оценка влияния эффекта “накопления” на морфологию разрушения и на ионизационный состав плазмы.

    статья [12,8 K], добавлен 22.06.2015

  • Статистически неопределимые системы, работающие на растяжение и сжатие. Статистически неопределимые задачи на кручение и изгиб. Метод сил, использование свойств симметрии при раскрытии статистической неопределимости. Физика усталости разрушения.

    контрольная работа [241,0 K], добавлен 11.10.2013

  • Изучение процесса разрушения твердых тел при распространении трещины. Возникновение метода конечных элементов. Введение локальной и глобальной нумерации узлов. Рассмотрение модели трещины в виде физического разреза и материального слоя на его продолжении.

    курсовая работа [2,7 M], добавлен 26.12.2014

  • Характеристика процессов структурообразования новой фазы и разрушения связи между частицами, элементами однородных и разнородных систем, как одной из важных проблем физики твердого тела и физико-химической механики. Электроактивационные нанотехнологии.

    научная работа [1,7 M], добавлен 17.03.2011

  • Механизмы лазерного разрушения. Высокотемпературные механизмы с участием испарения. Объемное парообразование и кинетика испарения металла. Стационарное движение границы фаз и "оптимальный" режим испарения. Гидродинамика разлета поглощающей плазмы.

    контрольная работа [225,5 K], добавлен 24.08.2015

  • Теоретическая механика (статика, кинематика, динамика). Изложение основных законов механического движения и взаимодействия материальных тел. Условия их равновесия, общие геометрические характеристики движения и законы движения тел под действием сил.

    курс лекций [162,2 K], добавлен 06.12.2010

  • Понятие аэрозолей, классификация по агрегатному состоянию, дисперсности и происхождению. Оптические, электрические и молекулярно-кинетические свойства аэрозолей. Микрогетерогенность пены, образование плёнки. Свойства, способы образования, разрушения пен.

    презентация [329,5 K], добавлен 17.08.2015

  • Понятие о механическом состоянии механических объектов. Весомость как характеристика и мера несвободного механического состояния. Понятие механического пространства. Основные законы аксиоматики. Теоретическая космическая и неоптолемеевская механика.

    презентация [368,3 K], добавлен 06.02.2010

  • Создание физической модели деформации материала. Система кластеров структурированных частиц. Описание механики процесса пластической деформации металла при обработке давлением и разрушения материала при гидрорезке на основе кавитации, резонансных явлений.

    статья [794,6 K], добавлен 07.02.2014

  • Тепловые свойства твердых тел. Классическая теория теплоемкостей. Общие требования к созданию анимационной обучающей программы по физике. Ее реализация для определения удельной теплоемкости твердых тел (проверка выполнимости закона Дюлонга и Пти).

    дипломная работа [866,2 K], добавлен 17.03.2011

  • Диэлектрические материалы для создания электрической изоляции токоведущих частей в электротехнических и радиоэлектронных устройствах. Электропроводность диэлектриков. Образцы для определения электрической прочности твердых электроизоляционных материалов.

    реферат [201,9 K], добавлен 07.11.2013

  • Деформация как изменение взаимного положения частиц тела, связанное с их перемещением относительно друг друга, ее причины и механизмы. Виды: растяжение, сжатие, кручение, изгиб и сдвиг. Основные факторы, влияющие на жесткость и прочность твердого тела.

    презентация [1,3 M], добавлен 26.01.2014

  • Подготовка нефти к переработке. Вредные примеси в нефтях из промысловых скважин. Методы разрушения эмульсий. Обессоливание и обезвоживание. Нефти, поставляемые на нефтеперерабатывающий завод, в соответствии с нормативами ГОСТ 9965-76. Растворенные газы.

    презентация [420,2 K], добавлен 26.06.2014

  • Адгезия и методы ее измерения. Основные свойства силицидов молибдена и защитных покрытий на их основе. Метод акустической эмиссии и его применение для изучения разрушения покрытий и материалов. Получение образцов молибдена с силицидными покрытиями.

    дипломная работа [1,5 M], добавлен 22.06.2012

  • Решение проблемы увеличения разрешающей способности микроскопов без разрушения или изменения исследуемого образца. История появления зондовой микроскопии. Атомно-силовой микроскоп и его конструктивные составляющие, обработка полученной информации.

    реферат [692,6 K], добавлен 19.12.2015

  • Разработка бронежилетов, с которыми взаимодействуют поражающие элементы с различными скоростями. Оценка стойкости экипировки. Определение кинематических параметров поражающего элемента и характера механизмов поведения и разрушения элементов бронежилетов.

    статья [385,0 K], добавлен 29.03.2015

  • Анализ теоремы об изменении кинетического момента материальной точки и несвободной механической системы. Теоретическая механика как наука об общих законах механического движения тел. Основные кинематические характеристики: скорость, ускорение, траектория.

    курсовая работа [788,4 K], добавлен 23.11.2012

  • Экспериментальное исследование влияния механической нагрузки и акустической эмиссии на скорость коррозионно-механического разрушения стальной проволоки в водном растворе серной кислоты. Строение установки для исследования процессов растворения метала.

    статья [150,9 K], добавлен 14.02.2010

  • Возникновение неклассических представлений в физике. Волновая природа электрона. Эксперимент Дэвиссона и Джермера (1927 г.). Особенности квантово-механического описания микромира. Матричная механика Гейзенберга. Электронное строение атомов и молекул.

    презентация [198,3 K], добавлен 22.10.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.