Схемотехника аналоговых электронных устройств
Принципы действия аналоговых устройств на биполярных и полевых транзисторах. Определение элементов принципиальных схем по требуемому виду частотных, фазовых и переходных характеристик. Построение функциональных устройств на основе операционных усилителей.
Рубрика | Коммуникации, связь, цифровые приборы и радиоэлектроника |
Вид | учебное пособие |
Язык | русский |
Дата добавления | 26.03.2013 |
Размер файла | 2,5 M |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Физически эффект увеличения объясняется относительным увеличением коэффициента передачи на ВЧ за счет увеличения эквивалентной нагрузки каскада (путем добавления индуктивного сопротивления в цепь стока). Эффект уменьшения объясняется увеличением тока через емкость (что сокращает время ее заряда и, следовательно, уменьшает ) за счет того, что в начальный момент выходной ток транзистора практически весь направляется в цепь , его ответвлению в стоковую цепь препятствует ЭДС самоиндукции в индуктивности .
В [6] приводятся основные выражения для расчета каскадов с простой индуктивной параллельной ВЧ коррекцией для случая, когда , что практически всегда имеет место в промежуточных каскадах на ПТ:
.
После преобразования получаем:
,
где - нормированная частота, , ;
m - коэффициент коррекции, по физическому смыслу представляющий собой квадрат добротности () параллельного колебательного контура (см. рисунок 2.41б), .
Модуль полученного выражения дает АЧХ корректированного каскада:
.
Максимально плоская АЧХ получается, когда m=0,414 [6]. Данное условие вытекает из равенства нулю производной при =0, т.е. АЧХ не должна иметь наклона в точке =0.
ФЧХ корректированного каскада определяется выражением:
.
ФЧХ максимально линейна, если m=0,322 [6]. Добротность соответствует границе между апериодическими и колебательными разрядами конденсатора контура , поэтому при m0,25 выброса в ПХ не будет, т.к. не будет затухающих колебаний в контуре.
На рисунке 2.42 приведены нормированные АЧХ и ПХ каскадов на ПТ с простой параллельной индуктивной коррекцией для различных коэффициентов коррекции m.
Для оценки эффективности УУ вводят понятие площади усиления П для ШУ и импульсной добротности D для ИУ:
,
,
.
Как видно из рисунка 2.42, максимальный выигрыш по этим параметрам в каскаде на ПТ для рассмотренного варианта коррекции и отсутствии подъема АЧХ на ВЧ (выброса ПХ в области МВ), составляет 1,73 [6] раза. Следует подчеркнуть, что данный выигрыш получается при условии когда , что обычно имеет место при использовании каскада на ПТ в качестве промежуточного в УУ.
В каскадах на БТ (схема не приводится ввиду ее подобия рисунку 2.41) анализ эффективности простой параллельной индуктивной коррекции сложнее из-за необходимости учета частотной зависимости крутизны БТ,
.
Выражение для относительного коэффициента передачи имеет вид [6]:
,
здесь - постоянная времени каскада без коррекции на ВЧ; - коэффициент коррекции; - отношение составляющих постоянной времени каскада.
Данное выражение не позволяет однозначно оценить выигрыш, даваемый простой параллельной индуктивной коррекцией в каскадах на БТ, поэтому либо приходится прибегать к помощи ЭВМ, либо пользоваться таблицами, приведенными, например, в [6]. Анализ показывает, что выигрыш в площади усиления (импульсной добротности) может достигать величины, равной , т.е. величины, большей двух раз (теоретически до 20, практически 2…10).
Анализ так же показывает, что простая параллельная индуктивная коррекция в каскаде на БТ наиболее эффективна при малых х, что соответствует случаю применения относительно низкочастотных транзисторов.
В целом же следует заметить, что, несмотря на некоторую эффективность, простая параллельная индуктивная коррекция в современной схемотехнике УУ используется редко. Это объясняется, в первую очередь, технологическими трудностям реализации индуктивностей в ИМС, и сильной зависимостью эффекта коррекции от параметров транзистора, что требует подстройки схемы в случае их разброса. Возможно использование вместо катушки индуктивности индуктивного входного сопротивления каскада с ОБ (рисунок 2.43).
Индуктивность транзистора VT2 между эмиттером и общим проводом равна:
,
где k=(1,2…1,6).
Резистор R служит для увеличения индуктивности и ее подстройки (при гибридно-пленочной технологии лазерной подгонкой или выносными резисторами).
В области НЧ (БВ) находит применение коррекция коллекторным (стоковым) фильтром.
Схема каскада с НЧ-коррекцией на БТ и его упрощенная (учитывающая влияние только ) схема для области НЧ изображены на рисунке 2.44.
Физически уменьшение объясняется относительным увеличением коэффициента передачи в области НЧ за счет увеличения эквивалентной нагрузки каскада путем добавления емкостного сопротивления в цепь коллектора на НЧ. Эффект уменьшения спада плоской вершины импульса поясняется эпюрами напряжения, приведенными на рисунке 2.44б.
В идеальном случае, при , условием коррекции будет равенство постоянных времен и [6]. В реальных схемах рекомендуется брать , для подъема вершины импульса на (10…20)% можно воспользоваться соотношением:
.
3. УСИЛИТЕЛИ С ОБРАТНОЙ СВЯЗЬЮ
3.1 Общие сведения
Обратная связь (ОС) находит широкое применение в разнообразных АЭУ, в т.ч. и в УУ. В УУ введение ОС призвано улучшить ряд основных показателей или придать новые специфические свойства. Особую, принципиальную роль ОС играет в микроэлектронных УУ. Можно утверждать, что без широкого использования ОС было бы крайне трудно осуществить серийный выпуск линейных ИМС.
Обратной связью называется передача части (или всей) энергии сигнала с выхода на вход устройства. Сниматься сигнал обратной связи может с выхода всего устройства или с какого-либо промежуточного каскада. ОС, охватывающую один каскад, принято называть местной, а охватывающую несколько каскадов или весь многокаскадный УУ - общей.
Структурная схема УУ с ОС приведена на рисунке 3.1.
Обычно коэффициент усиления УУ и коэффициент передачи цепи ОС носят комплексный характер, что указывает на возможность фазового сдвига в областях НЧ и ВЧ за счет наличия реактивных элементов как в самом УУ, так и в цепи ОС.
Коэффициент передачи цепи ОС равен:
.
Согласно классической теории ОС, влияние ОС на качественные показатели УУ определяются возвратной разностью (глубиной ОС):
,
где - определитель при равенстве нулю параметра прямой передачи. Равенство нулю этого параметра равносильно разрыву замкнутой петли передачи сигнала с сохранением нагружающих иммитансов в месте разрыва.
Следование классической теории ОС приводит к сложности вычислений, преодолимой только с помощью ЭВМ.
Для эскизных расчетов пригодна элементарная теория ОС [6]. Ее применение допустимо тогда, когда есть возможность разделения цепей прямой передачи и обратной передачи . В реальных УУ четкого разделения этих цепей невозможно, поэтому расчеты с помощью элементарной теории ОС приводят к погрешности результатов, впрочем, вполне допустимой для эскизного проектирования. Согласно элементарной теории ОС, глубина ОС определится как:
.
Тогда
.
Если >0 - ОС носит положительный характер (ПОС), если <0- ОС отрицательная (ООС), в последнем случае
,
.
Нетрудно увидеть, что в случае ПОС фазы входного сигнала и сигнала обратной связи совпадают и амплитуды складываются, что приводит к увеличению коэффициента усиления, в случае же ООС несовпадение фаз входного сигнала и сигнала обратной связи приводит к их вычитанию, и, следовательно, к уменьшению коэффициента усиления.
Обратная связь может специально вводиться в УУ для изменения его характеристик, а также возникать за счет влияния (обычно нежелательного) выходных цепей на входные (паразитная ОС).
ПОС находит применение в генераторах, а иногда и в частотно-избирательных усилителях, в большинстве усилителей ПОС является паразитной.
Основное применение в УУ находит ООС. Она позволяет повысить стабильность работы усилителей, а также улучшить другие важные параметры и характеристики. Сразу следует подчеркнуть, что снижение коэффициента усиления в современных УУ за счет ООС не является сегодня уж очень значительным фактором, т.к. широко используемые микроэлектронные структуры с большими собственными коэффициентами усиления позволяют иметь значительный по величине К. В дальнейшем основное внимание будет уделено именно ООС. ООС классифицируется в зависимости от способов подачи сигналов ООС во входную цепь усилителя и снятия их с выхода усилителя. Если во входной цепи вычитается ток ОС из тока входного сигнала, то такую ООС называют параллельной (т.к. выход цепи ООС подключен параллельно входу усилителя).
Если же во входной цепи вычитаются напряжения входного сигнала и сигнала обратной связи, то такую ООС называют последовательной (т.к. выход цепи ООС подключен последовательно входу усилителя).
По способу снятия сигнала обратной связи различают ООС по напряжению, когда сигнал ООС пропорционален выходному напряжению усилителя (вход цепи ООС подключен параллельно нагрузке усилителя), и ООС по току, когда сигнал ООС пропорционален току через нагрузку (вход цепи ООС подключен последовательно с нагрузкой усилителя).
Таким образом, следует выделить четыре основных варианта цепей ОС (рис.3.2):
последовательная по току (последовательно- последовательная, Z-типа), последовательная по напряжению (последовательно- параллельная, H- типа), параллельная по напряжению (параллельно- параллельная, Y-типа) и параллельная по току (параллельно- последовательная,G- типа). Существуют и смешанные (комбинированные) ООС.
3.2 Последовательная ООС по току
Схема каскада с последовательной ООС по току (ПООСТ) на ПТ с ОИ приведена на рисунке 3.3.
При ПООСТ в выходной цепи усилителя последовательно с нагрузкой включается специальная цепь (на рисунке 3.3 это ), напряжение на которой пропорционально выходному току. Во входной цепи усилителя алгебраически складывается с входным напряжением. В области СЧ (=0) можно записать
.
Проведя анализ каскада по методике подраздела 2.3, получим:
.
Поскольку (см. подраздел 2.9), то при глубокой ООС (F>10) . Из полученного выражения следует, что ПООСТ обеспечивает стабильность усиления по напряжению при условии постоянства нагрузки.
С помощью ПООСТ удается уменьшить нелинейные искажения в УУ, поскольку с увеличением F будет уменьшаться напряжение управления усилителем, его работа станет осуществляться на меньшем участке ВАХ активного элемента (транзистора), а это приведет к уменьшению коэффициента гармоник. В подразделе 8.1 приведены расчетные соотношения для коэффициента гармоник усилителя, охваченного ООС последовательного типа. Приближенно оценить влияние ПООСТ на коэффициент гармоник можно по соотношению:
.
Все вышесказанное в равной мере относится и к каскаду на БТ с ОЭ и ПООСТ (схема каскада не приводится ввиду идентичности ее топологии схеме рисунка 3.3).
Входное сопротивление усилителя с ООС определяется способом подачи напряжения ОС во входную цепь. Согласно элементарной теории ОС, ПООСТ увеличивает входное сопротивление усилителя в F раз, т.е.
.
Выражение для входного сопротивления каскада с ОЭ на БТ с ПООСТ, определенное по методике подраздела 2.3, имеет вид:
.
При известных допущениях последние два выражения дают близкие результаты.
Входное сопротивление каскада с ОИ на ПТ определяется (см. подраздел 2.9), поэтому практически не меняется при охвате каскада ПООСТ.
Выходное сопротивление усилителя с ООС определяется способом снятия напряжения ОС с нагрузки усилителя. Согласно элементарной теории ОС, ПООСТ увеличивает выходное сопротивление усилителя в F раз, т.е.
.
На СЧ выходное сопротивление каскадов на ПТ (ОИ) и БТ (ОЭ) определяется в большинстве случаев соответственно номиналами и , поэтому данная ООС его практически не меняет.
На рисунке 3.3б приведена схема каскада с ОИ и ПООСТ в области ВЧ. Данный каскад еще носит название каскада с истоковой коррекцией, т.к. основной целью введения в каскад ООС является коррекция АЧХ в области ВЧ.
Поскольку цепь ООС () частотнозависима, то |F| с ростом частоты уменьшается относительно своего значения на СЧ, что приводит к относительному возрастанию на ВЧ. С точки зрения коррекции временных характеристик, уменьшение каскада объясняется зарядом , что приводит к медленному нарастанию , и, следовательно, к увеличению коэффициента усиления в области МВ, а это, в свою очередь, сокращает время заряда , которое, собственно, и определяет .
Анализ влияния ПООСТ вначале проведем для случая резистивной цепи ОС (=0). Учитывая, что крутизна ПТ практически не зависит от частоты (см. подраздел 2.4.2), можно сказать, что во всем диапазоне рабочих частот глубина ООС F=const, уменьшение коэффициента усиления по всему диапазону рабочих часто одинаково и коррекция отсутствует.
Воспользовавшись рекомендациями подраздела 2.3,получим выражение для комплексного коэффициента передачи каскада с токовой коррекцией (цепь ОС комплексная, ) на ВЧ:
,
где .
Анализ полученного выражения упрощается в предположении . При этом условии имеем:
,
где (см. так же подраздел 2.9).
Уменьшение постоянной времени каскада в области ВЧ приводит к увеличению верхней граничной частоты (уменьшению ) каскада. Площадь усиления каскада с ОИ и истоковой коррекцией при этом не меняется:
.
Расчет каскада с истоковой коррекцией в области НЧ ничем не отличается от расчета некорректированного каскада за исключением того, что формула для постоянной времени цепи истока будет выглядеть иначе:
.
В зависимости от цели введения ООС в каскад, глубину ООС можно определить по следующим соотношениям:
, либо .
При этом
и .
Каскад с ОЭ и ПООСТ еще носит название каскада с эмиттерной коррекцией.
В отличие от ПТ, в БТ крутизна частотнозависима, поэтому даже при частотно-независимой цепи ООС (=0) наблюдается эффект коррекции АЧХ и ПХ за счет уменьшения глубины ООС на ВЧ:
,
где (см. так же подраздел 1.5).
Нетрудно увидеть, что эмиттерная коррекция каскада на БТ при частотно-независимой цепи ООС (=0) эффективна при , т.е. в каскадах с малой емкостью нагрузки.
Воспользовавшись рекомендациями подраздела 2.3,получим выражение для комплексного коэффициента передачи каскада с эмиттерной коррекцией в области ВЧ:
,
где , .
Эмиттерная коррекция позволяет значительно увеличить (уменьшить ) при заданных величинах подъема АЧХ на ВЧ (выброса ПХ в области МВ). Готовые таблицы и графики для расчета каскада с эмиттерной коррекцией приведены в [6].
Входная емкость каскада с ПООСТ уменьшиться примерно в F раз:
.
Расчет каскада с ОЭ и ПООСТ в области НЧ ничем не отличается от каскада без ОС (следует только учитывать изменение при расчете постоянных времени разделительных цепей), исключение составляет расчет постоянной времени цепи эмиттера:
.
3.3 Последовательная ООС по напряжению
Входное сопротивление усилителя с ООС определяется способом подачи напряжения ОС во входную цепь. Согласно элементарной теории ОС, последовательная ООС по напряжению (ПООСН) увеличивает входное сопротивление усилителя в F раз, т.е.
.
Выходное сопротивление усилителя с ООС определяется способом снятия напряжения ОС с нагрузки усилителя. Согласно элементарной теории ОС, ПООСН уменьшает выходное сопротивление усилителя в F раз, т.е.
.
Уменьшение выходного сопротивления УУ снижает зависимость выходного напряжения от изменения величины нагрузки, следовательно, можно утверждать, что ПООСН стабилизирует коэффициент усиления по напряжению при изменении нагрузки. Ранее были рассмотрены эмиттерный и истоковый повторители, в которых имеет место 100%-ная ПООСН (подразделы 1.8, 1.11), поэтому ограничимся иллюстрацией применения ПООСН - трехкаскадным интегральным усилителем с внешней цепью ОС (резистор , рисунок 3.4).
Возможность менять глубину общей ООС значительно расширяет сферу применения данного усилителя и делает ИМС многоцелевой.
3.4 Параллельная ООС по напряжению
Согласно элементарной теории ОС, параллельная ООС по напряжению (||ООСН) не меняет коэффициент усиления по напряжению усилителя, но за счет изменения его входного сопротивления меняется сквозной коэффициент усиления . В результате уменьшения входного сопротивления к входу усилителя приложится напряжение
,
где - коэффициент передачи входной цепи УУ.
По аналогии с можно записать:
.
При глубокой ||ООСН (>>1) получаем:
.
Входное сопротивление усилителя с ||ООСН определится как:
,
где глубина ООС по току , .
Величину выходного сопротивления УУ, охваченного ||ООСН, можно приближенно оценить по уже известному соотношению:
.
Из изложенного следует, что ||ООСН стабилизирует сквозной коэффициент усиления по напряжению при постоянном сопротивлении источника сигнала, уменьшает входное и выходное сопротивления усилителя.
Каскад на БТ с ОЭ и ||ООСН представлен на рисунке 3.5.
При ||ООСН выходное напряжение каскада вызывает ток ОС, протекающий через цепь ОС . Ранее (см. подраздел 2.6) рассматривалась схема коллекторной термостабилизации, работа которой основана на действии ||ООСН. В данном же каскаде ||ООСН действует только на частотах сигнала, что отражено на рисунке 3.5б.
Воспользовавшись рекомендациями подраздела 2.3, получим выражения для основных параметров в области СЧ. Для коэффициента усиления по напряжению получим:
,
т.к. , . В большинстве случаев , поэтому меняется незначительно. Само же изменение объясняется тем, что, в отличие от классической структуры УУ с ||ООСН, в реальной схеме каскада нет столь четкого разделения цепи ОС и цепи прямого усиления.
Входное сопротивление каскада с ||ООСН равно:
.
Обычно , и , тогда
.
Выходное сопротивление каскада с ||ООСН равно:
,
т.к. как правило и .
Для определения параметров каскада в области ВЧ следует воспользоваться соотношениями для каскада с ОЭ (см. подраздел 2.5), принимая во внимание, что при расчете постоянной времени каскада следует учитывать выходное сопротивление каскада с ||ООСН, т.е. и влияние ||ООСН на крутизну - .
Следует заметить, что существует возможность коррекции АЧХ (ПХ) в области ВЧ (МВ) путем включения последовательно с корректирующей индуктивности . Эффект коррекции объясняется уменьшением глубины ООС в области ВЧ (МВ). Расчет каскада с ОЭ и ||ООСН в области НЧ ничем не отличается от расчета каскада без ОС (следует только учитывать изменение и при расчете постоянных времени разделительных цепей), исключение составляет расчет разделительной емкости из условия .
Следует заметить, что существует возможность коррекции АЧХ (ПХ) в области НЧ (БВ) путем уменьшения емкости . Эффект коррекции объясняется уменьшением глубины ООС в области НЧ (БВ).
Механизм действия ||ООСН в каскаде на ПТ с ОИ (схема не приводится ввиду совпадения ее топологии рисунку 3.5) во многом идентичен только что рассмотренному. Приведем расчетные соотношения для основных параметров каскада на ПТ с ||ООСН:
,
т.к. , .
.
Как правило, и , тогда
.
,
т.к. чаще всего .
Все вышесказанное о влиянии ||ООСН на АЧХ (ПХ) каскада на БТ справедливо и для каскада на ПТ.
||ООСН обычно применяют тогда, когда требуется понизить входное сопротивление каскада, что необходимо во входных каскадах УУ, работающих в низкоомном согласованном тракте передачи.
3.5 Параллельная ООС по току
На рисунке 3.6 приведена схема двухкаскадного усилителя, охваченного общей параллельной ООС по току (||ООСТ), которая вводится в усилитель путем включения резистора .
Напряжение ОС снимается с резистора , включенного последовательно с нагрузкой усилителя. Напряжение ОС, пропорциональное выходному току усилителя, образует ток , протекающий через . Во входной цепи УУ происходит алгебраическое сложение токов и . Поскольку ||ООСТ применяется в основном в усилителях тока, то логично оценить ее воздействие на коэффициент усиления по току:
,
где - глубина ОС по току.
Если принять, что усилителя без ОС велик и источник сигнала имеет большое внутреннее сопротивление (т.е. представляет собой источник тока), то
.
Если >>, то . Следовательно, ||ООСТ стабилизирует коэффициент передачи по току УУ.
Входное сопротивление УУ с ОС определяется способом подачи сигнала ОС во входную цепь, поэтому:
.
Выходное сопротивление УУ с ОС определяется способом снятия сигнала ОС в выходной цепи, поэтому:
.
Описанный усилитель целесообразно выполнить в виде ИМС с внешней цепью ОС, что позволяет в широких пределах изменять его характеристики.
3.6 Дополнительные сведения по ОС
3.6.1 Комбинированная ООС
В УУ возможно применение различных видов ООС одновременно. Характерным примером в этом отношении является каскад с ОЭ и комбинированной ООС (рисунок 3.7) - ПООСТ за счет и ||ООСН за счет .
Применение подобной комбинированной ООС (КООС) целесообразно в случае выполнения усилителя в виде гибридно-пленочной ИМС, поскольку резисторы, выполненные по толсто- или тонкопленочной технологии имеют уход параметров в одну сторону (в плюс или минус). Влияние и , например, на коэффициент усиления противоположны по знаку, поэтому одновременное их уменьшение или увеличение практически не скажется на результирующем коэффициенте усиления.
При приближенном анализе каскада с КООС следует учитывать, что коэффициент усиления будет в основном определяться ПООСТ, а и -||ООСН, поэтому:
,
,
,
где
.
Более подробно анализ каскадов с КООС представлен в [8].
3.6.2 Многокаскадные усилители с ООС
Для получения ООС в УУ необходимо, чтобы суммарный фазовый сдвиг , вносимый усилителем и цепью ОС, был равен 180 во всем диапазоне рабочих частот. В многокаскадном усилителе это требование обычно выполняется, строго говоря, только на одной частоте. На остальных частотах, особенно на границах и за пределами полосы рабочих частот АЧХ, 180. Это происходит за счет дополнительных фазовых сдвигов, вносимых реактивными элементами схемы усилителя, причем эти сдвиги будут тем больше, чем большее число каскадов охвачено общей цепью ООС. При дополнительном фазовом сдвиге 180, =360 (баланс фаз), ООС превратится в ПОС, и, если К>>1 (баланс амплитуд), усилитель превратится в генератор.
Теоретически одно- и двухкаскадный усилитель с частотно-независимой ООС устойчив при любой глубине ОС, трехкаскадный - при F9, однако практически, с учетом запаса по устойчивости и возможностью дополнительных фазовых сдвигов, рекомендуют брать F5 для однокаскадного, F4 для двух и F3 для трехкаскадного усилителя, охваченного общей ООС. Не рекомендуется охватывать общей ООС более трех каскадов, если же это необходимо, то возможно использование специальных корректирующих цепей, которые будут рассмотрены в подразделе 6.6.
3.6.3 Паразитные ОС в многокаскадных усилителях
Т.к. для различных каскадов многокаскадного усилителя обычно применяют один и тот же источник питания, то из-за наличия его внутреннего сопротивления (рисунок 3.8) в усилителе возникают паразитные (нежелательные) ОС. Переменная составляющая тока каскадов (преимущественно оконечного) создает на переменную составляющую , которая поступает в цепи питания предыдущих каскадов и тем самым замыкает сразу несколько петель паразитных ОС, что может привести к самовозбуждению.
Для недопущения самовозбуждения необходимо, чтобы петлевое усиление К<1 (если принять запас устойчивости в два раза, то К<0,5). При уменьшении запаса устойчивости возможно увеличение неравномерности АЧХ и ФЧХ из-за увеличения глубины паразитной ПОС . Полагая, что неравномерность АЧХ усилителя возрастает приблизительно в раз и, ограничившись неравномерностью АЧХ порядка 0,5 дБ (1,06 раза), получаем допустимое петлевое усиление любой петли паразитной ОС К<0,06, т.е. требования к глубине паразитных ОС, вытекающие из условия стабильности характеристик, гораздо жестче, чем из условия стабильности.
Самым эффективным и достаточно простым способом, исключающим сложных стабилизированных источников питания, является применение развязывающих (устраняющих ОС) фильтров, состоящих из и и включаемых последовательно или параллельно источнику питания (рисунки 3.8 и 3.9).
Фильтры включаются на пути обратной передачи в петле ОС и создают делитель переменного напряжения, сопротивления плеч которого равны и . Ослабление делителем напряжения паразитной ОС на нижней граничной частоте характеризуется коэффициентом развязки
,
Откуда
.
Номинал резистора определяется требуемым напряжением питания предварительных каскадов, которое, как правило, меньше, чем у оконечного.
Кроме ослабления паразитных ОС, развязывающие фильтры одновременно сглаживают пульсации напряжения питания с частотой 50 и 100 Гц, если усилитель питается от сетевого выпрямителя. Уровень напряжения на выходе усилителя задают, исходя из требования, чтобы в любой точке УУ амплитуда напряжения фона, добавляющегося к основному сигналу, была бы, по меньшей мере, в (2…3)D раз меньше максимальной амплитуды последнего, D - динамический диапазон УУ.
4. УСИЛИТЕЛИ МОЩНОСТИ
4.1 Общие сведения
Усилители мощности (УМ) предназначены для передачи больших мощностей сигнала без искажений в низкоомную нагрузку. Обычно они являются выходными каскадами многокаскадных усилителей. Основной задачей УМ является выделение в нагрузке возможно большей мощности сигнала, усиление напряжения в нем является второстепенным фактором.
Основными задачами при проектировании УМ являются:
обеспечение режима согласования выходного сопротивления УМ с нагрузкой с целью передачи в нагрузку максимальной мощности;
достижение минимальных нелинейных искажений сигнала;
получение максимального КПД.
УМ классифицируются по:
способу усиления - на однотактные и двухтактные;
способу согласования - на трансформаторные и бестрансформаторные;
классу усиления - на классы A, B, AB, C, D.
В качестве методов проектирования могут применяться:
графоаналитические (построение ДХ и т.д.);
по усредненным параметрам.
4.2 Классы усиления
Для всех рассмотренных ранее усилительных каскадов предполагалось. Что они работают в режиме класса А. Выбор рабочей точки покоя, например для БТ, (см. рисунок 2.10) производится таким образом, чтобы входной сигнал полностью помещался на линейном участке входной ВАХ транзистора, а значение располагалось на середине этого линейного участка. На выходной ВАХ транзистора в режиме класса А рабочая точка () располагается на середине нагрузочной прямой так, чтобы амплитудные значения сигналов не выходили за те пределы нагрузочной прямой, где изменения тока коллектора прямо пропорциональны изменениям тока базы. Поскольку режим А характерен работой транзисторов на почти линейных участках своих ВАХ, то УМ в этом режиме будет иметь минимальные НИ (обычно ).
При работе в режиме класса А транзистор все время находится в открытом состоянии, следовательно, угол отсечки (половина времени за период, в течение которого транзистор открыт) . Потребление мощности источника питания происходит в любой момент, поэтому каскады, работающие в режиме класса А, характеризуются невысоким КПД (в идеале - 50%, реально - (35…45)%). Режим усиления класса А в УМ применяется в тех случаях, когда необходимы минимальные НИ, а мощность и КПД не имеют решающего значения.
Более мощные варианты выходных каскадов работают в режиме класса В, характеризующегося (рисунок 4.1).
В режиме покоя транзистор закрыт и не потребляет мощности от источника питания, а открывается только в течение половины периода входного сигнала. Относительно небольшая потребляемая мощность позволяет получить в УМ класса В значение КПД до 70%. Режим класса В обычно применяется в двухтактных УМ. Основной недостаток УМ класса В - большой уровень НИ ().
Режим класса АВ занимает промежуточное значение между режимами класса А и В и применяется в двухтактных УМ. В режиме покоя через транзистор протекает небольшой ток покоя (рисунок 4.2), выводящий основную часть рабочей полуволны входного гармонического сигнала на участок ВАХ с относительно малой нелинейностью.
Угол отсечки в режиме класса АВ достигает (120…130), КПД и НИ - средние между значениями для режимов классов А и В.
В режиме класса С транзистор заперт смещением (рисунок 4.3), , поэтому УМ класса С более экономичны, чем УМ класса В.
Однако в режиме класса С велики НИ, поэтому класс С применяется, в основном, в генераторах и резонансных усилителях, где высшие гармонические составляющие отфильтровываются резонансным контуром в цепи нагрузки.
В мощных усилителях - преобразователях находит применение режим класса D или ключевой режим работы усилительных элементов. Данный режим, в сочетании с широтно-импульсной модуляцией, позволяет мощные экономичные УМ, в т.ч. и для систем звуковой трансляции.
Таким образом, активный элемент в УМ может работать как без отсечки тока (класс А), так и с отсечкой (классы АВ, В, С, D). Класс усиления задается положением рабочей точки в режиме покоя.
4.3 Однотактные УМ
В качестве однотактных бестрансформаторных УМ могут быть применены уже рассмотренные каскады с ОЭ (ОИ) и ОК (ОС), выполненные на мощных БТ или ПТ, причем эмиттерный (истоковый) повторитель эффективен при низкоомной (порядка единиц ом) нагрузке. Основной недостаток таких каскадов - в режиме согласования с нагрузкой КПД25%.
Однотактные трансформаторные УМ имеют КПД50% за счет оптимального согласования с нагрузкой с помощью трансформатора (рисунок 4.4).
Сопротивление нагрузки по переменному току равно:
,
где n - коэффициент трансформации, .
Данный каскад находит ограниченное применение в современной схемотехнике УМ из-за ряда существенных недостатков:
малого КПД;
больших частотных искажений за счет трансформатора;
больших НИ за счет тока подмагничивания трансформатора;
невозможности реализации в виде ИМС.
Трансформаторные УМ подробно описаны в классических учебниках по УУ, например, в[5,6].
4.4 Двухтактные УМ
Двухтактные УМ ввиду возможности использования режимов АВ, В, С и D характеризуются лучшими энергетическими показателями. На рисунке 4.5 приведена схема двухтактного УМ с трансформаторной связью.
При работе данного УМ в режиме класса В, цепь резистора отсутствует. Трансформатор осуществляет согласование входа УМ с источником сигнала, трансформатор согласует выходное сопротивление УМ с сопротивлением нагрузки. Трансформатор выполняет еще и функции фазоинвертора (см. на рисунке 4.5 фазировку его обмоток).
Усиление сигнала в рассматриваемом УМ происходит в два такта работы устройства. Первый такт сопровождается усилением положительной полуволны гармонического сигнала с помощью транзистора , второй - усилением отрицательной полуволны гармонического сигнала с помощью .
Графический и энергетический расчет двухтактного трансформаторного УМ двухтактного достаточно полно представлены в классических учебниках по усилительным устройствам, например, [5,6]. Энергетический расчет показывает, что КПД такого УМ реально достигает порядка 70%, что примерно в 1,5 раза больше чем у однотактных УМ.
При выборе типа для УМ следует учитывать то обстоятельство, что на коллекторе закрытого транзистора действует напряжение, равное примерно , что объясняется суммированием и напряжения на секции первичной обмотки .
Вследствие того, что каждый транзистор пропускает ток только для одной полуволны гармонического сигнала, режим класса В характеризуется лучшим использованием транзистора по току.
Поскольку токи в секциях обмоток трансформаторов протекают в разных направлениях, отсутствует подмагничивание их сердечников. Отметим так же, что в двухтактном УМ исключена (при симметрии плеч УМ) паразитная ОС по источнику питания и в выходном сигнале отсутствуют четные гармонические составляющие.
Как уже отмечалось выше, отсутствие тока покоя в УМ класса В приводит к появлению значительных НИ. Вследствие нелинейности входных ВАХ, выходной сигнал в двухтактном УМ класса В имеет переходные искажения типа "ступеньки" (рисунок 4.6).
Уменьшение НИ возможно путем перехода к режиму класса АВ (см. рисунки 4.2 и 4.6). Т.к. токи покоя в режиме класса АВ малы, то они практически не влияют на энергетические показатели УМ.
Поскольку трансформатор является весьма "неудобным" элементом при выполнении УМ в виде ИМС и вносит существенные искажения в выходной сигнал усилителя, УМ с трансформаторами находят ограниченное применение в современной схемотехнике УУ.
В современной электронике наиболее широко применяются бестрансформаторные двухтактные УМ. Такие УМ имеют хорошие массогабаритные показатели и просто реализуются в виде ИМС.
Возможно построение двухтактных бестрансформаторных УМ по структурной схеме, показанной на рисунке 4.7.
Здесь ФИ - фазоинверсный каскад предварительного усиления (драйвер), УМ - двухтактный каскад усиления мощности.
В качестве драйвера может использоваться каскад с разделенной нагрузкой (рисунок 4.8).
Можно показать, что при
, .
Несмотря на такие достоинства, как простота и малые частотные и нелинейные искажения, каскад с разделенной нагрузкой находит ограниченное применение из-за малого и разных , что приводит к несимметричности АЧХ выходов в областях ВЧ и НЧ.
Гораздо чаще применяются ФИ на основе дифференциального каскада (ДК) (рисунок 4.9).
ДК будут рассмотрены далее, пока же отметим, что через будет протекать удвоенный ток покоя транзисторов VT1 и VT2 и, следовательно, номинал резистора в схеме фазоинверсного каскада уменьшается вдвое по сравнению с расчетом каскада с ОЭ.
При рассмотрении, например, левой половины фазоинверсного каскада видно, что в цепи эмиттера транзистора VT1 (включенного с ОЭ) присутствует и параллельно ему входное сопротивление транзистора VT2 (включенного с ОБ), .
Обычно берут (или заменяют эквивалентом высокоомного сопротивления в виде источника стабильного тока, который будет рассмотрен в дальнейшем вместе с ДК), поэтому можно подставить вместо в выражение для глубины ПООСТ (см. подраздел 3.2) :
Следовательно, можно считать, что в фазоинверсном каскаде присутствует ПООСТ с глубиной, равной двум. Принимая во внимание, что относительно эмиттера VT2 транзистор VT1 включен по схеме с ОК, нетрудно показать, что при идентичности параметров транзисторов , т.е. коэффициенты передачи по напряжению плеч фазоинверсного каскада на основе ДК равны половине коэффициента передачи каскада с ОЭ.
Довольно широко применяется ФИ на комплиментарных транзисторах, вариант схемы которого представлен на рисунке 4.10.
Использование комплиментарной пары транзисторов VT1 и VT2, имеющих разную проводимость, но одинаковые параметры (например, КТ315-КТ361, КТ502-КТ503, КТ814-КТ815 и др.) позволяет инвертировать фазу входного сигнала на 180 на первом выходе.
Кроме рассмотренных выше каскадов, в качестве фазоинверсных также применяются каскады с ОЭ, включенные согласно структурной схемы, показанной на рисунке 4.11. Отметим, что ФИ, построенный по такой схеме, имеет разбаланс АЧХ и ФЧХ выходов.
В качестве выходного каскада УМ, подключаемого к выходам ФИ, может использоваться каскад, одна из разновидностей которого приведена на рисунке 4.12.
В данном каскаде возможно использование режимов классов В, АВ, С. К достоинствам каскада следует отнести возможность использования мощных транзисторов одного типа проводимости. При использовании двухполярного источника питания возможно непосредственное подключение нагрузки, что позволяет обойтись без разделительного конденсатора на выходе, который обычно имеет большую емкость и габариты и, следовательно, труднореализуем в микроисполнении.
В целом, в УМ, выполненных по структурной схеме, представленной на рисунке 4.7, не достижим высокий КПД вследствие необходимости применения в ФИ режима класса А.
Гораздо лучшими параметрами обладают двухтактные бестрансформаторные УМ, выполненные на комплиментарных транзисторах. Такие УМ принято называть бустерами. Различают бустеры напряжения и тока. Поскольку усиление напряжения обычно осуществляется предварительными каскадами многокаскадного усилителя, а нагрузка УМ, как правило, низкоомная, то наибольшее распространение получили выходные каскады в виде бустера тока.
На рисунке 4.13 приведена схема простейшего варианта бустера тока класса В на комплиментарных транзисторах и двухполярным питанием.
При подаче на вход бустера положительной полуволны входного гармонического сигнала открывается транзистор VT1 и через нагрузку потечет ток. При подаче на вход бустера отрицательной полуволны входного гармонического сигнала открывается транзистор VT2 и через нагрузку потечет ток в противоположном направлении. Таким образом, на будет формироваться выходной сигнал.
Включение транзисторов с ОК позволяет получить малое выходное сопротивление, что необходимо для согласования с низкоомной нагрузкой для передачи в нее максимальной выходной мощности. Большое входное сопротивление позволяет хорошо согласовать каскад с предварительным усилителем напряжения. За счет 100% ПООСН .
Благодаря использованию двухполярного источника питания возможна гальваническая связь каскада с нагрузкой, что делает возможным применение токовых бустеров в усилителях постоянного тока. Кроме того, это обстоятельство весьма благоприятно при реализации бустера в виде ИМС.
Существенным недостатком рассматриваемого бустера является большие НИ (), что и ограничивает его практическое использование. Свободным от этого недостатка является токовый бустер класса АВ, схема которого приведена на рисунке 4.14.
Начальные токи покоя баз транзисторов здесь задаются с помощью резисторов и , а также диодов и . При интегральном исполнении в качестве диодов используются транзисторы в диодном включении. Напомним, что падение напряжения на прямосмещенном диоде , а в кремниевых ИМС с помощью диодов осуществляется параметрическая термостабилизация (см. подраздел 2.6). Сопротивление вводится для лучшего согласования с предыдущим каскадом усилителя.
При положительной полуволне входного гармонического сигнала диод подзапирается и на базе будет "отслеживаться входной потенциал, что приведет к его отпиранию и формированию на сопротивлении нагрузки положительной полуволны выходного гармонического сигнала. При отрицательной полуволне входного гармонического сигнала работает и , и на нагрузке формируется отрицательная полуволна выходного гармонического сигнала.
Для увеличения выходной мощности могут быть использованы бустеры на составных транзисторах, включенных по схеме Дарлингтона (рисунок 4.15), у которой коэффициент передачи по току равен произведению коэффициентов передачи тока базы транзисторов и причем возможна однокристальная реализация данной структуры, например, составной транзистор КТ829.
Из полевых транзисторов в УМ более пригодны МОП- транзисторы с индуцированными каналами n- и p- типа, имеющими такой же характер смещения в цепи затвор-исток, как и у биполярных, но имеющих более линейную входную ВАХ, приводящую к меньшему уровню ВАХ. Схема УМ на ПТ указанного типа приведена на рисунке 4.16.
В данном каскаде введена положительная ОС по питанию путем включения резистора последовательно с . В точку a выходное напряжение подается через конденсатор и служит "вольтодобавкой", увеличивающей напряжение питания предоконечного каскада в тот полупериод, в который ток транзистора уменьшается. Это позволяет снять с него достаточную амплитуду напряжения, необходимую для управления оконечным истоковым повторителем, повышает выходную мощность и КПД усилителя. Аналогичная схема "вольтодобавки" применяется и в УМ на БТ.
Широкое применение находят УМ, у которых в качестве предварительных каскадов применены операционные усилители. На рисунках 4.17а,б приведены соответствующие схемы УМ режимов класса В и АВ.
Данные примеры иллюстрируют еще одно направление в разработке УМ - применение общей ООС, служащей, в частности, для снижения уровня НИ.
Более подробное описание схем УМ содержится в [1,9].
5. УСИЛИТЕЛИ ПОСТОЯННОГО ТОКА
5.1 Общие сведения
Усилителями постоянного тока (УПТ) называются устройства, предназначенные для усиления медленно изменяющихся сигналов вплоть до нулевой частоты. На рисунке 5.1 приведена АЧХ УПТ.
Для осуществления передачи сигналов частот, близких к нулю, в УПТ используется непосредственная (гальваническая) связь между каскадами. Однако такая связь приводит к необходимости решения специфических задач:
согласование потенциальных уровней в соседних каскадах;
уменьшения дрейфа (нестабильности) выходного уровня напряжения или тока.
5.2 Способы построения УПТ
Основная проблема, с которой сталкиваются разработчики УПТ, является дрейф нуля. Дрейфом нуля (нулевого уровня) называется самопроизвольное отклонение напряжения или тока на выходе УПТ от начального значения. Поскольку дрейф нуля наблюдается и при отсутствии сигнала на входе на входе УПТ, то его невозможно отличить от истинного сигнала.
К физическим причинам, вызывающим дрейф нуля в УПТ, относятся:
нестабильность источников питания;
временная нестабильность ("старение") параметров транзисторов и резисторов;
температурная нестабильность параметров транзисторов и резисторов;
низкочастотные шумы;
помехи и наводки.
Наибольшую нестабильность вносит температурный фактор. Положение усугубляется наличием гальванической связи между каскадами, хорошо передающей медленные изменения сигнала, что приводит к эффекту каскадирования температурных нестабильностей каскадов от входа к выходу.
Поскольку температурные изменения параметров усилительных элементов имеют закономерный характер (см. подразделы 2.2 и 2.10), то они могут быть в некоторой степени скомпенсированы теми же методами, что и в усилителях гармонических сигналов.
Абсолютным дрейфом нуля называется максимальное самопроизвольное отклонение выходного напряжения УПТ при замкнутом входе за определенный промежуток времени. Качество УПТ оценивают по напряжению дрейфа нуля, приведенного к входу усилителя:
.
Приведенный к входу дрейф нуля эквивалентен ложному входному сигналу, он ограничивает минимальный входной сигнал, т.е. определяет чувствительность УПТ.
С целью снижения дрейфа нуля в УПТ используются:
глубокие ООС;
термокомпенсирующие элементы;
преобразование постоянного тока в переменный, его усиление и последующее детектирование;
построение УПТ по балансной схеме.
УПТ прямого усиления, по сути, являются обычными многокаскадными усилителями с непосредственной связью. В качестве УПТ может использоваться усилитель, схема которого приведена на рисунке 3.4.
В этом усилителе резисторы , и , помимо создания местных и общих цепей ООС, обеспечивают необходимое напряжение смещения в своих каскадах. В многокаскадном УПТ можно обеспечить требуемый режим транзисторов по постоянному току путем последовательного повышения потенциалов эмиттеров от входа к выходу, что обусловлено непосредственной межкаскадной связью "коллектор-эмиттер", потенциалы коллекторов тоже возрастают от входа к выходу. Возможно обеспечение режима каскадов УПТ путем уменьшения от входа к выходу, однако в том и другом случае следствием будет уменьшение коэффициента усиления УПТ.
В многокаскадных УПТ прямого усиления может происходить частичная компенсация дрейфа нуля. Так, положительное приращение тока коллектора первого транзистора вызовет отрицательное приращение тока базы и, следовательно, тока коллектора второго транзистора. На практике полная компенсация дрейфа нуля не достижима даже для одной температурной точки, тем не менее, в УПТ с четным числом каскадов наблюдается его снижение.
В связи с тем, что данный УПТ имеет однополярное питание, на его входе и выходе присутствует некоторый постоянный потенциал, что не позволяет подключать низкоомные источник сигнала и нагрузку непосредственно между ними и общим проводом. В этом случае используется мостовая схема с включением и в диагонали входного и выходного мостов (рисунок 5.2).
Для расчета частотных и временных характеристик УПТ с прямым усилением можно использовать материалы подразделов 2.5 и 3.3, а также подраздела 2.9 в случае построения УПТ на ПТ.
Для целей согласования потенциалов используют транзисторы различной проводимости, для лучшей температурной компенсации применяют диоды и стабилитроны. Применение двухполярного источника питания позволяет непосредственно подключать источник сигнала и нагрузку к УПТ, т.к. в этом случае обеспечены нулевые потенциалы на его входе и выходе. Указанные меры реализованы в схеме УПТ, приведенной на рисунке 5.3.
УПТ с прямым усилением на основе непосредственной связи между каскадами и глубокими ООС позволяют получить при порядка десятков милливольт. В таких УПТ возникает проблема устранения паразитной ОС по цепям питания, ибо не представляется возможным применение обычных фильтров.
УПТ прямого усиления имеют большой температурный дрейф (составляет единицы милливольт на градус). Кроме температурного дрейфа в таких УПТ существенное влияние оказывают временной дрейф, нестабильность источников питания и низкочастотные шумы.
Отмеченные недостатки в значительной мере преодолеваются в УПТ с преобразованием (модуляцией) сигнала. На рисунке 5.4 приведена структурная схема УПТ с преобразованием постоянного тока в переменный и даны эпюры напряжений, поясняющие принцип его работы.
Входной сигнал постоянного напряжения преобразуется в пропорциональный ему сигнал переменного напряжения с помощью модулятора М, потом усиливается обычным усилителем гармонических сигналов У, а затем демодулятором ДМ преобразуется в сигнал постоянного напряжения . Поскольку в усилителях переменного тока дрейф нуля не передается от каскада к каскаду (из-за наличия разделительных емкостей между каскадами), то в данном УПТ реализуется минимальный дрейф нуля.
В качестве модулятора можно использовать управляемые ключевые схемы, выполненные обычно на ПТ. Простейшим демодулятором является обычный двухполупериодный выпрямитель с фильтром на выходе. Следует заметить, что существует большое многообразие схемных решений как модуляторов, так и демодуляторов, рассмотрение которых не позволяет ограниченный объем данного пособия.
В качестве недостатков УПТ с преобразованием сигнала следует отнести проблему реализации модуляторов малого уровня входного сигнала и повышенную сложность схемы.
Достичь существенного улучшения электрических, эксплуатационных и массогабаритных показателей УПТ можно за счет их построения на основе балансных схем.
5.3 Дифференциальные усилители
В настоящее время наибольшее распространение получили УПТ на основе дифференциальных (параллельно-балансных или разностных) каскадов. Такие усилители просто реализуются в виде монолитных ИМС и широко выпускаются промышленностью (КТ118УД, КР198УТ1 и др.). На рисунке 5.5 приведена принципиальная схема простейшего варианта дифференциального усилителя (ДУ) на БТ.
Любой ДУ выполняется по принципу сбалансированного моста, два плеча которого образованы резисторами и , а два других - транзисторами и . Сопротивление нагрузки включено в диагональ моста. Резисторы цепи ПООСТ и обычно невелики или вообще отсутствуют, поэтому можно считать, что резистор подключен к эмиттерам транзисторов.
Двухполярное питание позволяет обойтись на входах (выходах) ДУ без мостовых схем за счет снижения потенциалов баз (коллекторов) до потенциала общей шины.
Рассмотрим работу ДУ для основного рабочего режима - дифференциального. За счет действия транзистор приоткрывается, и его ток эмиттера получает приращение , а за счет действия транзистор призакрывается, и ток его эмиттера получает отрицательное приращение . Следовательно, результирующее приращение тока в цепи резистора при идеально симметричных плечах близко к нулю и, следовательно, ООС для дифференциального сигнала отсутствует.
При анализе ДУ выделяют два плеча, представляющие собой каскады с ОЭ, в общую цепь эмиттеров транзисторов которых включен общий резистор , которым и задается их общий ток. В связи с этим представляется возможным при расчете частотных и временных характеристик ДУ пользоваться соотношениями подразделов 2.5 и 2.12 с учетом замечаний, приведенных в подразделе 4.4. Например, коэффициент усиления дифференциального сигнала будет равен в случае симметрии плеч (см. подраздел 4.4) , т.е. дифференциальный коэффициент усиления равен коэффициенту усиления каскада с ОЭ.
ДУ отличает малый дрейф нуля, большой коэффициент усиления дифференциального (противофазного) сигнала и большой коэффициент подавления синфазных помех, т.е. малый коэффициент передачи синфазного сигнала .
Для обеспечения качественного выполнения этих функций необходимо выполнить два основных требования. Первое из них состоит в обеспечении симметрии обоих плеч ДУ. Приблизиться к выполнению этого требования позволила микроэлектроника, поскольку только в монолитной ИМС близко расположенные элементы действительно имеют почти одинаковые параметры с одинаковой реакцией на воздействие температуры, старения и т.п.
Второе требование состоит в обеспечении глубокой ООС для синфазного сигнала. В качестве синфазного сигнала для ДУ выступают помехи, наводки, поступающие на входы в фазе. Поскольку создает глубокую ПООСТ для обоих плеч ДУ, то для синфазного сигнала будет наблюдаться значительное уменьшение коэффициентов передачи каскадов с ОЭ, образующих эти плечи.
Коэффициент усиления каждого плеча для синфазного сигнала можно представить как каскада с ОЭ при глубокой ООС. Согласно подраздела 3.2 имеем:
,
.
Теперь можно записать для всего ДУ:
,
где .
Для оценки подавления синфазного сигнала вводят коэффициент ослабления синфазного сигнала (КОСС), равный отношению модулей коэффициентов передач дифференциального и синфазного сигналов.
Из сказанного следует, что увеличение КОСС возможно путем уменьшения разброса номиналов резисторов в цепях коллекторов (в монолитных ИМС - не более 3%) и путем увеличения . Однако увеличение требует увеличения напряжения источника питания (что неизбежно приведет к увеличению рассеиваемой тепловой мощности в ДУ), и не всегда возможно из-за технологических трудностей реализации резисторов больших номиналов в монолитных ИМС.
Решить эту проблему позволяет использование электронного эквивалента резистора большого номинала, которым является источник стабильного тока (ИСТ), варианты схем которого приведены на рисунке 5.6.
ИСТ подключается вместо (см. рисунок 5.5), а заданный ток и термостабильность обеспечивают элементы , , и (рисунок 5.6а), и (рисунок 5.6б). Для реальных условий ИСТ представляет собой эквивалент сопротивления для изменяющегося сигнала номиналом до единиц мегом, а в режиме покоя - порядка единиц килоом, что делает ДУ экономичным по питанию.
Использование ИСТ позволяет реализовать ДУ в виде экономичной ИМС, с КОСС порядка 100дБ.
При использовании ПТ характер построения ДУ не меняется, следует только учитывать особенности питания и термостабилизации ПТ.
5.4 Схемы включения ДУ
Можно выделить четыре схемы включения ДУ: симметричный вход и выход, несимметричный вход и симметричный выход, симметричный вход и несимметричный выход, несимметричный вход и выход.
Схема включения ДУ симметричный вход и выход приведена на рисунке 5.7 и в особых комментариях не нуждается, такая схема включения применяется при каскадировании ДУ.
Схема включения ДУ несимметричный вход и симметричный выход рассматривалась ранее (см. рисунок 4.9).
Схема включения ДУ симметричный вход и несимметричный выход приведена на рисунке 5.8.
Такая схема включения ДУ применяется в случае необходимости перехода от симметричного источника сигнала (либо симметричного тракта передачи) к несимметричной нагрузке (несимметричному тракту передачи). Нетрудно показать, что дифференциальный коэффициент усиления при таком включении будет равен половине при симметричной нагрузке. Вместо резисторов в ДУ часто используют транзисторы, выполняющие функции динамических нагрузок. В рассматриваемом варианте включения ДУ целесообразно использовать в качестве динамической нагрузки так называемое токовое зеркало, образованное транзисторами и (рисунок 5.9).
...Подобные документы
Динамический режим работы усилителя. Расчет аналоговых электронных устройств. Импульсные и широкополосные усилители. Схемы на биполярных и полевых транзисторах. Правила построения моделей электронных схем. Настройка аналоговых радиотехнических устройств.
презентация [1,6 M], добавлен 12.11.2014Параметры и свойства устройств обработки сигналов, использующих операционного усилителя в качестве базового элемента. Изучение основных схем включения ОУ и сопоставление их характеристик. Схемотехника аналоговых и аналого-цифровых электронных устройств.
реферат [201,0 K], добавлен 21.08.2015Принципы построения мультидифференциальных операционных усилителей: структура и свойства. Собственная компенсация влияния частотных свойств, звенья активных фильтров. Мультидифференциальные операционные усилители в аналоговых интерфейсах и портах ввода.
магистерская работа [1,6 M], добавлен 08.03.2011Расчёт и построение частотных характеристик трёхкаскадного усилителя переменного тока. Схема усилительного каскада с RC-связями: составление схем замещения, определение передаточных функций. Сравнительный анализ схем усилителей аналогичного назначения.
курсовая работа [727,0 K], добавлен 28.09.2012Понятие и характеристика базовых аналоговых вычислительных устройств. Разработка в среде Multisim схемы сумматора, интегратора, дифференциатора, а также схемы для моделирования абсорбционных процессов в конденсаторах. Построение графиков их испытаний.
реферат [178,7 K], добавлен 11.01.2012Классификация фильтров по виду их амплитудно-частотных характеристик. Разработка принципиальных схем функциональных узлов. Расчет электромагнитного фильтра для разъединения электронных пучков. Определение активного сопротивления фазы выпрямителя и диода.
курсовая работа [1,3 M], добавлен 11.12.2012Определение количественных и качественных характеристик надежности устройств железнодорожной автоматики, телемеханики и связи. Анализ вероятности безотказной работы устройств, частоты и интенсивности отказов. Расчет надежности электронных устройств.
курсовая работа [625,0 K], добавлен 16.02.2013Понятие электронного усилителя, принцип работы. Типы электронных усилителей, их характеристики. Типы обратных связей в усилителях и результаты их воздействия на работу электронных схем. Анализ электронных усилителей на основе биполярных транзисторов.
курсовая работа [540,7 K], добавлен 03.07.2011Структура устройств обработки радиосигналов, внутренняя структура и принцип работы, алгоритмами обработки сигнала. Основание формирование сигнала на выходе линейного устройства. Модели линейных устройств. Расчет операторного коэффициента передачи цепи.
реферат [98,4 K], добавлен 22.08.2015Изучение и освоение методов разработки и оформления принципиальных электрических либо структурно-логических схем устройств. Расчёт элементов широкополосного усилителя. Проектирование демультиплексора кодов 1 на 64, коммутатора параллельных кодов.
курсовая работа [230,8 K], добавлен 04.02.2015Алгоритм проведения инженерных расчётов аналоговых электронных устройств. Общие сведения об усилителях и транзисторах. Схема электрическая принципиальная усилительного каскада с ОК. Проведение расчета основных параметров схемы и выбор элементной базы.
курсовая работа [179,6 K], добавлен 25.03.2015Понятие и функциональные особенности аналоговых измерительных устройств, принцип их работы, структура и основные элементы. Классификация электрических устройств по различным признакам, их типы и отличительные признаки, сферы практического применения.
презентация [745,2 K], добавлен 22.04.2013Расчет элементов схемы несимметричного мультивибратора на полевых транзисторах с управляющим p-n переходом и каналом p-типа. Исследование типичных форм прямоугольных колебаний. Построение временных диаграмм мультивибратора на биполярных транзисторах.
контрольная работа [1,0 M], добавлен 21.09.2016Построение и анализ работы схем элементов интегральных микросхем средствами Electronics WorkBenck. Обработка информации цифровых устройств с помощью двоичного кода. Уровень сигнала на выходах управляющих транзисторов, перевод их в закрытое состояние.
лабораторная работа [86,6 K], добавлен 12.01.2010Характеристика свойств и принципов действия усилителей низкой частоты на биполярных транзисторах. Основные методики проектирования и расчета генераторов колебаний прямоугольной формы с управляемой частотой следования импульсов. Эскиз источника питания.
курсовая работа [56,0 K], добавлен 20.12.2008Шумовые характеристики СВЧ-устройств. Малошумящий усилитель, применяемый для уменьшения шума и повышения чувствительности конвертора. Основные требования к малошумящему усилителю. Работа усилителей, собранных на арсенид-галиевых полевых транзисторах.
реферат [25,0 K], добавлен 01.04.2011Классификация ЛЭ двухступенчатой логики на биполярных транзисторах. Транзисторно-транзисторные ИМС (TTL). Базовая схема элемента T-TTL, его модификации. Характеристика ЛЭ на полевых МДП-транзисторах. Сравнение ЛЭ на биполярных и МДП-транзисторах.
реферат [1,8 M], добавлен 12.06.2009Изучение различных типов устройств СВЧ, используемых в схемах распределительных трактов антенных решеток. Практические расчеты элементов автоматизированного проектирования устройств СВЧ на основе метода декомпозиции. Конструирование баз и устройств СВЧ.
контрольная работа [120,9 K], добавлен 17.10.2011Устройства обработки аналоговых сигналов: аналого-цифровые; буферы данных; постоянное и оперативное запоминающее устройство. Основные типы микропроцессорных устройств: секционные, однокристальные с фиксированной разрядностью, однокристальные микроЭВМ.
контрольная работа [523,2 K], добавлен 23.10.2012Назначение радиоприемников для приема и воспроизведения аналоговых и цифровых сигналов. Классификация приемных устройств по принципу действия. Построение приемников УКВ-диапазона. Схема супергетеродинного приемника. Расчет смесителя УКВ-радиоприемника.
дипломная работа [2,6 M], добавлен 05.06.2012