Методология, технология и организация информационно-аналитической работы

Понятие, сущность, структура и задачи аналитики. Методология и принципы организации аналитической деятельности. Методы формализации предметной области и моделирование. Аналитика как взвешенный подход к разработке и оцениванию управленческих решений.

Рубрика Программирование, компьютеры и кибернетика
Вид дипломная работа
Язык русский
Дата добавления 10.01.2016
Размер файла 695,5 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

В последние десятилетия направление экспертных систем (ЭС) оформилось в самостоятельную (и весьма прибыльную) отрасль теоретических и прикладных исследований в рамках теории искусственного интеллекта. Правда, в силу действия модных течений название специалистов, работающих в этой области, несколько раз менялось: то их именовали специалистами по интеллектуальным технологиям, то инженерами знаний, то когнитологами. Сейчас на западе в ходу термин Knowledge Management (управление знаниями), соответственно, поменялось и название специальности.

Целью деятельности этих специалистов является создание программ и устройств, использующих знания и процедуры вывода для решения задач в заданной предметной области. ЭС не только реализуют заранее разработанные алгоритмы решения задач, но способны самостоятельно вырабатывать «новые» алгоритмы решения возникающих задач.

Следует выделять два направления работ в этой отрасли: направление создания инструментальных средств для создания экспертных систем (программных оболочек экспертных систем) и направление собственно создания ЭС, наполненных конкретными знаниями в некоторой предметной области.

В настоящее время ЭС применяются в различных областях человеческой деятельности. К числу уже устоявшихся, апробированных в научно-исследовательской и деловой практике, можно отнести экспертные системы медицинского, технологического, юридического назначения, экспертные системы, ориентированные на поддержку процессов проектирования в архитектуре, электронике и электротехнике, разработки программного обеспечения, а также в военных приложениях. Их характерной особенностью является то, что они разработаны для тех отраслей человеческой деятельности, в которых проявляются устойчивые закономерности, описания которых и подвергается формальному представлению в базе знаний. Перечислим ряд экспертных систем, принадлежащих к различным отраслям деятельности человека:

-- MYCIN- в области медицины;

-- Rational Rose -- в области разработки программного обеспечения;

-- ArchiCAD -- в области архитектурного проектирования;

-- P-CAD, Or-CAD -- в электронике и электротехнике и многие другие.

В зависимости от типов решаемых задач, экспертные системы можно разделить на следующие классы: системы классификации и распознавания объектов, интерпретации данных, диагностики, проектирования, прогнозирования, планирования, мониторинга, отладки, обучения и управления.

Для взаимодействия с пользователем могут использоваться интерфейсы, обеспечивающие взаимодействие с пользователем на подмножестве естественного языка, графические средства, шаблоны ввода/вывода и формальные знаковые системы. При этом интерфейсом могут предусматриваться режимы консультации потребителя, комментария к выводам (объяснение), обучение пользователя правилам из базы знаний и коррекции содержимого базы знаний.

Как явствует из предыдущего предложения, экспертные системы в качестве своего ядра имеют именно базы знаний, построенные в соответствии с одной из описанных нами моделей представления знаний или по комбинированной схеме.

Системы искусственного интеллекта и интеллектуального анализа данных

Мы уже указывали на существование «родства» между экспертными системами и теорией искусственного интеллекта. Эта отрасль современной науки, в свою очередь «отпочковалась» от кибернетики и постоянно подпитывается ее идеями, впрочем, теория систем искусственного интеллекта (ИИ) многими своими достижениями обогатила кибернетику. Но кибернетика рассматривает процессы управления и в искусственных, и в естественных системах, в то время, как теория ИИ «вынужденно» исследует естественные системы, поскольку ставит перед собой цель создания «мыслящей» искусственной системы.

При проектировании систем искусственного интеллекта их создатели исходят из соображений, что «способ мышления» системы искусственного интеллекта не обязательно должен копировать способ мышления человека и строение его «мыслительного инструмента». Однако, как бы ни далеки по своему устройству были системы искусственного интеллекта от систем естественных, они вынужденно копируют и используют те закономерности мыслительной деятельности, которые были открыты человеком.

Основное отличие экспертных систем от систем искусственного интеллекта заключается в том, что экспертные системы используют (а иногда и логически достраивают) совокупность знаний, полученных от экспертов, но сами не способны создать нового знания. Новое знание может появиться только при условии, что система располагает комплектом средств сбора информации, может управлять им, способна к самообучению, самоорганизации, а также различает «полезное» и «вредное» для нее или ее пользователя, а экспертные системы в классическом варианте такими способностями не наделяются.

Системы же искусственного интеллекта, как правило, обладают всеми этими способностями или их частью. Благодаря этому, системы ИИ способны выявлять отклонения от текущего эталона, накапливать «черновые» гипотезы и через цепь обратной связи устанавливает их статус и полезность. Цепь обратной связи может быть реализована в виде некоторого вспомогательного инструментального комплекса, реализованного на иных чувствительных элементах, нежели основной комплекс сбора информации, либо представлен учителем, «объясняющим» системе, «… что такое «хорошо» и что такое «плохо». В качестве такого учителя часто выступает человек, снабжающий интерпретантой тот признак96, который был выявлен системой ИИ.

Специалисты в области теории систем ИИ сходятся в мнении, что активность и относительная автономность отдельных подсистем системы искусственного интеллекта способна существенно повысить их эффективность и надежность выводов. Активно развивается направление автономных интеллектуальных агентов -- автономных подсистем, наделенных автоматными реакциями на некий комплекс однотипных раздражителей. Поведение таких подсистем по отдельности невозможно назвать интеллектуальным, однако, будучи объединены в комплекс, они оказываются в состоянии обеспечить систему более высокого уровня информацией, необходимой для выработки решения о ситуации и степени ее «полезности» для системы в целом. Такая система обычно строится по иерархическому принципу и располагает сведениями о ценности тех или иных ресурсов, важности удержания значений критических параметров в заданных диапазонах и т. д. -- то есть, теми сведениями относительно которых принимается решение о семантике нового признака.

В рамках теории ИИ можно выделить два мощных направления: логическое направление и направление нейронных и нейроподобных сетей .

Логическое направление теории систем искусственного интеллекта основной упор делает на симбиоз логического аппарата и аппарата теории вероятностей. Основное отличие логических систем ИИ от логических экспертных систем состоит в том, что на основе анализа показателей, используемых для вычисления функции полезности (именно с таких позиций осуществляется интерпретация тех или иных состояний и процессов), система способна самостоятельно корректировать аксиоматику: осуществлять ранжирование аксиом, удалять или вводить новые аксиомы. В принципе такая система в состоянии как развиваться, так и деградировать, однако то, какие именно тенденции будут развиты системой, во многом определяется тем, как на этапе синтеза системы была определена функция полезности.

Серьезнейшим недостатком логических систем ИИ является то, что алгоритмы логических рассуждений трудно поддаются распараллеливанию, если на каком-то этапе и удается выделить несколько относительно независимых логических операций и производить их исчисление разными решателями, то в некоторой точке алгоритм, как правило, сходится. А это значит, что наиболее «долгая» ветвь алгоритма будет определять быстродействие системы в целом. С целью сокращении вычислительных затрат изыскиваются методы логического вывода, задачей которых является установление факта нецелесообразности производства дальнейших вычислений. Однако, несмотря на эти ухищрения, объемы вычислений и быстродействие решателя остаются узким местом логических систем ИИ.

Направление систем искусственного интеллекта на базе нейронных и нейроподобных сетей «ближе к природе»: если логика -- это порождение человеческого интеллекта, формальная система, выведенная на основе научного обобщения закономерностей человеческого мышления, то нейронные и нейроподобные сети -- это попытка сымитировать не процесс мышления, а «процесс чувствования». В основе построения таких систем лежит принцип действия нейрона и нейронной сети, имитирующей строение центральной нервной системы человека.

Для начала разберемся с тем, что представляет собой нейрон… Нейрон -- это нервная клетка, состоящая «… из довольно крупного (до 0,1 мм) тела, от которого отходят несколько отростков -- дендритов, дающих начало все более и более тонким отросткам, подобно ветвям дерева. Кроме дендритов, от тела нервной клетки отходит еще один отросток -- аксон, напоминающий длинный тонкий провод. Аксоны бывают очень длинны -- до метра -- и заканчиваются, подобно дендритам, древовидным разветвлением. На концах веточек, отходящих от аксона, можно видеть маленькие пластинки или луковички. Луковички одного нейрона близко подходят к различным участкам тела или дендритов другого нейрона, почти прикасаясь к ним. Эти контакты носят название синапсов; через них нейроны взаимодействуют друг с другом. Число луковичек, подходящих к дендритам одного нейрона, может исчисляться десятками и даже сотнями. Таким образом, нейроны очень тесно связаны друг с другом; они образуют нервную сеть Турчин В.Ф. Феномен науки: Кибернетический подход к эволюции. Изд. 2-е -- М.: ЭТС. -- 2000. -- 368 с. электронная версия -- http://www.ets.ru/turchin/». Если не вникать в тонкости, то можно сказать, что нейроны могут пребывать только в двух состояниях: возбужденном состоянии или в покое. При возбуждении на поверхности клетки образуется электрический потенциал, который передается через синапсы других нервных клеток и либо переводит, либо не переводит их в состояние возбуждения. Поэтому исходят из допущения, что нервная сеть -- это дискретная система, состоящая из элементарных подсистем -- нейронов, способных пребывать в одном из двух состояний. Такой взгляд на нейронную сеть, как иерархически организованную совокупность однотипных элементов со сложным поведением позволяет говорить о том, что это инструмент параллельной обработки данных, в различных сочетаниях поступающих от различных источников. Нейроны обладают способностью к обучению, заключающейся в том, что «проводимость синапса увеличивается после первого прохождения через него возбуждения и нескольких следующих прохождений». В результате этого повторяющиеся комбинации «данных» обучают сеть -- настраивая ее на восприятие и распознавание образов ситуации (сэмплов). Как следствие, нейронная сеть, получающая данные об обстановке, поступающие от органов чувств, а также данные о внутреннем состоянии и взаимном расположении частей организма, оказывается в состоянии распознавать множество самых разнообразных состояний. Теперь задача состоит в том, чтобы получить данные, подтверждающие полезность запоминания распознанного сэмпла, что требует от системы определенных логических способностей…

Может показаться, что нейронная сеть без принципиально иной по организации системы обработки логической компоненты, отражающей топологию отношений во времени, пространстве, организационной иерархии или пространстве некой конструкции, пригодна лишь для решения задач распознавания. Но, судя по результатам исследований в области нейрофизиологии, в организме человека отсутствуют специализированные «логические клетки» -- то есть, все эти операции реализуются именно на нейронных структурах, которые обладают большой информационной емкостью. Приняв некоторые упрощения, можно утверждать, что многообразие пространственных отношений выражено в терминах временных задержек реакции отдельных нейронов, инерционности отдельных связей нейронной сети. Эти характеристики также являются предметом «запоминания» и учитываются при выработке адаптивного поведения организма. Однако эта способность требует от человека способности абстрактного («знакового») мышления -- введения еще одного уровня иерархии, обеспечивающей возможность оперировать информационно-емкими понятиями. Именно эта особенность -- наличие второй сигнальной системы -- и выделяет человека из числа прочих живых существ и обеспечивает ему возможность запоминания протяженных во времени событий и сценариев, ассоциированных с ними. То есть, логика становится доступной нашему пониманию, если введена знаковая система, запоминание правил которой дается легче, нежели запоминание всех конкретных признаков событий и вероятных путей их развития. Рассуждая логически, мы оперируем не образами ситуаций, а знаками, для запоминания которых требуются гораздо меньшие усилия.

Преимуществом нейронной или нейроподобной сети перед чисто логической системой искусственного интеллекта заключается в гибком сочетании параллельной и последовательной обработки информации, обусловленном иерархической структурой нейронной сети. Однако человеку свойственно оптимизировать свою деятельность -- там, где удобнее воспользоваться неким инструментом, имеющимся в его распоряжении, он не станет искать пути применения того инструмента, который не приспособлен для выполнения работы. Пока нейроподобные сети (созданные на искусственных нейронах -- перцептронах) и нейронные сети (созданные на нейронах, полученных у простейших организмов), как правило, на этапе манипулирования логической компонентой используют традиционную или несколько модифицированную логику, то есть, переходят от параллельной обработки данных к последовательной обработке. Хотя созданы и средства, которые, оперируя величинами инерционности нейронов, способны осуществлять логическую обработку без перехода к уровню знаковой системы. Сражение за быстродействие систем продолжается и, возможно, что через некоторое время мы станем свидетелями технологического прорыва в этом направлении, который приведет к созданию реальной системы параллельной обработки данных. Однако это не приведет к тому, что формальная логика утратит свои позиции в инструментарии аналитика -- для решения каждой специфической задачи требуется свой, индивидуальный, набор инструментальных средств.

Где используются системы ИИ, построенные на нейронных и нейроподобных сетях? Приложений масса: от анализа финансовых котировок и мультисенсорных систем сбора информации до систем распознавания словоформ в компьютерной лингвистике, от систем декодирования помехоустойчивых кодов и криптообработки до систем производства приближенных вычислений -- диапазон применения их крайне широк. Современная технология производства нейроподобных сетей уже миновала зачаточную стадию: созданы как аппаратные, так и программные реализации нейроподобных сетей, инструментарий их настройки и обучения, однако функция полезности пока задается извне, да иначе какой смысл в нейроподобных и нейронных сетях, которые сами решают, что им полезно, а что -- нет (это все равно, что молоток, который сам решает: то ли ударить по теплому и мягкому пальцу, то ли по твердой и холодной шляпке гвоздя).

Как согласуется все то, что мы говорили о нейронных и нейроподобных сетях с моделями? Любая обученная нейронная или нейроподобная сеть -- это по существу и есть модель, выступающая в роли образа ситуации ли, объекта ли -- не суть важно. Поэтому можно сказать, что нейроинформатика и нейрокомпьютинг -- это развитие идеологии моделирования в направлении дальнейшей автоматизации процесса (равно, как и все, что делается в отрасли искусственного интеллекта). По этой причине можно утверждать, что для аналитика, как потребителя результатов функционирования систем искусственного интеллекта, внутреннее устройство подобной системы непринципиально, хотя и нелишне знать, как устроен и работает тот инструмент, с помощью которого ты решаешь свои задачи.

Существуют ли примеры систем искусственного интеллекта, которые можно пощупать руками, не вставая из-за рабочего стола? Да, существуют и их, если приглядеться, -- масса… Достаточно запустить компьютер, на котором установлена всем знакомая операционная система Microsoft Windows, как вы окажетесь в интеллектуальной среде, которая отслеживает массу событий, контролирует состояние множества запущенных процессов и способна выдавать рекомендации, направленные на стабилизацию параметров функционирования операционной системы и компьютера. Если у вас на компьютере установлена система автоматизированного перевода, то это еще один пример системы ИИ, если вы используете сканер и программу автоматического распознавания текста -- вот вам и еще один пример. Этот список можно продолжить, однако, остановимся на еще одном приложении систем ИИ, особенно актуальной для касты аналитиков…

В последнее время наблюдается оживление рынка программного обеспечения, предназначенного для веденияинтеллектуального анализа данных (в англоязычных источниках -- Data Mining, т. е. «раскопка данных»). Для этого класса систем ИИ характерно комплексное использование методов, используемых в логических системах ИИ и нейрокомпьютинге, в сочетании с инструментарием статистического анализа данных и компьютерной лингвистики. Только по состоянию на начало 1999 года на американском рынке интеллектуального программного обеспечения было представлено свыше пятнадцати программных и программно-аппаратных комплексов, относящихся к этому классу Clementine (Intégral Solutions, Ltd.), Darwin (Thinking Machines, Corp.), DataCruncher (DataMind), Enterprise Miner (SAS Institute), GainSmarts (Urban Science), Intelligent Miner (IBM Corp.), MineSet (Silicon Graphics, Inc.), Model 1 (Group 1/Unica Technologies), ModelQuest (AbTech Corp.), PRW (Unica Technologies, Inc.), CART (Salford Systems), NeuroShell (Ward Systems Group, Inc.), OLPARS (PAR Government Systems), Scenario (Cognos), See5 (RuleQuest Research), S-Plus (MathSoft), WizWhy (WizSoft). Безусловно, все эти системы нуждаются в обучении, профессиональной настройке и адаптации к предметной области, в которой предполагается их дальнейшее использование. В большинстве своем, они представляют собой системы искусственного интеллекта, ориентированные на решение задач анализа «абстрактных» типов данных (т. е. безотносительно к их семантике), интегрированные со сконфигурированными под потребности заказчика базами данных. Иным вариантом поставки систем data mining является вариант, предполагающий настройку и адаптацию системы искусственного интеллекта (собственно, инструмента Data Mining) под уже существующую подсистему хранения данных заказчика.

В любом варианте поставки по мере функционирования системы она выделяет некие скрытые закономерности в хранимых массивах данных (в том числе -- корреляции временных рядов). Такие корреляции не всегда очевидны для аналитика, однако, для систем data mining числа -- родная стихия. Системы data mining не имеют обыкновения забывать или упускать из внимания сколь бы то ни было «незначительные детали» и закономерности -- это свойство делает их полезным инструментом информационно-аналитической работы.

Принцип функционирования систем интеллектуального анализа данных состоит в том, что на основе анализа потока данных, поступающих от разнообразных источников информации, формируется информационный образ неким образом интерпретируемой ситуации, который в ходе дальнейшей эксплуатации системы может быть «узнан», о чем и информируется потребитель. Отрасль, для которой создается такая система, на этапе разработки, в принципе, не существенна, поскольку важен лишь принцип формирования системы признаков и класс данных, на которые ориентирована данная система (количественные, качественные).

Адаптация к предметной области этого класса программного обеспечения заключается в том, что предметная область подлежит моделированию и описанию в виде совокупности измеримых атрибутов. Поведение этих атрибутов во времени неким (наперед неизвестным) образом характеризует состояние и поведение систем. С точки зрения исследователя интерес представляет именно то, каким образом наблюдаемые ситуации и тенденции отражаются в имеющемся наборе атрибутов, не существует ли неких признаков, характеризующих начальный период зарождения негативной или позитивной тенденции, скатывания к неким сценариям в развитии ситуации и т. п.

Еще раз заметим: системы data mining не работают напрямую с текстами произвольного формата и данными, которые не могут быть непосредственно сопоставлены . Максимум, что они «могут», если не располагают тезаурусом, характерным для данной предметной области -- это работа со структурно-статистическими признаками и временными распределениями.

Если разобраться, то, на самом деле, такие системы могут оказаться полезными даже в случае отсутствия интепретанты у впервые проявившегося признака, поскольку системы интеллектуального анализа данных способны лишь акцентировать внимание аналитика на неких всплесках, по совокупности интегральных или частных показателей отличающих ситуацию от эталона нормы. Какую именно интерпретацию получат эти признаки -- вопрос квалификации аналитика, поскольку задача систем интеллектуального анализа данных -- это выделение сэмпла, но никак не снабжение его некой семантикой. Системы этого типа работают подобно периферийному зрению человека -- они реагируют лишь на изменения (периферийное зрение человека обеспечивает только сигнализацию о перемещениях в «опасной» зоне, но за распознавание движущегося объекта оно не берется).

Обращают на себя внимание попытки вхождения на уровень таких, казалось бы, трудно формализуемых отношений, как политика. Подобные системы не пытаются подменить аналитика, взвалив на себя весь интеллектуальный процесс, связанный с формированием политической стратегии (социализацией идей), однако способны выступать в роли хорошего помощника, способного непредвзято оценить пользу от предпринятых политических шагов. Для того, чтобы система смогла стать таким помощником, пользователю нужно «разъяснить» автоматизированной системе преследуемые им цели и рассматриваемые способы достижения этих целей, «проинформировать» систему о тех политических силах, чьи интересы, следует учитывать при решении задачи, отношениях между вероятными политическими сторонниками и противниками, возможных препятствиях на пути достижения целей и вероятных причинах их возникновения. Лишь после этого встроенная экспертная система будет способна оказать пользователю помощь в разработке альтернативных вариантов стратегии достижения целей, сопоставить эти варианты, а также оценить результативность предпринятых политических шагов. Далее начинается работа, собственно, системы искусственного интеллекта, которая на основе поставляемых ей данных (отклики прессы, рейтинги, результаты голосования и т. д.) предпримет попытки оценивания результативности целенаправленной деятельности. По результатам работ обычно предоставляется набор графиков, текстов и диаграмм, обеспечивающих возможность системного видения проблемы и путей ее решения.

Доступным примером, на котором можно испытать возможности такого рода систем, может служить распространяемая на основе лицензии Shareware «облегченная» версия программного обеспечения PolicyMaker Lite (PoliMap, США, http://www.polimap.com). Данный программный продукт специально разработан для ведения политического анализа и позволяет оценивать расстановку действующих политических сил при осуществлении политической активности (например, при продвижении законодательных инициатив, ведении внутрипартийной борьбы или в ходе выборов). И хотя в этой системе (по крайней мере, в той демонстрационной версии, которая предлагается на пробу заинтересованным лицам) явно перевешивает блок экспертных знаний, ознакомление с ней может оказаться весьма поучительным.

Назвать такие системы разумными нельзя, но на звание электронного интеллектуального помощника они вполне могут претендовать. Часто по своим функциями системы этого типа занимают позицию между инструментальными средствами формального моделирования и средствами активизации мыслительной деятельности.

Средства структурирования и визуализации данных. Электронные помощники аналитика

Над решением проблемы визуализации и структурирования данных работали крупнейшие ученые (достаточно вспомнить Аристотеля, ведь логика -- это одна из систем визуализации рассуждений). Рассматривая технологии работы с текстами, мы уже уделили немалое внимание проблеме структурирования данных, но позволим себе еще раз вернуться к этой проблеме.

Как часто случается, что после тщетных размышлений над некоторой проблемой в прыгающем на колдобинах ГАЗике, садишься за стол, берешь бумагу, карандаш и… все сложное становится простым (правда, иногда случается и обратное!). И не потому, что в условиях тряски нейроны, вынужденные цепляться своими дендритами, аксонами и синапсами друг за дружку, забывают о своем высоком предназначении (лишь бы не рассыпалась пресловутая нейронная сеть).

Дело в том, чтооперировать знаками легче, когда они наблюдаемы, а не роятся в голове вперемешку с мыслями об удержании в себе содержимого желудка. Причем способ наблюдения несущественен: например, еще одним приемом «визуализации» является проговаривание цепочки рассуждений. Дети часто пользуются этим приемом, более того, использовать его рекомендуют и психологи, но мы-то умные, да взрослые, и позволяем себе такое только в одиночестве или в состоянии, когда уже впору идти на прием к доктору. Проворачивать в голове сложные многосвязные структуры знаковой природы очень сложно, а без них, увы, вся логика повисает в воздухе. Знаки же человек привык воспринимать либо с помощью зрения, либо с помощью слуха -- вот и вся разгадка (кто на что учился, как принято говорить).

Разберемся с тем, что наизобретали умнейшие… Итак: рисунки и иероглифика, письменность, формальные знаковые системы, таблицы, матрицы, графики, плоскостные развертки, сечения и аксонометрические проекции многомерных графиков, графы, сети, диаграммы, многомерные таблицы и массивы, сетчатые рельефы, псевдотрехмерные текстурные рельефы, виртуальная реальность… Внушительный перечень, но… неполный -- одних диаграмм можно насчитать массу разновидностей, не говоря уже о прочих способах визуализации данных.

Собственно, в ряде приложений визуализация данных является одним из эффективных способов упорядочения -- зачем проводить сортировку неупорядоченных пар данных, если они могут быть непосредственно нанесены на график и считаны с приемлемой точностью? Более того: таким способом часто восстанавливаются и пропущенные измерения. Другой пример -- использование сечений на трехмерной модели рельефа позволяет легко установить зону затопления в весенний паводок, в то время как обсчитать такую модель очень непросто.

Короче говоря, что хорошо аналитику, то программисту -- чистая мука. Работа с графикой -- одна из тех отраслей, в которой приходится помнить высшую математику с аналитической геометрией, чего не требуется при разработке большинства прикладных программ. По этой причине на рынке программного обеспечения для разработчиков программного обеспечения большой популярностью пользуются библиотеки подпрограмм и программных компонентов, предназначенных для решения задач отображения данных в графическом режиме. Например, на специализированном Интернет-сайте ComponentSource (США, http://www.componentsource.com), где размещаются сведения о коммерчески распространяемых библиотеках подпрограмм и программных компонентах, прошедших тестирование и допущенных к применению в проектах федерального уровня, компоненты подобного сорта, обладающие мощными возможностями -- хотя и не редкость, но и стоят недешево (особенно это заметно по стоимости лицензий для использования в ГСТК Интернет).

Если же в вашей организации нет штатных программистов, а заказное программное обеспечение для вас слишком дорого, то на рынке программного обеспечения сегодня присутствует масса программных продуктов, приспособленных для решения задач отображения данных, а также задач разработки и отображения деловой графики. Рассмотрим стандартные возможности некоторой гипотетически доступной потребителю системы такого сорта:

-- наличие непосредственной связи с базами данных или возможности выполнения разовых процедур импорта данных из формата хранения наиболее известных баз данных и табличных редакторов;

-- наличие возможности редактирования и/или просмотра в табличном режиме данных, поступающих из подключенной базы данных, введенных в ручном режиме или импортированных извне;

-- возможность выбора типа диаграммы или графика, используемого для отображения данных, настройки цветов линий и плоскостей на графике (диаграмме и т. п.), ориентации и пределов измерений шкал (координатных осей), подписей и т. д.;

-- возможность манипуляции шкалами: нормирование отображаемых величин, установление масштаба отображения, изменение закона распределения делений на шкалах (линейный, экспоненциальный и т. п.);

-- возможность вывода на печать и экспорта в другие программы и сохранения в иных форматах представления графики, нежели фирменный;

-- возможность считывания данных, соответствующих указанной на теле графического объекта точке (ближайших или интерполированных).

Этому перечню требований на сегодня соответствует большинство подсистем отображения данных, реализованных в средах математического моделирования (MathCAD, MathLab и др.), табличных редакторах (Lotus Notes/Domino, Microsoft Excel и др.), а также в ряде других профессионально исполненных программных продуктов, предназначенных для работы с числовыми или структурированными данными. Довольно часто создатели программного обеспечения используют для решения проблемы отображения данных прием сохранения результатов обработки в формате обеспечивающем возможность их последующего просмотра с применением подсистемы отображения данных наиболее распространенных программных продуктов.

Одной из основных проблем, существующей в ИАР, является сам процесс синтеза модели, так и не получивший технологического обеспечения. До сего момента наиболее весомым достижением в этой сфере стало создание средств визуального моделирования объектов, процессов и отношений (эти технологии получили название WYSIWYG, от фразы what-you-see-is-what-you-get -- что видишь, то и получаешь). Благодаря этой технологии инструментарий аналитика составили средства, предоставляющие наборы конструктивных элементов, располагающих совместимыми интерфейсами. Их комбинирование позволяет достаточно легко построить логико-графическую интерпретацию модели. Применение средств визуального моделирования и проектирования на первичном этапе формализации положительно сказывается на процессе моделирования, так как оно:

-- стимулирует мыслительные усилия эксперта-аналитика за счет придания абстрактному мыслительному процессу наглядной формы;

-- способствует формированию и развитию системного мышления;

-- способствует проявлению скрытых логических конфликтов, а также логической неполноты модели (системы умолчаний эксперта);

-- позволяет создать основу для развития модели, дальнейшей формализации отношений, перехода от качественных показателей к количественным -- к аналитическим методам моделирования;

-- позволяет за счет протоколирования процесса построения модели осуществлять обучение системы моделирования, а также адаптировать ее интерфейс к конкретному пользователю, его аналитическим приемам;

-- способствует развитию методологии моделирования, поскольку протоколирование процесса синтеза модели позволяет перейти на уровень металогики модели, т. е. анализировать процесс анализа или моделировать процесс моделирования.

Особого упоминания здесь заслуживают системы протоколирования рассуждений, позволяющие отображать в виде графических и логико-лингвистических моделей сценарии и алгоритмы различных процессов, рассуждений экспертов, классификации и иные виды моделей, использующих графические методы отображения связей. Операции, выполняемые с их применением, часто называют майнд-мэппингом (от англ. mind mapping -- картографирование мышления). Вообще-то, в русском языке для именования результата работы систем такого типа есть название: «функциональная схема (диаграмма)», но из-за того, что отечественные программные продукты этого класса на рынке практически не представлены, то термин уже изрядно потеснен, если не вытеснен вовсе.

Те, кому уже доводилось решать подобные задачи, знают, сколько времени уходит на разработку с помощью примитивных компьютерных средств, не приспособленных для таких работ, графического представления мало-мальски серьезной классификации. Майнд-мэпперы же практически всю графическую работу берут на себя, заботясь, в том числе, и о размещении элементов на полученной диаграмме. К числу систем этого класса могут быть отнесены: система MindMapper (SimTech, США, http://www.mindmapper.com/), Microsoft Project (Microsoft, США, http://www.microsoft.com/) и другие. Экономия времени от применения подобных программных продуктов даже на относительно простых функциональных схемах (порядка 20 блоков) может составлять около часа на одну схему. Кроме того, следует учесть, что многие системы протоколирования рассуждений прекрасно стыкуются с базами данных и табличными редакторами, способны экспортировать данные в формат языков гипертекстовой разметки, например, XML, что делает эти средства еще и незаменимым инструментом управления проектами и создания действующих макетов баз знаний.

Использование систем майнд-мэппинга для протоколирования мозговых штурмов, сеансов извлечения знаний при создании экспертных систем делает их незаменимым инструментом информационной работы. Кроме того, средства протоколирования рассуждений часто реализуются в многопользовательском режиме и выступают в качестве подсистемы в автоматизированных системах, служащих для коллективной разработки управленческих и проектных решений, а также программного обеспечения. Многие системы этого типа позволяют строить линейные планы-графики Г. Гантта (диаграммы Гантта), а также циклические и сетевые планы-графики, широко используемые в управлении, позволяя решать не только задачи графического отображения, но и производить вычисления затрачиваемых ресурсов и времени, а также решать примитивные оптимизационные задачи.

Существует также и еще один класс программного обеспечения по своей идеологии близкого к системам майнд-мэппинга: это системы презентационной графики, но по этапу применения они ближе к завершению цикла ИАР и могут быть отнесены к классу систем отображения результатов ИАР. Поэтому к их рассмотрению мы обратимся позже.

Системы гибридного интеллекта

Если рассматривать системы гибридного интеллекта в самом общем виде, то можно сказать, что системы гибридного интеллекта представляют собой сложный, скорее даже, социальный феномен, возникающий при коллективном ведении интеллектуальной работы. Соответственно, любая организационная система, осуществляющая ИАР, со всеми основаниями может быть названа системой гибридного интеллекта.

По определению В.Ф. Венды Венда В.Ф. Системы гибридного интеллекта: Эволюция, психология, информатика. -- М.: Машиностроение, 1990. -- 448 с., «гибридный интеллект -- это механизм совместного прогнозирования живых систем в процессе опережающей взаимной многоуровневой адаптации с внешней средой, отличающийся тем, что каждая участвующая система располагает частной, фрагментарной, неполной информацией о динамике внешней среды, а совместно они синтезируют адекватную интегральную модель внешней среды и прогноз процесса взаимной адаптации со средой ». Определение, безусловно, мощное, но почему бы тогда этот феномен не назвать иначе -- коллективный интеллект?

Ответ прост: для конкретного приложения -- для ИАР это определение нуждается в уточнении… Коль скоро понятие системы гибридного интеллекта охватывает феномен коллективной работы по анализу и обработке информации, то рассматривая системы гибридного интеллекта, следует уделить внимание и технологической компоненте ИАР, в частности -- ее инструментальной подсистеме. Ведь сегодня для коллективного ведения ИАР широко используются средства телекоммуникационных сетей, различные инструментальные системы (те же майнд-мэпперы, наконец). Эти системы, подобно живым организмам, являются не только носителями информации, но и средствами ее интерпретации.

Собственно, и сам В. Венда ввел понятие систем гибридного интеллекта применительно к эргатическим (человеко-машинным) системам (например, комплексам управления атомными электростанциями и т. п.), но предпочел дать более общее определение. Мы же не можем довольствоваться общим определением -- любая система, в которой ведется ИАР, очень чувствительна к качеству инструментального обеспечения, которое определяет виды и параметры информационных взаимодействий в системе, а значит, определяет и свойства системы в целом.

Одной из центральных проблем, осложняющих ведение ИАР, является отсутствие коммуникаций между экспертами. Увы, построение даже самой совершенной телекоммуникационной системы этой проблемы не решает. Человек часто остается один на один с проблемой -- даже тогда, когда сидит в комнате, переполненной людьми. Коммуникация в системе ИАР -- это, прежде всего, совместный творческий акт, а не возможность такового. Попробуем пояснить эту мысль…

Дело в том, что при общении наличие вопроса не всегда является побудительной причиной акта коммуникации (на момент инициации акта коммуникации вопрос может и не существовать, быть неосознанным). В ходе совместной ИАР вопрос часто становится следствием коммуникации. Осознанная же потребность в коммуникации (мне нужен совет Петровича) при ведении ИАР -- это уже «почти ответ» на вопрос, так как вопрос является способом реализации активной стратегии добывания знаний, а отсутствие результата беседы с «Петровичем» способно повлечь за первым актом коммуникации и последующие. По этой причине неинтеллектуальная телекоммуникационная среда может повысить эффективность ИАР лишь в части, касающейся активных стратегий добывания знания .

А как быть с неосознанными, не сформулированными или еще не возникшими вопросами? Существуют ли пассивные стратегии добывания знаний? -- Если считать, что ожидание новых данных -- это стратегия, то, пожалуй, существуют. Сосредоточенное ожидание новых данных -- это тоже вопрос, но вопрос «самого общего плана». В таком вопросе еще нет самого вопросительного слова -- ни «что», ни «где», ни «когда».

Увы, очень часто вопрос, не спровоцированный внешними обстоятельствами, в принципе не может быть сформулирован на этапе ИАР. Это означает, что в неявном виде он переходит и в конечную информационную продукцию аналитика. В результате за рамками внимания руководителя остаются, возможно, наиболее существенные аспекты проблемы…

Какиемеханизмы выявления «незаданных вопросов» известны человеку? -- Один из методов борьбы с такими «незаданными вопросами» -- этодиалог . Диалог -- это эффективный способ «визуализации» системы рассуждений и сопоставления их с другой моделью мира.

Деятельность же аналитика «монологична» -- в большинстве случаев аргументы и контраргументы формулируются им самим. При логическом анализе активно используется «более молодая» вторая сигнальная система, устойчивость функционирования которой намного ниже, нежели у первой сигнальной системы, опирающейся на рефлексы. Поэтому сам процесс ИАР обладает слабой устойчивостью по отношению к нерегулярным внешним раздражителям (тому, что не может быть «подавлено» на уровне автоматизма). Для многих, если не для большинства аналитиков при ведении напряженной аналитической работы даже поступление новой (а иногда и релевантной потребностям аналитика) информации может явиться тем раздражителем, который способен снизить его работоспособность.

Соответственно, возникает противоречие между потребностью в диалоге (раздражителе) и потребностью в изоляции от раздражителей. И вот тут, похоже, начинает проясняться суть проблемы: видимо, надо рассмотреть какие типы и режимы проявления раздражителей могут восприниматься как желательные, учредить некий регламент общения, а уж далее попытаться подчинить ему всю систему ведения диалога.

Деятельность человека подчиняется так называемому «закону колоколообразных кривых» (их вид показан на рисунке 4.4). Смысл этого закона заключается в том, что любое изменение ситуации приводит к временному снижению эффективности в результате возникновения дезадаптационного стресса.

Если рассматривать, например, процесс внедрения новой техники, программного обеспечения, призванных повысить эффективность решения тех или иных задач, то на протяжении некоторого времени, требующегося для адаптации, система снижает свою эффективность и процесс наращивания эффективности происходит с некоторой задержкой. Когда степень новизны слишком высока, то система после такого стресса может и не вернуться к прежним показателям эффективности (это происходит, когда исходный тезаурус принципиально несовместим с новым и не позволяет системе приспособиться к происшедшим изменениям). Но в целом, если последнее замечание учтено и преемственность тезауруса соблюдена, процесс роста эффективности системы подчиняется закону S-кривых. Аналогичные явления наблюдаются и в момент смены обстановки или появления новой информации .

Однако порог возникновения дезадаптационного стресса может быть повышен за счет специальных мероприятий.Отрицательный эффект от появления новых данных может быть снижен при выполнении следующих условий.

-- данные релевантны текущим информационным потребностям аналитика;

-- момент появления данных предсказуем;

-- проблема интеллектуальной изолированности аналитика преодолена благодаря наличию мощной телекоммуникационной компоненты, обеспечивающей возможность получения доступа к дополнительным информационным массивам и консультаций коллег.

Обеспечить эти условия можно только при условии, что телекоммуникационная среда является «интеллектуальной», то есть, способна отслеживать текущие информационные потребности аналитика. Такая среда должна, по возможности, протоколировать логику рассуждений аналитика по некоторым внешним проявлениям и в фоновом режиме осуществлять поиск и отбор аргументов и контраргументов, потребность в которых еще только назревает.

В настоящее время для интеллектуализации рабочей среды аналитика чаще всего используются экспертные системы, но при анализе процессов, протекающих в организационных, организационно-технических, социальных и экономических системах, обладающих высокой динамикой, полнота эвристик, заложенных в экспертную систему (ЭС), не может быть обеспечена. Для того чтобы обеспечить необходимый уровень интеллектуальной поддержки ИАР, подход к построению баз знаний должен быть пересмотрен: из систем, предназначенных для хранения неизменяемых во времени знаний, они должны превратиться в системы, предназначенные для накопления эволюционирующих знаний.

При этомзнания в таких системах должны проходить все этапы эволюции : от выявления факта повторяемости некоторых, еще не имеющих интерпретации, признаков -- до установления их семантики и области применимости. Это очень важно, поскольку в обычных базах знаний экспертных систем свое отражение находят лишь те повторяющиеся сценарии, которым сопоставлена некоторая интерпретанта. Как правило, первый прецедент повторения некоторого сценария остается за рамками внимания эксперта, а тем более -- неприспособленной для этого ЭС. Поэтому существует феномен латентной (скрытой, не обнаруженной) повторяемости, которую не могут выявить экспертные системы. Вероятно, читатель здесь вспомнит о системах data mining -- это вполне логично: именно здесь они были бы весьма кстати.

Это значит, что следует идти по пути интеграции в коммуникационные среды систем искусственного интеллекта , хоть и не способных интерпретировать наблюдаемые явления, но способных распознать повторение некоторого сценария и оповестить об этом аналитика. Нечто похожее делают системы интеллектуального анализа данных при обнаружении отклонений от нормы. В худшем случае такая система лишь укажет аналитику на необходимость инициировать диалог, на существование потребности в консультациях, которые могут быть получены только в результате непосредственного общения с экспертом, а в лучшем -- позволит аналитику самостоятельно сопоставить информационный контекст (интерьеры) событий и выдвинуть гипотезу о значении повторно наблюдаемого процесса.

В рамках разработок в области автоматизированных систем поддержки электронного бизнеса класса B2B (Business to Business -- уровень взаимодействия корпоративных субъектов экономической деятельности) постепенно начинает формироваться комплекс подходов и технологий, приближающих момент решения этой проблемы. Имеются в виду интеллектуальные приложения на базе автономных программных агентов и языков гипертекстовой разметки, пытающихся учесть специфику поведения и интересов посетителей электронных торговых площадок в ГСТК Интернет, с тем, чтобы адаптироваться к их индивидуальным потребностям, поведению и предоставить им именно те сведения, которые могут потребоваться.

Еще одним немаловажным аспектом ИАР является то, что факт отсутствия ожидаемых данных также является информацией для аналитика . Использование сведений такого рода возможно тогда, когда существует некая модель, определяющая ожидания аналитика относительно момента появления данных, подтверждающих те или иные события. Но часто при построении систем автоматизации ИАР этот аспект работы аналитика игнорируется, а аналитик, увы, не всегда в состоянии помнить о том, что в тот или иной момент времени после события А должно наступить событие Б, сопровождающееся появлением данных Д(Б) -- для этого следует помнить не только последовательность событий но и их информационный контекст (интерьеры) .

Таким образом, решению проблемы ослабления дезадаптационного стресса, вызываемого неполнотой знаний аналитика и системы эвристик ЭС, могут служить именно системы гибридного интеллекта. «Гибридность» таких систем должна заключаться не только в том, что благодаря системе коммуникаций между отдельными субъектами ИАР формируется коллективный разум, но и в том, что коллективный разум должен включать в себя и те компоненты, которые обеспечиваются средствами автоматизации в виде систем искусственного интеллекта и экспертных систем. С одной стороны, такие системы призваны решать проблему интеллектуальной изолированности аналитика за счет создания среды информационного взаимодействия, а с другой -- управлять режимом предоставления данных, брать на себя функции управления поиском и отбором релевантных текущей работе аналитика.

Как это может быть сделано?

Прежде всего, подобная система (система гибридного интеллекта) должна быть интегрирована с инструментами типа майнд-мэпперов, которые должны стать одним из основных инструментов работы аналитика, за счет чего может быть осуществлена формализация системы рассуждений аналитика, включая и ссылки на данные, положенные в основу аргументации . Впрочем, если бы имели место проговаривание рассуждений, их регистрация, распознавание речи, логико-лингвистическая обработка высказываний и автоматическое построение логико-лингвистических структур, отражающих рассуждения аналитика, было бы и того лучше. Такие модели с применением средств лингвистической обработки текстов могут быть подвергнуты автоматизированному анализу, за счет чего система сможет сформулировать поисковые задания для подбора аргументации, провести поиск ранее отмечавшихся сценариев анализа и предложить дополнительные массивы данных, а также сведения о возможных дополнительных источниках информации. Еще одна возможность, представляющаяся вполне реализуемой при современном уровне развития информационных технологий -- это возможность отыскания шаблона сценария анализа, характерного для данного аналитика. Что позволяет предложить ему для ознакомления группу сценариев анализа, полученных в результате протоколирования работы других аналитиков.

Кроме того, используя лингвистические технологии, системы гибридного интеллекта способны регламентировать процесс информационного взаимодействия между аналитиками как на уровне представления данных, так и на уровне управления временными параметрами процесса коммуникации. Благодаря первой группе регламентов может быть снят (или ослаблен) стресс дезадаптации, вызванный различиями в способах представления данных, а благодаря введению временных регламентов может быть снижен эффект неожиданности акта коммуникации, сформирована привычка к разбиению ИАР на временные интервалы, посвященные различным видам активности.

Однако и это не все положительные свойства таких систем… Они могут стать мощным инструментом подготовки аналитиков, их ввода в контекст текущей ситуации, формирования рабочих групп в распределенных средах, что очень важно в крупных территориально распределенных информационно-аналитических службах государственного и ведомственного подчинения, диспетчирования информационных потоков по информационным направлениям и так далее.

Комментированному перечислению преимуществ такой идеологии построения систем комплексной поддержки ИАР можно было бы посвятить еще много страниц. Но мы предоставляем читателям возможность, как-нибудь на досуге, самостоятельно поразмышлять в этом направлении.

Средства снижения размерности массива измерений

Класс инструментальных средств поддержки процессов анализа данных -- это весьма пестрый по составу класс, объединенный одним свойством входящих в него средств: все они направлены на преодоление проблемы большой размерности. Сущность проблемы заключается в том, что человек, хотя и устроен как мощнейшая система анализа и обработки данных, но система эта обладает недостаточно мощной подсистемой сбора данных. Она, эта подсистема сбора данных, обладает относительно низким разрешением, инерционна и обладает множеством иных недостатков. Отсюда это стремление к созданию все новых инструментальных средств, расширяющих возможности органов чувств… Но, как только очередная проблема этого сорта решена, так сразу появляются проблемы коммуникации с очередным созданным инструментом, преодоления избыточности массива измерений, обеспечения избирательности и иные -- то есть, все то, что порождено высокой размерностью массива измерений. Эти проблемы порождены «неинтеллектуальностью» инструментария сбора данных.

...

Подобные документы

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.