Физические методы исследования

Теплофизические и механические характеристики материалов. Диэлектрическая проницаемость материалов. Диэлектрическая проницаемость и электрические поля в диэлектриках. Устройства и методы неразрушающего контроля. Электрофизические методы исследования.

Рубрика Физика и энергетика
Вид методичка
Язык русский
Дата добавления 01.09.2017
Размер файла 2,4 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Термоэлектрическая дефектоскопия основана на измерении электродвижущей силы (термоэдс), возникающей в замкнутой цепи при нагреве места контакта двух разнородных материалов. Если один из этих материалов принять за эталон, то при заданной разности температур горячего и холодного контактов величина и знак термоэдс будут определяться химическим составом второго материала. Этот метод обычно применяют в тех случаях, когда требуется определить марку материала, из которого состоит полуфабрикат или элемент конструкции (в том числе и в готовой конструкции).

Трибоэлектрическая дефектоскопия основана на измерении электродвижущей силы, возникающей при трении разнородных материалов Измеряя разность потенциалов между эталонными и испытуемыми материалами, можно различить марки некоторых сплавов.

Электростатическая дефектоскопия основана на использовании электростатического поля, в которое помещают изделие. Для обнаружения поверхностных трещин в изделиях из неэлектропроводных материалов (фарфора, стекла, пластмасс), а также из металлов, покрытых теми же материалами, изделие опыляют тонким порошком мела из пульверизатора с эбонитовым наконечником (порошковый метод). При этом частицы мела получают положительный заряд. В результате неоднородности электростатического поля частицы мела скапливаются у краёв трещин. Этот метод применяют также для контроля изделий из изоляционных материалов. Перед опылением их необходимо смочить ионогенной жидкостью.

Ультразвуковая дефектоскопия основана на использовании упругих колебаний, главным образом ультразвукового диапазона частот. Нарушения сплошности или однородности среды влияют на распространение упругих волн в изделии или на режим колебаний изделия. Основные методы: эхометод, теневой, резонансный, велосимметрический (собственно ультразвуковые методы), импедансный и метод свободных колебаний (акустические методы). Ультразвуковая дефектоскопия, использующая несколько переменных параметров (частотный диапазон, типы волн, режимы излучения, способы осуществления контакта и др.), является одним из наиболее универсальных методов неразрушающего контроля.

Наиболее универсальный эхометод основан на посылке в изделие коротких импульсов ультразвуковых колебаний (рис. 5) и регистрации интенсивности и времени прихода эхосигналов, отражённых от дефектов. Для контроля изделия датчик эходефектоскопа сканирует его поверхность. Метод позволяет обнаруживать поверхностные и глубинные дефекты с различной ориентировкой. Созданы промышленные установки (рис. 6) для контроля различных изделий. Эхосигналы можно наблюдать на экране осциллоскопа или регистрировать самозаписывающим прибором. В последнем случае повышаются надёжность, объективность оценки, производительность и воспроизводимость контроля. Чувствительность эхометода весьма высока: в оптимальных условиях контроля на частоте 2--4 Мгц можно обнаруживать дефекты, отражающая поверхность которых имеет площадь около 1 мм2.

<>

Рис. 5. Блок-схема ультразвукового эходефектоскопа: 1 -- генератор электрических импульсов; 2 -- пьезоэлектрический преобразователь (искательная головка); 3 -- приёмно-усилительный тракт; 4 -- хронизатор; 5 -- генератор развёртки; 6 -- электроннолучевая трубка; Н -- начальный сигнал; Д -- донный эхосигнал; ДФ -- эхосигнал от дефекта.

<>

Рис. 6. Ультразвуковая многоканальная установка для автоматизированного контроля слитков эхометодом: 1 -- ванна для погружения изделий; 2 -- манипулятор для юстировки искательной головки; 3 -- самозаписывающий регистратор дефектов; 4 -- ультразвуковые дефектоскопы; 5 -- приборы для контроля шага и скорости сканирования; 6 -- пульт управления; 7 -- контролируемый слиток; 8 -- приводной валок.

При теневом методе ультразвуковые колебания, встретив на своём пути дефект, отражаются в обратном направлении. О наличии дефекта судят по уменьшению энергии ультразвуковых колебаний или по изменению фазы ультразвуковых колебаний, огибающих дефект. Метод широко применяют для контроля сварных швов, рельсов и др.

Резонансный метод основан на определении собственных резонансных частот упругих колебаний (частотой 1--10 Мгц) при возбуждении их в изделии. Этим методом измеряют толщину стенок металлических и некоторых неметаллических изделий. При возможности измерения с одной стороны точность измерения около 1%. Кроме того, этим методом можно выявлять зоны коррозионного поражения. Резонансными дефектоскопами осуществляют контроль ручным способом и автоматизированным с записью показаний прибора.

Велосиметрический метод эходефектоскопии основан на измерении изменения скорости распространения упругих волн в зоне расположения дефектов в многослойных конструкциях, используется для обнаружения зон нарушения сцепления между слоями металла.

Импедансный метод основан на измерении механического сопротивления (импеданса) изделия датчиком, сканирующим поверхность и возбуждающим в изделии упругие колебания звуковой частоты. Этим методом можно выявлять дефекты в клеевых, паяных и др. соединениях, между тонкой обшивкой и элементами жёсткости или заполнителями в многослойных конструкциях. Обнаруживаемые дефекты площадью от 15 мм2 и более отмечаются сигнализатором и могут записываться автоматически.

Метод свободных колебаний основан на анализе спектра свободных колебаний контролируемого изделия, возбуждённого ударом; применяется для обнаружения зон нарушения соединений между элементами в многослойных клеёных конструкциях значительной толщины из металлических и неметаллических материалов.

Капиллярная дефектоскопия основана на искусственном повышении свето- и цветоконтрастности дефектного участка относительно неповреждённого. Капиллярные методы контроля основаны на капиллярном проникновении индикаторных жидкостей (пенетрантов) в полости поверхностных и сквозных несплошностей материала объектов контроля и регистрации образующихся индикаторных следов визуальным способом или с помощью преобразователя.

Методы капиллярной дефектоскопии позволяют обнаруживать невооружённым глазом тонкие поверхностные трещины и др. несплошности материала, образующиеся при изготовлении и эксплуатации деталей машин. Капиллярный контроль предназначен для обнаружения невидимых или слабовидимых невооруженным глазом поверхностных и сквозных дефектов в объектах контроля, определения их расположения, протяженности (для дефектов типа трещин) и ориентации по поверхности. Этот вид контроля позволяет диагностировать объекты любых размеров и форм, изготовленные из черных и цветных металлов и сплавов, пластмасс, стекла, керамики, а также других твердых неферромагнитных материалов.

Капиллярный контроль применяют также для объектов, изготовленных из ферромагнитных материалов, если их магнитные свойства, форма, вид и месторасположение дефектов не позволяют достичь требуемой чувствительности магнитопорошковым методом или магнитопорошковый метод контроля не допускается применять по условиям эксплуатации объекта.

Капилляр, выходящий на поверхность объекта контроля только с одной стороны, называют поверхностной несплошностью, а соединяющий противоположные стенки объекта контроля -- сквозной. Если поверхностная и сквозная несплошности являются дефектами, то допускается применять вместо них термины "поверхностный дефект" и "сквозной дефект".

Полости поверхностных трещин заполняют специальными индикаторными веществами (пенетрантами), проникающими в них под действием сил капиллярности. Изображение, образованное пенетрантом, в месте расположения несплошности и подобное форме сечения у выхода на поверхность объекта контроля называют индикаторным рисунком (след). Применительно к несплошности типа единичной трещины вместо термина "индикаторный рисунок" допускается применение термина "индикаторный след".

Глубина несплошности -- размер несплошности в направлении внутрь объекта контроля от его поверхности. Длина несплошности -- продольный размер несплошности на поверхности объекта. Раскрытие несплошности -- поперечный размер несплошности у ее выхода на поверхность объекта контроля.

Необходимым условием выявления дефектов нарушения сплошности материала типа полостных капиллярным контролем, имеющим выход на поверхность объекта и глубину распространения, значительно превышающую ширину их раскрытия, является относительная их незагрязненность посторонними веществами.

Следует различать максимальную, минимальную и среднюю глубину, длину и раскрытие несплошности. Если не требуется заранее оговаривать, какое из указанных значений размеров имеется в виду, то для исключения недоразумений следует принять термин "преимущественный размер". Для несплошностей типа округлых пор раскрытие равно диаметру несплошности на поверхности объекта.

Все методы капиллярного неразрушающего контроля по характеру взаимодействия проникающих пенетрантов с объектом контроля рассматриваются как молекулярные.

Капиллярные методы подразделяют на основные, использующие капиллярные явления, и комбинированные.

Основные капиллярные методы контроля подразделяют в зависимости от типа проникающего вещества на следующие:

1. Метод проникающих растворов -- жидкостный метод капиллярного неразрушающего контроля, основанный на использовании в качестве проникающего вещества жидкого индикаторного раствора.

2. Метод фильтрующихся суспензий -- жидкостный метод капиллярного неразрушающего контроля, основанный на использовании в качестве жидкого проникающего вещества индикаторной суспензии, которая образует индикаторной рисунок из отфильтрованных частиц дисперсной фазы.

Капиллярные методы в зависимости от способа выявления индикаторного рисунка подразделяют на следующие:

¦люминесцентный, основанный на регистрации контраста люминесцирующего в длинноволновом ультрафиолетовом излучении видимого индикаторного рисунка на фоне поверхности объекта контроля; Для люминесцентного метода пенетранты составляют на основе люминофоров (керосин, нориол и др.). На очищенную от избытка пенетранта поверхность наносят тонкий порошок белого проявителя (окись магния, тальк и т.п.), обладающего сорбционными свойствами, за счёт чего частицы пенетранта извлекаются из полости трещины на поверхность, обрисовывают контуры трещины и ярко светятся в ультрафиолетовых лучах.

¦цветной, основанный на регистрации контраста цветного в видимом излучении индикаторного рисунка на фоне поверхности объекта контроля; При цветном методе контроля пенетранты составляют на основе керосина с добавлением бензола, скипидара и специальных красителей (например, красной краски). Для контроля изделий с тёмной поверхностью применяют магнитный порошок, окрашенный люминофорами (магнитнолюминесцентный метод), что облегчает наблюдение тонких трещин.

¦люминесцентно-цветной, основанный на регистрации контраста цветного или люминесцирующего индикаторного рисунка на фоне поверхности объекта контроля в видимом или длинноволновом ультрафиолетовом излучении;

¦яркостный, основанный на регистрации контраста в видимом излучении ахроматического рисунка на фоне поверхности объекта контроля.

Комбинированные методы капиллярного контроля сочетают два или более различных по физической сущности методов контроля, один из которых обязательно жидкостный.

Комбинированные капиллярные методы контроля подразделяют, в зависимости от характера физических полей (излучений) и особенностей их взаимодействия с контролируемым объектом.

Капиллярно-электростатический метод основан на обнаружении индикаторного рисунка, образованного скоплением электрически заряженных частиц у поверхностной или сквозной несплошности неэлектропроводящего объекта, заполненного ионогенным пенетрантом.

Капиллярно-электроиндуктивный метод основан на электроиндуктивном обнаружении электропроводящего индикаторного пенетранта в поверхностных и сквозных несплошностях неэлектропроводящего объекта.

Капиллярно-магнитопорошковый метод основан на обнаружении комплексного индикаторного рисунка, образованного пенетрантом и ферромагнитным порошком, при контроле намагниченного объекта.

Жидкостный капиллярно-радиационный метод изучения основан на регистрации ионизирующего излучения соответствующего пенетранта в поверхностных и сквозных несплошностях, а капиллярно-радиационный метод поглощения -- на регистрации поглощения ионизирующего излучения соответствующим пенетрантом в поверхностных и сквозных несплошностях объекта контроля.

Основными операциями капиллярного неразрушающего контроля являются:

· подготовка объектов к контролю;

· обработка объекта дефектоскопическими материалами;

· проявление дефектов;

· обнаружение дефектов и расшифровка результатов контроля;

· окончательная очистка объекта.

Технологический режим операций контроля (продолжительность, температуру, давление) устанавливают в зависимости от используемого набора дефектоскопических материалов, особенностей объекта контроля и типа искомых дефектов, условий контроля и используемой аппаратуры.

Подготовка объектов к контролю включает очистку контролируемой поверхности от всевозможных загрязнений, удаление лакокрасочных покрытий, моющих составов и дефектоскопических материалов, оставшихся от предыдущего контроля, а также сушку объекта контроля.

Для предварительной очистки поверхностей применяют механическую очистку объекта контроля струей песка, дроби, косточковой крошки, другими диспергированными абразивными материалами или резанием, в том числе обработку поверхности шлифованием, полированием, шабровкой.

Для окончательной очистки контролируемых объектов используют следующие виды очисток:

· в парах органических растворителей;

· растворяющую очистку воздействием на объект контроля удаляющих загрязнения водяных или органических растворителей, в том числе посредством струйной промывки, погружения, протирки;

· химическую очистку водными растворами химических реагентов, взаимодействующих с удаляемыми загрязнениями, не повреждая объект контроля;

· электрохимическую очистку водными растворами химических реагентов с одновременным воздействием электрического тока;

· ультразвуковую очистку органическими растворителями, водой или водными растворами химических соединений в ультразвуковом поле с использованием режима ультразвукового капиллярного эффекта. Ультразвуковой капиллярный эффект -- явление аномального увеличения высоты и скорости подъема жидкости в капиллярной полости под действием ультразвука;

· анодно-ультразвуковую очистку водными растворами химических реагентов с одновременным воздействием ультразвука и электрического тока;

· тепловую очистку путем прогрева при температуре, не вызывающей недопустимых изменений материала объекта контроля;

· сорбционную очистку смесью сорбента и быстросохнущего органического растворителя, наносимой на очищаемую поверхность выдерживаемой и удаляемой после высыхания.

Необходимые способы очистки, их сочетание и требуемую чистоту контролируемых поверхностей определяют в технической документации на контроль. При высоком классе чувствительности контроля предпочтительны не механические, а химические и электрохимические способы очистки, в том числе с воздействием на объект контроля ультразвука или электрического тока. Эффективность этих способов обусловлена оптимальным выбором очищающих составов, режимов очистки, сочетанием и последовательностью используемых способов очистки, включая сушку.

Чувствительность капиллярной дефектоскопии позволяет обнаруживать поверхностные трещины с раскрытием менее 0,02 мм. Однако широкое применение этих методов ограничено из-за высокой токсичности пенетрантов и проявителей.

Таким образом, дефектоскопия -- равноправное и неотъемлемое звено технологических процессов, позволяющее повысить надёжность выпускаемой продукции. Однако методы дефектоскопии не являются абсолютными, т.к. на результаты контроля влияет множество случайных факторов. Об отсутствии дефектов в изделии можно говорить только с той или иной степенью вероятности. Надёжности контроля способствует его автоматизация, совершенствование методик, а также рациональное сочетание нескольких методов. Годность изделий определяется на основании норм браковки, разрабатываемых при их конструировании и составлении технологии изготовления. Нормы браковки различны для разных типов изделий, для однотипных изделий, работающих в различных условиях, и даже для различных зон одного изделия, если они подвергаются различному механическому, термическому или химическому воздействию.

Применение дефектоскопии в процессе производства и эксплуатации изделий даёт большой экономический эффект за счёт сокращения времени, затрачиваемого на обработку заготовок с внутренними дефектами, экономии металла и др. Кроме того, дефектоскопия играет значительную роль в предотвращении разрушений конструкций, способствуя увеличению их надёжности и долговечности.

4.3 Дефекты сварных соединений и причины их возникновения

В процессе образования сварных соединений в металле шва и зоне термического влияния могут возникать различные отклонения от установленных норм и технических требований, приводящие к ухудшению работоспособности сварных конструкций, снижению их эксплуатационной надежности, ухудшению внешнего вида изделия. Такие отклонения называют дефектами. Дефекты сварных соединений различают по причинам возникновения и месту их расположения (наружные и внутренние). В зависимости от причин возникновения их можно разделить на две группы. К первой группе относятся дефекты, связанные с металлургическими и тепловыми явлениями, происходящими в процессе образования, формирования и кристаллизации сварочной ванны и остывания сварного соединения (горячие и холодные трещины в металле шва и околошовной зоне, поры, шлаковые включения, неблагоприятные изменения свойств металла шва и зоны термического влияния).

Ко второй группе дефектов, которые называют дефектами формирования швов, относят дефекты, происхождение которых связано в основном с нарушением режима сварки, неправильной подготовкой и сборкой элементов конструкции под сварку, неисправностью оборудования, недостаточной квалификацией сварщика и другими нарушениями технологического процесса. К дефектам этой группы относятся несоответствия швов расчетным размерам, непровары, подрезы, прожоги, наплывы, незаваренные кратеры и др. Виды дефектов приведены на рис. 7. Дефектами формы и размеров сварных швов являются их неполномерность, неравномерные ширина и высота, бугристость, седловины, перетяжки и т.п.

Рис. 7. Виды дефектов сварных швов: непровар, с - трещины и поры, ж - внутренние трещины и поры, з - внутренний непровар, и - шлаковые включения

Эти дефекты снижают прочность и ухудшают внешний вид шва. Причины их возникновения при механизированных способах сварки - колебания напряжения в сети, проскальзывание проволоки в подающих роликах, неравномерная скорость сварки из-за люфтов в механизме перемещения сварочного автомата, неправильный угол наклона электрода, протекание жидкого металла в зазоры, их неравномерность по длине стыка и т.п. Дефекты формы и размеров швов косвенно указывают на возможность образования внутренних дефектов в шве.

Наплывы образуются в результате натекания жидкого металла на поверхность холодного основного металла без сплавления с ним. Они могут быть местными - в виде отдельных застывших капель, а также иметь значительную протяженность вдоль шва. Чаще всего наплывы образуются при выполнении горизонтальных сварных швов на вертикальной плоскости. Причины образования наплывов - большой сварочный ток, слишком длинная дуга, неправильный наклон электрода, большой угол наклона изделия при сварке на спуск. При выполнении кольцевых швов наплывы образуются при недостаточном или излишнем смещении электрода с зенита. В местах наплывов часто могут выявляться непровары, трещины и др.

Подрезы представляют собой продолговатые углубления (канавки), образовавшиеся в основном металле вдоль края шва. Они возникают в результате большого сварочного тока и длинной дуги. Основной причиной подрезов при выполнении угловых швов является смещение электрода в сторону вертикальной стенки. Это вызывает значительный разогрев металла вертикальной стенки и его стекание при оплавлении на горизонтальную стенку. Подрезы приводят к ослаблению сечения сварного соединения и концентрации в нем напряжений, что может явиться причиной разрушения.

Прожоги - это сквозные отверстия в шве, образованные в результате вытекания части металла ванны. Причинами их образования могут быть большой зазор между свариваемыми кромками, недостаточное притупление кромок, чрезмерный сварочный ток, недостаточная скорость сварки. Наиболее часто прожоги образуются при сварке тонкого металла и выполнении первого прохода многослойного шва. Прожоги могут также образовываться в результате недостаточно плотного поджатая сварочной подкладки или флюсовой подушки.

Непроваром называют местное несплавление кромок основного металла или несплавление между собой отдельных валиков при многослойной сварке. Непровары уменьшают сечение шва и вызывают концентрацию напряжений в соединении, что может резко снизить прочность конструкции. Причины образования непроваров - плохая зачистка металла от окалины, ржавчины и загрязнений, малый зазор при сборке, большое притупление, малый угол скоса кромок, недостаточный сварочный ток, большая скорость сварки, смещение электрода от центра стыка. Непровары выше допустимой величины подлежат удалению и последующей заварке.

Трещины, также как и непровары, являются наиболее опасными дефектами сварных швов. Они могут возникать как в самом шве, так и в околошовной зоне и располагаться вдоль или поперек шва. По своим размерам трещины могут быть макро- и микроскопическими. На образование трещин влияет повышенное содержание углерода, а также примеси серы и фосфора.

Шлаковые включения , представляющие собой вкрапления шлака в шве, образуются в результате плохой зачистки кромок деталей и поверхности сварочной проволоки от оксидов и загрязнений. Они возникают при сварке длинной дугой, недостаточном сварочном токе и чрезмерно большой скорости сварки, а при многослойной сварке - недостаточной зачистке шлаков с предыдущих слоев. Шлаковые включения ослабляют сечение шва и его прочность.

Газовые поры появляются в сварных швах при недостаточной полноте удаления газов при кристаллизации металла шва. Причины пор - повышенное содержание углерода при сварке сталей, загрязнения на кромках, использование влажных флюсов, защитных газов, высокая скорость сварки, неправильный выбор присадочной проволоки. Поры могут располагаться в шве отдельными группами, в виде цепочек или единичных пустот. Иногда они выходят на поверхность шва в виде воронкообразных углублений, образуя так называемые свищи. Поры также ослабляют сечение шва и его прочность, сквозные поры приводят к нарушению герметичности соединений.

Микроструктура шва и зоны термического влияния в значительой степени определяет свойства сварных соединений и характеризует их качество.

К дефектам микроструктуры относят следующие: повышенное содержание оксидов и различных неметаллических включений, микропоры и микротрещины, крупнозернистость, перегрев, пережог металла и др. Перегрев характеризуется чрезмерным укрупнением зерна и огрублением структуры металла. Более опасен пережог - наличие в структуре металла зерен с окисленными границами. Такой металл имеет повышенную хрупкость и не поддается исправлению. Причиной пережога является плохая защита сварочной ванны при сварке, а также сварка на чрезмерно большой силе тока.

Методы неразрушающего контроля сварных соединений

К неразрушающим методам контроля качества сварных соединений относят внешний осмотр, контроль на непроницаемость (или герметичность) конструкций, контроль для обнаружения дефектов, выходящих на поверхность, контроль скрытых и внутренних дефектов. Внешний осмотр и обмеры сварных швов - наиболее простые и широко распространенные способы контроля их качества. Они являются первыми контрольными операциями по приемке готового сварного узла или изделия. Этим видам контроля подвергают все сварные швы независимо от того, как они будут испытаны в дальнейшем. Внешним осмотром сварных швов выявляют наружные дефекты: непровары, наплывы, подрезы, наружные трещины и поры, смещение свариваемых кромок деталей и т.п. Визуальный осмотр производят как невооруженным глазом, так и с применением лупы с увеличением до 10 раз. Обмеры сварных швов позволяют судить о качестве сварного соединения: недостаточное сечение шва уменьшает его прочность, слишком большое - увеличивает внутренние напряжения и деформации. Размеры сечения готового шва проверяют по его параметрам в зависимости от типа соединения. У стыкового шва проверяют его ширину, высоту, размер выпуклости со стороны корня шва, в угловом - измеряют катет. Замеренные параметры должны соответствовать ТУ или ГОСТам. Размеры сварных швов контролируют обычно измерительными инструментами или специальными шаблонами.

Внешний осмотр и обмеры сварных швов не дают возможности окончательно судить о качестве сварки. Они устанавливают только внешние дефекты шва и позволяют определить их сомнительные участки, которые могут быть проверены более точными способами. Контроль непроницаемости сварных швов и соединений. Сварные швы и соединения ряда изделий и сооружений должны отвечать требованиям непроницаемости (герметичности) для различных жидкостей и газов. Учитывая это, во многих сварных конструкциях (емкости, трубопроводы, химическая аппаратура и т.д.) сварные швы подвергают контролю на непроницаемость. Этот вид контроля производится после окончания монтажа или изготовления конструкции. Дефекты, выявленные внешним осмотром, устраняются до начала испытаний. Непроницаемость сварных швов контролируют следующими методами: капиллярным (керосином), химическим (аммиаком), пузырьковым (воздушным или гидравлическим давлением), вакуумированием или газоэлектрическими течеискателями.

Контроль керосином основан на физическом явлении капиллярности, которое заключается в способности керосина подниматься по капиллярным ходам - сквозным порам и трещинам. В процессе испытания сварные швы покрываются водным раствором мела с той стороны, которая более доступна для осмотра и выявления дефектов. После высушивания окрашенной поверхности с обратной стороны шов обильно смачивают керосином. Неплотности швов выявляют по наличию на меловом покрытии следов проникшего керосина. Появление отдельных пятен указывает на поры и свищи, полос - сквозных трещин и непроваров в шве. Благодаря высокой проникающей способности керосина обнаруживаются дефекты с поперечным размером 0,1 мм и менее.

Контроль аммиаком основан на изменении окраски некоторых индикаторов (раствор фенолфталеина, азотнокислой ртути) под воздействием щелочей. В качестве контролирующего реагента применяется газ аммиак. При испытании на одну сторону шва укладывают бумажную ленту, смоченную 5%-ным раствором индикатора, а с другой стороны шов обрабатывают смесью аммиака с воздухом. Аммиак, проникая через неплотности сварного шва, окрашивает индикатор в местах залегания дефектов.

Контроль воздушным давлением (сжатым воздухом или другими газами) подвергают сосуды и трубопроводы, работающие под давлением, а также резервуары, цистерны и т.п. Это испытание проводят с целью проверки общей герметичности сварного изделия. Малогабаритные изделия полностью погружают в ванну с водой, после чего в него подают сжатый воздух под давлением, на 10 - 20% превышающим рабочее. Крупногабаритные конструкции после подачи внутреннего давления по сварным швам покрывают пенным индикатором (обычно раствор мыла). О наличии неплотностей в швах судят по появлению пузырьков воздуха. При испытании сжатым воздухом (газами) следует соблюдать правила безопасности.

Контроль гидравлическим давлением применяют при проверке прочности и плотности различных сосудов, котлов, паро-, водо- и газопроводов и других сварных конструкций, работающих под избыточным давлением. Перед испытанием сварное изделие полностью герметизируют водонепроницаемыми заглушками. Сварные швы с наружной поверхности тщательно просушивают обдувом воздухом. Затем изделие заполняют водой под избыточным давлением, в 1,5 - 2 раза превышающим рабочее, и выдерживают в течение заданного времени. Дефектные места определяют по проявлению течи, капель или увлажнению поверхности швов.

Вакуумному контролю подвергают сварные швы, которые невозможно испытать керосином, воздухом или водой и доступ к которым возможен только с одной стороны. Его широко применяют при проверке сварных швов днищ резервуаров, газгольдеров и других листовых конструкций. Сущность метода заключается в создании вакуума на одной стороне контролируемого участка сварного шва и регистрации на этой же стороне шва проникновения воздуха через имеющиеся неплотности. Контроль ведется с помощью переносной вакуум-камеры, которую устанавливают на наиболее доступную сторону сварного соединения, предварительно смоченную мыльным раствором (рис. 8).

Рис. 8. Вакуумный контроль шва: 1 - вакуумметр, 2 - резиновое уплотнение, 3 - мыльный раствор, 4 - камера.

В зависимости от формы контролируемого изделия и типа соединения могут применяться плоские, угловые и сферические вакуум-камеры. Для создания вакуума в них применяют специальные вакуум-насосы.

Люминесцентный контроль и контроль методом красок, называемый также капиллярной дефектоскопией, проводят с помощью специальных жидкостей, которые наносят на контролируемую поверхность изделия. Эти жидкости, обладающие большой смачивающей способностью, проникают в мельчайшие поверхностные дефекты - трещины, поры, непровары. Люминесцентный контроль основан на свойстве некоторых веществ светиться под действием ультрафиолетового облучения. Перед контролем поверхности шва и околошовной зоны очищают от шлака и загрязнений, на них наносят слой проникающей жидкости, которая затем удаляется, а изделие просушивается. Для обнаружения дефектов поверхность облучают ультрафиолетовым излучением - в местах дефектов следы жидкости обнаруживаются по свечению.

Контроль методом красок заключается в том, что на очищенную поверхность сварного соединения наносится смачивающая жидкость, которая под действием капиллярных сил проникает в полость дефектов. После ее удаления на поверхность шва наносится белая краска. Выступающие следы жидкости обозначают места расположения дефектов.

Контроль газоэлектрическими течеискателям и применяют для испытания ответственных сварных конструкций, так как такие течеискатели достаточно сложны и дорогостоящи. В качестве газа-индикатора в них используется гелий. Обладая высокой проникающей способностью, он способен проходить через мельчайшие несплошности в металле и регистрируется течеискателем. В процессе контроля сварной шов обдувают или внутренний объем изделия заполняют смесью газа-индикатора с воздухом. Проникающий через неплотности газ улавливается щупом и анализируется в течеискателе. Для обнаружения скрытых внутренних дефектов применяют следующие методы контроля.

Магнитные методы контроля основаны на обнаружении полей магнитного рассеяния, образующихся в местах дефектов при намагничивании контролируемых изделий. Изделие намагничивают, замыкая им сердечник электромагнита или помещая внутрь соленоида. Требуемый магнитный поток можно создать и пропусканием тока по виткам (3 - 6 витков) сварочного провода, наматываемого на контролируемую деталь. В зависимости от способа обнаружения потоков рассеяния различают следующие методы магнитного контроля: метод магнитного порошка, индукционный и магнитографический. При методе магнитного порошка на поверхность намагниченного соединения наносят магнитный порошок (окалина, железные опилки) в сухом виде (сухой способ) или суспензию магнитного порошка в жидкости (керосин, мыльный раствор, вода - мокрый способ). Над местом расположения дефекта создадутся скопления порошка в виде правильно ориентированного магнитного спектра.

Для облегчения подвижности порошка изделие слегка обстукивают. С помощью магнитного порошка выявляют трещины, невидимые невооруженным глазом, внутренние трещины на глубине не более 15 мм, расслоение металла, а также крупные поры, раковины и шлаковые включения на глубине не более 3 - 5 мм. При индукционном методе магнитный поток в изделии наводят электромагнитом переменного тока. Дефекты обнаруживают с помощью искателя, в катушке которого под воздействием поля рассеяния индуцируется ЭДС, вызывающая оптический или звуковой сигнал на индикаторе. При магнитографическом методе (рис. 9) поле рассеяния фиксируется на эластичной магнитной ленте, плотно прижатой к поверхности соединения. Запись воспроизводится на магнитографическом дефектоскопе. В результате сравнения контролируемого соединения с эталоном делается вывод о качестве соединения.

Рис.9. Магнитная запись дефектов на ленту: 1 - подвижный электромагнит, 2 - дефект шва, 3 - магнитная лента.

Радиационные методы контроля являются надежным и широко распространенными методами контроля, основанными на способности рентгеновского и гамма-излучения проникать через металл. Выявление дефектов при радиационных методах основано на разном поглощении рентгеновского или гамма-излучения участками металла с дефектами и без них. Сварные соединения просвечивают специальными аппаратами. С одной стороны шва на некотором расстоянии от него помещают источник излучения, с противоположной стороны плотно прижимают кассету с чувствительной фотопленкой (рис.10). При просвечивании лучи проходят через сварное соединение и облучают пленку. В местах, где имеются поры, шлаковые включения, непровары, крупные трещины, на пленке образуются темные пятна. Вид и размеры дефектов определяют сравнением пленки с эталонными снимками. Источниками рентгеновского излучения служат специальные аппараты (РУП-150-1, РУП-120-5-1 и др.).

Рис.10. Схема радиационного просвечивания швов: а - рентгеновское, б - гамма-излучением: 1 - источник излучения, 2 - изделие, 3 - чувствительная пленка

Рентгенопросвечиванием целесообразно выявлять дефекты в деталях толщиной до 60 мм. Наряду с рентгенографированием (экспозицией на пленку) применяют и рентгеноскопию, т.е. получение сигнала о дефектах при просвечивании металла на экран с флуоресцирующим покрытием. Имеющиеся дефекты в этом случае рассматривают на экране. Такой способ можно сочетать с телевизионными устройствами и контроль вести на расстоянии.

При просвечивании сварных соединений гамма-излучением источником излучения служат радиоактивные изотопы: кобальт-60, тулий-170, иридий-192 и др. Ампула с радиоактивным изотопом помещается в свинцовый контейнер. Технология выполнения просвечивания подобна рентгеновскому просвечиванию. Гамма-излучение отличается от рентгеновского большей жесткостью и меньшей длиной волны, поэтому оно может проникать в металл на большую глубину. Оно позволяет просвечивать металл толщиной до 300 мм. Недостатками просвечивания гамма-излучением по сравнению с рентгеновским являются меньшая чувствительность при просвечивании тонкого металла (менее 50 мм), невозможность регулирования интенсивности излучения, большая опасность гамма-излучения при неосторожном обращении с гамма-аппаратами.

Ультразвуковой контроль основан на способности ультразвуковых волн проникать в металл на большую глубину и отражаться от находящихся в нем дефектных участков. В процессе контроля пучок ультразвуковых колебаний от вибрирующей пластинки-щупа (пьезокристалла) вводится в контролируемый шов. При встрече с дефектным участком ультразвуковая волна отражается от него и улавливается другой пластинкой-щупом, которая преобразует ультразвуковые колебания в электрический сигнал (рис.11).

Рис.11. Ультразвуковой контроль швов: 1 - генератор УЗК, 2 - щуп, 3 - усилитель, 4 - экран.

Эти колебания после их усиления подаются на экран электронно-лучевой трубки дефектоскопа, которые свидетельствуют о наличии дефектов. По характеру импульсов судят о протяжен¬ности дефектов и глубине их залегания. Ультразвуковой контроль можно проводить при одностороннем доступе к сварному шву без снятия усиления и предварительной обработки поверхности шва.

Ультразвуковой контроль имеет следующие преимущества: высокая чувствительность (1 - 2%), позволяющая обнаруживать, измерять и определять местонахождение дефектов площадью 1 - 2 мм2; большая проникающая способность ультразвуковых волн, позволяющая контролировать детали большой толщины; возможность контроля сварных соединений с односторонним подходом; высокая производительность и отсутствие громоздкого оборудования. Существенным недостатком ультразвукового контроля является сложность установления вида дефекта. Этот метод применяют и как основной вид контроля, и как предварительный с последующим просвечиванием сварных соединений рентгеновским или гамма-излучением.

Методы контроля с разрушением сварных соединений

К этим методам контроля качества сварных соединений относятся механические испытания, металлографические исследования, специальные испытания с целью получения характеристик сварных соединений. Эти испытания проводят на сварных образцах, вырезаемых из изделия или из специально сваренных контрольных соединений - технологических проб, выполненных в соответствии с требованиями и технологией на сварку изделия в условиях, соответствующих сварке изделия.

Целью испытаний является: оценка прочности и надежности сварных соединений и конструкций; оценка качества основного и присадочного металла; оценка правильности выбранной технологии; оценка квалификации сварщиков.Свойства сварного соединения сопоставляют со свойствами основного металла. Результаты считаются неудовлетворительными, если они не соответствуют заданному уровню.Механические испытания проводятся по ГОСТ 6996-66, предусматривающему следующие виды испытаний сварных соединений и металла шва: испытание сварного соединения в целом и металла разных его участков (наплавленного металла, зоны термического влияния, основного металла) на статическое растяжение, статистический изгиб, ударный изгиб, стойкость против старения, измерение твердости. Контрольные образцы для механических испытаний выполняют определенных размеров и формы. Испытаниями на статическое .растяжение определяют прочность сварных соединений. Испытаниями на статический изгиб определяют пластичность соединения по величине угла изгиба до образования первой трещины в растянутой зоне. Испытания на статический изгиб проводят на образцах с продольными и поперечными швами со снятым усилением шва заподлицо с основным металлом. Испытаниями на ударный изгиб, а также разрыв определяют ударную вязкость сварного соединения. По результатам определения твердости судят о структурных изменениях и степени подкалки металла при охлаждении после сварки. Основной задачей металлографических исследований являются установление структуры металла и качества сварного соединения, выявление наличия и характера дефектов. Металлографические исследования включают в себя макро- и микроструктурный методы анализа металлов. При макроструктурном методе изучают макрошлифы и изломы металла невооруженным глазом или с помощью лупы. Макроисследование позволяет определить характер и расположение видимых дефектов в разных зонах сварных соединений.

При микроструктурном анализе исследуется структура металла при увеличении в 50 - 2000 раз с помощью оптических микроскопов. Микроисследование позволяет установить качество металла, в том числе обнаружить пережог металла, наличие оксидов, засоренность металла шва неметаллическими включениями, величину зерен металла, изменение состава его, микроскопические трещины, поры и некоторые другие дефекты структуры. Методика изготовления шлифов для металлографических исследований заключается в вырезке образцов из сварных соединений, шлифовке, полировке и травлении поверхности металла специальными травителями. Металлографические исследования дополняются измерением твердости и при необходимости химическим анализом металла сварных соединений. Специальные испытания проводят с целью получения характеристик сварных соединений, учитывающих условия эксплуатации сварных конструкций: определение коррозионной стойкости для конструкций, работающих в различных агрессивных средах; усталостной прочности при циклических нагружениях; ползучести при эксплуатации в условиях повышенных температур и др.

Применяют также и методы контроля с разрушением изделия. В ходе таких испытаний устанавливают способность конструкций выдерживать заданные расчетные нагрузки и определяют разрушающие нагружения, т.е. фактический запас прочности. При испытаниях изделий с разрушением схема нагружения их должна соответствовать условиям работы изделия при эксплуатации. Число изделий, подвергающихся испытаниям с разрушением, устанавливается техническими условиями и зависит от степени их ответственности, системы организации производства и технологической отработанности конструкции.

5.Магнитные свойства материалов

5.1 Магнитная проницаемость

Аналогично рассмотрению диэлектрической проницаемости, связывающей электрическую индукцию с напряженностью электрического поля, магнитная проницаемость связывает магнитную индукцию B с напряженностью магнитного поля H.

B=0 (3.15)

Здесь 0- магнитная постоянная или магнитная проницаемость вакуума. 0 = 410-7 Гн/м. Можно ввести понятие намагниченности 0M = B - 0. Этот фактор вносит в магнитную индукцию именно среда, т.е. намагниченность является характеристикой среды. Аналогично поляризации среды в электрическом поле намагниченность складывается из намагниченностей отдельных атомов, которые называются магнитными моментами атомов M = mi. Намагниченность обычно пропорциональна напряженности магнитного поля

M = м Н (3.16)

где м - магнитная восприимчивость вещества. Значения и м связаны = м+1

Энергия магнитного поля W = B/2 = 02/2 = B2/20

Магнитное поле имеет отличия от электрического поля. Электрическое поле создается зарядами, магнитное - токами. Силовые линии электрического поля начинаются на положительном заряде и, обязательно, заканчиваются на отрицательном заряде. Силовые линии магнитного поля замкнуты, они окружают линии тока. В электрическом поле заряд порождает индукцию поля.

D = q/40r2 (3.17)

В магнитном поле ток порождает напряженность магнитного поля (закон Био-Савара).

H = I/2r. (3.18)

Приведем еще выражение для напряженности поля и индукции в длинном соленоиде, которое специфично именно для магнитного поля.

H = nI, B = 0 (3.19)

где n- число витков катушки на единицу длины.

В электрическом поле сила, действующая на заряд, пропорциональна напряженности поля (закон Кулона). В магнитном поле, сила действующая на заряд пропорциональна индукции. Еще одно принципиальное отличие состоит в том, что диэлектрическая проницаемость не может быть меньше 1, тогда как магнитная проницаемость может быть меньше 1 в некоторых материалах.

Различные материалы по разному ведут себя в магнитном поле и, соответственно имеют различную магнитную проницаемость.

Диамагнетики - вещества, имеющие магнитную проницаемость меньше 1.

Подавляющее большинство веществ являются диамагнетиками. Диамагнетизм проявляется тогда, когда атомы и молекулы не имеют магнитного момента в отсутствии магнитного поля, а намагниченность создается только за счет действия магнитного поля на электроны молекул. При этом магнитная восприимчивость м< 0. По порядку величины значение восприимчивости составляет (-10-6).

Парамагнетики - вещества, имеющие магнитную проницаемость больше 1.

Эти вещества содержат атомы и электроны, имеющие собственный магнитный момент, который связан с орбитальным движением электронов или с собственным моментом импульса электрона, т.н. спином. Парамагнетиками являются кислород, магний, натрий (NaCl - диамагнетик), кальций, титан, палладий.

Ферромагнетики - вещества, имеющие магнитную проницаемость много больше чем 1, которая создается спонтанной намагниченностью доменов, хаотически ориентированных в пространстве.

Это железо, никель, кобальт и ряд более редких веществ. На основе этих элементов изготавливаются магнитные материалы.

Ферримагнетики - вещества, имеющие магнитную проницаемость много больше чем 1, которая создается спонтанной намагниченностью кристаллических решеток, попарно антипараллельно ориентированных в пространстве. При этом суммарный магнитный момент не равен нулю. Антиферромагнетики - вещества, имеющие магнитную проницаемость немного больше чем 1, которая создается спонтанной намагниченностью кристаллических решеток, попарно антипараллельно ориентированных в пространстве и скомпенсировавших друг друга.

Примеры ферримагнетиков и антиферромагнетиков - ферриты, соединения типа Fe2O3 c MeO, где Ме - двухвалентный металл.

6. Магнитометрия

Магнитометрия - совокупность методов измерения магнитных параметров вещества: векторов напряженности магнитного поля и магнитной индукции, а также характеристик магнитной структуры вещества (электронных оболочек атомов, магнитной доменной структуры и др.). Объектом магнитометрии является вся совокупность материальных дискретных образований, обладающих массой покоя, - от электронов, атомов, молекул до конденсированных тел.

Инструментарий магнитометрии - магнитоизмерительные приборы, в совокупности которых главную роль играют магнитомеры. Магнитомер - прибор для измерения модуля полного вектора магнитной индукции или его составляющих. По признаку физического явления, на котором основан принцип действия прибора, магнитометры подразделяют на индукционные, квантовые, магнитооптические и гальваномагнитные.

6.1 Индукционные магнитометры

Принцип действия индукционного магнитометра основан на явлении электромагнитной индукции. Основным элементом прибора служит многовитковая катушка с ферромагнитным сердечником, которую помещают в измеряемое магнитное поле. Последнее индуцирует в катушке электродвижущую силу, величина которой пропорциональна магнитной индукции измеряемого поля. По способу создания регистрируемого магнитного сигнала различают активные и пассивные индукционные магнитометры.

В приборах активного типа магнитный поток в катушке создают, подвергая ее внешним воздействиям. В простейшем случае катушку просто перемещают в измеряемом поле путем вращения или наложения на нее вибрации (рис. 12). Большую группу активных магнитометров составляют ферромодуляционные приборы, катушка которых неподвижна, а магнитную проницаемость ее сердечника изменяют с помощью вспомогательного магнитного поля. Оно может быть постоянным или медленно изменяться с частотой в несколько Гц. Вспомогательные поля высокой частоты применяют в приборах, названных феррозондами.

Рис. 12. Блок-схема и конструкция вибрационного магнитометра: 1 - измерительная катушка, укрепленная на торце вибратора - пьезокристалла 2; 3 - зажимы для крепления пьезокристалла; 4 - усилитель сигнала; 5 - магнитоэлектрический измеритель сигнала; 6 - генератор электромагнитных колебаний; 7 - источник питания

Феррозонд - прибор для измерения напряженности магнитных полей и их градиентов. Принцип его действия основан на смещении петли перемагничивания магнитно-мягких материалов под влиянием внешних магнитных полей. В простейшем случае феррозонд состоит из стержневого ферромагнитного сердечника, снабженного двумя катушками: возбуждения, питаемой переменным током, и измерительной. В отсутствии измеряемого магнитного поля сердечник под действием первой катушки перемагничивается по симметричному циклу. Это индуцирует в измерительной катушке эдс, изменяющуюся во времени аналогичным образом. Когда такую систему помещают в измеряемое магнитное поле, величина и гармоничность колебаний эдс в измерительной катушке изменяются. По параметрам этого изменения оценивают магнитную индукцию измеряемого поля. Феррозондам свойственна высокая чувствительность к магнитному полю (до 10-4 - 10-5 А/м).

Магнитометры пассивного типа предназначены для измерения магнитной индукции переменных и импульсных полей. Катушка прибора находится в неизменном положении, ее параметры постоянны. У некоторых пассивных магнитометров нет ферромагнитного сердечника. Пример такой конструкции приведен на рис. 13.. Прибор предназначен для измерения вертикально составляющей (Z) напряженности геомагнитного поля. Магниточувствительную систему (3, 5) приводят в горизонтальное положение, воздействуя измерительным магнитом 8. По углу поворота магнита 8 судят о величине Z - компоненты. Чувствительность прибора G ~ 1 нТл.

С помощью ферромодуляционных и пассивных магнитометров проводят наземные и подводные измерения слабых полей, аэроразведку полезных ископаемых, исследования космоса, осуществляют неразрушающий контроль материалов. Магнитные параметры материалов измеряют магнитометрами с вращающейся и вибрирующей катушкой.

Для магнитометрических исследований в геофизике созданы магнитометры, поучившие названия инклинаторов и деклинаторов. Инклинатор - магнитометр для измерения магнитного наклонения, т.е. угла между вектором напряженности геомагнитного поля и горизонтальной плоскостью в рассматриваемой точке земной поверхности. Деклинатор - прибор для наблюдения суточных изменений (вариаций) магнитного склонения, т.е. угла между географическим и магнитным меридианами в точке на поверхности Земли.

Размещено на http://www.allbest.ru/

Рис. 13. Схема кварцевого магнитометра: 1 - оптическая система; 2 - призма для совмещения шкалы 9 с полем зрения; магниточувствительная система - постоянный магнит 3 на кварцевой нити 5; 4 - зеркало; 6 - магнит для изменения диапазона прибора; 7 - кварцевая рамка; 8 - измерительный магнит; 10 - система освещения шкалы

6.2 Квантовые магнитометры

Квантовый магнитометр (тесламетр) - прибор для измерения слабых магнитных полей, основанный на определении частоты квантового перехода парамагнитных частиц с одного зеемановского подуровня на другой, т.е. на явлениях ЯМР, ЭПР и на эффектах Ханле и Джозефсона. Для наблюдения зависимости частоты щ прецессии магнитного момента частицы от напряженности H измеряемого поля (щ = гH, где г - магнитомеханическое отношение) необходимо создать магнитный момент ансамбля частиц. В зависимости от способа его создания и метода детектирования сигнала различают следующие типы магнитометров.

ЯМР-магнитометры подразделяют по признаку прецессии ядер в исследуемом образце на: протонные, реализующие свободную прецессию ядер (предназначены для измерения слабых полей, например, магнитного поля Земли), и магнитометры с вынужденной прецессией ядер, которые используют для измерения более сильных (0,01-2,5 Тл) полей.

Для увеличения быстродействия и уменьшения размеров ЯМР-магнитометров в их конструкциях реализуют упомянутый ранее эффект Оверхаузера и динамическую поляризацию ядер. Последняя состоит в «упорядочивающем» действии сильных магнитных полей на магнитные дипольные моменты ядер в веществе. Поскольку магнитные моменты ядер малы, тепловое движение разрушает эту упорядоченность. Поэтому в ЯМР-магнитометрах с принудительной ориентацией ядер используют низкие температуры (Т 0,1 К).

...

Подобные документы

  • Краткие сведения о дипольных моментах атомов и молекул. Диэлектрическая проницаемость разреженного газа малой плотности. Разреженный газ из полярных молекул. Модель системы со спонтанной поляризацией. Графическое решение функционального уравнения.

    реферат [302,8 K], добавлен 20.03.2016

  • Понятие диэлектрической проницаемости как количественной оценки степени поляризации диэлектриков. Зависимость диэлектрической проницаемости газа от радиуса его молекул и их числа в единице объема, жидких неполярных диэлектриков от температуры и частоты.

    презентация [870,1 K], добавлен 28.07.2013

  • Сверхпроводники и возможности их применения в электротехнике. Зависимость пробивного напряжения в твердом диэлектрике от температуры и частоты. Поляризация диэлектриков и диэлектрическая проницаемость. Нагревостойкость твердых и жидких диэлектриков.

    реферат [968,8 K], добавлен 12.02.2013

  • Свойства материалов: механические, физические, химические. Виды деформаций: растяжение, сжатие, сдвиг, кручение и изгиб. Расчет плотности, теплопроводности и теплоемкости материалов. Огнестойкость материалов: несгораемые, трудносгораемые, сгораемые.

    презентация [32,0 M], добавлен 10.10.2015

  • Определение длины проволоки для намотки резистора. Концентрация электронов и дырок в собственном и примесном полупроводнике. Диффузионная длина движения неравновесных носителей заряда в полупроводниковом материале. Проводимость конденсаторной керамики.

    контрольная работа [89,8 K], добавлен 12.11.2013

  • История открытия явления электризации. Свойства полярных, неполярных и кристаллических диэлектриков. Интенсивность электризации, диэлектрическая проницаемость веществ. Причины накопления зарядов в производственных условиях. Удельная проводимость жидкости.

    реферат [352,6 K], добавлен 16.09.2014

  • Исследование диэлектрического отклика. Поляризация и диэлектрическая проницаемость. Диэлектрические функции в диапазоне радио- и сверхвысоких частот, в области решеточных и электронных резонансов. Разложение диэлектрической функции на элементарные части.

    курсовая работа [2,1 M], добавлен 16.08.2011

  • Свойства сверхпроводящих материалов. Определение электрического сопротивления и магнитной проницаемости немагнитных зазоров. Падение напряженности магнитного поля по участкам. Условия для работы устройства. Применение эффекта Мейснера и его изобретение.

    научная работа [254,2 K], добавлен 20.04.2010

  • Исследование диэлектрических свойств кристаллов со структурой перовскита методами дифференциальной диэлектрической спектроскопии. Спектры коэффициента отражения, восстановление диэлектрических функций феррита висмута. Диэлектрические и оптические функции.

    курсовая работа [3,3 M], добавлен 26.03.2012

  • Понятие мощности как физической величины, ее виды. Соотношения между единицами мощности. Основное содержание и методы сопротивления материалов. Физические свойства машиностроительных материалов: чугуна, быстрорежущей стали и магниевых сплавов.

    контрольная работа [29,1 K], добавлен 21.12.2010

  • Концепция фазовых проницаемостей, ее сущность и содержание, методы определения. Определение главных факторов, влияющих на фазовые проницаемости коллекторов нефти и газа, направления использования полученных в результате исследований данных веществ.

    курсовая работа [344,0 K], добавлен 04.05.2014

  • Природа и характеристики магнитного поля. Магнитные свойства различных веществ и источники магнитного поля. Устройство электромагнитов, их классификация, применение и примеры использования. Соленоид и его применение. Расчет намагничивающего устройства.

    курсовая работа [3,2 M], добавлен 17.01.2011

  • Рентгено-флуоресцентный спектральный анализ материалов. Исследование элементного состава вещества. Процесс возникновения рентгеновской флуоресценции. Аналитические возможности нейтронно-активационного анализа. Спектры излучения радиоактивного образца.

    реферат [1,3 M], добавлен 07.05.2019

  • Электрофизические свойства полупроводников. Структура полупроводниковых кристаллов. Элементы зонной теории твердого тела. Микроструктурные исследования влияния электронного облучения на электрофизические характеристики полупроводниковых приборов.

    курсовая работа [1,0 M], добавлен 18.09.2015

  • Первичное действие электромагнитных колебаний на ткани организма. Методы и аппаратура для высокочастотной электротерапии. Физиотерапевтические аппараты высокочастотной терапии. Аппараты индуктотермии и УВЧ-терапии. Генераторы синусоидальных колебаний.

    реферат [275,0 K], добавлен 25.02.2011

  • Колебания частиц в упругих средах, распространяющиеся в форме продольных волн, частота которых лежит в пределах, воспринимаемых ухом. Объективные, субъективные характеристики звука. Звуковые методы исследования в клинике. Положение пальцев при перкуссии.

    презентация [607,1 K], добавлен 28.05.2013

  • Физические основы различных распылений: ионного, катодного, магнетронного, высокочастотного. Получение покрытий распылением в несамостоятельном газовом разряде. Методы контроля параметров осаждения покрытий. Вакуумная металлизация полимерных материалов.

    курсовая работа [457,3 K], добавлен 19.01.2011

  • Методы учета и контроля ядерных материалов в "мокром" хранилище отработавшего ядерного топлива реакторных установок ВВЭР-1000. Требования к применению средств контроля доступа и проведению физической инвентаризации. Порядок оценки безвозвратных потерь.

    дипломная работа [780,3 K], добавлен 16.01.2014

  • Понятие молекулярной связи как самой непрочной, ее сущность и особенности. Зависимость эффекта дипольной поляризации в вязкой среде от увеличения ее температуры. Зависимость диэлектрической проницаемости тел от структурных особенностей диэлектрика.

    контрольная работа [19,8 K], добавлен 06.04.2009

  • Понятие и действие магнитного поля, его характеристики: магнитная индукция, магнитный поток, напряжённость, магнитная проницаемость. Формулы магнитной индукции и правило "левой руки". Элементы и типы магнитных цепей, формулировка их основных законов.

    презентация [71,7 K], добавлен 27.05.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.