Курс физики

Физика и ее связь с другими науками. Физические основы механики. Закон сохранения энергии. Элементы теории поля и законы Кеплера. Методы определения вязкости. Основы молекулярной физики и термодинамики. Механические и электромагнитные колебания.

Рубрика Физика и энергетика
Вид учебное пособие
Язык русский
Дата добавления 28.11.2016
Размер файла 13,2 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Ионная связь (например, в молекулах NaCl, KBr) осуществляется электростатическим взаимодействием атомов при переходе электрона одного атома к другому, т. е. при образовании положительного и отрицательного ионов. Ковалентная связь (например, в молекулах H2, С2, СО) осуществляется при обобществлении валентных электронов двумя соседними атомами (спины валентных электронов должны быть антипараллельны). Ковалентная связь объясняется на основе принципа неразличимости тождественных частиц (см. § 226), например электронов в молекуле водорода. Неразличимость частиц приводит к специфическому взаимодействию между ними, называемому обменным взаимодействием. Это чисто квантовый эффект, не имеющий классического объяснения, но его можно себе представить так, что электрон каждого из атомов молекулы водорода проводит некоторое время у ядра другого атома и, следовательно, осуществляется связь обоих атомов, образующих молекулу. При сближении двух водородных атомов до расстояний порядка боровского радиуса возникает их взаимное притяжение и образуется устойчивая молекула водорода.

Молекула является квантовой системой; она описывается уравнением Шредингера, учитывающим движение электронов в молекуле, колебания атомов молекулы, вращение молекулы. Решение этого уравнения -- очень сложная задача, которая обычно разбивается на две: для электронов и ядер.

Энергия изолированной молекулы

(230.1)

где Еэл -- энергия движения электронов относительно ядер, Екол -- энергия колебаний ядер (в результате которых периодически изменяется относительное положение ядер), Евращ -- энергия вращения ядер (в результате которых периодически изменяется ориентация молекулы в пространстве). В формуле (230.1) не учтены энергия поступательного движения центра масс молекулы и энергия ядер атомов в молекуле. Первая из них не квантуется, поэтому ее изменения не могут привести к возникновению молекулярного спектра, а вторую можно не учитывать, если не рассматривать сверхтонкую структуру спектральных линий. Отношения Еэл: Екол:

Евращ = 1: : т/М,

где т -- масса электрона, М -- величина, имеющая порядок массы ядер атомов в молекуле, т/М10-510-3. Поэтому Еэл >> Екол >> Евращ. Доказано, что Еэл110 эВ, Екол10-210-1 эВ, Евращ 10-510-3 эВ.

Каждая из входящих в выражение (230.1) энергий квантуется (ей соответствует набор дискретных уровней энергии) и определяется квантовыми числами. При переходе из одного энергетического состояния в другое поглощается или испускается энергия E=h. При таких переходах одновременно изменяются энергия движения электронов, энергии колебаний н вращения. Из теории и эксперимента следует, что расстояние между вращательными уровнями энергии Eвращ гораздо меньше расстояния между колебательными уровнями Eкол которое, в свою очередь, меньше расстояния между электронными уровнями Eэл. На рис. 308 схематически представлены уровни энергии двухатомной молекулы (для примера рассмотрены только два электронных уровня -- показаны жирными линиями).

Как будет показано в § 231, структура энергетических уровней молекул определяет их спектр излучения, возникающий при квантовых переходах между соответствующими энергетическими уровнями.

6.23 Молекулярные спектры. Комбинационное рассеяние света

Строение молекул и свойства их энергетических уровней проявляются в молекулярных спектрах -- спектрах излучения (поглощения), возникающих при квантовых переходах между уровнями энергии молекул. Спектр излучения молекулы определяется структурой ее энергетических уровней и соответствующими правилами отбора (так, например, изменение квантовых чисел, соответствующих как колебательному, так и вращательному движению, должно быть равно ± 1).

Итак, при разных типах переходов между уровнями возникают различные типы молекулярных спектров. Частоты спектральных линий, испускаемых молекулами, могут соответствовать переходам с одного электронного уровня на другой (электронные спектры) или с одного колебательного (вращательного) уровня на другой (колебательные (вращательные) спектры). Кроме того, возможны и переходы с одними значениями Eкол и Eвращ на уровни, имеющие другие значения всех трех компонентов, в результате чего возникают электронно-колебательные и колебательно-вращательные спектры. Поэтому спектр молекул довольно сложный.

Типичные молекулярные спектры -- полосатые, представляющие собой совокупность более или менее узких полос в ультрафиолетовой, видимой и инфракрасной областях. Применяя спектральные приборы высокой разрешающей способности, можно видеть, что полосы представляют собой настолько тесно расположенные линии, что они с трудом разрешаются. Структура молекулярных спектров различна для разных молекул и с увеличением числа атомов в молекуле усложняется (наблюдаются лишь сплошные широкие полосы). Колебательными и вращательными спектрами обладают только многоатомные молекулы, а двухатомные их не имеют. Это объясняется тем, что двухатомные молекулы не имеют дипольных моментов (при колебательных и вращательных переходах отсутствует изменение дипольного момента, что является необходимым условием отличия от нуля вероятности перехода).

В 1928 г. академики Г. С. Ландсберг (1890--1957) и Л. И. Мандельштам и одновременно индийские физики Ч. Раман (1888--1970) и К. Кришнан (р. 1911) открыли явление комбинационного рассеяния света. Если на вещество (газ, жидкость, прозрачный кристалл) падает строго монохроматический свет, то в спектре рассеянного света помимо несмещенной спектральной линии обнаруживаются новые линии, частоты которых представляют собой суммы или разности частоты падающего света и частот i собственных колебаний (или вращений) молекул рассеивающей среды.

Линии в спектре комбинационного рассеяния с частотами -i, меньшими частоты падающего света, называются стоксовыми (или красными) спутниками, линии с частотами +i, большими , --антистоксовыми (или фиолетовыми) спутниками. Анализ спектров комбинационного рассеяния приводит к следующим выводам: 1) линии спутников располагаются симметрично по обе стороны от несмещенной линии; 2) частоты i не зависят от частоты падающего на вещество света, а определяются только рассеивающим веществом, т. е. характеризуют его состав и структуру; 3) число спутников определяется рассеивающим веществом; 4) интенсивность антистоксовых спутников меньше интенсивности стоксовых и с повышением температуры рассеивающего вещества увеличивается, в то время как интенсивность стоксовых спутников практически от температуры не зависит.

Объяснение закономерностей комбинационного рассеяния света дает квантовая теория. Согласно этой теории, рассеяние света есть процесс, в котором один фотон поглощается и один фотон испускается молекулой. Если энергии фотонов одинаковы, то в рассеянном свете наблюдается несмещенная линия. Однако возможны процессы рассеяния, при которых энергии поглощенного и испущенного фотонов различны. Различие энергии фотонов связано с переходом молекулы из нормального состояния в возбужденное (испущенный фотон будет иметь меньшую частоту -- возникает стоксов спутник) либо из возбужденного состояния в нормальное (испущенный фотон будет иметь большую частоту -- возникает антистоксов спутник).

Рассеяние света сопровождается переходами молекулы между различными колебательными или вращательными уровнями, в результате чего и возникает ряд симметрично расположенных спутников. Число спутников, таким образом, определяется энергетическим спектром молекул, т. е. зависит только от природы рассеивающего вещества. Так как число возбужденных молекул гораздо меньше, чем число невозбужденных, то интенсивность антистоксовых спутников меньше, чем стоксовых. С повышением температуры число возбужденных молекул растет, в результате чего возрастает и интенсивность антистоксовых спутников.

Молекулярные спектры (в том числе и спектры комбинационного рассеяния света) применяются для исследования строения и свойств молекул, используются в молекулярном спектральном анализе, лазерной спектроскопии, квантовой электронике и т. д.

6.24 Поглощение. Спонтанное и вынужденное излучения

Как отмечалось выше, атомы могут находиться лишь в квантовых состояниях с дискретными значениями энергии Е1, Е2, Е3,... Ради простоты рассмотрим только два из этих состояний (1 и 2) с энергиями Е1 и Е2. Если атом находится в основном состоянии 1, то под действием внешнего излучения может осуществиться вынужденный переход в возбужденное состояние 2 (рис. 309, а), приводящий к поглощению излучения. Вероятность подобных переходов пропорциональна плотности излучения, вызывающего эти переходы.

Атом, находясь в возбужденном состоянии 2, может через некоторый промежуток времени спонтанно, без каких-либо внешних воздействий, перейти в состояние с низшей энергией (в нашем случае в основное), отдавая избыточную энергию в виде электромагнитного излучения испуская фотон с энергией

h=E2-Е1.

Процесс испускания фотона возбужденным атомом (возбужденной микросистемой) без каких-либо внешних воздействий называется спонтанным (или самопроизвольным) излучением (рис. 309, б). Чем больше вероятность спонтанных переходов, тем меньше среднее время жизни атома в возбужденном состоянии. Так как спонтанные переходы взаимно не связаны, то спонтанное излучение некогерентно.

В 1916 г. А. Эйнштейн для объяснения наблюдавшегося на опыте термодинамического равновесия между веществом и испускаемым и поглощаемым им излучением постулировал, что помимо поглощения и спонтанного излучения должен существовать третий, качественно иной тип взаимодействия. Если на атом, находящийся в возбужденном состоянии 2, действует внешнее излучение с частотой, удовлетворяющей условию hv=E2-E1, то возникает вынужденный (индуцированный) переход в основное состояние 1 с излучением фотона той же энергии hv=E2-E1 (рис. 309, в). При подобном переходе происходит излучение атомом фотона, дополнительно к тому фотону, под действием которого произошел переход. Возникающее в результате таких переходов излучение называется вынужденным (индуцированным) излучением. Таким образом, в процесс вынужденного излучения вовлечены два фотона: первичный фотон, вызывающий испускание излучения возбужденным атомом, и вторичный фотон, испущенный атомом. Существенно, что вторичные фотоны неотличимы от первичных, являясь точной их копией.

В статистической физике известен принцип детального равновесия, согласно которому при термодинамическом равновесии каждому процессу можно сопоставить обратный процесс, причем скорости их протекания одинаковы. А. Эйнштейн применил этот принцип и закон сохранения энергии при рассмотрении излучения и поглощения электромагнитных волн в случае черного тела. Из условия, что при равновесии полная вероятность испускания (спонтанного и вынужденного) фотонов равна вероятности поглощения фотонов той же частоты, Эйнштейн получил выведенную ранее Планком формулу (200.3).

Эйнштейн и Дирак показали, что вынужденное излучение (вторичные фотоны) тождественно вынуждающему излучению (первичным фотонам): оно имеет такие же частоту, фазу, поляризацию и направление распространения, как и вынуждающее излучение. Следовательно, вынужденное излучение строго когерентно с вынуждающим излучением, т. е. испущенный фотон неотличим от фотона, падающего на атом.

Испущенные фотоны, двигаясь в одном направлении и встречая другие возбужденные атомы, стимулируют дальнейшие индуцированные переходы, и число фотонов растет лавинообразно. Однако наряду с вынужденным излучением возможен и конкурирующий процесс -- поглощение. Поэтому для усиления падающего излучения необходимо, чтобы число актов вынужденного излучения фотонов (оно пропорционально заселенности возбужденных состояний) превышало число актов поглощения фотонов (оно пропорционально заселенности основных состояний). В системе атомов, находящейся в термодинамическом равновесии, поглощение падающего излучения будет преобладать над вынужденным, т. е. падающее излучение при прохождении через вещество будет ослабляться.

Чтобы среда усиливала падающее на нее излучение, необходимо создать неравновесное состояние системы, при котором число атомов в возбужденных состояниях было бы больше, чем их число в основном состоянии. Такие состояния называются состояниями с инверсией населенностей. Процесс создания неравновесного состояния вещества (перевод системы в состояние с инверсией населенностей) называется накачкой. Накачку можно осуществить оптическими, электрическими и другими способами.

В средах с инверсными состоящими вынужденное излучение может превысить поглощение, вследствие чего падающий пучок света при прохождении через эти среды будет усиливаться (эти среды называются активными). В данном случае явление протекает так, как если бы в законе Бугера I=I0e-x (см. (187.1)) коэффициент поглощения , зависящий, в свою очередь, от интенсивности излучения, стал отрицательным. Активные среды поэтому можно рассматривать в качестве сред с отрицательным коэффициентом поглощения.

Впервые на возможность получения сред, в которых свет может усиливаться за счет вынужденного излучения, указал в 1939 г. российский физик В. А. Фабрикант, экспериментально обнаружив вынужденное излучение паров ртути, возбужденных при электрическом разряде. Открытие явления усиления электромагнитных волн и изобретенный способ их усиления (В. А. Фабрикант, М. М. Вудынский, ф. А. Бугаева; 1951) легли в основу квантовой электроники, положения которой позволили впоследствии осуществить квантовые усилители и квантовые генераторы света.

6.25 Оптические квантовые генераторы (лазеры)

Практически инверсное состояние среды осуществлено в принципиально новых источниках излучения -- оптических квантовых генераторах, или лазерах (от первых букв английского названия Light Amplification by Stimulated Emission of Radiation -- усиление света с помощью вынужденного излучения). Лазеры генерируют в видимой, инфракрасной и ближней ультрафиолетовой областях (в оптическом диапазоне). Идея качественно нового принципа усиления и генерации электромагнитных волн, примененная в мазерах (генераторы и усилители, работающие в сантиметровом диапазоне радиоволн) и лазерах, принадлежит российским ученым Н. Г. Басову (р. 1922) и А. М. Прохорову (р. 1916) и американскому физику Ч. Таунсу (р. 1915), удостоенным Нобелевской премии 1964 г.

Важнейшими из существующих типов лазеров являются твердотельные, газовые, полупроводниковые и жидкостные (в основу такого деления положен тип активной среды). Более точная классификация учитывает также и методы накачки -- оптические, тепловые, химические, электроионизационные и др. Кроме того, необходимо принимать во внимание и режим генерации -- непрерывный или импульсный.

Лазер обязательно имеет три основных компонента: 1) активную среду, в которой создаются состояния с инверсией населенностей; 2) систему накачки (устройство для создания инверсии в активной среде); 3) оптический резонатор (устройство, выделяющее в пространство избирательное направление пучка фотонов и формирующее выходящий световой пучок).

Первым твердотельным лазером (1960; США), работающим в видимой области спектра (длина волны излучения 0,6943 мкм), был рубиновый лазер (Т. Мейман (р. 1927)). В нем инверсная населенность уровней осуществляется по трехуровневой схеме, предложенной в 1955 г. Н. Г. Басовым и А. М. Прохоровым. Кристалл рубина представляет собой оксид алюминия Аl2О3, в кристаллической решетке которого некоторые из атомов Аl замещены трехвалентными ионами Cr3+ (0,03 и 0,05% ионов хрома соответственно для розового и красного рубина). Для оптической накачки используется импульсная газоразрядная лампа. При интенсивном облучении рубина светом мощной импульсной лампы атомы хрома переходят с нижнего уровня 1 на уровни широкой полосы 3 (рис. 310).

Так как время жизни атомов хрома в возбужденных состояниях мало (меньше 10-7 с), то осуществляются либо спонтанные переходы 31 (они незначительны), либо наиболее вероятные безызлучательные переходы на уровень 2 (он называется метастабильным) с передачей избытка энергии решетке кристалла рубина. Переход 21 запрещен правилами отбора, поэтому длительность возбужденного состояния 2 атомов хрома порядка 10-3 с, т. е. примерно на четыре порядка больше, чем для состояния 3. Это приводит к "накоплению" атомов хрома на уровне 2. При достаточной мощности накачки их концентрация на уровне 2 будет гораздо больше, чем на уровне 1, т. е. возникает среда с инверсной населенностью уровня 2.

Каждый фотон, случайно родившийся при спонтанных переходах, в принципе может инициировать (порождать) в активной среде множество вынужденных переходов 21, в результате чего появляется лавина вторичных фотонов, являющихся копиями первичных. Таким образом и зарождается лазерная генерация. Однако спонтанные переходы носят случайный характер, и спонтанно рождающиеся фотоны испускаются в разных направлениях. Тем самым в самых разных направлениях распространяются и лавины вторичных фотонов. Следовательно, излучение, состоящее из подобных лавин, не может обладать высокими когерентными свойствами.

Для выделения направления лазерной генерации используется принципиально важный элемент лазера -- оптический резонатор. В простейшем случае им служит пара обращенных друг к другу параллельных (или вогнутых) зеркал на общей оптической оси, между которыми помещается активная среда (кристалл или кювета с газом). Как правило, зеркала изготовляются так, что от одного из них излучение полностью отражается, а второе -- полупрозрачно. Фотоны, движущиеся под углами к оси кристалла или кюветы, выходят из активной среды через ее боковую поверхность. Те же из фотонов, которые движутся вдоль оси, многократно отразятся от противоположных торцов, каждый раз вызывая вынужденное испускание вторичных фотонов, которые, в свою очередь, вызовут вынужденное излучение, и т.д. Так как фотоны, возникшие при вынужденном излучении, движутся в том же направлении, что и первичные, то поток фотонов, параллельный оси кристалла или кюветы, будет лавинообразно нарастать. Многократно усиленный поток фотонов выходит через полупрозрачное зеркало, создавая строго направленный световой пучок огромной яркости.

Таким образом, оптический резонатор "выясняет" направление (вдоль оси) усаливаемого фотонного потока, формируя тем самым лазерное излучение с высокими когерентными свойствами. Первым газовым лазером непрерывного действия (1961) был лазер на смеси атомов неона и гелия. Газы обладают узкими линиями поглощения, лампы же излучают свет в широком интервале длин волн; следовательно, применять их в качестве накачки невыгодно, так как используется только часть мощности лампы. Поэтому в газовых лазерах инверсная населенность уровней осуществляется электрическим разрядом, возбуждаемым в газах.

В гелий-неоновом лазере накачка происходит в два этапа: гелий служит носителем энергии возбуждения, а неон дает лазерное излучение. Электроны, образующиеся в разряде, при столкновениях возбуждают атомы гелия, которые переходят в возбужденное состояние 3 (рис. 311). При столкновениях возбужденных атомов гелия с атомами неона происходит их возбуждение и они переходят на один из верхних уровней неона, который расположен вблизи соответствующего уровня гелия. Переход атома неона с верхнего уровня 3 на один из нижних уровней 2 приводит к лазерному излучению с =0,6328 мкм.

Лазерное излучение обладает следующими свойствами:

1. Временная и пространственная когерентность (см. § 171). Время когерентности составляет 10-3 с, что соответствует длине когерентности порядка 105 м (lког = ског), т. е. на семь порядков выше, чем для обычных источников света.

2. Строгая монохроматичность (<10-11 м).

3. Большая плотность потока энергии. Если, например, рубиновый стержень при накачке получил энергию W=20 Дж и высветился за 10-3 с, то поток излучения Фе=20/10-3 Дж/с=2104 Вт. Фокусируя это излучение на площади 1 мм2, получим плотность потока энергии Фе/S = 2104/10-6 Вт/м2 = 21010 Вт/м2.

4. Очень малое угловое расхождение в пучке. Например, при использовании специальной фокусировки луч лазера, направленный с Земли, дал бы на поверхности Луны световое пятно диаметром примерно 3 км (луч прожектора осветил бы поверхность диаметром примерно 40 000 км).

К.п.д. лазеров колеблется в широких пределах -- от 0,01% (для гелий-неонового лазера) до 75% (для лазера на стекле с неодимом), хотя у большинства лазеров к.п.д. составляет 0,1--1%. Создан мощный СО2-лазер непрерывного действия, генерирующий инфракрасное излучение (=10,6 мкм), к.п.д. которого (30%) превосходит к.п.д. существующих лазеров, работающих при комнатной температуре.

Необычные свойства лазерного излучения находят в настоящее время широкое применение.

Применение лазеров для обработки, резания и микросварки твердых материалов оказывается экономически более выгодным (например, пробивание калиброванных отверстий в алмазе лазерным лучом сократило время с 24 ч до 6--8 мин). Лазеры применяются для скоростного и точного обнаружения дефектов в изделиях, для тончайших операций (например, луч СО2-лазера в качестве бескровного хирургического ножа), для исследования механизма химических реакций и влияния на их ход, для получения сверхчистых веществ. Широко применяется лазерное разделение изотопов, например такого важного в энергетическом отношении элемента, как уран.

Одним из важных применений лазеров является получение и исследование высокотемпературной плазмы. Эта область их применения связана с развитием нового направления -- лазерного управляемого термоядерного синтеза.

Лазеры широко применяются в измерительной технике. Лазерные интерферометры (в них источником света служит лазер) используются для сверхточных дистанционных измерений линейных перемещений, коэффициентов преломления среды, давления, температуры. Например, рассмотренный выше гелий-неоновый лазер из-за излучения высокой стабильности, направленности и монохроматичности (полоса частот 1 Гц при частоте 1014 Гц) незаменим при юстировочных и нивелировочных работах.

Интересное применение лазеры нашли в топографии (см. § 184). Для создания систем голографической памяти с высокой степенью считывания и большой емкостью необходимы газовые лазеры видимого диапазона еще более высокой монохроматичности и направленности излучения.

Очень перспективны и интересны полупроводниковые лазеры, так как они обладают широким рабочим диапазоном (0,7--30 мкм) и возможностью плавной перестройки частоты их излучения.

Применения лазеров в настоящее время столь обширны, что даже их перечисление в объеме настоящего курса просто невозможно.

6.26 Элементы квантовой статистики. Квантовая статистика. Фазовое пространство. Функция распределения

Квантовая статистика -- раздал статистической физики, исследующий системы, которые состоят из огромного числа частиц, подчиняющихся законам квантовой механики.

В отличие от исходных положений классической статистической физики, в которой тождественные частицы различимы (частицу можно отличить от всех таких же частиц), квантовая статистика основывается на принципе неразличимости тождественных частиц (см. § 226). При этом оказывается, как будет показано ниже, что коллективы частиц с целым и полуцелым спинами подчиняются разным статистикам.

Пусть система состоит из N частиц. Введем в рассмотрение многомерное пространство всех координат и импульсов частиц системы. Тогда состояние системы определяется заданием 6N переменных, так как состояние каждой частицы определяется тройкой координат х, у, z и тройкой соответствующих проекций импульса рх, ру, pz. Соответственно число "взаимно перпендикулярных" координатных осей данного пространства равно 6N. Это 6N-мерное пространство называется фазовым пространством. Каждому микросостоянию системы отвечает точка в 6N-мерном фазовом пространстве, так как задание точки фазового пространства означает задание координат и импульсов всех частиц системы. Разобьем фазовое пространство на малые 6N-мерные элементарные ячейки объемом

dqdp=dq1dq2...dq3Ndp1dp2...dp3N,

где q -- совокупность координат всех частиц, р -- совокупность проекций их импульсов. Корпускулярно-волновой дуализм свойств вещества (см. § 213) и соотношение неопределенностей Гейзенберга (см. § 215) приводят к выводу, что объем элементарной ячейки (он называется фазовым объемом) не может быть меньше чем h3 (h -- постоянная Планка).

Вероятность dW данного состояния системы можно представить с помощью функции распределения f(q, p):

(234.1)

Здесь dW--вероятность того, что точка фазового пространства попадет в элемент фазового объема dqdp, расположенного вблизи данной точки q, р. Иными словами, dW представляет собой вероятность того, что система находится в состоянии, в котором ее координаты и импульсы, заключены в интервале q, q+dq и р, p+dp.

Согласно формуле (234.1), функция распределения есть не что иное, как плотность вероятности определенного состояния системы. Поэтому она должна быть нормирована на единицу:

где интегрирование производится по всему фазовому пространству.

Зная функцию распределения f(q, р), можно решить основную задачу квантовой статистики -- определить средние значения величин, характеризующих рассматриваемую систему. Среднее значение любой функции

(234.2)

Если иметь дело не с координатами и импульсами, а с энергией, которая квантуется, то состояние системы характеризуется не непрерывной, а дискретной функцией распределения.

Явное выражение функции распределения в самом общем виде получил американский физик Д. Гиббс (1839--1903). Оно называется каноническим распределением Гиббса. В квантовой статистике каноническое распределение Гиббса имеет вид

(234.3)

где А -- постоянная, определяемая из условия нормировки к единице, n -- совокупность всех квантовых чисел, характеризующих данное состояние. Подчеркнем, что f(Еn) есть именно вероятность данного состояния, а не вероятность того, что система имеет определенное значение энергии Еn, так как данной энергии может соответствовать не одно, а несколько различных состояний (может иметь место вырождение).

6.27 Понятие о квантовой статистике Бозе -- Эйнштейна и Ферми -- Дирака

Одним из важнейших "объектов" изучения квантовой статистики, как и классической, является идеальный газ. Это связано с тем, что во многих случаях реальную систему можно в хорошем приближении считать идеальным газом. Состояние системы невзаимодействующих частиц задается с помощью так называемых чисел заполнения Ni -- чисел, указывающих степень заполнения квантового состояния (характеризуется данным набором i квантовых чисел) частицами системы, состоящей из многих тождественных частиц. Для систем частиц, образованных бозонами -- частицами с нулевым или целым спином (см. § 226), числа заполнения могут принимать любые целые значения: 0, 1, 2,... (см. § 227).

Для систем частиц, образованных фермионами -- частицами с полуцелым спином (см. § 226), числа заполнения могут принимать лишь два значения: 0 для свободных состояний и 1 для занятых (см. § 227). Сумма всех чисел заполнения должна быть равна числу частиц системы. Квантовая статистика позволяет подсчитать среднее число частиц в данном квантовом состоянии, т. е. определить средние числа заполнения Ni.

Идеальный газ из бозонов -- бозе-газ -- описывается квантовой статистикой Бозе -- Эйнштейна.* Распределение бозонов по энергиям вытекает из так называемого большого канонического распределения Гиббса (с переменным числом частиц) при условии, что число тождественных бозонов в данном квантовом состоянии может быть любым (см. § 227):

(235.1)

Это распределение называется распределением Бозе -- Эйнштейна. Здесь Ni -- среднее число бозонов в квантовом состоянии с энергией Ei, k -- постоянная Больцмана, Т--термодинамическая температура, --химический потенциал; не зависит от энергии, а определяется только температурой и плотностью числа частиц. Химический потенциал находится обычно из условия, что сумма всех Ni равна полному числу частиц в системе. Здесь 0, так как иначе среднее число частиц в данном квантовом состоянии отрицательно, что не имеет физического смысла. Он определяет изменение внутренней энергии системы при добавлении к ней одной частицы при условии, что все остальные величины, от которых зависит внутренняя энергия (энтропия, объем), фиксированы.

Идеальный газ из фермионов -- ферми-газ -- описывается квантовой статистикой Ферми -- Дирака.* Распределение фермионов по энергиям имеет вид

(235.2)

где Ni -- среднее число фермионов в квантовом состоянии с энергией Еi, -- химический потенциал. В отличие от (235.1) может иметь положительное значение (это не приводит к отрицательным значениям чисел Ni). Это распределение называется распределением Ферми -- Дирака.

Если >>1, то распределения Бозе -- Эйнштейна (235.1) и Ферми -- Дирака (235.2) переходят в классическое распределение Максвелла -- Больцмана:

Таким образом, при высоких температурах оба "квантовых" газа ведут себя подобно классическому газу.

Система частиц называется вырожденной, если ее свойства существенным образом отличаются от свойств систем, подчиняющихся классической статистике. Поведение как бозе-газа, так и ферми-газа отличается от классического газа, они являются вырожденными газами. Вырождение газов становится существенным при весьма низких температурах и больших плотностях. Параметром вырождения называется величина А. При А<<1,т. е. при малой степени вырождения, распределения Бозе -- Эйнштейна (235.1) и Ферми -- Дирака (235.2) переходят в классическое распределение Максвелла -- Больцмана (235.3).

Температурой вырождения Т0 называется температура, ниже которой отчетливо проявляются квантовые свойства идеального газа, обусловленные тождественностью частиц, т. е. Т0 -- температура, при которой вырождение становится существенным. Если Т >> Т0, то поведение системы частиц (газа) описывается классическими законами.

6.28 Вырожденный электронный газ в металлах

Распределение электронов по различным квантовым состояниям подчиняется принципу Паули (см. § 227), согласно которому в одном состоянии не может быть двух одинаковых (с одинаковым набором четырех квантовых чисел) электронов, они должны отличаться какой-то характеристикой, например направлением спина. Следовательно, по квантовой теории, электроны в металле не могут располагаться на самом низшем энергетическом уровне даже при 0 К. Согласно принципу Паули, электроны вынуждены взбираться вверх "по энергетической лестнице".

Электроны проводимости в металле можно рассматривать как идеальный газ, подчиняющийся распределению Ферми -- Дирака (235.2). Если 0 -- химический потенциал электронного газа при Т=0 К, то, согласно (235.2), среднее число N(E) электронов в квантовом состоянии с энергией Е равно

(236.1)

Для фермионов (электроны являются фермионами) среднее число частиц в квантовом состоянии и вероятность заселенности квантового состояния совпадают, так как квантовое состояние либо может быть не заселено, либо в нем будет находиться одна частица. Это означает, что для фермионов

N(E) =f(E),

где f(E) -- функция распределения электронов по состояниям.

Из (236.1) следует, что при T=0 К функция распределения N(E) = 1, если E<0, и N(E) = 0, если Е>0. График этой функции приведен на рис. 312, а. В области энергий от 0 до 0 функция N(E) равна единице. При E=0 она скачкообразно изменяется до нуля. Это означает, что при Т=0 К все нижние квантовые состояния, вплоть до состояния с энергией E=0, заполнены электронами, а все состояния с энергией, большей 0, свободны. Следовательно, 0 есть не что иное, как максимальная кинетическая энергия, которую могут иметь электроны проводимости в металле при 0 К. Эта максимальная кинетическая энергия называется энергией Ферми и обозначается ЕF (ЕF=0). Поэтому распределение Ферми -- Дирака обычно записывается в виде

(236.2)

Наивысший энергетический уровень, занятый электронами, называется уровнем Ферми. Уровню Ферми соответствует энергия Ферми ЕF, которую имеют электроны на этом уровне. Уровень Ферми, очевидно, будет тем выше, чем больше плотность электронного газа. Работу выхода электрона из металла нужно отсчитывать не от дна "потенциальной ямы", как это делалось в классической теории, а от уровня Ферми, т. е. от верхнего из занятых электронами энергетических уровней.

Для металлов при не слишком высоких температурах выполняется неравенство kT<<EF. Это означает, что электронный газ в металлах практически всегда находится в состоянии сильного вырождения. Температура Т0 вырождения (см. § 235) находится из условия kT0=EF. Она определяет границу, выше которой квантовые эффекты перестают быть существенными. Соответствующие расчеты показывают, что для электронов в металле T0104 К, т. с. для всех температур, при которых металл может существовать в твердом состоянии, электронный газ в металле вырожден.

При температурах, отличных от 0 К, функция распределения Ферми -- Дирака (236.2) плавно изменяется от 1 до 0 в узкой области (порядка kT) в окрестности ЕF (рис. 312, б). (Здесь же для сравнения пунктиром приведена функция распределения при T=0 К.) Это объясняется тем, что при T>0 небольшое число электронов с энергией, близкой к ЕF, возбуждается вследствие теплового движения и их энергия становится больше ЕF. Вблизи границы Ферми при Е< ЕF заполнение электронами меньше единицы, а при Е> ЕF -- больше нуля. В тепловом движении участвует лишь небольшое число электронов, например при комнатной температуре Т300 К и температуре вырождения T0=3104 К, -- это 10-5 от общего числа электронов.

Если (Е-ЕF)>>kТ ("хвост" функции распределения), то единицей в знаменателе (236.2) можно пренебречь по сравнению с экспонентой и тогда распределение Ферми -- Дирака переходит в распределение Максвелла -- Больцмана. Таким образом, при (Е-ЕF)>>kT, т.е. при больших значениях энергии, к электронам в металле применима классическая статистика, в то же время, когда (Е-ЕF)<<kT, к ним применима только квантовая статистика Ферми -- Дирака.

6.29 Понятие о квантовой теории теплоемкости. Фононы

Квантовая статистика устранила трудности в объяснении зависимости теплоемкости газов (в частности, двухатомных) от температуры (см. § 53). Согласно квантовой механике, энергия вращательного движения молекул и энергия колебаний атомов в молекуле могут принимать лишь дискретные значения. Если энергия теплового движения значительно меньше разности энергий соседних уровней энергии (kT<<E), то при столкновении молекул вращательные и колебательные степени свободы практически не возбуждаются. Поэтому при низких температурах поведение двухатомного газа подобно одноатомному.

Так как разность между соседними вращательными уровнями энергии значительно меньше, чем между колебательными, т. е. Eвращ<<Eкол (см. § 230), то с ростом температуры возбуждаются вначале вращательные степени свободы, в результате чего теплоемкость возрастает; при дальнейшем росте температуры возбуждаются и колебательные степени свободы и происходит дальнейший рост теплоемкости (см. рис. 80).

Функции распределения Ферми -- Дирака для T=0 К и T>0 заметно различаются (рис. 312) лишь в узкой области энергий (порядка kT). Следовательно, в процессе нагревания металла участвует лишь незначительная часть всех электронов проводимости. Этим и объясняется отсутствие заметной разницы между теплоемкостями металлов и диэлектриков, что не могло быть объяснено классической теорией (см. § 103).

Как уже указывалось (см. § 73), классическая теория не смогла объяснить также зависимость теплоемкости твердых тел от температуры, а квантовая статистика решила эту задачу. Так, А. Эйнштейн, приближенно считая, что колебания атомов кристаллической решетки независимы (модель кристалла как совокупности независимых колеблющихся с одинаковой частотой гармонических осцилляторов), создал качественную квантовую теорию теплоемкости кристаллической решетки. Она впоследствии была развита П. Дебаем, который учел, что колебания атомов в кристаллической решетке не являются независимыми (рассмотрел непрерывный спектр частот гармонических осцилляторов).

Рассматривая непрерывный спектр частот осцилляторов, П. Дебай показал, что основной вклад в среднюю энергию квантового осциллятора вносят колебания низких частот, соответствующих упругим волнам. Поэтому тепловое возбуждение твердого тела можно описать в виде упругих волн, распространяющихся в кристалле. Согласно корпускулярно-волновому дуализму свойств вещества, упругим волнам в кристалле сопоставляют фононы, обладающие энергией Е=. Фонон есть квант энергии звуковой волны (так как упругие волны -- волны звуковые). Фононы являются квазичастицами -- элементарными возбуждениями, ведущими себя подобно микрочастицам. Аналогично тому как квантование электромагнитного излучения привело к представлению о фотонах, квантование упругих волн привело к представлению о фононах.

Квазичастицы, в частности фононы, сильно отличаются от обычных частиц (например, электронов, протонов, фотонов), так как они связаны с коллективным движением многих частиц системы. Квазичастицы не могут возникать в вакууме, они существуют только в кристалле. Импульс фонона обладает своеобразным свойством: при столкновении фононов в кристалле их импульс может дискретными порциями передаваться кристаллической решетке -- он при этом не сохраняется. Поэтому в случае фононов говорят о квазиимпульсе.

Энергия кристаллической решетки рассматривается как энергия фононного газа, подчиняющегося статистике Бозе -- Эйнштейна (см. § 235), так как фононы являются бозонами (их спин равен нулю). Фононы могут испускаться и поглощаться, но их число не сохраняется постоянным; поэтому в формуле (235.1) для фононов необходимо положить равным нулю.

Применение статистики Бозе -- Эйнштейна к фононному газу -- газу из невзаимодействующих бозе-частиц -- привело П. Дебая к количественному выводу, согласно которому при высоких температурах, когда T>>TD (классическая область), теплоемкость твердых тел описывается законом Дюлонга и Пти (см. § 73), а при низких температурах, когда T<<TD (квантовая область), -- пропорциональна кубу термодинамической температуры: СV~Т3. В данном случае TD -- характеристическая температура Дебая, определяемая соотношением

kТD=,

где --предельная частота упругих колебаний кристаллической решетки. Таким образом, теория Дебая объяснила расхождение опытных и теоретических (вычисленных на основе классической теории) значений теплоемкости твердых тел (см. § 73 и рис. 113).

Модель квазичастиц -- фононов -- оказалась эффективной для объяснения открытого П. Л. Капицей явления сверхтекучести жидкого гелия (см. § 31, 75). Теория сверхтекучести, созданная (1941) Л. Д. Ландау и развитая (1947) российским ученым Н. Н. Боголюбовым (р. 1909), применена впоследствии к явлению сверхпроводимости (см. § 239).

6.30 Выводы квантовой теории электропроводности металлов

Квантовая теория электропроводности металлов -- теория электропроводности, основывающаяся на квантовой механике и квантовой статистике Ферми -- Дирака, -- пересмотрела вопрос об электропроводности металлов, рассмотренный в классической физике. Расчет электропроводности металлов, выполненный на основе этой теории, приводит к выражению для удельной электрической проводимости металла

(238.1)

которое по внешнему виду напоминает классическую формулу (103.2) для , но имеет совершенно другое физическое содержание. Здесь п -- концентрация электронов проводимости в металле, lF -- средняя длина свободного пробега электрона, имеющего энергию Ферми, uF -- средняя скорость теплового движения такого электрона.

Выводы, получаемые на основе формулы (238.1), полностью соответствуют опытным данным. Квантовая теория электропроводности металлов, в частности, объясняет зависимость удельной проводимости от температуры: ~ 1/T (классическая теория (см. § 103) дает, что ~1/), а также аномально большие величины (порядка сотен периодов решетки) средней длины свободного пробега электронов в металле (см. § 103).

Квантовая теория рассматривает движение электронов с учетом их взаимодействия с кристаллической решеткой. Согласно корпускулярно-волновому дуализму, движению электрона сопоставляют волновой процесс. Идеальная кристаллическая решетка (в ее узлах находятся неподвижные частицы и в ней отсутствуют нарушения периодичности) ведет себя подобно оптически однородной среде -- она "электронные волны" не рассеивает. Это соответствует тому, что металл не оказывает электрическому току -- упорядоченному движению электронов -- никакого сопротивления. "Электронные волны", распространяясь в идеальной кристаллической решетке, как бы огибают узлы решетки и проходят значительные расстояния.

В реальной кристаллической решетке всегда имеются неоднородности, которыми могут быть, например, примеси, вакансии; неоднородности обусловливаются также тепловыми колебаниями. В реальной кристаллической решетке происходит рассеяние "электронных волн" на неоднородностях, что и является причиной электрического сопротивления металлов. Рассеяние "электронных волн" на неоднородностях, связанных с тепловыми колебаниями, можно рассматривать как столкновения электронов с фононами.

Согласно классической теории, u ~, поэтому она не смогла объяснить истинную зависимость от температуры (см. § 103). В квантовой теории средняя скорость uF от температуры практически не зависит, так как доказывается, что с изменением температуры уровень Ферми остается практически неизменным. Однако с повышением температуры рассеяние "электронных волн" на тепловых колебаниях решетки (на фононах) возрастает, что соответствует уменьшению средней длины свободного пробега электронов. В области комнатных температур lF ~Т-1, поэтому, учитывая независимость u от температуры, получим, что сопротивление металлов (R ~ 1/) в соответствии с данными опытов растет пропорционально Т. Таким образом, квантовая теория электропроводности металлов устранила и эту трудность классической теории.

6.31 Сверхпроводимость. Понятие об эффекте Джозефсона

Прежде чем на основе квантовой теории приступить к качественному объяснению явления сверхпроводимости, рассмотрим некоторые свойства сверхпроводников.

Различные опыты, поставленные с целью изучения свойств сверхпроводников, приводят к выводу, что при переходе металла в сверхпроводящее состояние не изменяется структура его кристаллической решетки, не изменяются его механические и оптические (в видимой и инфракрасной областях) свойства. Однако при таком переходе наряду со скачкообразным изменением электрических свойств качественно меняются его магнитные и тепловые свойства. Так, в отсутствие магнитного поля переход в сверхпроводящее состояние сопровождается скачкообразным изменением теплоемкости, а при переходе в сверхпроводящее состояние во внешнем магнитном поле скачком изменяются и теплопроводность, и теплоемкость (такие явления характерны для фазовых переходов II рода; см. § 75). Достаточно сильное магнитное поле (а следовательно, и сильный электрический ток, протекающий по сверхпроводнику) разрушает сверхпроводящее состояние.

Как показал немецкий физик В. Мейсснер (1882--1974), в сверхпроводящем состоянии магнитное поле в толще сверхпроводника отсутствует. Это означает, что при охлаждении сверхпроводника ниже критической температуры (см. § 98) магнитное поле из него вытесняется (эффект Мейсснера).

Общность эффектов, наблюдаемых в сверхпроводящем состоянии различных металлов, их соединений и сплавов, указывает на то, что явление сверхпроводимости обусловлено физическими причинами, общими для различных веществ, т. е. должен существовать единый для всех сверхпроводников механизм этого явления.

Физическая природа сверхпроводимости была понята лишь в 1957 г. на основе теории (создана Ландау в 1941 г.) сверхтекучести гелия (см. § 237). Теория сверхпроводимости создана американскими физиками Д. Бардином (р. 1908), Л. Купером (р. 1930) и Д. Шриффером (р. 1931) и развита Н. Н. Боголюбовым.

Оказалось, что помимо внешнего сходства между сверхтекучестью (сверхтекучая жидкость протекает по узким капиллярам без трения, т. е. без сопротивления течению) и сверхпроводимостью (ток в сверхпроводнике течет без сопротивления по проводу) существует глубокая физическая аналогия: и сверхтекучесть, и сверхпроводимость -- это макроскопический квантовый эффект.

Качественно явление сверхпроводимости можно объяснить так. Между электронами металла помимо кулоновского отталкивания, в достаточной степени ослабляемого экранирующим действием положительных ионов решетки, в результате электрон-фононного взаимодействия (взаимодействия электронов с колебаниями решетки) возникает слабое взаимное притяжение. Это взаимное притяжение при определенных условиях может преобладать над отталкиванием. В результате электроны проводимости, притягиваясь, образуют своеобразное связанное состояние, называемое куперовской парой. "Размеры" пары много больше (примерно на четыре порядка) среднего межатомного расстояния, т. е. между электронами, "связанными" в пару, находится много "обычных" электронов.

Чтобы куперовскую пару разрушить (оторвать один из ее электронов), надо затратить некоторую энергию, которая пойдет на преодоление сил притяжения электронов пары. Такая энергия может быть в принципе получена в результате взаимодействия с фононами. Однако пары сопротивляются своему разрушению. Это объясняется тем, что существует не одна пара, а целый ансамбль взаимодействующих друг с другом куперовских пар.

Электроны, входящие в куперовскую пару, имеют противоположно направленные спины. Поэтому спин такой пары равен нулю и она представляет собой бозон. К бозонам принцип Паули неприменим, и число бозе-частиц, находящихся в одном состоянии, не ограничено. Поэтому при сверхнизких температурах бозоны скапливаются в основном состоянии, из которого их довольно трудно перевести в возбужденное. Система бозе-частиц -- куперовских пар, обладая устойчивостью относительно возможности отрыва электрона, может под действием внешнего электрического поля двигаться без сопротивления со стороны проводника, что и приводит к сверхпроводимости.

На основе теории сверхпроводимости английский физик Б. Джозефсон (р. 1940) в 1962 г. предсказал эффект, названный его именем (Нобелевская премия 1973 г.). Эффект Джозефсона (обнаружен в 1963 г.) -- протекание сверхпроводящего тока сквозь тонкий слой диэлектрика (пленка оксида металла толщиной 1 нм), разделяющий два сверхпроводника (так называемый контакт Джозефсона). Электроны проводимости проходят сквозь диэлектрик благодаря туннельному эффекту. Если ток через контакт Джозефсона не превышает некоторое критическое значение, то падения напряжения на нем нет (стационарный эффект), если превышает -- возникает падение напряжения U и контакт излучает электромагнитные волны (нестационарным эффект). Частота излучения связана с U на контакте соотношением

=2eU/h

е -- заряд электрона.

Возникновение излучения объясняется тем, что куперовские пары (они создают сверхпроводящий ток), проходя сквозь контакт, приобретают относительно основного состояния сверхпроводника избыточную энергию. Возвращаясь в основное состояние, они излучают квант электромагнитной энергии h=2eU.

Эффект Джозефсона используется для точного измерения очень слабых магнитных полей (до 10-18 Тл), токов (до 10-10 А) и напряжений (до 10-15 В), а также для создания быстродействующих элементов логических устройств ЭВМ и усилителей.

6.32 Элементы физики твердого тела. Понятие о зонной теории твердых тел

Используя уравнение Шредингера -- основное уравнение динамики в нерелятивистской квантовой механике, -- в принципе можно рассмотреть задачу о кристалле, например найти возможные значения его энергии, а также соответствующие энергетические состояния. Однако как в классической, так и в квантовой механике отсутствуют методы точного решения динамической задачи для системы многих частиц. Поэтому эта задача решается приближенно сведением задачи многих частиц к одноэлектронной задаче об одном электроне, движущемся в заданном внешнем поле. Подобный путь приводит к зонной теории твердого тела.

В основе зонной теории лежит так называемое адиабатическое приближение. Квантово-механическая система разделяется на тяжелые и легкие частицы -- ядра и электроны. Поскольку массы и скорости этих частиц значительно различаются, можно считать, что движение электронов происходит в поле неподвижных ядер, а медленно движущиеся ядра находятся в усредненном поле всех электронов. Принимая, что ядра в узлах кристаллической решетки неподвижны, движение электрона рассматривается в постоянном периодическом поле ядер.

Далее используется приближение самосогласованного поля. Взаимодействие данного электрона со всеми другими электронами заменяется действием на него стационарного электрического поля, обладающего периодичностью кристаллической решетки. Это поле создается усредненным в пространстве зарядом всех других электронов и всех ядер. Таким образом, в рамках зонной теории многоэлектронная задача сводится к задаче о движении одного электрона во внешнем периодическом поле -- усредненном и согласованном поле всех ядер и электронов.

Рассмотрим мысленно "процесс образования" твердого тела из изолированных атомов. Пока атомы изолированы, т. е. находятся друг от друга на макроскопических расстояниях, они имеют совпадающие схемы энергетических уровней (рис. 313). По мере "сжатия" нашей модели до кристаллической решетки, т. е. когда расстояния между атомами станут равными межатомным расстояниям в твердых телах, взаимодействие между атомами приводит к тому, что энергетические уровни атомов смещаются, расщепляются и расширяются в зоны, образуется зонный энергетический спектр.

Из рис. 313, на котором показано расщепление энергетических уровней в зависимости от расстояния r между атомами, видно, что заметно расщепляются и расширяются лишь уровни внешних, валентных электронов, наиболее слабо связанных с ядром и имеющих наибольшую энергию, а также более высокие уровни, которые в основном состоянии атома вообще электронами не заняты. Уровни же внутренних электронов либо совсем не расщепляются, либо расщепляются слабо. Таким образом, в твердых телах внутренние электроны ведут себя так же, как в изолированных атомах, валентные же электроны "коллективизированы" -- принадлежат всему твердому телу.

Образование зонного энергетического спектра в кристалле является квантово-механическим эффектом в вытекает из соотношения неопределенностей. В кристалле валентные электроны атомов, связанные слабее с ядрами, чем внутренние электроны, могут переходить от атома к атому сквозь потенциальные барьеры, разделяющие атомы, т. е. перемещаться без изменений полной энергии (туннельный эффект, см. § 221). Это приводит к тому, что среднее время жизни валентного электрона в данном атоме по сравнению с изолированным атомом существенно уменьшается и составляет примерно 10-15 с (для изолированного атома оно примерно 10-8 с). Время же жизни электрона в каком-либо состоянии связано с неопределенностью его энергии (шириной уровня) соотношением неопределенностей

...

Подобные документы

  • Изложение физических основ классической механики, элементы теории относительности. Основы молекулярной физики и термодинамики. Электростатика и электромагнетизм, теория колебаний и волн, основы квантовой физики, физики атомного ядра, элементарных частиц.

    учебное пособие [7,9 M], добавлен 03.04.2010

  • Законы механики и молекулярной физики, примеры их практического использования. Сущность законов Ньютона. Основные законы сохранения. Молекулярно-кинетическая теория. Основы термодинамики, агрегатные состояния вещества. Фазовые равновесия и превращения.

    курс лекций [1,0 M], добавлен 13.10.2011

  • Сущность физики как науки о формах движения материи и их взаимных превращениях. Теснейшая связь физики с другими отраслями естествознания, ее методы исследований. Основные величины, используемые в механике, молекулярной физике, термодинамике и оптике.

    лекция [339,3 K], добавлен 28.06.2013

  • Пространство и время в нерелятивистской физике. Принципы относительности Галилея. Законы Ньютона и границы их применимости. Физический смысл гравитационной постоянной. Законы сохранения энергии и импульса. Свободные и вынужденные механические колебания.

    шпаргалка [7,1 M], добавлен 30.10.2010

  • Алгоритмы решения задач по физике. Основы кинематики и динамики. Законы сохранения, механические колебания и волны. Молекулярная физика и термодинамика. Электрическое поле, законы постоянного тока. Элементы теории относительности, световые кванты.

    учебное пособие [10,2 M], добавлен 10.05.2010

  • Предмет и структура физики. Роль тепловых машин в жизни человека. Основные этапы истории развития физики. Связь современной физики с техникой и другими естественными науками. Основные части теплового двигателя и расчет коэффициента его полезного действия.

    реферат [751,3 K], добавлен 14.01.2010

  • Предмет физики и ее связь со смежными науками. Общие методы исследования физических явлений. Развитие физики и техники и их взаимное влияния друг на друга. Успехи физики в течение последних десятилетий и характеристика ее современного состояния.

    учебное пособие [686,6 K], добавлен 26.02.2008

  • Основные представители физики. Основные физические законы и концепции. Концепции классического естествознания. Атомистическая концепция строения материи. Формирование механической картины мира. Влияние физики на медицину.

    реферат [18,6 K], добавлен 27.05.2003

  • Секрет летающей тарелки или противоречия в некоторых умах. Законы сохранения. Главные законы физики (механики): три Закона Ньютона и следствия из них - законы сохранения энергии, импульсов, моментов импульсов.

    статья [77,4 K], добавлен 07.05.2002

  • Равномерное и равноускоренное прямолинейное движение. Законы динамики, проявление закона сохранения импульса в природе и использование его в технике. Закон всемирного тяготения. Превращение энергии при механических колебаниях. Закон Бойля–Мариотта.

    шпаргалка [243,2 K], добавлен 14.05.2011

  • Определения молекулярной физики и термодинамики. Понятие давления, основное уравнение молекулярно-кинетической теории. Температура и средняя кинетическая энергия теплового движения молекул. Уравнение состояния идеального газа (Менделеева - Клапейрона).

    презентация [972,4 K], добавлен 06.12.2013

  • Закон сохранения импульса. Ускорение свободного падения. Объяснение устройства и принципа действия динамометра. Закон сохранения механической энергии. Основные модели строения газов, жидкостей и твердых тел. Примеры теплопередачи в природе и технике.

    шпаргалка [168,0 K], добавлен 15.12.2009

  • Закон сохранения импульса, закон сохранения энергии. Основные понятия движения жидкостей и газов, закон Бернулли. Сила тяжести, сила трения, сила упругости. Законы Исаака Ньютона. Закон всемирного тяготения. Основные свойства равномерного движения.

    презентация [1,4 M], добавлен 22.01.2012

  • Развитие физики. Материя и движение. Отражение объективной реальности в физических теориях. Цель физики - содействовать покорению природы человеком и в связи с этим раскрывать истинное строение материи и законы её движения.

    реферат [34,2 K], добавлен 26.04.2007

  • Напряженность электростатического поля, его потенциал. Постоянный электрический ток. Магнитное поле тока. Явление электромагнитной индукции. Вихревое электрическое поле. Гармонические колебания, электромагнитные волны. Элементы геометрической оптики.

    презентация [12,0 M], добавлен 28.06.2015

  • Основные концепции классической механики Ньютона: принципы относительности и инерции, законы всемирного тяготения и сохранения, законы термодинамики. Прикладное значение классической механики: применение в пожарной экспертизе, баллистике и биомеханике.

    контрольная работа [29,8 K], добавлен 16.08.2009

  • Термодинамика - раздел физики об общих свойствах макроскопических систем с позиций термодинамических законов. Три закона (начала) термодинамики в ее основе. Теплоемкость газа, круговые циклы, энтропия, цикл Карно. Основные формулы термодинамики.

    реферат [1,7 M], добавлен 01.11.2013

  • Механика, молекулярная физика и термодинамика. Перемещение точки и пройденный путь, скорость, вычисление пройденного пути, кинематика вращательного движения. Электризация тел, закон сохранения электрического заряда. Работа сил электростатического поля.

    шпаргалка [250,6 K], добавлен 29.11.2009

  • Гидроаэромеханика. Законы механики сплошной среды. Закон сохранения импульса. Закон сохранения момента импульса. Закон сохранения энергии. Гидростатика. Равновесие жидкостей и газов. Прогнозирование характеристик течения. Уравнение неразрывности.

    курсовая работа [56,6 K], добавлен 22.02.2004

  • Механическое движение. Ускорение при движении по окружности. Основы динамики. Силы упругости. Закон Гука, трение. Гравитационное взаимодействие. Условие равновесия тел. Закон сохранения импульса, энергии в механике. Архимедова сила для жидкостей и газов.

    реферат [160,9 K], добавлен 15.02.2016

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.