Физические методы исследования

Теплофизические и механические характеристики материалов. Диэлектрическая проницаемость материалов. Диэлектрическая проницаемость и электрические поля в диэлектриках. Устройства и методы неразрушающего контроля. Электрофизические методы исследования.

Рубрика Физика и энергетика
Вид методичка
Язык русский
Дата добавления 01.09.2017
Размер файла 2,4 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Физические методы исследования

План

1. Теплофизические и механические характеристики материалов.

2.Термический анализ.

3.Электрофизические характеристики материалов. Диэлектрическая проницаемость.

3.1 Диэлектрическая проницаемость материалов. Диэлектрическая проницаемость и электрические поля в диэлектриках

3.2 Электрофизические методы исследования

3.3 Четырёхзондовый метод определения проводимости полупроводников

4. Устройства и методы неразрушающего контроля

4.1 Методы и средства теплового неразрушающего контроля.

4.2 Дефектоскопия

4.3 Дефекты сварных соединений и причины их возникновения

5. Магнитные свойства материалов

5.1 Магнитная проницаемость.

6. Магнитометрия

1. Теплофизические и механические характеристики материалов

Теплофизические характеристики материалов очень важны для практики. Действительно, материалы в различных энергетических устройствах и установках работают в различных температурных условиях. Это могут быть климатические условия: солнце, влага, мороз и т.д. Это может быть и нагревание самого материала за счет процессов, происходящих в эксплуатации. Это может быть и материалы для устройства подогрева электрооборудования в холодное время года.

Поэтому важно понимать, как ведут себя материалы при различных температурах, как они могут отводить тепло или аккумулировать тепло.

Температура - это понятие, введенное для характеристики энергии, которой обладают молекулы вещества. С другой стороны, это физическая характеристика, которая соответствует равновесию при приведении двух тел в контакт. Как и всякая физическая характеристика, она поддается измерению. Общепринятыми, в настоящее время, являются две температурные шкалы - Цельсия и Кельвина. Мера одного градуса у них одинакова, она соответствует (исторически) одной сотой от разницы температур кипения воды и ее плавления. У Цельсия, вы знаете, нуль соответствует точке плавления, а 100 С - точке кипения воды. По шкале Кельвина, или абсолютной шкале температур, нуль соответствует абсолютному нулю, а нулевая температура по шкале Цельсия соответствует 273 К. Значок градуса в этом случае не ставится. Ниже нуля Кельвина температуры в принципе не может быть. Она соответствует абсолютному покою, при этой температуре, согласно классической механике, молекулы и атомы абсолютно неподвижны. В квантовой механике это не совсем так, возможны колебательные движения молекул. Кроме того, некоторые электроны и при этой температуре обладают энергией в силу невозможности занятия энергетических уровней, уже занятых другими электронами. Нулевая температура в принципе недостижима, предпринимается много попыток достичь минимума температуры в надежде проявления новых свойств материи. На этом пути была обнаружена сверхпроводимость некоторых металлов, сверхтекучесть жидкого гелия, т.н. гелия-II. Я знаю о достижении к настоящему времени, по крайней мере, примерно одной тысячной доли градуса.

Для материалов вводят несколько характерных температурных точек, указывающих работоспособность и поведение материалов при изменении температуры.

Нагревостойкость - максимальная температура, при которой не уменьшается срок службы материала.

По этому параметру все материалы разделены на классы нагревостойкости.

Обозначение класса

Y

A

E

B

F

H

C

Рабочая температура, С

90

105

120

130

155

180

Выше 180

теплофизический механический электрический исследование

Теплостойкость - температура, при которой происходит ухудшение характеристик при кратковременном ее достижении. Термостойкость - температура, при которой происходят химические изменения материала. Морозостойкость - способность работать при пониженных температурах (этот параметр важен для резин). Горючесть - способность к воспламенению, поддержанию огня, самовоспламенению Это различные степени горючести.

Все эти понятия определяют характерные температуры, при которых меняется какое-либо свойство материала. Есть некоторые температуры, характерные для всех материалов, есть температуры, специфичные для некоторых электротехнических материалов. при которых резко меняются какие-либо характеристики.

Большинству материалов присущи точки плавления, кипения.

Точка плавления - температура, при которой происходит переход из твердого состояния в жидкое. Не обладает точкой плавления жидкий гелий, он даже при нуле Кельвина остается жидким. К наиболее тугоплавким можно отнести вольфрам - 3387 С, молибден 2622 С, рений - 3180 С, тантал - 3000С. Есть тугоплавкие вещества среди керамик: карбид гафния HfC и карбид тантала TaC имеют точки плавления 2880 С., нитрид и карбид титана - более 3000 С.

Есть материалы, в основном это термопластичные полимеры, которые обладают точкой размягчения, но до плавления дело не доходит, т.к. начинается разрушение полимерных молекул при повышенных температурах. У термореактивных полимеров даже до размягчения дело не доходит, материал раньше начинает разлагаться. Есть сплавы и другие сложные вещества у которых сложный процесс плавления: при некоторой температуре, называемой «солидус» происходит частичное расплавление, т.е. переход части вещества в жидкое состояние. Остальное вещество находится в твердом состоянии. Получается что-то типа кашицы. По мере повышения температуры все большая часть переходит в жидкое состояние, наконец при некоторой температуре, называемой «ликвидус» произойдет полное расплавление вещества. Например сплав олова и свинца для пайки, называемый попросту «припой», начинает плавиться примерно при 180 С (точка солидус), а расплавляется примерно при 230 С (точка ликвидус).

В любых процессах плавления, достижение определенной точки является необходимым, но недостаточным условием плавления. Для того, чтобы расплавить вещество нужно сообщить ему энергию, которая называется теплотой плавления. Она рассчитывается на один грамм (или на одну молекулу).

Точка кипения - температура, при которой происходит переход из жидкого состояния в парообразное. Кипят практически все простые вещества, не кипят сложные органические соединения, они разлагаются при более низких температурах, не доходя до кипения. На точку кипения оказывает значительное влияние давление. Так, например для воды можно сдвинуть точку кипения от 100 С до 373С приложением давления в 225 атм. Кипение растворов, т.е. взаимно растворимых друг в друге веществ происходит сложным образом, кипят сразу два компонента, только в паре одного вещества больше, чем другого. Например слабый раствор спирта в воде выкипает так, что в паре спирта больше чем в воде. За счет этого работает перегонка и после конденсации пара получается спирт, но обогащенный водой. Есть смеси выкипающие одновременно, например 96% спирт. Здесь при кипении состав жидкости и состав пара одинаковы. После конденсации пара получается спирт точно такого же состава. Такие смеси называются азеотропными.

Есть температуры специфичные для электротехнических материалов. Например для сегнетоэлектриков вводят т.н. точку Кюри. Оказывается, что сегнетоэлектрическое состояние вещества возникает только при пониженных температурах. Существует такая температура для каждого сегнетоэлектрика, выше которой домены не могут существовать и он превращается в параэлектрик. Такая температура называется точкой Кюри. Диэлектрическая проницаемость ниже точки Кюри велика, она слабо нарастает по мере подхода к точке Кюри. После достижения этой точки диэлектрическая проницаемость

Теплоемкость - это способность накапливать тепловую энергию в материале при его нагревании. Численно удельная теплоемкость равна энергии, которую нужно ввести в единицу массы материала, чтобы нагреть его на один градус. Размерность удельной теплоемкости [Дж/(кг· К)]. Эта величина экстенсивная, т.е. можно говорить о теплоемкости отдельной молекулы или атома, затем просуммировать количество молекул до одного грамма или до одного моля и получить теплоемкость одного грамма или одного моля вещества. Значение теплоемкости зависит от природы материала. Самая высокая теплоемкость у воды 4.2·103 Дж/(кг· К) или 4.2 кДж/(кг·К). У подавляющего большинства материалов удельная теплоемкость порядка 1 кДж/(кг· К). Теплоемкость зависит от температуры. Вблизи нуля Кельвина она мала, в рабочем диапазоне температур - слабо меняется с ростом температуры. Какие-либо скачки теплоемкости связаны со структурной перестройкой тел, например с растянутым плавлением таких веществ, как парафин. Здесь можно упомянуть пример с парафиновой прогревающей повязкой, когда тепло долго сохраняется за счет высокой теплоемкости парафина и повязка греет длительное время.

Теплоемкость газов хорошо изучена теоретически. Для газов даже введено два типа теплоемкости: при постоянном давлении Cp и при постоянном объеме Cv. Обычно рассматривают теплоемкость, приходящуюся на одну молекулу.

Тогда для одноатомного газа Cp= 5/2 kT, а Cv = 3/2 kT. Почему при постоянном давлении труднее нагревать молекулы? Ясно, что при этом газ расширяется, значит нужна дополнительная энергия, чтобы нагревать газ при постоянном давлении. Отметим, что для многоатомных газов теплоемкость выше, т.к. при нагревании требуется энергия на возбуждения вращения молекул, колебания и т.п.

Приведем выражение для тепловой энергии материала:

Q = cm(T2-T1), (1)

где m-масса материала, T2,T1 конечная и начальная температуры.

Это выражение можно переписать для локальных, удельных, параметров:

Q/V = cd(T2-T1), (.2)

где Q/V - удельное выделение энергии (в единице объема), d- плотность материала.

Выражения (1 - 2) позволяют определить изменение температуры материала в процессе его работы, например за счет потерь энергии, протекания тока или какого-либо другого процесса. Энерговыделение Q задается конкретными процессами, протекающими в материале.

Теплопроводность определяет способность передать тепловую энергию через материал. Это тоже важная характеристика, она характеризуется коэффициентом теплопроводности . Численно он равен потоку q проходящему через площадку единичной площади, при перепаде на ее гранях температуры 1 С. Лучше всего передают тепло металлы, так у меди = 400 Вт/(м К), для серебра чуть больше (418), для алюминия 200 Вт/(м К),, для нержавеющей стали примерно 20 Вт/(м К), для простых сталей примерно в два раза выше.

У других материалов теплопроводность значительно ниже. Например, у бетона = 0.6 Вт/(м К), у трансформаторного масла = 0.13 Вт/(м К), для воздуха 3,67·10-2 Вт/м·К). В справочниках часто приводят в устаревших единицах, например кал/(см·сек·С); для перевода в систему единиц СИ нужно умножить на 4.18 ·102.

Для газов и жидкостей обычная теплопроводность играет незначительную роль. В этом случае главную роль играют конвекция и излучение.

Конвекция возникает из-за того, что нагретые жидкость или газ расширяются, их плотность уменьшается, они начинают «всплывать» под действием выталкивающей силы Архимеда. За счет этого возникают локальные течения, которые эффективно уносят тепло из нагретой зоны. В теплотехнике развит аппарат расчета теплопроводности при учете конвекции. Грубо, можно сказать, что конвекция увеличивает теплопроводность в несколько раз.

Тепловое излучение также важно, особенно при повышенных температурах. Основное выражение, используемое в оценках ,имеет вид:

qизл 4 ,

где - коэффициент серости излучающего материала, - постоянная Стефана-Больцмана, = 5.67 ·10-8 Вт/(м2К4). Коэффициент серости зависит от сорта материала, в особенности от его теплопроводности и состояния поверхности. Для металлов этот коэффициент невелик, он меняется от единиц до десятков процентов, в зависимости от шероховатости поверхности, причем более шероховатой поверхности соответствует больший коэффициент серости. Для красок (исключая специальные с электропроводными компонентами), находится в диапазоне 80 - 95%. Оценки показывают, что этот фактор становится главным при температурах порядка 100 градусов и выше. Самая высокая теплопроводность в нормальном диапазоне температур может быть достигнута путем переноса теплоты испарения. Если где-то испарить жидкость, а затем ее конденсировать в другом месте, то теплота испарения заберет часть тепла от нагретого участка и передаст его при конденсации в другом месте. Это эквивалентно теплопроводности от одного места до другого. Оценки показывают, что эквивалентная теплопроводность может превысить теплопроводность меди примерно в пять тысяч раз.

Температурные коэффициенты.

Практически все свойства материалов зависят от температуры. Обычно это учитывается введением т.н. температурного коэффициента. Строго математически для какого-либо свойства х он вводится выражением

Tkx =

где х может быть любой характеристикой материала. Размерность любого температурного коэффициента - 1/К. Например возьмем в качестве х размер l образца материала. Тогда Tkl= означает температурный коэффициент расширения материала. Если взять диэлектрическую проницаемость, то это будет температурный коэффициент диэлектрической проницаемости, если взять удельное сопротивление, то это будет температурный коэффициент удельного сопротивления. В практике обычно пользуются линейным приближением, считая изменение характеристики с температурой малым, по сравнению с основным значением. Для этого случая можно выписать температурную зависимость в явном виде.

Для удельного сопротивления (Т) = (Т0)(1 + Тк(Т-Т0))

Для размера тела l(Т) = l(Т0)(1 + Ткl(Т-Т0))

Для диэлектрической проницаемости (Т) = (Т0)(1 + Тк(Т-Т0))

Для магнитной проницаемости (Т) = (Т0)(1 + Тк(Т-Т0))

Конкретные значения температурных коэффициентов материалов можно найти в справочниках. В случае сильного изменения характеристик с температурой (например диэлектрической проницаемости в случае сегнетоэлектриков, или магнитной проницаемости в случае ферромагнетиков) линейным приближением пользоваться нельзя. В этих случаях следует воспользоваться таблицами или графиками.

2. Термический анализ

Термический анализ - раздел материаловедения, изучающий изменение свойств материалов под воздействием температуры. Термический анализ - совокупность методов определения температур, при которых происходят процессы, сопровождающиеся либо выделением тепла (например, кристаллизация из жидкости), либо его поглощением (например, плавление, термическая диссоциация)..

Термический анализ также часто используется как один из основных методов изучения теплопередачи через структуры. Базовые данные для моделирования поведения и свойств таких систем получают, измеряя теплоёмкость и теплопроводность.

Обычно выделяют несколько методов, отличающихся друг от друга тем, какое свойство материала измеряется:

· Дифференциально-термический анализ (ДТА): температура

· Дифференциально-сканирующая калориметрия (ДСК): теплота

· Термогравиметрический анализ (ТГА): масса

· Термомеханический анализ (ТМА): линейный размер

· Дилатометрия (Дил): объём

· Динамический механический анализ (ДМА): механическая жёсткость и амортизация

· Диэлектрический термический анализ (ДЭТА): диэлектрическая проницаемость и коэффициент потерь

· Анализ выделяемых газов (ГТА): газовые продукты разложения

· Термооптический анализ(ТОА): оптические свойства

· Визуально-политермический анализ (ВПА): форма

· Лазерный импульсный анализ (ЛПА): температурный профиль

· Термомагнитный анализ(ТМА): магнитные свойства

Визуальный метод термического анализа состоит в наблюдении и измерении температуры первого появления (исчезновения) неоднородности (например, выпадения кристаллов, исчезновения мути в системе двух несмешивающихся жидкостей) в изучаемой среде при её охлаждении (или нагревании). Он применим только к прозрачным легкоплавким объектам. Гораздо более общим является метод построения кривых "время -- температура". Нагревая (охлаждая) изучаемый объект, измеряют через небольшие промежутки времени его температуру; результаты измерений изображают графически, откладывая время по оси абсцисс, а температуру -- по оси ординат. т. наз. кривые нагревания (или охлаждения) исследуемого образца, т.е. изменение т-ры последнего во времени. В случае к.-л. фазового превращения в в-ве (или смеси в-в) на кривой появляются площадка или изломы. При отсутствии превращений кривая нагревания (охлаждения) идёт плавно; превращения отражаются появлением на кривой изломов или горизонтальных участков ("остановок").

Кривая ДТА сверхпроводника НоВа2Сu3О6,85. Числа обозначают температуру печи ( °С), скорость нагревания 10 °С/мин.

Большей чувствительностью обладает метод дифференциального термического анализа (ДТА), предложенный В. Робертс-Остеном в 1891, в котором регистрируют во времени изменение разности температур ?T между исследуемым образцом и образцом сравнения эталоном (чаще всего Аl2О3), не претерпевающим в данном интервале температур никаких превращений. Эталон - это термоинертное в исследуемом температурном интервале вещество. Эталон должен иметь такую же величину удельной теплоёмкости, теплопроводности и температуропроводности, как и исследуемый образец. Размер частиц инертного вещества должен быть таким же, как и исследуемого. В этом случае на одном и том же графике записывают и кривую "время -- температура", и кривую "время -- разность температур" объекта и эталона. Эта разность появляется при любом превращении исследуемого объекта, протекающем с поглощением (выделением) тепла. О характере превращений судят по виду простой кривой нагревания (охлаждения), а по дифференциальной кривой точно определяют температуру превращения

Минимумы на кривой ДТА (см., напр., рис.) соответствуют эндотермическим. процессам, а максимумы - экзотермическим. Эффекты, регистрируемые в ДТА, могут быть обусловлены плавлением, изменением кристаллической структуры, разрушением кристаллической решетки, разложение, дегидратация, окисление-восстановление и испарением, кипением, возгонкой, а также хим. процессами (диссоциация, р.). Большинство превращений сопровождается эндотермическими эффектами; экзотермичны лишь некоторые процессы окисления-восстановления и структурного превращения. На вид кривых ДТА, как и на вид кривых в термогравиметрии, оказывают влияние мн. факторы, поэтому воспроизводимость метода, как правило, плохая.

Обычно данные ДТА используют в сочетании с результатами термогравиметрических, масс-спектрометрических. и дилатометрических исследований .Это позволяет, например, делать выводы об обратимости фазовых превращений, изучать явления переохлаждения, образование мета-стабильных фаз (в т. ч. короткоживущих). Математические соотношения между площадью пика на кривой ДТА и параметрами прибора и образца позволяют определять теплоту превращения, энергию активации фазового перехода, некоторые кинетические. константы, проводить полуколичественный. анализ смесей (если известны ?H соответствующих реакций). С помощью ДТА изучают разложение карбоксилатов металлов, различных металлоорганических соединений, оксидных высокотемпературных сверхпроводников. Этим методом определили температурную область конверсии СО в СО2 (при дожигании автомобильных выхлопных газов, выбросов из труб ТЭЦ и т.д.). ДТА применяют для построения фазовых диаграмм состояния систем с различным числом компонентов (физ.-хим. анализ), для качеств. оценки образцов, напр. при сравнении разных партий сырья. Для записи кривых нагревания и охлаждения используют самопишущие приборы (пирометр Н. С. Курнакова), электронные (автоматические) потенциометры, оптические пирометры.

С помощью метода ДТА можно производить количественное определение концентрации реагирующего компонента смеси или энтальпии химических и физических превращений С помощью Т. а. решается задача получения таких количественных характеристик как, например, фазовый состав, теплота реакций при нагревании (охлаждении) исследуемых объектов. Метод ДТА можно также использовать для определения радиационных повреждений полимерных материалов;количества запасенной энергии радиации; теплоты адсорбции; эффективности катализаторов;теплоты полимеризации, при изучении сплавов металлов и др. сплавов, а также минералов и др. геологических пород.

Термогравиметрия, или термогравиметрический анализ (ТГ,TG)) -- метод термического анализа, при котором регистрируются любые изменения массы образца как функция температуры или времени, происходящие в результате взаимодействия образца с окружающей его атмосферой. Экспериментально получаемая кривая зависимости изменения массы от температуры (называемая термогравиметрической кривой или термограммой) позволяет судить о термостабильности и составе образца в начальном состоянии, о термостабильности и составе веществ, образующихся на промежуточных стадиях процесса и о составе остатка, если таковой имеется. Этот метод является эффективным в том случае, когда образец выделяет летучие вещества в результате различных физических и химических процессов.[1]

Термогравиметрия- метод, при котором масса вещества измеряется как функция температуры, когда образец подвергается её программированному воздействию. В ходе опыта химическое соединение с известной начальной массой нагревается в электропечи по программе, заданной исследователем.

Термоанализатор состоит из высокоточных весов с тиглями (как правило, платиновыми), которые размещаются в камере небольшой электропечи. В непосредственной близости от образца, например, под донышком тигля, находится контрольная термопара, с высокой точностью измеряющая температуру. Камера печи может заполняться инертным газом для предотвращения окисления или иных нежелательных реакций. Для управления измеряющей аппаратурой и снятия показаний используется компьютер. Обычно применяется линейная зависимость температуры от времени. В процессе анализа температура поднимается с постоянной скоростью Сигнал с термовесов непрерывно записывается в виде кривой изменения массы вещества от времени, а при известном законе изменения температуры, от температуры.. Верхний предел температуры ограничен только возможностями прибора, и может достигать 1500 °C и более. При этом, благодаря хорошей теплоизоляции печи температура на ее внешней поверхности невысока и не вызывает ожога.

Величина исходной и конечной массы вещества и величина потери массы - основные экспериментально определяемые характеристики, которые используются для количественных расчётов. На основании кривой TG можно производить стехиометрические расчёты или вычисление процентного содержания исходного вещества. Поскольку многие ТГ-кривые выглядят сходно, может потребоваться их дополнительная обработка, прежде чем они могут быть правильно интерпретированы. Производная ТГ-кривой позволяет установить точку, в которой изменение веса происходит наиболее быстро.

ТГ-анализ широко используется в исследовательской практике для определения температуры деградации полимеров, влажности различных материалов, доли органических и неорганических компонентов, точки разложения взрывчатых веществ и сухого остатка растворенных веществ. Метод также пригоден для определения скорости коррозии при высоких температурах.

В методе ТГ-анализа высокого разрешения таковое достигается за счет наличия петли обратной связи между весом образца и его температурой. Нагрев замедляется по мере изменения веса образца, и, таким образом, температуру, при которой при которой изменяется вес можно установить с большой точностью. Многие современные термоанализаторы позволяют подключить к выходному штуцеру печи инфракрасный спектрофотометр для непосредственного анализа химического состава газа.

Термограмма оксалата кальция

Дифференциальная термогравиметрия (ДTG). Этот метод основан на исследовании первой производной от термогравиметрической кривой либо по времени dm/dф (скорость изменения массы от времени) либо по температуре dm/dT (скорость изменения массы от температуры). Совместное использование TG и ДTG формы кривых изменения массы облегчает кинетический анализ и интерпретацию экспериментальных данных, позволяя точно определить температурные границы процесса, а также оценить его максимальную скорость.

При синхронном ТГ-ДТА/ДСК анализе одновременно измеряется изменение теплового потока и веса образца как функция от температуры или времени, обычно при этом используется контролируемая атмосфера. Такой синхронный анализ не только увеличивает производительность измерений, но и упрощает интерпретацию результатов, благодаря возможности отделить эндо- и экзотермические процессы, не сопровождающиеся изменением веса (например, фазовые переходы) от тех, при которых происходит изменение веса (например, деградация).

Дифференциально-сканирующая калориметрия. Метод дифференциальной сканирующей калориметрии (DSC) основан на непрерывной регистрации разности теплового потока от образца и эталона или к образцу и эталону (изменения энтальпии) как функция температуры или времени при нагревании образцов в соответствии происходит с определенной программой в заданной газовой атмосфере. Метод предоставляет информацию о температурах и теплотах фазовых переходов (плавления, кристаллизации, стеклования), термодинамике и кинетике химических реакций, химическом составе, чистоте, термической и окислительной стабильности различных материалов и т.д.

С помощью методов ДСК/ДТА измеряют изменения энтальпии в процессе фазовых переходов и химических реакций. Определяются или разница температур между образцом и эталоном (ДТА), или изменение потока теплоты (ДСК). Дифференциальная сканирующая калориметрия (ДСК) отличается от дифференциального термического анализа (ДТА) тем, что позволяет регистрировать тепловой поток, который характеризует происходящие в веществе изменения в результате нагрева или охлаждения. В этом методе образец и эталон нагреваются или охлаждаются с одинаковой скоростью, причем их температуры поддерживаются одинаковыми. Экспериментальные кривые представляют собой зависимость теплового потока от температуры. По внешнему виду кривая ДСК очень похожа на кривую ДТА, за исключением принятых единиц измерения по оси ординат. Как и в методе ДТА, площадь пика, ограничиваемая кривой ДСК, прямо пропорциональна изменению энтальпии

.Метод широко используется для исследований химических соединений, полимерных и композитных материалов в различных отраcлях науки и промышленности.

ДСК и Калориметрия Высокого Давления и Калориметрия

ДСК (или Калориметром) Высокого давления, пользователи способны изучать материал и его реакции под давлением выше 1000 bars! Камера для анализа, содержащая образец (тигли), является единственной частью, подвергнутой давлению. Специально разработано газовое панно, которое может функционировать под водородом .

Синхронный термический анализ (СТА). Этот метод объединяет в одном измерении термогравиметрию (TGA/DTG) с дифференциальным термическим анализом (DTA) или с дифференциальной сканирующей калориметрией (DSC). Ранее в России были распространены приборы, использующие этот метод и известные под названием дериватограф.

Метод основан на одновременной непрерывной регистрации изменений соответствующих характеристик образца (обусловленное фазовыми переходами или химическими реакциями) в зависимости от времени или температуры при нагревании в соответствии с выбранной температурной программой в заданной газовой атмосфере. В этом случае условия эксперимента практически одинаковы для обоих сигналов (атмосфера, скорость потока газа, давление насыщенного пара над образцом, скорость нагрева и охлаждения, термический контакт образца с тиглем и датчиком температуры, эффект излучения и т.д.). Результаты обоих методов могут непосредственно сравниваться. Влияние изменений атмосферы пробы на равновесие реакции, которое может происходить при отдельных измерениях, исключено. Кроме того, термические эффекты, измеренные этим методом, легче интерпретировать и энтальпии превращений могут быть скорректированы с учетом измерения массы пробы. Таким образом, СТА устраняет неопределенности, возникающие при проведении отдельных ТГ и ДТА/ДСК измерений из-за негомогенности образца, его геометрии или неточности температуры. СТА-- комплексный анализ. Образец может быть охарактеризован почти полностью, если ТГ и ДТА/ДСК результаты могут быть отнесены друг к другу точно. Это особенно важно для комплексных реакций. Постоянная регистрация изменений массы делает возможным точное определение изменений энтальпии. Полученная информация может быть еще более расширена при оснащении инструмента СТА системой анализа газовой фазы (ГТА) - ИК-фурье спектроскопией (ИК-фурье) или масс-спектрометрией (МС)

Метод позволяет получать информацию о составе, термической и окислительной стабильности материалов, фазовых переходах, температурах протекания и кинетике химических реакций. Метод широко применяется в научных и заводских лабораториях

· химической индустрии (в производстве пластмасс, резин, лаков и красок)

· фармацевтической промышленности ;

· пищевой промышленности ;

· горно-рудной промышленности и металлургии,

а также

· в минералогии, в неорганической, органической и физической химии ;

· при исследованиях и разработке строительных материалов, огнеупоров, керамик и композитов.

Масс-спектрометрия термического анализа
К настоящему времени с появлением аппаратуры скоростной регистрации и обработки масс-спектров на базе квадрупольных масс-спектрометров и компьютеров, раскрываются новые возможности и перспективы решения более сложных задач в исследованиях многокомпонентных системах и продуктов. Возможность скоростной регистрации сложных по составу масс-спектров продуктов в условиях динамического нагрева вещества позволяет наряду с определением термодинамических характеристик компонентов одновременно исследовать фазовые превращения или характера термической диссоциации. В этом аспекте при возросших возможностях компьютеров и вычислительных методов химической термодинамики достаточно актуально развитие методов масс-спектрометрического термического анализа сложных по составу продуктов (МСТА). Дополнение масс-спектpометpических методов теpмического анализа и термодинамических исследований вычислительными сpедствами компьютеpной химической теpмодинамики pасшиpяет повышает эффективность исследований при проведении технологических pазpаботок.

Другие (менее распространенные) методы основаны на измерении звука или эмиссии света от образца, электрического разряда от диэлектрического материала или механической релаксации в нагруженном образце.

Объединяющей сущностью всех перечисленных методов является то, что отклик образца записывается в зависимости от температуры (и времени).

Обычно изменение температуры осуществляется по заранее заданной программе - либо это непрерывное увеличение или уменьшение температуры с постоянной скоростью (линейный нагрев/охлаждение), либо серия измерений при различной температуре (ступенчатые изотермические измерения). Используются и более сложные температурные профили, использующие осциллирующую (обычно в виде синусоидальных или прямоугольных колебаний) скорость нагревания (Термический анализ с модулированной температурой) или изменяющие скорость нагревания в ответ на изменение свойств системы (Термический анализ контролируемый образцом).

В дополнение к управлению температурой образца также важно управлять средой, в которой проводятся измерения (например, атмосферой). Измерения могут быть выполнены на воздухе или в среде инертного газа (например, аргона или гелия). Также используется восстановительная или химически активная газовая среда, образцы помещаются в воду или другую жидкость. Обращённая газовая хроматография является методикой, которая изучает взаимодействие газов и паров с поверхностью - измерения часто проводятся при различных температурах, так что они могут быть рассмотрены как одна из разновидностей термического анализа.

Атомно-силовая микроскопия использует тонкий зонд для отображения топологии и механических свойств поверхностей с высокой пространственной разрешающей способностью. Управляя температурой горячего зонда и/или образца можно реализовать метод термического анализа с пространственным разрешением.

Термический анализ минералов,

В приложении к минералам и горным породам термический анализ впервые был применен французским учёным А. Л. Ле Шателье (1886). Термический анализ минералов проводят обычно в комплексе с др. методами (например, сочетание термического и термогравиметрического анализа позволяет совместно с термической кривой регистрировать изменения массы вещества при нагревании). Термический анализ минералов -- надёжный и удобный метод диагностирования многих минералов; особенно ценен при расшифровке механических минеральных тонкодисперсных смесей (глин, бокситов, железных и марганцевых руд, цементного сырья, карбонатных пород, почв, илов и т. д.). Количественная оценка содержания минералов в породе осуществляется сопоставлением площадей или высот, соответствующих термическим эффектам, температурных пиков и т. д. на изучаемой и эталонной термограммах. Термический анализ минералов широко применяют при исследовании механизма и кинетики фазовых переходов и химических реакций, происходящих в минералах при нагревании; при этом особое внимание обращается на определение тепловых эффектов и энергий активаций химических реакций с участием минералов. С помощью Термическим анализом минералов решаются также более общие геологические задачи: корреляция осадочных пород при составлении сводных геологических разрезов, выяснение закономерностей фациальной приуроченности минералов, установление минеральных парагенезисов в региональном масштабе и т. д.

Термический анализ фармацевтических материалов

ДСК и ТГА часто используют для анализа фармацевтических материалов. ДСК позволяет исследовать изменения, происходящие при полиморфных превращениях при различных скоростях нагрева. Таким образом, может быть определена скорость нагрева, необходимая для обеспечения полиморфной чистоты продукта (иногда необходимо обеспечить скорость до 750°C/мин). ТГА часто используется для измерения остатка растворителя и влажности, но также может быть применен для определения растворимости фармацевтических материалов в растворителях.

Термический анализ полимеров

Термопластические полимеры применяются в упаковочных материалах и хозяйственных товарах, и для исследования таких материалов, а именно влияния используемых в них добавок (включая стабилизаторы и цветовые добавки) и оптимизации процесса прессования или выдавливания используется метод ДСК. Например, ДСК времени индукции окисления позволяет определить количество стабилизатора окисления, присутствующего в термопласте (обычно полиолефин). Анализ часто проводится синхронно с ТГА, который помогает разделить влияние наполнителей, полимерной смолы и других добавок. ТГА может также дать информацию о температурной устойчивости полимера и оценить эффективность добавок (например, огнезащитных).

Термический анализ композиционных материалов

Композиционные материалы, таких как углеродные волокна или стеклянные эпоксидные композиты часто исследуются методом ДМА, позволяющим измерить жесткость материалов, определить модуль деформации и демпфирования (абсорбцию энергии). Космические компании часто используют эти анализаторы при повседневном контроле качества, чтобы гарантировать, что производимые изделия удовлетворяют заданным техническим условиям. У изготовителей гоночного автомобиля Формулы 1 также есть подобные потребности. ДСК используется для определения отверждающих свойств смол, используемых в композиционных материалах, и может также подтвердить, может ли смола затвердеть и сколько теплоты выделится в процессе затвердевания. Применение анализа прогнозирующего кинетику может помочь настроить производственные процессы. Другим примером может служить применение ТГА для измерения содержания волокон в композитах путем нагрева пробы до ухода из нее смолы и определения потери массы.

Для термических измерений в химии широкое применение нашёл комплексный термоаналитический прибор - дериватограф

Дериватографы позволяют производить одновременную регистрацию следующих кривых:

¦ кривая дифференциально-термического анализа (ДТА);

¦ кривая термогравиметрического анализа (ТГ);

¦ дифференциально-термогравиметрическая кривая (ДТГ);

¦ кривая температуры (Т).

В качестве исследуемых веществ могут выступать:

¦ неорганические (глины, металлы, минералы, каменный уголь, древесина);

¦ органические материалы (полимеры, смолы, канифоли, жиры, масла и т.д.).

3. Электрофизические характеристики материалов. Диэлектрическая проницаемость

Особенностями использования материалов в электроэнергетике является то, что они эксплуатируются в условиях воздействия электрических полей, и в несколько меньшей степени, в условиях воздействия магнитных полей. Основными процессами, происходящими под действием этих полей являются поляризация вещества, электропроводность

3.1 Диэлектрическая проницаемость материалов. Диэлектрическая проницаемость и электрические поля в диэлектриках

Электрическое поле - это вектор, направленный от положительного заряда к отрицательному заряду. Численно оно равно силе, действующей на единичный заряд (заряд в один кулон). Размерность напряженности поля в системе единиц СИ - В/м. С напряжением между точками a и b оно связано следующим выражением:

(.1),

а с потенциалом : E = -grad . (.2)

В однородном поле, в межэлектродном зазоре d, эти выражения упрощаются

U = E·d, или E = U/d (3)

Определение этой величины вы должны помнить еще из школы. Давайте вспомним. Если взять плоский конденсатор в вакууме, то заряд на каждой его пластине равен (по модулю):

(4)

где 0 - диэлектрическая постоянная, или диэлектрическая проницаемость вакуума, 0 = 8.85 10-12 Ф/м, S- площадь каждой из пластин, d - зазор между пластинами, U - напряжение между ними. Разделив на площадь и перейдя к плотности заряда на обкладке получим = 0E.

Если в межэлектродное пространство ввести диэлектрик, то что произойдет? Все зависит от того, подключен заряженный конденсатор к источнику или отключен. В подключенном конденсаторе напряжение между пластинами принудительно поддерживается, но заряд на каждой пластине увеличивается до нового значения Qm.

Отношение Qm/Q0 = называется диэлектрической проницаемостью материала.

Из самого определения видно, что диэлектрическая проницаемость материала является безразмерной величиной. Перейдя к плотности заряда на обкладке в случае диэлектрика получим = 0E.

Откуда притекает дополнительный заряд? Ясно, что заряд притекает из источника.

В отключенном от источника заряженном конденсаторе ситуация несколько отличается. Заряд не может измениться, т.к. ему некуда утекать и неоткуда притекать. В этом случае изменится другой параметр. Оказывается уменьшаются напряжение на конденсаторе и, соответственно, напряженность поля в конденсаторе.

Диэлектрическая восприимчивость и проницаемость.

Диэлектримческая восприиммчивость вещества -- физическая величина, мера способности вещества поляризоваться под действием электрического поля. Диэлектрическая восприимчивость чe -- коэффициент пропорциональности между поляризованностью P среды (дипольный момент единицы объёма) и напряженностью E внешнего электрического поля:

В системе СИ:

где -- электрическая постоянная.

В случае вакуума

У диэлектриков, как правило, диэлектрическая восприимчивость положительна.

В системе СИ диэлектрическая восприимчивость является безразмерной величиной.

Зависимость от времени

В общем случае, вещество не может поляризоваться мгновенно в ответ на приложенное электрическое поле, поэтому более общая формула содержит время:

Это значит, что поляризованность вещества является свёрткой электрического поля в прошлом и восприимчивости, зависящей от времени как чe(Дt). Верхний предел этого интеграла может быть расширен до бесконечности, если определить чe(Дt) = 0 для Дt < 0. Мгновенный ответ соответствует дельта-функции Дирака чe(Дt) = чeд(Дt).

В линейной системе удобно использовать непрерывное преобразование Фурье и писать это соотношение как функцию частоты. Благодаря теореме о свёртке этот интеграл превращается в обычное произведение:

Эта зависимость диэлектрической восприимчивости от частоты приводит к дисперсии света в веществе.

Тот факт, что поляризация вследствие принципа причинности может зависеть только от электрического поля в прошлом (то есть чe(Дt) = 0 для Дt < 0), налагает на восприимчивость чe(0) ограничения, называемые соотношениями Крамерса -- Кронига.

Диэлектрическая восприимчивость чe _ величина безразмерная, положительная и для большинства диэлектриков составляет несколько единиц. Однако для некоторых диэлектриков она существенно больше: для спирта чe 25, для воды чe 80. В неполярных диэлектриках чe не зависит от Т, в полярных чe обратно пропорциональна температуре. В полярном диэлектрике помимо ориентационной поляризации наблюдается и электронная поляризация.

Диэлектрическая проницаемость является важной характеристикой пищевых продуктов. Измеряя ее, можно получить большую информацию о качестве продукта, оптимальном способе переработки и его хранения. Например, диэлектрическая проницаемость мяса существенно зависит от его жирности. С ростом жирности уменьшается влажность и . Исследование молока различной жирности показало, что с ростом последней линейно убывает. Таким образом, по величине можно определить жирность молока. По величине можно также установить возможные сроки и температурный режим хранения фруктов и овощей.

Относимтельная диэлектримческая проницамемость (диэлектрическая постоянная) среды е -- безразмерная величина, характеризующая свойства изолирующей (диэлектрической) среды. Связана с эффектом поляризации диэлектриков под действием электрического поля (и с характеризующей этот эффект величиной диэлектрической восприимчивости среды). Она показывает, во сколько раз взаимодействие между зарядами в однородной среде меньше, чем в вакууме. Относительная диэлектрическая проницаемость воздуха и большинства других газов близка к единице (в силу их низкой плотности). Для большинства твёрдых или жидких диэлектриков относительная диэлектрическая проницаемость лежит в диапазоне от 2 до 8. Диэлектрическая постоянная воды достаточно высока -- около 80. Велики её значения для веществ с молекулами, обладающими большим электрическим диполем. Относительная диэлектрическая проницаемость сегнетоэлектриков составляет десятки и сотни тысяч.

Абсолюмтная диэлектримческая проницамемость - величина, показывающая зависимость электрической индукции от напряжённости электрического поля. В зарубежной литературе обозначается буквой е, в отечественной (где е обычно обозначает относительную диэлектрическую проницаемость) преимущественно используется сочетание ее0, где е0 - электрическая постоянная.

В единицах системы СИ: [еa]=Ф/м.

Вообще говоря, абсолютная диэлектрическая проницаемость является тензором, определяемым из следующих соотношений:

здесь:

Е- вектор электрического поля,

е- вектор электрической индукции,

Коэффициент ослабления поля тот же самый, как и в случае увеличения заряда при подключенном источнике, т.е. он равен Это второе определение диэлектрической проницаемости.

За счет чего это происходит? Рассмотрим этот вопрос подробнее. Здесь придется обратиться к понятию поляризации. Как известно, молекулы состоят из атомов, окруженных электронными оболочками. При этом электроны могут равномерно распределяться по молекуле, а могут и концентрироваться на каких-либо атомах. В первом случае говорят, что молекула неполярная. Пример - молекула водорода или атом гелия, или молекула бензола. Во втором случае в молекуле образуются области с положительным и отрицательным зарядом. Если в молекуле можно выделить направление, вдоль которого с одной стороны можно расположить положительные заряды, а с другой стороны - отрицательные, то такая молекула называется полярной или дипольной.

Дипольный момент молекулы является вектором, направленным от отрицательного к положительному заряду. Численно он равен произведению расстояния между зарядами на модуль заряда.

В неполярной молекуле под действием электрического поля происходит смещение электронных оболочек. Возникает индуцированный дипольный момент у молекулы, молекула поляризуется.

Поляризация за счет смещения электронов называется электронной. Возникающий дипольный момент невелик. Диэлектрическая проницаемость неполярных жидкостей и твердых диэлектриков также невелика, она не превышает 3.

Диэлектрики, состоящие из неполярных молекул называются неполярными диэлектриками.

В полярной молекуле под действием поля происходит поворот диполя в направлении напряженности электрического поля. В этом случае, в зависимости от значения дипольного момента молекулы и концентрации молекул поляризация может быть значительной. Для жидкостей и твердых диэлектриков с дипольной поляризацией диэлектрическая проницаемость достигает примерно 100 и даже больше.

Диэлектрики, состоящие из полярных молекул называются полярными диэлектриками.

В некоторых твердых диэлектриках может существовать особый вид поляризации: спонтанная, или доменная поляризация. Она существует только в кристаллах, но далеко не во всех, в аморфных телах ее не бывает. Оказывается иногда в среде возникают самопроизвольно микроскопические области с поляризацией, которая получается при смещении положительно заряженных ионов решетки в одну сторону, а отрицательно заряженных ионов в другую сторону.

Микрообласть со спонтанной поляризацией называется доменом. Обычно размер доменов составляет микроны и десятки микрон. Суммарный дипольный момент любого образца равен нулю, т.к. дипольные моменты доменов направлены в разные стороны.

Если дипольные моменты доменов хаотически направлены в разные стороны, то такой диэлектрик называется сегнетоэлектриком.

Если домены существуют парами, причем у каждой пары дипольные моменты направлены в противоположные стороны, такой диэлектрик называется антисегнетоэлектриком. Под действием электрического поля домены в диэлектрике поворачиваются в направлении электрического поля, как гигантские диполи. Только в отличии от диполей, где молекулы физически поворачиваются, в доменах перестраивается структура, так, что результирующий вектор поляризации каждого домена чуть-чуть смещается в направлении поля.

Диэлектрическая проницаемость сегнетоэлектриков и антисегнетоэлектриков велика, она может достигать десятков тысяч.

Суммарный дипольный момент единицы объема называется поляризацией . Вектор поляризации, появляющейся под действием электрического поля, направлен вдоль направления электрического поля. Его значение связано с напряженностью поля P = 0E, где - диэлектрическая восприимчивость. Диэлектрическая проницаемость связана с восприимчивостью = 1+.

В газообразном диэлектрике количество дипольных моментов мало вследствие низкой плотности газа, поэтому диэлектрическая проницаемость мало отличается от единицы, даже для полярных газов (Отличие в третьем, четвертом знаке после запятой).

Именно поляризация и вызывает увеличение плотности заряда на обкладках конденсатора при подключенном источнике. Значение плотности заряда на обкладках конденсатора = P+0E. Естественно, что в случае вакуума поляризация равна нулю, диэлектрическая проницаемость в точности равна единице.

В электродинамике вводят понятие вектора электрического смещения

= 0E (3.5.)

который определяет заряд как в случае вакуума, так и в случае диэлектрика. Другие названия этого термина - электрическая индукция или электростатическая индукция. Размерность индукции Кл/м2. Кроме приведённых выражений полезно будет также вспомнить соотношения для электрического смещения D:

= = 0E, (3.6.)

Энергия электрического поля в среде связана с диэлектрической проницаемостью

W = 0E2/2 или W = DE/2, или W = D2/2.

Для устройств, содержащих в себе электрические поля важно понимать как изменяется напряженность электрического поля при использовании комбинации двух диэлектриков с разной диэлектрической проницаемостью. Если расположить диэлектрики так, что электрическое поле перпендикулярно поверхности раздела, то значения напряжённости поля в каждом материале обратно пропорциональны диэлектрическим проницаемостям:

= (3.7)

Рассмотрим простую задачку. В плоский конденсатор с зазором d и напряжением U вводят пластину диэлектрика, которая имеет толщину d1, диэлектрическую проницаемость . Как изменится поле в оставшейся части зазора и какое поле будет в диэлектрике?

Несложно решить эту задачу воспользовавшись выражениями (3.3) и (3.7), которые для нашего случая можно переписать как

Ев(d-d1) + Eдd1= U (3.8)

Евв= Eдд

Решив систему уравнений получим:

(3.9)

Анализируя эти выражения можно увидеть, что поле в газовой прослойке всегда увеличено, а в диэлектрической - уменьшено. Емкость конденсатора в этом случае увеличена, но незначительно по сравнению с емкостью конденсатора без диэлектрика.

В случае, когда электрическое поле параллельно поверхности раздела, напряженности поля в материалах одинаковы. Этот случай можно реализовать, вводя в конденсатор диэлектрик, толщины, равной величине межэлектродного зазора в конденсаторе. Емкость, при этом, увеличивается существенно, пропорционально объемной доле диэлектрика.

Для понимания процессов в диэлектриках важно знать значения полей в случае различных электродов. Наиболее часто используются модельные представления электродных систем, к которым с той или иной степенью приближения можно свести многие реальные системы электродов. Это три типа полей:

- плоско- параллельное,

- радиально-цилиндрическое, или аксиальное

- радиально-сферическое.

Ниже приводятся описание этих полей и необходимые для расчета формулы.

Плоско-параллельное поле. Здесь эквипотенциальные поверхности (поверхности уровня) представляют собой параллельные плоскости, а линии индукции, совпадающие с направлением вектора напряженности поля (которая во всех точках поля одинакова), - перпендикулярны этим плоскостям.

Значение ёмкости:

(3.10)

В плоско-параллельном поле напряженность Е одинакова во всех точках. Поэтому:

(3.11)

Радиально-цилиндрическое поле. Эквипотенциальными в этом поле являются коаксиальные (имеющие общую ось) цилиндрические поверхности, а линии поля располагаются в радиальном направлении. Распределение напряженности электрического поля:

Е( r ) =

Значение емкости:

(3.12)

r1 - радиус внутреннего цилиндра, r2 - радиус внешнего цилиндра

Радиально-сферическое поле. В этом поле поверхности уровня - это сферы с общим центром, а линии индукции направлены по радиусам.

Распределение напряженности электрического поля:

Е( r )=

Значение емкости:

(3.13)

Причем емкость шара по отношению к сфере бесконечного радиуса

(3.14

Ёмкость полушария в два раза меньше емкости шара.

3.2 Электрофизические методы исследования

...

Подобные документы

  • Краткие сведения о дипольных моментах атомов и молекул. Диэлектрическая проницаемость разреженного газа малой плотности. Разреженный газ из полярных молекул. Модель системы со спонтанной поляризацией. Графическое решение функционального уравнения.

    реферат [302,8 K], добавлен 20.03.2016

  • Понятие диэлектрической проницаемости как количественной оценки степени поляризации диэлектриков. Зависимость диэлектрической проницаемости газа от радиуса его молекул и их числа в единице объема, жидких неполярных диэлектриков от температуры и частоты.

    презентация [870,1 K], добавлен 28.07.2013

  • Сверхпроводники и возможности их применения в электротехнике. Зависимость пробивного напряжения в твердом диэлектрике от температуры и частоты. Поляризация диэлектриков и диэлектрическая проницаемость. Нагревостойкость твердых и жидких диэлектриков.

    реферат [968,8 K], добавлен 12.02.2013

  • Свойства материалов: механические, физические, химические. Виды деформаций: растяжение, сжатие, сдвиг, кручение и изгиб. Расчет плотности, теплопроводности и теплоемкости материалов. Огнестойкость материалов: несгораемые, трудносгораемые, сгораемые.

    презентация [32,0 M], добавлен 10.10.2015

  • Определение длины проволоки для намотки резистора. Концентрация электронов и дырок в собственном и примесном полупроводнике. Диффузионная длина движения неравновесных носителей заряда в полупроводниковом материале. Проводимость конденсаторной керамики.

    контрольная работа [89,8 K], добавлен 12.11.2013

  • История открытия явления электризации. Свойства полярных, неполярных и кристаллических диэлектриков. Интенсивность электризации, диэлектрическая проницаемость веществ. Причины накопления зарядов в производственных условиях. Удельная проводимость жидкости.

    реферат [352,6 K], добавлен 16.09.2014

  • Исследование диэлектрического отклика. Поляризация и диэлектрическая проницаемость. Диэлектрические функции в диапазоне радио- и сверхвысоких частот, в области решеточных и электронных резонансов. Разложение диэлектрической функции на элементарные части.

    курсовая работа [2,1 M], добавлен 16.08.2011

  • Свойства сверхпроводящих материалов. Определение электрического сопротивления и магнитной проницаемости немагнитных зазоров. Падение напряженности магнитного поля по участкам. Условия для работы устройства. Применение эффекта Мейснера и его изобретение.

    научная работа [254,2 K], добавлен 20.04.2010

  • Исследование диэлектрических свойств кристаллов со структурой перовскита методами дифференциальной диэлектрической спектроскопии. Спектры коэффициента отражения, восстановление диэлектрических функций феррита висмута. Диэлектрические и оптические функции.

    курсовая работа [3,3 M], добавлен 26.03.2012

  • Понятие мощности как физической величины, ее виды. Соотношения между единицами мощности. Основное содержание и методы сопротивления материалов. Физические свойства машиностроительных материалов: чугуна, быстрорежущей стали и магниевых сплавов.

    контрольная работа [29,1 K], добавлен 21.12.2010

  • Концепция фазовых проницаемостей, ее сущность и содержание, методы определения. Определение главных факторов, влияющих на фазовые проницаемости коллекторов нефти и газа, направления использования полученных в результате исследований данных веществ.

    курсовая работа [344,0 K], добавлен 04.05.2014

  • Природа и характеристики магнитного поля. Магнитные свойства различных веществ и источники магнитного поля. Устройство электромагнитов, их классификация, применение и примеры использования. Соленоид и его применение. Расчет намагничивающего устройства.

    курсовая работа [3,2 M], добавлен 17.01.2011

  • Рентгено-флуоресцентный спектральный анализ материалов. Исследование элементного состава вещества. Процесс возникновения рентгеновской флуоресценции. Аналитические возможности нейтронно-активационного анализа. Спектры излучения радиоактивного образца.

    реферат [1,3 M], добавлен 07.05.2019

  • Электрофизические свойства полупроводников. Структура полупроводниковых кристаллов. Элементы зонной теории твердого тела. Микроструктурные исследования влияния электронного облучения на электрофизические характеристики полупроводниковых приборов.

    курсовая работа [1,0 M], добавлен 18.09.2015

  • Первичное действие электромагнитных колебаний на ткани организма. Методы и аппаратура для высокочастотной электротерапии. Физиотерапевтические аппараты высокочастотной терапии. Аппараты индуктотермии и УВЧ-терапии. Генераторы синусоидальных колебаний.

    реферат [275,0 K], добавлен 25.02.2011

  • Колебания частиц в упругих средах, распространяющиеся в форме продольных волн, частота которых лежит в пределах, воспринимаемых ухом. Объективные, субъективные характеристики звука. Звуковые методы исследования в клинике. Положение пальцев при перкуссии.

    презентация [607,1 K], добавлен 28.05.2013

  • Физические основы различных распылений: ионного, катодного, магнетронного, высокочастотного. Получение покрытий распылением в несамостоятельном газовом разряде. Методы контроля параметров осаждения покрытий. Вакуумная металлизация полимерных материалов.

    курсовая работа [457,3 K], добавлен 19.01.2011

  • Методы учета и контроля ядерных материалов в "мокром" хранилище отработавшего ядерного топлива реакторных установок ВВЭР-1000. Требования к применению средств контроля доступа и проведению физической инвентаризации. Порядок оценки безвозвратных потерь.

    дипломная работа [780,3 K], добавлен 16.01.2014

  • Понятие молекулярной связи как самой непрочной, ее сущность и особенности. Зависимость эффекта дипольной поляризации в вязкой среде от увеличения ее температуры. Зависимость диэлектрической проницаемости тел от структурных особенностей диэлектрика.

    контрольная работа [19,8 K], добавлен 06.04.2009

  • Понятие и действие магнитного поля, его характеристики: магнитная индукция, магнитный поток, напряжённость, магнитная проницаемость. Формулы магнитной индукции и правило "левой руки". Элементы и типы магнитных цепей, формулировка их основных законов.

    презентация [71,7 K], добавлен 27.05.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.