Курс физики
Физика и ее связь с другими науками. Физические основы механики. Закон сохранения энергии. Элементы теории поля и законы Кеплера. Методы определения вязкости. Основы молекулярной физики и термодинамики. Механические и электромагнитные колебания.
Рубрика | Физика и энергетика |
Вид | учебное пособие |
Язык | русский |
Дата добавления | 28.11.2016 |
Размер файла | 13,2 M |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
При запирающем (обратном) напряжении внешнее электрическое поле препятствует движению основных носителей тока к границе p-n-перехода (см. рис. 337, а) и способствует движению неосновных носителей тока, концентрация которых в полупроводниках невелика. Это приводит к увеличению толщины контактного слоя, обедненного основными носителями тока. Соответственно увеличивается и сопротивление перехода. Поэтому в данном случае через p-n-переход протекает только небольшой ток (он называется обратным), полностью обусловленный неосновными носителями тока (левая ветвь рис. 338). Быстрое возрастание этого тока означает пробой контактного слоя и его разрушение. При включении в цепь переменного тока p-n-переходы действуют как выпрямители.
6.42 Полупроводниковые диоды и триоды (транзисторы)
Односторонняя проводимость контактов двух полупроводников (или металла с полупроводником) используется для выпрямления и преобразования переменных токов. Если имеется один электронно-дырочный переход, то его действие аналогично действию двухэлектродной лампы--диода (см. §105). Поэтому полупроводниковое устройство, содержащее один p-n-переход, называется полупроводниковым (кристаллическим) диодом. Полупроводниковые диоды по конструкции делятся на точечные и плоскостные.
В качестве примера рассмотрим точечный германиевый диод (рис. 339), в котором тонкая вольфрамовая проволока 1 прижимается к п-германию 2 остриём, покрытым алюминием. Если через диод в прямом направлении пропустить кратковременный импульс тока, то при этом резко повышается диффузия Аl в Gе и образуется слой германия, обогащенный алюминием и обладающий p-проводимостью. На границе этого слоя образуется p-n-переход, обладающий высоким коэффициентом выпрямления. Благодаря малой емкости контактного слоя точечные диоды применяются в качестве детекторов (выпрямителей) высокочастотных колебаний вплоть до сантиметрового диапазона длин волн.
Принципиальная схема плоскостного меднозакисного (купоросного) выпрямителя дана на рис. 340. На медную пластину с помощью химической обработки наращивается слой закиси меди Сu2О, который покрывается слоем серебра. Серебряный электрод служит только для включения выпрямителя в цепь. Часть слоя Сu2О, прилегающая к меди и обогащенная ею, обладает электронной проводимостью, а часть слоя Сu2О, прилегающая к Ag и обогащенная (в процессе изготовления выпрямителя) кислородом, -- дырочной проводимостью. Таким образом, в толще закиси меди образуется запирающий слой с пропускным направлением тока от Сu2О к Сu (pn).
Технология изготовления германиевого плоскостного диода описана в § 249 (см. рис. 325). Распространенными являются также селеновые диоды и диоды на основе арсенида галлия и карбида кремния. Рассмотренные диоды обладают рядом преимуществ по сравнению с электронными лампами (малые габаритные размеры, высокие к.п.д. и срок службы, постоянная готовность к работе и т. д.), но они очень чувствительны к температуре, поэтому интервал их рабочих температур ограничен (от -70 до +120°С). p-n-Переходы обладают не только прекрасными выпрямляющими свойствами, но могут быть использованы также для усиления, а если в схему ввести обратную связь, то и для генерирования электрических колебаний. Приборы, предназначенные для этих целей, получили название полупроводниковых триодов или транзисторов (первый транзистор создан в 1949 г. американскими физиками Д. Бардином, У. Браттейном и У. Шокли; Нобелевская премия 1956 г.).
Для изготовления транзисторов используются германий и кремний, так как они характеризуются большой механической прочностью, химической устойчивостью и большей, чем в других полупроводниках, подвижностью носителей тока. Полупроводниковые триоды делятся на точечные и плоскостные. Первые значительно усиливают напряжение, но их выходные мощности малы из-за опасности перегрева (например, верхний предел рабочей температуры точечного германиевого триода лежит в пределах 50--80°С). Плоскостные триоды являются более мощными. Они могут быть типа р-п-р и типа п-р-п в зависимости от чередования областей с различной проводимостью.
Для примера рассмотрим принцип работы плоскостного триода р-п-р, т. е. триода на основе n-полупроводника (рис. 341). Рабочие "электроды" триода, которыми являются база (средняя часть транзистора), эмиттер и коллектор (прилегающие к базе с обеих сторон области с иным типом проводимости), включаются в схему с помощью невыпрямляющих контактов -- металлических проводников. Между эмиттером и базой прикладывается постоянное смещающее напряжение в прямом направлении, а между базой и коллектором -- постоянное смещающее напряжение в обратном направлении. Усиливаемое переменное напряжение подается на входное сопротивление Rвх, а усиленное -- снимается с выходного сопротивления Rвых.
Протекание тока в цепи эмиттера обусловлено в основном движением дырок (они являются основными носителями тока) и сопровождается их "впрыскиванием" -- инжекцией -- в область базы. Проникшие в базу дырки диффундируют по направлению к коллектору, причем при небольшой толщине базы значительная часть инжектированных дырок достигает коллектора. Здесь дырки захватываются полем, действующим внутри перехода (притягиваются к отрицательно заряженному коллектору), вследствие чего изменяется ток коллектора. Следовательно, всякое изменение тока в цепи эмиттера вызывает изменение тока в цепи коллектора.
Прикладывая между эмиттером и базой переменное напряжение, получим в цепи коллектора переменный ток, а на выходном сопротивлении -- переменное напряжение. Величина усиления зависит от свойств р-п-переходов, нагрузочных сопротивлений и напряжения батареи Бк. Обычно Rвых>>Rвх, поэтому Uвых значительно превышает входное напряжение Uвх (усиление может достигать 10 000). Так как мощность переменного тока, выделяемая в Rвых, может быть больше, чем расходуемая в цепи эмиттера, то транзистор даст и усиление мощности. Эта усиленная мощность появляется за счет источника тока, включенного в цепь коллектора.
Из рассмотренного следует, что транзистор, подобно электронной лампе, дает усиление и напряжения и мощности. Если в лампе анодный ток управляется напряжением на сетке, то в транзисторе ток коллектора, соответствующий анодному току лампы, управляется напряжением на базе.
Принцип работы транзистора n-p-n-типа аналогичен рассмотренному выше, но роль дырок играют электроны. Существуют и другие типы транзисторов, так же как и другие схемы их включения. Благодаря своим преимуществам перед электронными лампами (малые габаритные размеры, большие к.п.д. и срок службы, отсутствие накаливаемого катода (поэтому потребление меньшей мощности), отсутствие необходимости в вакууме и т. д.) транзистор совершил революцию в области электронных средств связи и обеспечил создание быстродействующих ЭВМ с большим объемом памяти.
7. Элементы физики атомного ядра и элементарных частиц
7.1 Элементы физики атомного ядра. Размер, состав и заряд атомного ядра. Массовое и зарядовое числа
Э. Резерфорд, исследуя прохождение -частиц с энергией в несколько мегаэлектрон-вольт через тонкие пленки золота (см. § 208), пришел к выводу о том, что атом состоит из положительно заряженного ядра и окружающих его электронов. Проанализировав эти опыты, Резерфорд также показал, что атомные ядра имеют размеры примерно 10-14 -- 10-15 м (линейные размеры атома примерно 10-10 м).
Атомное ядро состоит из элементарных частиц -- протонов и нейтронов (протонно-нейтронная модель ядра была предложена российским физиком Д. Д. Иваненко (р. 1904), а впоследствии развита В. Гейзенбергом).
Протон (р) имеет положительный заряд, равный заряду электрона, и массу покоя тр=1,672610-27кг 1836 тe, где тe -- масса электрона. Нейтрон (n) -- нейтральная частица с массой покоя тп=1,674910-27кг 1839 тe. Протоны и нейтроны называются нуклонами (от лат. nucleus -- ядро). Общее число нуклонов в атомном ядре называется массовым числом А.
Атомное ядро характеризуется зарядом Ze, где Z -- зарядовое число ядра, равное числу протонов в ядре и совпадающее с порядковым номером химического элемента в Периодической системе элементов Менделеева. Известные в настоящее время 107 элементов таблицы Менделеева имеют зарядовые числа ядер от Z= 1 до Z= 107.
Ядро обозначается тем же символом, что и нейтральный атом: , где Х -- символ химического элемента, Z атомный номер (число протонов в ядре), А -- массовое число (число нуклонов в ядре).
Сейчас протонно-нейтронная модель ядра не вызывает сомнений. Рассматривалась также гипотеза о протонно-электронном строении ядра, но она не выдержала экспериментальной проверки. Так, если придерживаться этой гипотезы, то массовое число А должно представлять собой число протонов в ядре, а разность между массовым числом и числом электронов должна быть равна зарядовому числу. Эта модель согласовывалась со значениями изотопных масс и зарядов, но противоречила значениям спинов и магнитных моментов ядер, энергии связи ядра и т. д. Кроме того, она оказалась несовместимой с соотношением неопределенностей (см. § 215). В результате гипотеза о протонно-электронном строении ядра была отвергнута.
Так как атом нейтрален, то заряд ядра определяет и число электронов в атоме. От числа же электронов зависит их распределение по состояниям в атоме, от которого, в свою очередь, зависят химические свойства атома. Следовательно, заряд ядра определяет специфику данного химического элемента, т.е. определяет число электронов в атоме, конфигурацию их электронных оболочек, величину и характер внутриатомного электрического поля.
Ядра с одинаковыми Z, но разными А (т. е. с разными числами нейтронов N=A-Z) называются изотопами, а ядра с одинаковыми А, но разными Z--изобарами. Например, водород (Z=1) имеет три изотопа: Н--протий (Z=1, N=0), Н--дейтерий (Z=1, N=1), Н -- тритий (Z=1, N=2), олово--десять, и т. д. В подавляющем большинстве случаев изотопы одного и того же химического элемента обладают одинаковыми химическими и почти одинаковыми физическими свойствами (исключение составляют, например, изотопы водорода), определяющимися в основном структурой электронных оболочек, которая является одинаковой для всех изотопов данного элемента. Примером ядер-изобар могут служить ядра Ве, В, С. В настоящее время известно более 2500 ядер, отличающихся либо Z, либо А, либо тем и другим.
Радиус ядра задается эмпирической формулой
(251.1)
где R0=(1,31,7)10-15 м. Однако при употреблении этого понятия необходимо соблюдать осторожность (из-за его неоднозначности, например из-за размытости границы ядра). Из формулы (251.1) вытекает, что объем ядра пропорционален числу нуклонов в ядре. Следовательно, плотность ядерного вещества примерно одинакова для всех ядер (1017 кг/м3).
7.2 Дефект массы и энергия связи ядра
Исследования показывают, что атомные ядра являются устойчивыми образованиями. Это означает, что в ядре между нуклонами существует определенная связь.
Массу ядер очень точно можно определить с помощью масс-спектрометров -- измерительных приборов, разделяющих с помощью электрических и магнитных полей пучки заряженных частиц (обычно ионов) с разными удельными зарядами Q/m. Масс-спектрометрические измерения показали, что масса ядра меньше, чем сумма масс составляющих его нуклонов. Но так как всякому изменению массы (см. § 40) должно соответствовать изменение энергии, то, следовательно, при образовании ядра должна выделяться определенная энергия. Из закона сохранения энергии вытекает и обратное: для разделения ядра на составные части необходимо затратить такое же количество энергии, которое выделяется при его образовании. Энергия, которую необходимо затратить, чтобы расщепить ядро на отдельные нуклоны, называется энергией связи ядра (см. § 40).
Согласно выражению (40.9), энергия связи нуклонов в ядре
(252.1)
где тp, тn, тя -- соответственно массы протона, нейтрона и ядра. В таблицах обычно приводятся не массы тя ядер, а массы т атомов. Поэтому для энергии связи ядра пользуются формулой
(252.2)
где mH -- масса атома водорода. Так как mH больше mp на величину me, то первый член в квадратных скобках включает в себя массу Z электронов. Но так как масса атома т отличается от массы ядра тя как раз на массу Z электронов, то вычисления по формулам (252.1) и (252.2) приводят к одинаковым результатам.
Величина
называется дефектом массы ядра. На эту величину уменьшается масса всех нуклонов при образовании из них атомного ядра.
Часто вместо энергии связи рассматривают удельную энергию связи Eсв -- энергию связи, отнесенную к одному нуклону. Она характеризует устойчивость (прочность) атомных ядер, т. е. чем больше Eсв, тем устойчивее ядро. Удельная энергия связи зависит от массового числа А элемента (рис. 342). Для легких ядер (А12) удельная энергия связи круто возрастает до 67 МэВ, претерпевая целый ряд скачков (например, для Н Eсв=1,1 МэВ, для He -- 7,1 МэВ, для Li -- 5,3 МэВ), затем более медленно возрастает до максимальной величины 8,7 МэВ у элементов с А=5060, а потом постепенно уменьшается у тяжелых элементов (например, для U она составляет 7,6 МэВ). Отметим для сравнения, что энергия связи валентных электронов в атомах составляет примерно 10 эВ (в 106! раз меньше).
Уменьшение удельной энергии связи при переходе к тяжелым элементам объясняется тем, что с возрастанием числа протонов в ядре увеличивается и энергия их кулоновского отталкивания. Поэтому связь между нуклонами становится менее сильной, а сами ядра менее прочными.
Наиболее устойчивыми оказываются так называемые магические ядра, у которых число протонов или число нейтронов равно одному из магических чисел: 2, 8, 20, 28, 50, 82, 126. Особенно стабильны дважды магические ядра, у которых магическими являются и число протонов, и число нейтронов (этих ядер насчитывается всего пять: Не, O, Ca, Ca, Pb).
Из рис. 342 следует, что наиболее устойчивыми с энергетической точки зрения являются ядра средней части таблицы Менделеева. Тяжелые и легкие ядра менее устойчивы. Это означает, что энергетически выгодны следующие процессы: 1) деление тяжелых ядер на более легкие; 2) слияние легких ядер друг с другом в более тяжелые. При обоих процессах выделяется огромное количество энергии; эти процессы в настоящее время осуществлены практически: реакции деления и термоядерные реакции.
7.3 Спин ядра и его магнитный момент
Использование приборов высокой разрешающей способности и специальных источников возбуждения спектра позволило обнаружить сверхтонкую структуру спектральных линий. Ее существование В. Паули объяснил (1924) наличием у атомных ядер собственного момента импульса (спина) и магнитного момента.
Собственный момент импульса ядра -- спин ядра -- складывается из спинов нуклонов и из орбитальных моментов импульса нуклонов (моментов импульса, обусловленных движением нуклонов внутри ядра). Обе эти величины являются векторами, поэтому спин ядра представляет их векторную сумму. Спин ядра квантуется по закону
где I -- спиновое ядерное квантовое число (его часто называют просто спином ядра), которое принимает целые или полуцелые значения 0, , 1, ,.... Ядра с четными А имеют целые I, с нечетными -- полуцелые I.
Атомное ядро кроме спина обладает магнитным моментом рmя. Магнитный момент ядра связан со спином ядра (см. аналогичное выражение (131.5) для электрона):
pmя=gяLя,
где gя -- коэффициент пропорциональности, называемый ядерным гиромагнитным отношением.
Единицей магнитных моментов ядер служит ядерный магнетон
(253.1)
где тp -- масса протона (ср. эту формулу с магнетоном Бора (§ 131)). Ядерный магнетон в mp/me1836 раз меньше магнетона Бора, поэтому магнитные свойства атомов определяются в основном магнитными свойствами его электронов.
В случае эффекта Зеемана (см. § 223) при помещении атома в магнитное поле наблюдается расщепление энергетических уровней и спектральных линий (тонкая структура), обусловленное спин-орбитальным взаимодействием электронов. Во внешнем магнитном поле также наблюдается расщепление уровней энергии атома на близко расположенные подуровни (сверхтонкая структура), обусловленное взаимодействием магнитного момента ядра с магнитным полем электронов в атоме.
Магнитные моменты ядер могут, таким образом, определяться спектроскопическим методом по сверхтонкой структуре спектральных линий. Однако магнитные моменты ядер примерно на три порядка меньше магнитных моментов электронов (см. (253.1) и (§ 131)), поэтому расщепление спектральных линий, соответствующее сверхтонкой структуре, значительно меньше расщепления за счет взаимодействия между спиновым и орбитальным моментами электрона (тонкая структура). Таким образом, из-за малости эффекта, даже при использовании спектральных приборов очень большой разрешающей способности, точность этого метода невелика. Поэтому были разработаны более точные (не оптические) методы определения магнитных моментов ядер, одним из которых является метод ядерного магнитного резонанса.
Явление ядерного магнитного резонанса заключается в следующем: если на вещество, находящееся в сильном постоянном магнитном поле, действовать слабым переменным радиочастотным магнитным полем, то при частотах, соответствующих частотам переходов между ядерными подуровнями, возникает резкий (резонансный) максимум поглощения. Ядерный магнитный резонанс обусловлен происходящими под влиянием переменного магнитного поля квантовыми переходами между ядерными подуровнями. Точность метода задается точностью измерения напряженности постоянного магнитного поля и резонансной частоты, так как по их значениям вычисляются магнитные моменты ядер. Так как для измерения этих величин применяются прецизионные методы, то рmя можно определять с высокой точностью (до шести знаков).
Метод ядерного магнитного резонанса позволяет наблюдать ядерный резонанс на ядрах, обладающих магнитным моментом порядка 0,1я. Количество вещества, необходимое для измерений, должно составлять 10-3--10 г (в зависимости от значения рmя). Измерение значений магнитных моментов ядер часто сводится к сравнению резонансных частот исследуемых ядер с резонансной частотой протонов, что позволяет освободиться от точной калибровки магнитного поля, которая является довольно трудоемкой.
7.4 Ядерные силы. Модели ядра
Между составляющими ядро нуклонами действуют особые, специфические для ядра силы, значительно превышающие кулоновские силы отталкивания между протонами. Они называются ядерными силами.
С помощью экспериментальных данных по рассеянию нуклонов на ядрах, ядерным превращениям и т.д. доказано, что ядерные силы намного превышают гравитационные, электрические и магнитные взаимодействия и не сводятся к ним. Ядерные силы относятся к классу так называемых сильных взаимодействий.
Перечислим основные свойства ядерных сил:
1) ядерные силы являются силами притяжения;
2) ядерные силы являются короткодействующими -- их действие проявляется только на расстояниях примерно 10-15 м. При увеличении расстояния между нуклонами ядерные силы быстро уменьшаются до нуля, а при расстояниях, меньших их радиуса действия, оказываются примерно в 100 раз больше кулоновских сил, действующих между протонами на том же расстоянии;
3) ядерным силам свойственна зарядовая независимость: ядерные силы, действующие между двумя протонами, или двумя нейтронами, или, наконец, между протоном и нейтроном, одинаковы по величине. Отсюда следует, что ядерные силы имеют неэлектрическую природу;
4) ядерным силам свойственно насыщение, т. е. каждый нуклон в ядре взаимодействует только с ограниченным числом ближайших к нему нуклонов. Насыщение проявляется в том, что удельная энергия связи нуклонов в ядре (если не учитывать легкие ядра) при увеличении числа нуклонов не растет, а остается приблизительно постоянной;
5) ядерные силы зависят от взаимной ориентации спинов взаимодействующих нуклонов. Например, протон и нейтрон образуют дейтрон (ядро изотопа Н) только при условии параллельной ориентации их спинов;
6) ядерные силы не являются центральными, т. е. действующими по линии, соединяющей центры взаимодействующих нуклонов.
Сложный характер ядерных сил и трудность точного решения уравнений движения всех нуклонов ядра (ядро с массовым числом А представляет собой систему из А тел) не позволили до настоящего времени разработать единую последовательную теорию атомного ядра. Поэтому на данной стадии прибегают к рассмотрению приближенных ядерных моделей, в которых ядро заменяется некоторой модельной системой, довольно хорошо описывающей только определенные свойства ядра и допускающей более или менее простую математическую трактовку. Из большого числа моделей, каждая из которых обязательно использует подобранные произвольные параметры, согласующиеся с экспериментом, рассмотрим две: капельную и оболочечную.
1. Капельная модель ядра (1936; Н. Бор и Я. И. Френкель). Капельная модель ядра является первой моделью. Она основана на аналогии между поведением нуклонов в ядре и поведением молекул в капле жидкости. Так, в обоих случаях силы, действующие между составными частицами -- молекулами в жидкости и нуклонами в ядре, -- являются короткодействующими и им свойственно насыщение. Для капли жидкости при данных внешних условиях характерна постоянная плотность ее вещества. Ядра же характеризуются практически постоянной удельной энергией связи и постоянной плотностью, не зависящей от числа нуклонов в ядре. Наконец, объем капли, так же как и объем ядра (см. (251.1)), пропорционален числу частиц. Существенное отличие ядра от капли жидкости в этой модели заключается в том, что она трактует ядро как каплю электрически заряженной несжимаемой жидкости (с плотностью, равной ядерной), подчиняющуюся законам квантовой механики. Капельная модель ядра позволила получить полуэмпирическую формулу для энергии связи нуклонов в ядре, объяснила механизм ядерных реакций и особенно реакции деления ядер. Однако эта модель не смогла, например, объяснить повышенную устойчивость ядер, содержащих магические числа протонов и нейтронов.
2. Оболочечная модель ядра (1949--1950; американский физик М. Гепперт-Майер (1906--1975) и немецкий физик X. Иенсен (1907--1973)). Оболочечная модель предполагает распределение нуклонов в ядре по дискретным энергетическим уровням (оболочкам), заполняемым нуклонами согласно принципу Паули, и связывает устойчивость ядер с заполнением этих уровней. Считается, что ядра с полностью заполненными оболочками являются наиболее устойчивыми. Такие особо устойчивые (магические) ядра действительно существуют (см. § 252).
Оболочечная модель ядра позволила объяснить спины и магнитные моменты ядер, различную устойчивость атомных ядер, а также периодичность изменений их свойств. Эта модель особенно хорошо применима для описания легких и средних ядер, а также для ядер, находящихся в основном (невозбужденном) состоянии.
По мере дальнейшего накопления экспериментальных данных о свойствах атомных ядер появлялись все новые факты, не укладывающиеся в рамки описанных моделей. Так возникли обобщенная модель ядра (синтез капельной и оболочечной моделей), оптическая модель ядра (объясняет взаимодействие ядер с налетающими частицами) и другие модели.
7.5 Радиоактивное излучение и его виды
Французский физик А. Беккерель (1852--1908) в 1896 г. при изучении люминесценции солей урана случайно обнаружил самопроизвольное испускание ими излучения неизвестной природы, которое действовало на фотопластинку, ионизировало воздух, проникало сквозь тонкие металлические пластинки, вызывало люминесценцию ряда веществ. Продолжая исследование этого явления, супруги Кюри -- Мария (1867--1934) и Пьер -- обнаружили, что беккерелевское излучение свойственно не только урану, но и многим другим тяжелым элементам, таким, как торий и актиний. Они показали также, что урановая смоляная обманка (руда, из которой добывается металлический уран) испускает излучение, интенсивность которого во много раз превышает интенсивность излучения урана. Таким образом удалось выделить два новых элемента -- носителя беккерелевского излучения: полоний Рo и радий Ra.
Обнаруженное излучение было названо радиоактивным излучением, а само явление -- испускание радиоактивного излучения -- радиоактивностью.
Дальнейшие опыты показали, что на характер радиоактивного излучения препарата не оказывают влияния вид химического соединения, агрегатное состояние, механическое давление, температура, электрические и магнитные поля, т. е. все те воздействия, которые могли бы привести к изменению состояния электронной оболочки атома. Следовательно, радиоактивные свойства элемента обусловлены лишь структурой его ядра.
В настоящее время под радиоактивностью понимают способность некоторых атомных ядер самопроизвольно (спонтанно) превращаться в другие ядра с испусканием различных видов радиоактивных излучений и элементарных частиц. Радиоактивность подразделяется на естественную (наблюдается у неустойчивых изотопов, существующих в природе) и искусственную (наблюдается у изотопов, полученных посредством ядерных реакций). Принципиального различия между этими двумя типами радиоактивности нет, так как законы радиоактивного превращения в обоих случаях одинаковы.
Радиоактивное излучение бывает трех типов: -, - и -излучение. Подробное их исследование позволило выяснить природу и основные свойства.
-Излучение отклоняется электрическим и магнитным полями, обладает высокой ионизирующей способностью и малой проникающей способностью (например, поглощаются слоем алюминия толщиной примерно 0,05 мм). -Излучение представляет собой поток ядер гелия; заряд -частицы равен +2е, а масса совпадает с массой ядра изотопа гелия Не. По отклонению -частиц в электрическом и магнитном полях был определен их удельный заряд Q/m, значение которого подтвердило правильность представлений об их природе.
-Излучение отклоняется электрическим и магнитным полями; его ионизирующая способность значительно меньше (примерно на два порядка), а проникающая способность гораздо больше (поглощается слоем алюминия толщиной примерно 2 мм), чем у -частиц. -Излучение представляет собой поток быстрых электронов (это вытекает из определения их удельного заряда).
Поглощение потока электронов с одинаковыми скоростями в однородном веществе подчиняется экспоненциальному закону N=N0e- x, где N0 и N -- число электронов на входе и выходе слоя вещества толщиной x, -- коэффициент поглощения. -Излучение сильно рассеивается в веществе, поэтому зависит не только от вещества, но и от размеров и формы тел, на которые -излучение падает.
-Излучение не отклоняется электрическим и магнитным полями, обладает относительно слабой ионизирующей способностью и очень большой проникающей способностью (например, проходит через слой свинца толщиной 5 см), при прохождении через кристаллы обнаруживает дифракцию. -Излучение представляет собой коротковолновое электромагнитное излучение с чрезвычайно малой длиной волны <10-10 м и вследствие этого -- ярко выраженными корпускулярными свойствами, т.е. является потоком частиц -- -квантов (фотонов).
7.6 Закон радиоактивного распада. Правила смещения
Под радиоактивным распадом, или просто распадом, понимают естественное радиоактивное превращение ядер, происходящее самопроизвольно. Атомное ядро, испытывающее радиоактивный распад, называется материнским, возникающее ядро -- дочерним.
Теория радиоактивного распада строится на предположении о том, что радиоактивный распад является спонтанным процессом, подчиняющимся законам статистики. Так как отдельные радиоактивные ядра распадаются независимо друг от друга, то можно считать, что число ядер dN, распавшихся в среднем за интервал времени от t до t+dt, пропорционально промежутку времени dt и числу N нераспавшихся ядер к моменту времени t:
(256.1)
где -- постоянная для данного радиоактивного вещества величина, называемая постоянной радиоактивного распада; знак минус указывает, что общее число радиоактивных ядер в процессе распада уменьшается. Разделив переменные и интегрируя:
получим
(256.2)
где N0--начальное число нераспавшихся ядер (в момент времени t=0), N--число нераспавшихся ядер в момент времени t. Формула (256.2) выражает закон радиоактивного распада, согласно которому число нераспавшихся ядер убывает со временем по экспоненциальному закону.
Интенсивность процесса радиоактивного распада характеризуют две величины: период полураспада Т1/2 и среднее время жизни радиоактивного ядра. Период полураспада Т1/2 -- время, за которое исходное число радиоактивных ядер в среднем уменьшается вдвое. Тогда, согласно (256.2),
откуда
Периоды полураспада для естественно-радиоактивных элементов колеблются от десятимиллионных долей секунды до многих миллиардов лет.
Суммарная продолжительность жизни dN ядер равна t|dN|=Ntdt. Проинтегрировав это выражение по всем возможным t (т. е. от 0 до ) и разделив на начальное число ядер N0, получим среднее время жизни радиоактивного ядра:
(учтено (256.2)). Таким образом, среднее время жизни радиоактивного ядра есть величина, обратная постоянной радиоактивного распада .
Активностью А нуклида (общее название атомных ядер, отличающихся числом протонов Z и нейтронов N) в радиоактивном источнике называется число распадов, происходящих с ядрами образца в 1 с:
(256.3)
Единица активности в СИ -- беккерель (Бк): 1 Бк -- активность нуклида, при которой за 1 с происходит один акт распада. До сих пор в ядерной физике применяется и внесистемная единица активности нуклида в радиоактивном источнике -- кюри (Ки): 1 Ки= 3,71010 Бк.
Радиоактивный распад происходит в соответствии с так называемыми правилами смещения, позволяющими установить, какое ядро возникает в результате распада данного материнского ядра. Правила смещения:
(256.4)
(256.5)
где Х -- материнское ядро, Y -- символ дочернего ядра, Не -- ядро гелия (-частица), е--символическое обозначение электрона (заряд его равен -1, а массовое число -- нулю). Правила смещения являются ничем иным, как следствием двух законов, выполняющихся при радиоактивных распадах, -- сохранения электрического заряда и сохранения массового числа: сумма зарядов (массовых чисел) возникающих ядер и частиц равна заряду (массовому числу) исходного ядра.
Возникающие в результате радиоактивного распада ядра могут быть, в свою очередь, радиоактивными. Это приводит к возникновению цепочки, или ряда, радиоактивных превращений, заканчивающихся стабильным элементом. Совокупность элементов, образующих такую цепочку, называется радиоактивным семейством.
Из правил смещения (256.4) и (256.5) вытекает, что массовое число при -распаде уменьшается на 4, а при -распаде не меняется. Поэтому для всех ядер одного и того же радиоактивного семейства остаток от деления массового числа на 4 одинаков. Таким образом, существует четыре различных радиоактивных семейства, для каждого из которых массовые числа задаются одной из следующих формул:
где n -- целое положительное число. Семейства называются по наиболее долгоживущему (с наибольшим периодом полураспада) "родоначальнику": семейства тория (от Th), нептуния (от Np), урана (от U) и актиния (от Ас). Конечными нуклидами соответственно являются Pb, Bi, Pb, Pb, т.е. единственное семейство нептуния (искусственно-радиоактивные ядра) заканчивается нуклидом Bi, а все остальные (естественно-радиоактивные ядра) -- нуклидами Рb.
7.7 Закономерности -распада
В настоящее время известно более двухсот -активных ядер, главным образом тяжелых (А>200, Z>82). Только небольшая группа -активных ядер приходится на область с А = 140 160 (редкие земли). -Распад подчиняется правилу смещения (256.4). Примером -распада служит распад изотопа урана 238U с образованием Th:
Скорости вылетающих при распаде --частиц очень велики и колеблются для разных ядер в пределах от 1,4107 до 2107 м/с, что соответствует энергиям от 4 до 8,8 МэВ. Согласно современным представлениям, -частицы образуются в момент радиоактивного распада при встрече движущихся внутри ядра двух протонов и двух нейтронов.
-Частицы, испускаемые конкретным ядром, обладают, как правило, определенной энергией. Более тонкие измерения, однако, показали, что энергетический спектр -частиц, испускаемых данным радиоактивным элементом, обнаруживает "тонкую структуру", т. е. испускается несколько групп -частиц, причем в пределах каждой группы их энергии практически постоянны. Дискретный спектр -частиц свидетельствует о том, что атомные ядра обладают дискретными энергетическими уровнями.
Для -распада характерна сильная зависимость между периодом полураспада T1/2 и энергией Е вылетающих частиц. Эта взаимосвязь определяется эмпирическим законом Гейгера -- Нэттола (1912)*, который обычно выражают в виде зависимости между пробегом R (расстоянием, проходимым частицей в веществе до ее полной остановки) -частиц в воздухе и постоянной радиоактивного распада :
(257.1)
где А и В--эмпирические константы, = (ln 2)/T1/2. Согласно (257.1), чем меньше период полураспада радиоактивного элемента, тем больше пробег, а следовательно, и энергия испускаемых им -частиц. Пробег -частиц в воздухе (при нормальных условиях) составляет несколько сантиметров, в более плотных средах он гораздо меньше, составляя сотые доли миллиметра (-частицы можно задержать обычным листом бумаги).
Опыты Резерфорда по рассеянию -частиц на ядрах урана показали, что -частицы вплоть до энергии 8,8 МэВ испытывают на ядрах резерфордовское рассеяние, т. е. силы, действующие на -частицы со стороны ядер, описываются законом Кулона. Подобный характер рассеяния -частиц указывает на то, что они еще не вступают в область действия ядерных сил, т. е. можно сделать вывод, что ядро окружено потенциальным барьером, высота которого не меньше 8,8 МэВ. С другой стороны, -частицы, испускаемые ураном, имеют энергию 4,2 МэВ. Следовательно, -частицы вылетают из -радиоактивного ядра с энергией, заметно меньшей высоты потенциального барьера. Классическая механика этот результат объяснить не могла.
Объяснение -распада дано квантовой механикой, согласно которой вылет -частицы из ядра возможен благодаря туннельному эффекту (см. § 221) -- проникновению -частицы сквозь потенциальный барьер. Всегда имеется отличная от нуля вероятность того, что частица с энергией, меньшей высоты потенциального барьера, пройдет сквозь вето, т. е., действительно, из -радиоактивного ядра -частицы могут вылетать с энергией, меньшей высоты потенциального барьера. Этот эффект целиком обусловлен волновой природой -частиц.
Вероятность прохождения -частицы сквозь потенциальный барьер определяется его формой и вычисляется на основе уравнения Шредингера. В простейшем случае потенциального барьера с прямоугольными вертикальными стенками (см. рис. 298, а) коэффициент прозрачности, определяющий вероятность прохождения сквозь него, определяется рассмотренной ранее формулой (221.7):
Анализируя это выражение, видим, что коэффициент прозрачности D тем больше (следовательно, тем меньше период полураспада), чем меньший по высоте (U) и ширине (l) барьер находится на пути -частицы. Кроме того, при одной и той же потенциальной кривой барьер на пути частицы тем меньше, чем больше ее энергия Е. Таким образом качественно подтверждается закон Гейгера -- Нэттола (см. (257.1)).
7.8 --Распад. Нейтрино
Явление --распада (в дальнейшем будет показано, что существует и +-распад) подчиняется правилу смещения (256.5)
и связано с выбросом электрона. Пришлось преодолеть целый ряд трудностей с трактовкой --распада.
Во-первых, необходимо было обосновать происхождение электронов, выбрасываемых в процессе --распада. Протонно-нейтронное строение ядра исключает возможность вылета электрона из ядра, поскольку в ядре электронов нет. Предположение же, что электроны вылетают не из ядра, а из электронной оболочки, несостоятельно, поскольку тогда должно было бы наблюдаться оптическое или рентгеновское излучение, что не подтверждают эксперименты.
Во-вторых, необходимо было объяснить непрерывность энергетического спектра испускаемых электронов (типичная для всех изотопов кривая распределения --частиц по энергиям приведена на рис. 343). Каким же образом --активные ядра, обладающие до и после распада вполне определенными энергиями, могут выбрасывать электроны со значениями энергии от нуля до некоторого максимального Emах? Т.е. энергетический спектр испускаемых электронов является непрерывным? Гипотеза о том, что при --распаде электроны покидают ядро со строго определенными энергиями, но в результате каких-то вторичных взаимодействий теряют ту или иную долю своей энергии, так что их первоначальный дискретный спектр превращается в непрерывный, была опровергнута прямыми калориметрическими опытами. Так как максимальная энергия Emах определяется разностью масс материнского и дочернего ядер, то распады, при которых энергия электрона Е< Emах, как бы протекают с нарушением закона сохранения энергии. Н. Бор даже пытался обосновать это нарушение, высказывая предположение, что закон сохранения энергии носит статистический характер и выполняется лишь в среднем для большого числа элементарных процессов. Отсюда видно, насколько принципиально важно было разрешить это затруднение.
В-третьих, необходимо было разобраться с несохранением спина при --распаде. При --распаде число нуклонов в ядре не изменяется (так как не изменяется массовое число А), поэтому не должен изменяться и спин ядра, который равен целому числу при четном А и полуцелому при нечетном А. Однако выброс электрона, имеющего спин , должен изменить спин ядра на величину .
Последние два затруднения привели В. Паули к гипотезе (1931) о том, что при --распаде вместе с электроном испускается еще одна нейтральная частица -- нейтрино. Нейтрино имеет нулевой заряд, спин 1/2 (в единицах ) и нулевую (а скорее <10-4тe) массу покоя; обозначается . Впоследствии оказалось, что при --распаде испускается не нейтрино, а антинейтрино (античастица по отношению к нейтрино; обозначается ).
Гипотеза о существовании нейтрино позволила Э. Ферми создать теорию --распада (1934), которая в основном сохранила свое значение и в настоящее время, хотя экспериментально существование нейтрино было доказано более чем через 20 лет (1956). Столь длительные "поиски" нейтрино сопряжены с большими трудностями, обусловленными отсутствием у нейтрино электрического заряда и массы. Нейтрино -- единственная частица, не участвующая ни в сильных, ни в электромагнитных взаимодействиях; единственный вид взаимодействий, в котором может принимать участие нейтрино, -- слабое взаимодействие. Поэтому прямое наблюдение нейтрино весьма затруднительно. Ионизирующая способность нейтрино столь мала, что один акт ионизации в воздухе приходится на 500 км пути. Проникающая же способность нейтрино столь огромна (пробег нейтрино с энергией 1 МэВ в свинце составляет примерно 1018 м!), что затрудняет удержание этих частиц в приборах.
Для экспериментального выявления нейтрино (антинейтрино) применялся поэтому косвенный метод, основанный на том, что в реакциях (в том числе и с участием нейтрино) выполняется закон сохранения импульса. Таким образом, нейтрино было обнаружено при изучении отдачи атомных ядер при --распаде. Если при --распаде ядра вместе с электроном выбрасывается и антинейтрино, то векторная сумма трех импульсов -- ядра отдачи, электрона и антинейтрино -- должна быть равна нулю. Это действительно подтвердилось на опыте. Непосредственное обнаружение нейтрино стало возможным лишь значительно позднее, после появления мощных реакторов, позволяющих получать интенсивные потоки нейтрино.
Введение нейтрино (антинейтрино) позволило не только объяснить кажущееся несохранение спина, но и разобраться с вопросом непрерывности энергетического спектра выбрасываемых электронов. Сплошной спектр --частиц обусловлен распределением энергии между электронами и антинейтрино, причем сумма энергий обеих частиц равна Еmax. В одних актах распада большую энергию получает антинейтрино, в других -- электрон; в граничной точке кривой на рис. 343, где энергия электрона равна Еmax, вся энергия распада уносится электроном, а энергия антинейтрино равна нулю.
Наконец, рассмотрим вопрос о происхождении электронов при --распаде. Поскольку электрон не вылетает из ядра и не вырывается из оболочки атома, было сделано предположение, что -электрон рождается в результате процессов, происходящих внутри ядра. Так как при --распаде число нуклонов в ядре не изменяется, a Z увеличивается на единицу (см. (265.5)), то единственной возможностью одновременного осуществления этих условий является превращение одного из нейтронов --активного ядра в протон с одновременным образованием электрона и вылетом антинейтрино:
(258.1)
В этом процессе выполняются законы сохранения электрических зарядов, импульса и массовых чисел. Кроме того, данное превращение энергетически возможно, так как масса покоя нейтрона превышает массу атома водорода, т. е. протона и электрона вместе взятых. Данной разности в массах соответствует энергия, равная 0,782 МэВ. За счет этой энергии может происходить самопроизвольное превращение нейтрона в протон; энергия распределяется между электроном и антинейтрино.
Если превращение нейтрона в протон энергетически выгодно и вообще возможно, то должен наблюдаться радиоактивный распад свободных нейтронов (т. е. нейтронов вне ядра). Обнаружение этого явления было бы подтверждением изложенной теории --распада. Действительно, в 1950 г. в потоках нейтронов большой интенсивности, возникающих в ядерных реакторах, был обнаружен радиоактивный распад свободных нейтронов, происходящий по схеме (258.1). Энергетический спектр возникающих при этом электронов соответствовал приведенному на рис. 343, а верхняя граница энергии электронов Emax оказалась равной рассчитанной выше (0,782 МэВ).
7.9 Гамма-излучение и его свойства
Экспериментально установлено, что -излучение (см. § 255) не является самостоятельным видом радиоактивности, а только сопровождает - и -распады и также возникает при ядерных реакциях, при торможении заряженных частиц, их распаде и т. д. -Спектр является линейчатым. -Спектр -- это распределение числа -квантов по энергиям (такое же толкование -спектра дано в §258). Дискретность -спектра имеет принципиальное значение, так как является доказательством дискретности энергетических состояний атомных ядер.
В настоящее время твердо установлено, что -излучение испускается дочерним (а не материнским) ядром. Дочернее ядро в момент своего образования, оказываясь возбужденным, за время примерно 10-13--10-14 с, значительно меньшее времени жизни возбужденного атома (примерно 10-8 с), переходит в основное состояние с испусканием -излучения. Возвращаясь в основное состояние, возбужденное ядро может пройти через ряд промежуточных состояний, поэтому -излучение одного и того же радиоактивного изотопа может содержать несколько групп -квантов, отличающихся одна от другой своей энергией.
При -излучении А и Z ядра не изменяются, поэтому оно не описывается никакими правилами смещения. -Излучение большинства ядер является столь коротковолновым, что его волновые свойства проявляются весьма слабо. Здесь на первый план выступают корпускулярные свойства, поэтому -излучение рассматривают как поток частиц -- -квантов. При радиоактивных распадах различных ядер -кванты имеют энергии от 10 кэВ до 5 МэВ.
Ядро, находящееся в возбужденном состоянии, может перейти в основное состояние не только при испускании -кванта, но и при непосредственной передаче энергии возбуждения (без предварительного испускания -кванта) одному из электронов того же атома. При этом испускается так называемый электрон конверсии. Само явление называется внутренней конверсией. Внутренняя конверсия -- процесс, конкурирующий с -излучением.
Электронам конверсии соответствуют дискретные значения энергии, зависящей от работы выхода электрона из оболочки, из которой электрон вырывается, и от энергии Е, отдаваемой ядром при переходе из возбужденного состояния в основное. Если вся энергия Е выделяется в виде -кванта, то частота излучения определяется из известного соотношения E=h. Если же испускаются электроны внутренней конверсии, то их энергии равны Е--АK, E--AL,.... где AK, AL,... -- работа выхода электрона из К- и L-оболочек. Моноэнергетичность электронов конверсии позволяет отличить их от -электронов, спектр которых непрерывен (см. § 258). Возникшее в результате вылета электрона вакантное место на внутренней оболочке атома будет заполняться электронами с вышележащих оболочек. Поэтому внутренняя конверсия всегда сопровождается характеристическим рентгеновским излучением.
-Кванты, обладая нулевой массой покоя, не могут замедляться в среде, поэтому при прохождении -излучения сквозь вещество они либо поглощаются, либо рассеиваются им. -Кванты не несут электрического заряда и тем самым не испытывают влияния кулоновских сил. При прохождении пучка -квантов сквозь вещество их энергия не меняется, но в результате столкновений ослабляется интенсивность, изменение которой описывается экспоненциальным законом I = I0e-x (I0 и I -- интенсивности -излучения на входе и выходе слоя поглощающего вещества толщиной х, -- коэффициент поглощения). Так как -излучение -- самое проникающее излучение, то для многих веществ -- очень малая величина; зависит от свойств вещества и от энергии -квантов.
-Кванты, проходя сквозь вещество, могут взаимодействовать как с электронной оболочкой атомов вещества, так и с их ядрами. В квантовой электродинамике доказывается, что основными процессами, сопровождающими прохождение -излучения через вещество, являются фотоэффект, комптон-эффект (комптоновское рассеяние) и образование электронно-позитронных пар.
Фотоэффект, или фотоэлектрическое поглощение -излучения, -- это процесс, при котором атом поглощает -квант и испускает электрон. Так как электрон выбивается из одной из внутренних оболочек атома, то освободившееся место заполняется электронами из вышележащих оболочек, и фотоэффект сопровождается характеристическим рентгеновским излучением. Фотоэффект является преобладающим механизмом поглощения в области малых энергий -квантов (E 100 кэВ). Фотоэффект может идти только на связанных электронах, так как свободный электрон не может поглотить -квант, при этом одновременно не удовлетворяются законы сохранения энергии и импульса.
По мере увеличения энергии -квантов (E 0,5 МэВ) вероятность фотоэффекта очень мала и основным механизмом взаимодействия -квантов с веществом является комптоновское рассеяние (см. § 206).
При E>l,02 МэВ=2meс2 (тe--масса покоя электрона) становится возможным процесс образования электронно-позитронных пар в электрических полях ядер. Вероятность этого процесса пропорциональна Z2 и увеличивается с ростом E. Поэтому при E10 МэВ основным процессом взаимодействия -излучения в любом веществе является образованно электронно-позитронных пар.
Если энергия -кванта превышает энергию связи нуклонов в ядре (7--8 МэВ), то в результате поглощения -кванта может наблюдаться ядерный фотоэффект -- выброс из ядра одного из нуклонов, чаще всего нейтрона.
Большая проникающая способность -излучения используется в гамма-дефектоскопии -- методе дефектоскопии, основанном на различном поглощении -излучения при распространении его на одинаковое расстояние в разных средах. Местоположение и размеры дефектов (раковины, трещины и т. д.) определяются по различию в интенсивностях излучения, прошедшего через разные участки просвечиваемого изделия.
Воздействие -излучения (а также других видов ионизирующего излучения) на вещество характеризуют дозой ионизирующего излучения. Различаются:
Поглощенная доза излучения -- физическая величина, равная отношению энергии излучения к массе облучаемого вещества.
Единица поглощенной дозы излучения -- грей (Гр)*: 1 Гр= 1 Дж/кг -- доза излучения, при которой облученному веществу массой 1 кг передается энергия любого ионизирующего излучения 1 Дж.
Экспозиционная доза излучения -- физическая величина, равная отношению суммы электрических зарядов всех ионов одного знака, созданных электронами, освобожденными в облученном воздухе (при условии полного использования ионизирующей способности электронов), к массе этого воздуха.
Единица экспозиционной дозы излучения -- кулон на килограмм (Кл/кг); внесистемной единицей является рентген (Р): 1 Р=2,5810-4 Кл/кг.
Биологическая доза -- величина, определяющая воздействие излучения на организм.
Единица биологической дозы -- биологический эквивалент рентгена (бэр): 1 бэр -- доза любого вида ионизирующего излучения, производящая такое же биологическое действие, как и доза рентгеновского или -излучения в 1 Р (1 бэр= 10-2 Дж/кг).
Мощность дозы излучения -- величина, равная отношению дозы излучения к времени облучения. Различают: 1) мощность поглощенной дозы (единица -- грей на секунду (Гр/с)); 2) мощность экспозиционной дозы (единица -- ампер на килограмм (А/кг)).
7.10 Резонансное поглощение -излучения (эффект Мёссбауэра)
Как уже указывалось, дискретный спектр -излучения обусловлен дискретностью энергетических уровней ядер атомов. Однако, как следует из соотношения неопределенностей (215.5), энергия возбужденных состояний ядра принимает значения в пределах
Eh/t,
где t -- время жизни ядра в возбужденном состоянии. Следовательно, чем меньше t, тем больше неопределенность энергии E возбужденного состояния. E=0 только для основного состояния стабильного ядра (для него t). Неопределенность энергии квантово-механической системы (например, атома), обладающей дискретными уровнями энергии, определяет естественную ширину энергетического уровня (Г). Например, при времени жизни возбужденного состояния, равного 10-13 с, естественная ширина энергетического уровня примерно 10-2 эВ.
Неопределенность энергии возбужденного состояния, обусловливаемая конечным временем жизни возбужденных состоянии ядра, приводит к немонохроматичности -излучения, испускаемого при переходе ядра из возбужденного состояния в основное. Эта немонохроматичность называется естественной шириной линии -излучения.
При прохождении -излучения в веществе помимо описанных выше (см. § 259) процессов (фотоэффект, комптоновское рассеяние, образование электронно-позитронных пар) должны в принципе наблюдаться также резонансные эффекты. Если ядро облучить -квантами с энергией, равной разности одного из возбужденных и основного энергетических состояний ядра, то может иметь место резонансное поглощение -излучения ядрами: ядро поглощает -квант той же частоты, что и частота излучаемого ядром -кванта при переходе ядра из данного возбужденного состояния в основное.
Наблюдение резонансного поглощения -квантов ядрами считалось долгое время невозможным, так как при переходе ядра из возбужденного состояния с энергией Е в основное (его энергия принята равной нулю) излучаемый -квант имеет энергию Е несколько меньшую, чем Е, из-за отдачи ядра в процессе излучения:
где Ея -- кинетическая энергия отдачи ядра. При возбуждении же ядра и переходе его из основного состояния в возбужденное с энергией Е -квант должен иметь энергию
...Подобные документы
Изложение физических основ классической механики, элементы теории относительности. Основы молекулярной физики и термодинамики. Электростатика и электромагнетизм, теория колебаний и волн, основы квантовой физики, физики атомного ядра, элементарных частиц.
учебное пособие [7,9 M], добавлен 03.04.2010Законы механики и молекулярной физики, примеры их практического использования. Сущность законов Ньютона. Основные законы сохранения. Молекулярно-кинетическая теория. Основы термодинамики, агрегатные состояния вещества. Фазовые равновесия и превращения.
курс лекций [1,0 M], добавлен 13.10.2011Сущность физики как науки о формах движения материи и их взаимных превращениях. Теснейшая связь физики с другими отраслями естествознания, ее методы исследований. Основные величины, используемые в механике, молекулярной физике, термодинамике и оптике.
лекция [339,3 K], добавлен 28.06.2013Пространство и время в нерелятивистской физике. Принципы относительности Галилея. Законы Ньютона и границы их применимости. Физический смысл гравитационной постоянной. Законы сохранения энергии и импульса. Свободные и вынужденные механические колебания.
шпаргалка [7,1 M], добавлен 30.10.2010Алгоритмы решения задач по физике. Основы кинематики и динамики. Законы сохранения, механические колебания и волны. Молекулярная физика и термодинамика. Электрическое поле, законы постоянного тока. Элементы теории относительности, световые кванты.
учебное пособие [10,2 M], добавлен 10.05.2010Предмет и структура физики. Роль тепловых машин в жизни человека. Основные этапы истории развития физики. Связь современной физики с техникой и другими естественными науками. Основные части теплового двигателя и расчет коэффициента его полезного действия.
реферат [751,3 K], добавлен 14.01.2010Предмет физики и ее связь со смежными науками. Общие методы исследования физических явлений. Развитие физики и техники и их взаимное влияния друг на друга. Успехи физики в течение последних десятилетий и характеристика ее современного состояния.
учебное пособие [686,6 K], добавлен 26.02.2008Основные представители физики. Основные физические законы и концепции. Концепции классического естествознания. Атомистическая концепция строения материи. Формирование механической картины мира. Влияние физики на медицину.
реферат [18,6 K], добавлен 27.05.2003Секрет летающей тарелки или противоречия в некоторых умах. Законы сохранения. Главные законы физики (механики): три Закона Ньютона и следствия из них - законы сохранения энергии, импульсов, моментов импульсов.
статья [77,4 K], добавлен 07.05.2002Равномерное и равноускоренное прямолинейное движение. Законы динамики, проявление закона сохранения импульса в природе и использование его в технике. Закон всемирного тяготения. Превращение энергии при механических колебаниях. Закон Бойля–Мариотта.
шпаргалка [243,2 K], добавлен 14.05.2011Определения молекулярной физики и термодинамики. Понятие давления, основное уравнение молекулярно-кинетической теории. Температура и средняя кинетическая энергия теплового движения молекул. Уравнение состояния идеального газа (Менделеева - Клапейрона).
презентация [972,4 K], добавлен 06.12.2013Закон сохранения импульса. Ускорение свободного падения. Объяснение устройства и принципа действия динамометра. Закон сохранения механической энергии. Основные модели строения газов, жидкостей и твердых тел. Примеры теплопередачи в природе и технике.
шпаргалка [168,0 K], добавлен 15.12.2009Закон сохранения импульса, закон сохранения энергии. Основные понятия движения жидкостей и газов, закон Бернулли. Сила тяжести, сила трения, сила упругости. Законы Исаака Ньютона. Закон всемирного тяготения. Основные свойства равномерного движения.
презентация [1,4 M], добавлен 22.01.2012Развитие физики. Материя и движение. Отражение объективной реальности в физических теориях. Цель физики - содействовать покорению природы человеком и в связи с этим раскрывать истинное строение материи и законы её движения.
реферат [34,2 K], добавлен 26.04.2007Напряженность электростатического поля, его потенциал. Постоянный электрический ток. Магнитное поле тока. Явление электромагнитной индукции. Вихревое электрическое поле. Гармонические колебания, электромагнитные волны. Элементы геометрической оптики.
презентация [12,0 M], добавлен 28.06.2015Основные концепции классической механики Ньютона: принципы относительности и инерции, законы всемирного тяготения и сохранения, законы термодинамики. Прикладное значение классической механики: применение в пожарной экспертизе, баллистике и биомеханике.
контрольная работа [29,8 K], добавлен 16.08.2009Термодинамика - раздел физики об общих свойствах макроскопических систем с позиций термодинамических законов. Три закона (начала) термодинамики в ее основе. Теплоемкость газа, круговые циклы, энтропия, цикл Карно. Основные формулы термодинамики.
реферат [1,7 M], добавлен 01.11.2013Механика, молекулярная физика и термодинамика. Перемещение точки и пройденный путь, скорость, вычисление пройденного пути, кинематика вращательного движения. Электризация тел, закон сохранения электрического заряда. Работа сил электростатического поля.
шпаргалка [250,6 K], добавлен 29.11.2009Гидроаэромеханика. Законы механики сплошной среды. Закон сохранения импульса. Закон сохранения момента импульса. Закон сохранения энергии. Гидростатика. Равновесие жидкостей и газов. Прогнозирование характеристик течения. Уравнение неразрывности.
курсовая работа [56,6 K], добавлен 22.02.2004Механическое движение. Ускорение при движении по окружности. Основы динамики. Силы упругости. Закон Гука, трение. Гравитационное взаимодействие. Условие равновесия тел. Закон сохранения импульса, энергии в механике. Архимедова сила для жидкостей и газов.
реферат [160,9 K], добавлен 15.02.2016