Основные направления исследований в физиологии

Сущность и проявления раздражимости и возбудимости. Механизмы и структуры пассивного транспорта. Гомосинаптическая и гетеросинаптическая модуляция. Участие мозжечка в регуляции вегетативных функций. Кодирование и анализ соматосенсорных сигналов.

Рубрика Биология и естествознание
Вид шпаргалка
Язык русский
Дата добавления 15.09.2017
Размер файла 2,7 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

В настоящее время хорошо известно, как протекает сон человека. Переход человека от бодрствования ко сну проходит несколько стадий (рис. 3.3). Эти стадии надежно определяются по ЭЭГ, а также психологическому состоянию человека.

Стадия I (А-стадия) дремота (на ЭЭГ - медленные волны и отдельные вспышки альфа-ритма).

Весь ночной сон человека состоит из 4-5 циклов, каждый из которых начинается с периода «медленного» сна и завершается периодом «быстрого» сна (рис. 3.4). Длительность такого цикла относительно постоянна и у здорового человека составляет 90-100 мин. Структура ночного сна взрослого здорового человека также относительно постоянна: на «медленный» (дельта-сон) приходится 20-30%, на «быстрый» - 15-25%.

Период сна здорового взрослого человека принято делить на несколько стадий. Соотношение фаз сна в онтогенезе человека закономерно меняется (рис. 3.5). У новорожденных парадоксальная фаза сна занимает около 50% времени суток. По мере взросления длительность парадоксальной фазы сна снижается и составляет у взрослого человека 20-23%.

При избирательной депривации дельта-сна в восстановительную ночь увеличивается длительность III и IV стадий сна. Если человека полностью лишать сна, то в первую очередь увеличивается длительность дельта-сна, он быстрее наступает, и лишь на вторую ночь происходит компенсаторное увеличение длительности «быстрого» сна.

Можно думать, что человек, прежде всего, нуждается в медленноволновом сне. Установлено, что удлинение IV стадии сна улучшает запоминание вербального материала. При увеличении нагрузки на зрительный анализатор длительность дельта-сна увеличивается. Подобные данные получены и при исследовании «быстрого» сна. Результаты экспериментов по избирательной депривации «быстрого» сна свидетельствуют о высокой потребности человека в нем. Лишение человека «быстрого» сна приводит к значительным нарушениям психики: повышаются раздражительность и эмоциональная расторможенность, появляются галлюцинации, а при углублении этого состояния могут появиться параноидальные (навязчивые) идеи. Поскольку период «быстрого» сна обычно связывают со сновидениями, то приведенные выше результаты в некоторой степени согласуются с психоаналитической концепцией о роли сновидений в регуляции психической жизни. Есть сведения, что чем более интенсивны движения глаз во время «быстрого» сна, тем лучше воспроизводятся сновидения. Этому противоверечат некоторые другие данные, например у слепорожденных движения глаз в «быстром» сне также возможны, но зрительные сновидения отсутствуют.

ПСИХИЧЕСКАЯ АКТИВНОСТЬ ВО СНЕ

В конце прошлого столетия З. Фрейд высказал мнение, что сновидения выполняют катарсическую (цензурную) функцию, являясь своеобразными клапанами для «не отрегулированных в бодрствовании мотивов». Согласно психоаналитической концепции эти мотивы не могут быть «допущены» в бодрствующее сознание, поскольку «находятся в непримиримой конфронтации с социальными установками (моралью общества) поведения индивида». В сновидении эти мотивы, согласно концепции З. Фрейда, в трансформированном виде достигают сознания вследствие того, что «цензура» сознания ослаблена. Это предположение очень трудно проверить экспериментально. Вместе с тем концепция не получила полного подтверждения. Например, не обнаружено специфики влияния каждого из периодов сна («медленного» и «быстрого») на отдельные психические функции, которые можно тестировать по батарее психологических тестов.

Врачи отмечают, что наиболее заметно влияет на психику общая длительность сна. Как показали специальные исследования влияния депривации «быстрого» сна, это в значительной степени определяется психическим статусом личности субъекта, а также существенно зависит от характера предъявляемых психологических тестов.

Эти данные в общем не противоречат концепции З. Фрейда, который считал, что сновидения служат для разрядки определенных мотивов (например, агрессивности или сексуальности). Данные последнего времени говорят в пользу того, что сновидения могут быть и в «медленном» сне. Отсюда делается вывод, что потребность в сновидениях существует независимо от потребности в «быстром» сне как таковом и может быть даже первичной по отношению к определенным стадиям сна.

В последние годы получены данные об изменении структуры сна при обучении или при адаптации к новым условиям. Исследования в этом направлении приводят к заключению, что «быстрый» сон и сновидения необходимы для адаптации к информационно значимой ситуации и для усвоения только такой информации, к восприятию которой индивид не готов. В этой концепции не определено главное - для чего нужен «быстрый» сон? На этот вопрос есть несколько ответов. Например, можно предположить, что стадия «быстрого» сна в сложных ситуациях нужна для нахождения новых путей взаимодействия с этой ситуацией. Возможно, именно во время «быстрого» сна происходит творческое решение поставленной задачи. Другой ответ может состоять в предположении, что пути решения в новой ситуации находятся во время бодрствования, а закрепление (консолидация) путей решения творческой задачи происходит в «быстрой» фазе сна. Другими словами, «быстрая» фаза сна служит для улучшения мнестических процессов. Возможно, что «быстрый» сон только способствует консолидации за счет устранения препятствий (например, в этой стадии сна происходит блокирование входящей информации).

В настоящее время накоплены многочисленные сведения о психической активности человека во время различных стадий сна. При засыпании изменение психики происходит в следующей последовательности. Вначале наступает утрата волевого контроля за своими мыслями; затем присоединяется неуверенность в окружающей обстановке, элементы дереализации (нарушение контакта с реальностью). Эти изменения психики обычно объединяют под названием «регрессивный тип мышления». Под этим понимают мышление со следующими характеристиками: наличие единичных изолированных впечатлений или изолированных образов; наличие неполных (отрывочных) сцен; неадекватные, иногда фантастические представления; диссоциация зрительных образов и мыслей (зрительные образы не совпадают с направлением мыслей). Вместе с тем человек не утрачивает полностью контакта с внешним миром. В период засыпания психическая активность весьма многообразна. Часто возникают так называемые гипнагогические галлюцинации. Галлюцинации этого типа похожи на серию слайдов или картин. В отличие от них сновидения скорее похожи на фильмы. Отмечается, что гипнагогические галлюцинации возникают только при исчезновении из ЭЭГ доминирующего ритма бодрствования.

Все исследователи согласны с тем, что психическая активность в стадии «сонных веретен» сходна с «фрагментарным мышлением», вспоминанием мыслей, предшествующих засыпанию. Существует мнение, что в «медленный» сон эпизодически внедряются компоненты «быстрого» сна и пробуждения, случайное совпадение с ними приводит к сновидческим отчетам (сноговорение). Эпизоды сноговорения имеют место как в «медленном», так и «быстром» сне, хотя чаще наблюдаются в «медленном». С фазами «медленного» сна коррелируют такие сложные формы невербального поведения, как сомнамбулизм. Интересно, что отчет о сновидениях при пробуждении из «быстрого» сна меньше - 100% (обычно 70-95%). Считают, что частота отчетов зависит от нескольких факторов: эмоционального состояния субъекта перед сном, особенностей личности, что напрямую связано со степенью психологической защиты, и, по-видимому, от адаптивных возможностей самих сновидений (т.е. способности сновидения справиться с предъявляемой нагрузкой).

Таким образом, число отчетов о сновидениях может быть обусловлено двумя противоположно действующими факторами: 1) малой потребностью в сновидениях у лиц с высокой психологической защитой, обусловленной активностью защиты по типу перцептуального отрицания или интеллектуализации; 2) недостаточной адаптивной способностью самих сновидений при наличии выраженной потребности в них у высокосенситивных личностей в условиях внутрипсихического конфликта. Большинство сновидений базируются на слуховых, зрительных, реже обонятельных восприятиях и речи. Отсюда делают вывод, что они больше связаны с психосоциальной жизнью, чем непосредственно с сенсорным притоком. Сложность анализа сновидений обусловлена также тем, что в них используется язык образного мышления, не поддающийся полному и адекватному перекодированию на язык человеческого общения и, следовательно, вербального мышления.

Какова психологическая значимость сновидений? Одна из гипотез состоит в предположении, что информация, воспринятая во время дневного бодрствования, может активировать неприемлемые мотивы и неразрешимые конфликты, т.е. выполнять функцию психологической защиты. Косвенным доказательством в пользу этой гипотезы могут служить данные о том, что при депривации сна резко нарушается адаптация к стрессирующим воздействиям. Согласно другой гипотезе во сне используется невербально-образное мышление для решения проблем, которые не удается решить во время бодрствования. Возможно, во время сновидений происходит поиск путей взаимного примирения конфликтных мотивов и установок. С этой позиции сновидения представляют собой самостоятельный механизм психологической защиты. При этом конфликт устраняется не на основе его логического разрешения, а при помощи образов. Благодаря этому вытесняется невротическая и непродуктивная тревога. Таким образом, утверждается, что сновидения - это возврат к образному типу мышления. Более того, во время «быстрой» фазы сна мозг переходит в режим работы, похожий на бодрствование, но при этом происходит блокирование поступления внешней информации, т.е. мозг выполняет функцию психологической защиты.

28. Вегетативная нервная система и её функции

Вегетативная нервная система, часть нервной системы, регулирующая деятельность органов кровообращения, дыхания, пищеварения, выделения, размножения, а также обмен веществ и тем самым функциональное состояние всех тканей организма позвоночных животных и человека.

Сердце, легкие, пищеварительный тракт и другие внутренние органы человека иннервированы особым комплексом периферических нервов, в совокупности называемых автономной, или вегетативной, нервной системой. Система эта в свою очередь состоит из двух частей: симпатической и парасимпатической.

Термин Вегетативная нервная система введён французским биологом М. Биша (1800), разделившим нервную систему на анимальную (соматическую), то есть регулирующую функции, свойственные только животным, от которой зависят возникновение ощущений и движения тела, и вегетативную, регулирующую основные жизненные процессы - питание, дыхание, размножение, рост (свойственные не только животным, но и растениям).

Функции, регулируемые вегетативной нервной системой не могут быть произвольно вызваны или прекращены, поэтому английский физиолог Дж. Ленгли назвал её автономной. Однако "автономия" Вегетативная нервная система от высших отделов головного мозга весьма относительна, так как импульсы, поступающие от коры больших полушарий головного мозга к центрам вегетативной нервной системы могут изменять работу внутренних органов.

Каждая сложная реакция организма, любой акт поведения, как произвольный, так и непроизвольный, включает в себя и восприятие раздражений, и ощущения, и движения тела, и изменения функции органов, иннервируемых вегетативной нервной системой.

1. Основные физиологические свойства вегетативной нервной системы

Центры вегетативной нервной системы расположены в мозговом стволе и спинном мозге. 1. В среднем мозге находятся мезэнцефальные центры парасимпатического отдела вегетативной нервной системы; вегетативные волокна от них идут в составе глазодвигательного нерва. 2. В продолговатом мозге расположены бульбарные центры парасимпатического отдела нервной системы; эфферентные волокна от них проходят в составе лицевого, языкоглоточного и блуждающего нервов. 3. В грудных и поясничных сегментах спинного мозга (от I грудного до II -- IV поясничного) находятся тораколюмбальные центры симпатического отдела вегетативной нервной системы: вегетативные волокна от них. выходят через передние корешки спинномозговых сегментов вместе с отростками моторных нейронов. 4. В крестцовых сегментах спинного мозга находятся сакральные центры парасимпатического отдела вегетативной нервной системы, волокна от них идут в составе тазовых нервов.

Таким образом, центры вегетативной нервной системы расположены в четырех отделах ЦНС. Ядра, находящиеся в мезэнцефальном, бульбарном и сакральном отделах, образуют парасимпатическую часть вегетативной нервной системы, а находящиеся в тораколюмбальном отделе -- ее симпатическую часть.

Все уровни вегетативной нервной системы подчинены высшим вегетативным центрам, расположенным в промежуточном мозге -- в гипоталамусе и полосатом теле. Эти центры координируют функции многих органов и систем организма.

Симпатические нервы иннервируют фактически все органы и ткани организма; напротив, парасимпатические же нервы не иннервируют скелетную мускулатуру, ЦНС, большую часть кровеносных сосудов и матку.

Ко многим органам парасимпатические волокна проходят в составе блуждающих нервов, которые иннервируют бронхи, сердце, пищевод, желудок, печень, тонкий кишечник, поджелудочную железу, надпочечники, почки, селезенку, часть толстого отдела кишечника.

Верхние сегменты симпатического отдела вегетативной нервной системы посылают свои волокна через верхний шейный симпатический узел к органам головы; следующие сегменты посылают их через нижележащие симпатические узлы к органам грудной полости и верхним конечностям; далее следует ряд грудных сегментов, посылающих волокна через солнечное сплетение и верхний брыжеечный узел к органам брюшной полости, и, наконец, от поясничных сегментов волокна направляются через нижний брыжеечный узел в основном к органам малого таза и нижним конечностям.

ОСНОВНЫЕ ФУНКЦИИ

На основании анатомо-функциональных данных нервную систему принято делить на соматическую, или анимальную, ответственную за связь организма с внешней средой, и вегетативную, или растительную, регулирующую физиологические процессы внутренней среды организма, обеспечивая ее постоянство и адекватные реакции на воздействие внешней среды. Вегетативная нервная система ведает общими для животных и растительных организмов энергетическими, трофическими, адаптационными и защитными функциями. В аспекте эволюционной вегетологии она является сложной биосистемой, обеспечивающей условия для поддержания существования и развития организма в качестве самостоятельного индивида и приспособления его к окружающей среде.

Вегетативная нервная система функционирует “при непременном участии экзогенных факторов, совершенно естественно включающихся в ее функциональную структуру” (Г. И. Маркелов). Она иннервирует не только внутренние органы, но и органы чувств и мышечную систему. Исследования Л. А. Орбели и его школы, учение об адаптационно-трофической роли симпатической нервной системы показали, что вегетативная и соматическая нервная система находятся в постоянном взаимодействии. В организме они настолько тесно переплетаются между собой, что разделить их порой бывает невозможно. Это видно на примере зрачковой реакции на свет. Восприятие и передача светового раздражения осуществляются соматическим (зрительным) нервом, а сужение зрачка -- за счет вегетативных, парасимпатических волокон гла-зодвигательного нерва. При посредстве оптико-вегетативной системы свет оказывает через глаз свое прямое действие на вегетативные центры гипоталамуса и гипофиза (т. е. можно говорить не только о зрительной, но и фотовегетативной функции глаза).

Как было отмечено выше, анатомическим отличием строения вегетативной нервной системы является то, что нервные волокна не идут от спинного мозга или соответствующего ядра черепного нерва непосредственно к рабочему органу, как соматические, а прерываются в узлах симпатического ствола и других узлах вегетативной нервной системы. Благодаря тому, что преганглионарные волокна определенного сегмента сильно ветвятся и оканчиваются на нескольких узлах, создается диффузность реакции при раздражении одного или нескольких преганглионарных волокон.

Рефлекторные дуги симпатического отдела вегетативной нервной системы могут замыкаться как в спинном мозге, так и в указанных узлах ( 47).

Важным отличием вегетативной нервной системы от соматической является строение волокон. Вегетативные нервные волокна относятся к волокнам типа В и С, они тоньше соматических, покрыты тонкой миелиновой оболочкой или вовсе не имеют ее (без-миелиновые или безмякотные волокна). Проведение импульса по таким волокнам происходит значительно медленнее, чем по соматическим: в среднем 0,4--0,5 м/с по симпатическим и 10,0-- 20,0 м/с -- по парасимпатическим. Несколько волокон может быть окружено одной неврилеммой (шванновской оболочкой), поэтому возбуждение по ним может передаваться по кабельному типу, т. е. волна возбуждения, пробегающая по одному волокну, может передаваться на волокна, находящиеся в данный момент в покое.

В результате этого к конечному пункту назначения нервного импульса приходит диффузное возбуждение по многим нервным волокнам. Допускается и прямая передача импульса через непосредственный контакт немиелинизированных волокон.

Основную биологическую функцию вегетативной нервной системы -- трофоэнергетическую разделяют на гистотропную, трофическую -- для поддержания определенной структуры органов и тканей и эрготропную -- для развертывания их оптимальной деятельности.

Если трофотропная функция направлена на поддержание динамического постоянства внутренней среды организма (его физико-химических, биохимических, ферментативных, гуморальных и других констант), то эрготропная--на вегетативно-метаболическое обеспечение различных форм адаптивного целенаправленного поведения (умственной и физической деятельности, реализации биологических мотиваций -- пищевой, половой, мотиваций страха и агрессии, адаптации к меняющимся условиям внешней среды).

Вегетативная нервная система реализует свои функции в основном следующими путями: 1) регионарным изменением сосудистого тонуса; 2) адаптационно-трофическим действием; 3) управлением функциями внутренних органов.

Как известно, на основании морфологических, а также функциональных и фармакологических особенностей вегетативную нервную систему делят на симпатическую преимущественно мобилизующуюся при реализации эрготропной функции, и парасимпатическую, более направленную на поддержание гомеостатического равновесия -- трофотропной функции.

Эти два отдела вегетативной нервной системы, функционируя большей частью антагонистически, обеспечивают, как правило, двойную иннервацию тела.

Парасимпатический отдел вегетативной нервной системы является более древним. Он регулирует деятельность органов, ответственных за стандартные свойства внутренней среды. Симпатический отдел развивается позднее. Он изменяет стандартные условия внутренней среды и органов применительно к выполняемым ими функциям. Это приспособительное значение симпатической иннервации, изменение ею функциональной способности органов было установлено И. П. Павловым. Симпатическая нервная система тормозит анаболические процессы и активизирует катаболические, а парасимпатическая, наоборот, стимулирует анаболические и тормозит катаболические процессы.

Симпатический отдел вегетативной нервной системы широко представлен во всех органах. Поэтому процессы в различных органах и системах организма находят отражение и в симпатической нервной системе. Ее функция зависит и от центральной нервной системы, эндокринной системы, процессов, протекающих на периферии и в висцеральной сфере, а поэтому ее тонус неустойчив, подвижен, требует постоянных приспособительно-компенсаторных реакций.

Парасимпатический отдел более автономен и не находится в такой тесной зависимости от центральной нервной и эндокринной систем, как симпатический. Следует упомянуть о связанном с общебиологическим экзогенным ритмом функциональном преобладании в определенное время того или иного отдела вегетативной нервной системы, днем, например,-- симпатического, ночью -- парасимпатического. Вообще для функционирования вегетативной нервной системы характерны периодичность, что связывают, в частности, с сезонными изменениями питания, количеством поступающих в организм витаминов, а также световых раздражении (ввиду участия оптико-вегетативной, или фотоэнергетической, системы в периодичности большинства протекающих в организме процессов).

Изменение функций органов, иннервируемых вегетативной нервной системой, можно получить, раздражая нервные волокна этой системы, а также при действии определенных химических веществ. Одни из них (холин, ацетилхолин, физостигмин) воспроизводят парасимпатические эффекты, другие (норадреналин, мезатон, адреналин, эфедрин) -- симпатические. Вещества первой группы называются парасимпатомитетиками, а вещества второй группы -- симпатомиметиками. Ацетилхолин является медиатором, выделяющимся во всех промежуточных ганглиях вегетативной нервной системы и в постганглионарных парасимпатических волокнах. В постганглионарных симпатических волокнах выделяется норадреналин, оказывающий воздействие на альфа-адренорецепторы, и адреналин, оказывающий воздействие на бета-адренорецепторы. В связи с этим парасимпатическую вегетативную нервную систему называют еще холинергической, а симпатическую -- адренергической. Разные вещества оказывают влияние на различные отделы вегетативной нервной системы: никотин и тетраэти-ламмоний блокируют связь между предузловыми волокнами и узлами, эрготамин парализует постганглионарные симпатические волокна, а атропин и скополамин -- постганглионарные парасимпатические нервные волокна.

В осуществлении специфических функций вегетативной нервной системы большое значение имеют ее синапсы.

Функциональная специфика внутренних органов определяется получающим нервный импульс органом, т. е. химической специфи' кой той или иной ткани, которая реализует синаптическое возбуждение, а не специфическими особенностями тех или иных вегетативных волокон. Так, если перерезать парасимпатические волокна барабанной струны и к дистальному концу подшить диафрагмаль-ный нерв, то после регенерации он будет функционировать, как барабанная струна.

К вегетативной функции относится, в частности, акт мочеиспускания. Спинальный центр симпатической иннервации мочевого пузыря находится в боковых рогах La, Ls--1.4 сегментах спинного мозга, а парасимпатической 82--84. Симпатические волокна, идущие к мочевому пузырю через нижнее подчревное сплетение и пузырные нервы, вызывают сокращение внутреннего сфинктера и расслабление m. detrusor urinae (вытеснителя мочи). Повышение тонуса симпатической нервной системы приводит к задержке мочи. Парасимпатические волокна идут к мочевому пузырю через тазовый нерв. Они расслабляют сфинктер и сокращают m. detrusor urinae. Повышение тонуса парасимпатической системы приводит к недержанию мочи. В акте мочеиспускания принимают участие мышцы передней брюшной стенки и диафрагмы. Надсегмен-тарный контроль мочеиспускания осуществляется сложной системой, представленной в различных отделах ствола мозга, базаль-ных узлах, лимбической системе и коре. Корковый центр мочеиспускания, обеспечивающий произвольный акт мочеиспускания, находится в парацентральной дольке. Эфферентные волокна к специальным центрам мочеиспускания проходят во внутренних отделах пирамидных путей. Афферентация пузыря обеспечивается спинно-таламическими путями и задними столбами.

Вегетативная система тесно связана с эндокринными железами с одной стороны, она иннервирует железы внутренней секреции и регулирует их деятельность, с другой -- гормоны, выделяемые железами внутренней секреции, оказывают регулирующее влияние на тонус вегетативной нервной системы. Поэтому правильнее говорить о единой нейрогуморальной регуляции организма. Гормон мозгового вещества надпочечников (адреналин) и гормон щитовидной железы (тиреоидин) стимулируют симпатическую вегетативную нервную систему. Гормон поджелудочной железы (инсулин), гормоны коркового вещества надпочечников, а также гормон вилочковой железы (в период роста организма) стимулируют парасимпатический отдел. Гормоны гипофиза и половых желез оказывают стимулирующее влияние на оба отдела вегетативной нервной системы. Активность вегетативной нервной системы зависит также от концентрации в крови и тканевых жидкостях ферментов и витаминов.

С гипофизом тесно связан гипоталамус, нейросекреторные клетки которого посылают нейросекрет в заднюю долю гипофиза. В общей интеграции физиологических процессов, осуществляемой вегетативной нервной системой, особую важность представляют постоянные и реципрокные взаимосвязи между симпатической и парасимпатической системой, функции интерорецепторов (в частности сосудистых рефлексогенных зон), гуморальные вегетативные рефлексы и взаимодействие вегетативной нервной системы с эндокринной системой и соматической, особенно с ее высшим отделом -- корой полушарий большого мозга.

29. Основные функции лимбической системы

Исследование функции лимбической системы у высших позвоночных началось сравнительно недавно. Длительное время в физиологии существовала точка зрения, что аллокортекс имеет только обонятельную функцию и это нашло выражение в термине обонятельный мозг. Вместе с тем экспериментальные данные показывают, что помимо обонятельных афферентов в аллокортексе обнаруживаются проекции и других афферентных систем, конвергирующих к одним и тем же нервным структурам. Это и ряд других факторов заставили отказаться от традиционных взглядов и расширить наши представления о функциях древней и старой коры.

В 1937 г. американский невропатолог Д. В. Папес выдвинул гипотезу, согласно которой данные структуры мозга образуют единую систему (круг Папеса), ответственную за осуществление врожденных поведенческих актов и формирование эмоций. В 1952 г. другой американский исследователь, П. Д. Мак-Лин, развивая предположения Папеса, ввел понятие лимбическая система, представляя этим термином сложную функциональную систему, обеспечивающую постоянство внутренней среды и контроль видоспецифических реакций, направленных на сохранение вида. Теоретические и практические разработки Папеса и Мак-Лина послужили мощным толчком для дальнейших исследований в этой области.

Эти исследования показали, что локальное раздражение различных отделов лимбической системы вызывает разнообразные вегетативные эффекты и влияет на деятельность внутренних органов. Так, раздражение ядер миндалевидного комплекса приводит к изменениям частоты сердечного ритма, дыхательных движений, сосудистого тонуса. В ряде случаев раздражение миндалин влияет на деятельность пищеварительного тракта, изменяя перистальтику тонкого кишечника, стимулируя секрецию слюны, произвольное жевание и глотание. Описано влияние миндалин на сокращения мочевого пузыря, матки, пилоэрекцию и сокращение третьего века. Все эти разнообразные реакции могут иметь различный знак и характеризоваться активацией или угнетением висцеральных функций.

Существуют указания на то, что кортикальные и медиальные ядра миндалевидного комплекса имеют отношение к регуляции пищевого поведения. Однако большей частью попытки связать тип реакции с определенным ядром миндалевидного комплекса не дали четких результатов. Факты указывают скорее на то, что функциональное представительство в миндалевидном комплексе, да и в других структурах лимбической системы (например, в гиппокампе) не дифференцировано. В некоторых случаях негативные результаты объясняются генерализованным, распространяющимся на соседи участки нервной ткани действием электрических стимулов.

Вместе с тем характер вегетативных реакций, вызванных раздражением различных отделов миндалины, идентичен эффектам при электрической стимуляции гипоталамуса, и это позволяет думать, что регулирующие влияния лимбической системы опосредованы нижележащими вегетативными центрами.

Скорее всего, изменяя в ту или иную сторону возбудимость гипоталамических центров, лимбическая система определяет знак соответствующей вегетативной реакции. Так формируется многоэтажная, построенная по иерархическому принципу система управления вегетативной сферой, интегрирующая вегетативные и соматические реакции.

Как известно, эмоциональная окраска поведенческих реакций определяется не только вегетативными компонентами, но и соответствующими эндокринными сдвигами. В этом плане представляют интерес данные о влиянии лимбической системы на деятельность желез внутренней секреции. Установлено, что длительное (60 мин) раздражение ядер миндалевидного комплекса у обезьян вызывает повышение содержания кортикостероидов в плазме крови. Низкочастотное (12-36 имп/с) раздражение гиппокампа, напротив, уменьшает содержание кортикостероидов, которые выделяются надпочечниками при нанесении стрессорных раздражителей. Очевидно, нисходящие влияния этих структур лимбической системы на гипоталамус, а через него на гипофиз изменяют продукцию АКТГ, который регулирует секрецию кортикостероидов.

Таким образом, изменяя гормональный фон, лимбическая система в естественных условиях может участвовать в формировании побуждений к действию (мотиваций) и регулировать реализацию самих действий, направленных на устранение побуждения, усиливая или ослабляя эмоциональные факторы поведения.

Регуляция висцеральных функций

Эта функция осуществляется преимущественно через деятельность гипоталамуса, который является диэнцефалическим звеном лимбической системы. О тесных эфферентных связях системы с внутренними органами свидетельствуют разнообразные изменения их функций при раздражении лимбических структур, особенно миндалин. При этом эффекты имеют различный знак в виде активации или угнетения висцеральных функций. Происходит повышение или понижение частоты сердечных сокращений, моторики и секреции желудка и кишечника, секреции различных гормонов аденогипофизом (аденокортикотропинов и гонадотропинов).

Формирование эмоций

Сведения об участии различных отделов лимбической системы в формировании эмоций неоднозначны. Наибольшее их количество относится к роли миндалевидного комплекса и поясной извилины в этих процессах. При локальном электрическом раздражении ядер миндалевидного комплекса могут быть получены эмоциональные реакции типа страха, гнева, ярости и агрессии. Двустороннее удаление височных долей вместе с миндалиной и гиппокампом вызывает. У макак-резусов целый ряд сдвигов в эмоциональной сфере. Как правило, агрессивные обезьяны после этой операции становятся спокойными и доверчивыми. У животных наблюдается гиперорализм, когда все незнакомые предметы без разбора запихиваются в рот.

Эмоции - это переживания, в которых отражается субъективное отношение человека к предметам внешнего мира и результатам собственной деятельности. В свою очередь, эмоции являются субъективным компонентом мотиваций - состояний, запускающих и реализующих поведение, направленное на удовлетворение возникших потребностей. Через механизм эмоций лимбическая система улучшает приспособление организма к изменяющимся условиям среды. Гипоталамус является критической зоной для возникновения эмоций. В структуре эмоций выделяют собственно эмоциональные переживания и его периферические (вегетативные и соматические) проявления. Эти компоненты эмоций могут иметь относительную самостоятельность. Выраженные субъективные переживания могут сопровождаться небольшими периферическими проявлениями и наоборот. Гипоталамус является структурой, ответственной преимущественно за вегетативные проявления эмоций. Кроме гипоталамуса к структурам лимбической системы, наиболее тесно связанным с эмоциями, принадлежат поясная извилина и миндалина.

Миндалина - подкорковая структура лимбической системы, расположенная в глубине височной доли мозга. Нейроны миндалины разнообразны по форме, функциям и нейрохимическим процессам в них. Функции миндалины связаны с обеспечением оборонительного поведения, вегетативными, двигательными, эмоциональными реакциями, мотивацией условнорефлекторного поведения. Миндалины реагируют многими своими ядрами на зрительные, слуховые, интероцептивные, обонятельные, кожные раздражения, причем все эти раздражения вызывают изменение активности любого из ядер миндалины, т. е. ядра миндалины полисенсорны. Раздражение ядер миндалевидного тела создает выраженный парасимпатический эффект на деятельность сердечно-сосудистой, дыхательной систем. Приводит к понижению (редко к повышению) кровяного давления, замедлению сердечного ритма, нарушению проведения возбуждения по проводящей системе сердца, возникновению аритмии и экстрасистолии. При этом сосудистый тонус может не изменяться. Раздражение ядер миндалины вызывает угнетение дыхания, иногда кашлевую реакцию. Предполагается, что такие состояния, как аутизм, депрессия, посттравматический шок и фобии, связаны с ненормальным функционированием миндалины. Поясная извилина имеет многочисленные связи с новой корой и со стволовыми центрами. И играет роль главного интегратора различных систем мозга, формирующих эмоции. Ее функции - обеспечение внимания, ощущение боли, констатация ошибки, передача сигналов от дыхательной и сердечно-сосудистой систем. Вентральная лобная кора имеет выраженные связи с миндалиной. Поражение коры вызывает резкие нарушения эмоций у человека, характеризующиеся возникновением эмоциональной тупости и растормаживанием эмоций, связанных с удовлетворением биологических потребностей.

Удаление височных долей вызывает у обезьян гиперсексуальность, причем их половая активность может быть направлена даже на неодушевленные предметы. Наконец, послеоперационный синдром сопровождается так называемой психической слепотой. Животные утрачивают способность правильной оценки зрительной и слуховой информации, и эта информация никак не связывается с собственным эмоциональным настроем обезьян. Так, макаки без разбора исследуют Bice, даже опасные для себя предметы. Возникновение психической слепоты связывают с послеоперационным нарушением передачи сенсорной информации от височной доли к гипоталамусу. Эта точка зрения подкрепляется электрофизиологическими данными, свидетельствующими о том, что различные сенсорные раздражения изменяют частоту импульсной активности нейронов миндалевидного комплекса, который, очевидно, участвует в оценке поступающей из внешней среды информации.

Согласно теории Папеса, сенсорные пути на уровне таламуса расходятся, причем один путь идет в проекционные зоны коры, где обеспечивается восприятие, а второй - в лимбическую систему. Вероятно, в этой системе происходит оценка поступающей информации, ее сопоставление с субъективным опытом и запуск соответствующих эмоциональных реакций через гипоталамические структуры. Информация об аффективном состоянии организма может поступать от стволовых структур в неокортекс либо прямо от миндалевидного комплекса, либо через поясную извилину, которая связана с лобными, теменными и височными долями коры полушарий большого мозга. Вероятно, эти пути связаны с восприятием эмоционального фона, однако детальные механизмы этого восприятия еще нуждаются в разработке.

Как уже отмечалось выше, лимбическая система принимает участие в запуске тех эмоциональных реакций, которые уже апробированы в ходе жизненного опыта. В этом плане привлекают внимание исследования, констатирующие участие лимбической системы в процессах сохранения памяти. Так, например, удаление гиппокампа вызывает у людей пюлное выпадение памяти на недавние события. Электрическое раздражение гиппокампальной извилины во время нейрохирургических операций может сопровождаться появлением мимолетных воспоминаний. Двустороннее удаление гиппокампа у обезьян и крыс приводит к нарушению способности выполнять ту или иную последовательность поведенческих актов. Описанные факты привели к заключению, что гиппокамп играет определенную роль в процессах памяти и послужили толчком для дальнейших исследований этой структуры.

Оказалось, что для строения гиппокампа характерно наличие четко отграниченных слоев с преимущественным расположением в них либо тел, либо отростков нервных клеток. Нейронные цепи гиппокампа представляют собой стереотипные микросети, которые состоят из возбуждакощих волокон энториальной коры, клеток-зерен и пирамидных клеток с аксонами, идущими через свод к перегородке. Аксоны пирамидных клеток образуют коллатерали, направляющиеся к нейронам других частей гиппокампа.

Такая стереотипная слоистая структура гиппокампа делает его очень удобным объектом для изучения функции нейронных сетей на перфузируемых срезах мозга. Электрофизиологические исследования срезов и тотальных препаратов гиппокампа показали, что для этой структуры характерно периодическое возникновение низкочастотных (4-5 в 1 с) электрических колебаний тета-ритма. Эти колебания сопряжены с правильным чередованием возбуждающих и тормозных постсинаптических потенциалов пирамидных клеток гиппокампа и, вероятно, отражают синхронизацию деятельности его нейронных элементов.

Способность генерировать ритмическую активность, по всей видимости, зависит от упорядоченной слоистой структуры гиппокампа, которая создает условия для циркулирования возбуждения по нейронным цепям, лежащему в основе одного из нейронных механизмов памяти.

Об участии гиппокампа в процессах консолидации памяти свидетельствуют также изменения свойств его нейрональных синапсов после тетанической стимуляции. При высокочастотной стимуляции энториальной области коры кролика наблюдается длительное, достигающее нескольких часов, а иногда даже дней, возрастание амплитуды синаптических потенциалов клеток-зерен гиппокампа. В дальнейшем при микроэлектродном исследовании толстых срезов гиппокампа было установлено, что изменение эффективности си-наптического проведения после тетанической стимуляции обусловлено повышением секреции медиатора из пресинаптического окончания. Параллельные электронно-микроскопические исследования показали, что после тетанической стимуляции наблюдалось увеличение числа шипиков на дендритах нейронов гиппокампа.

Эти факты убеждают в том, что пластичность нейронных цепей гиппокампа является предпосылкой его участия в формировании нейронных механизмов памяти. Однако было бы упрощением считать гиппокамп единственным хранилищем следов памяти у позвоночных. Пластичность является весьма распространенным свойством нейронов, и поэтому большинство исследователей склоняются к тому, что функция памяти не является прерогативой какой-либо одной структуры, а обусловлена содружественными действиями многих центров головного мозга. Существенным звеном в этой системе являются связи гиппокампа с неокортексом.

Функциональная роль этих связей подтверждается физиологическими экспериментами. При одновременной регистрации электрической активности гиппокампа и нсокортекса наблюдаются реципрокные взаимоотношения между ними. Когда в гиппокампс возникает медленноволновый тета-ритм, в неокортексе доминирует высокочастотная низкоамплитудная активность и, наоборот, медленноволновой активности энцефалограммы соответствует высокочастотная активность гиппокампа.

Наиболее выраженное усиление тета-ритма в гиппокампе обнаруживается на начальных стадиях выработки условного рефлекса сочетается с состоянием настороженности и сосредоточения внимания при формировании ориентировочной реакции.

Удаление гиппокампа у животных нарушает процессы внутреннего торможения и снижает способность к угашению потерявших адаптивное значение условно-рефлекторных реакций. Одновременно затрудняется упрочение условного рефлекса в связи с резким усилением ориентировочной реакции. Следовательно, гиппокамп, как, впрочем, и другие структуры лимбической системы, существенно влияет на функции неокортекса и на процессы научения. Это влияние осуществляется в первую очередь за счет создания эмоционального фона, который в значительной степени отражается на скорости образования любого условного рефлекса.

Таким образом, лимбическую систему как одно из наиболее древних образований мозга нельзя считать простым атавизмом. Это важный отдел головного мозга, функционально связанный с нео-кортексом и стволовыми структурами, образующими вместе систему координации висцеральных и соматических функций организма.

Формирование памяти и осуществление обучения

Эта функция связана с основным кругом Пейпеца. При однократном обучении большую роль играем миндалина благодаря ее свойству индуцировать сильные отрицательные эмоции, способствуя быстрому и прочному формированию временной связи. Среди структур лимбической системы, ответственных за память и обучение, большую роль играют гиппокамп и связанные с ним задние зоны лобной коры. Их деятельность совершенно необходима для консолидации памяти - перехода кратковременной памяти в долговременную.

30. Физиология гипоталамической области

Гипоталамус является главным центром интеграции висцеральных процессов, играет важную роль в регуляции внутренней среды организма. Он представляет собой небольшой отдел головного мозга массой около 5 г, занимает нижнюю половину стенки и дно третьего желудочка, не имеет четких границ, является частью сети нейронов, протягивающейся от среднего мозга к глубоким участкам переднего мозга. В нейральной сети гипоталямуса выделяют более тридцати ядер. В поперечном направлении гипоталамус разделяют на три зоны - перивентрикулярную, медиальную и латеральную. Перивентрикулярная зона - это тоненькая полоска, прилежащая к третьему желудочку содержит одноименное ядро. В медиальной зоне имеется несколько ядерных областей, расположенных в переднезаднем направлении. Ядра гипоталамуса, кроме супраоптического (СО) и паравентрикулярного (ПВ), не имеют строго очерченных границ, и связать конкретные функции гипоталамуса с отдельными ядрами, за исключением СО и ПВ, невозможно. Поэтому ядра гипоталамуса разделяют на группы (передняя, средняя, задняя и преоптическая), обладающие функциональной спецификой.

В латеральном гипоталамусе ядерных областей нет, нейроны располагаются диффузно. Здесь проходят нервные проводники. Латеральный гипоталамус имеет двусторонние связи с верхними отделами ствола мозга, средним мозгом и с лимбической системой. Гипоталамус получает многочисленные афферентные сигналы от внутренних органов и кожи, они поступают по спинобульборетикулярным трактам. Другие афферентные связи представлены полисинаптическими путями, которые ещё окончательно не идентифицированы. У млекопитающих гипоталамус посредством прямых связей соединяется с низшими вегетативными центрами - ядрами блуждающих нервов в продолговатом мозге и симпатическими ядрами спинного мозга.

Стимуляция задних ядер гипоталамуса вызывает такие же реакции, как при раздражении симпатической нервной системы (расширение зрачков, сужение сосудов, повышение АД, увеличение частоты и силы сокращений сердца и др.), а раздражение передних ядер приводит к противоположным реакциям, характерным для парасимпатической системы. На основании этого был сделан вывод, что в гипоталамусе имеются симпатический (эрготропный) и парасимпатический (трофотропный) центры. Однако были получены данные, противоречащие представлению об узкой локализации симпатических и парасимпатических центров в гипоталамусе. Оказалось, что нейроны, активирующие симпатическую систему, имеются и в задней, и в передней областях. Равным образом нейроны, управляющие парасимпатической системой, также не сосредоточены в каком-то одном участке.

При раздражении близко расположенных точек гипоталамуса могут проявляться вегетативные, соматические и гормональные реакции. Гипоталамус характеризуется весьма сложным строением и выполняет свою роль в регуляции внутренней среды организма путём интеграции разнообразных соматических, вегетативных и эндокринных реакций.

Как уже отмечено, гемодинамические процессы в организме регулируются циркуляторным центром продолговатого мозга. Он получает сигналы от рецепторов кровеносного русла и посылает эфферентные импульсы к сердцу и сосудам по симпатическим и парасимпатическим волокнам. Эта рефлекторная регуляция гемодинамики управляется высшими центрами и в первую очередь гипоталамусом, который имеет связи с преганглионарными вегетативными нейронами. Регулирующее влияние гипоталамуса на сердечно-сосудистую систему проявляется при сложных вегетативных процессах, таких как поддержание температуры тела, защитное, пищевое, половое поведение и др.

Гипоталамус, являясь высшим центром поддержания постоянства внутренней среды организма, управляет и терморегуляцией. На границе между передним и задним гипоталамусом обнаруживают нейроны, реагирующие на изменение температуры кожи. Кроме кожи, периферические терморецепторы содержатся в дорзальной стенке брюшной полости, в мышцах, подкожной клетчатке и в других частях туловища и конечностей. Температурные сигналы от этих рецепторов поступают в терморегулирующие нейроны заднего гипоталамуса. Задняя гипоталамическая область является интегративным центром терморегуляции. Она получает и перерабатывает температурную информацию от рецепторов и преобразует эти входные сигналы в выходные эфферентные импульсы.

При уменьшении температуры окружающей среды ниже комфортной эфферентные нейроны заднего гипоталамуса через симпатическую нервную систему вызывают реакции термосбережения: ослабление кровоснабжения кожи и пиломоторный рефлекс (взъерошивание волос, гусиная кожа). Одновременно с этим увеличивается теплопродукция путем усиления обменных процессов в тканях через В-адренорецепторы симпатической нервной системы а также термогенного тонуса и дрожи скелетной мускулатуры. Разрушение заднего гипоталамуса приводит к полной потере терморегуляции и эксперементальные животные становятся пойкилотермными.

В медиальной гипоталамической области имеются нейроны, реагирующие на повышение температуры крови (тепловые нейроны). Они же получают сигналы от терморецепторов кожи. В случае перегревания организма тепловые сигналы передаются в заднюю область гипоталамуса, эффекторные нейроны которой запускают вегетативные и соматические реакции, увеличивающие теплоотдачу: расширение кровеносных сосудов кожи(интенсификация тепловыделения длинноволновым инфракрасным излучением и путем конвекции с поверхности тела), усиление потоотделения (затраты тепла на испарение влаги)и интенсивности дыхания (потери тепла с выдыхаемым воздухом). Повреждение переднего гипоталамуса (тепловых нейронов) нарушает теплоотдачу и приводит к перегреванию организма.

В латеральной области гипоталамуса расположены нейроны, регулирующие приспособление гемодинамики к мышечной работе путём увеличения сердечного выброса, усиления кровотока в скелетных мышцах, его уменьшения в коже и органах брюшной полости. В каудальной части медиального гипоталамуса локализуются цепи нейронов, контролирующие оборонительное и пищевое поведение, которые обусловливаются вегетативными, соматомоторными и гормональными реакциями.

Большинство из описанных выше гипоталамических регуляторных структур установлено на основе нейрофизиологических исследований. Нейронная же организация гипоталамуса пока изучена недостаточно. Предполагается, что в его нейронных цепях заложены многочисленные программы конкретных регуляторных реакций, которые реализуются при поступлении соответствующих сигналов от вышележащих отделов мозга и из внутренней среды.

В медиальном гипоталамусе имеются нейроны - рецепторы, высокочувствительные к изменениям констант крови (температуры, pH, содержания O2, CO2, минералов, гормонов и др.), отражающим состояние внутренней среды организма. На эти гуморальные изменения рецепторные нейроны реагируют возбуждением и посылают нервные импульсы в другие отделы гипоталамуса. Высокая чувствительность этих клеток к изменениям параметров крови обеспечивается особенностями кровеносной системы гипоталамуса. Во-первых, отдельные группы ядер имеют обильное изолированное кровоснабжение, капиллярная сеть которых по густоте в несколько раз превышает аналогичные сети других отделов мозга. Во-вторых, в гипоталамусе отсутствует гематоэнцефалический барьер, что обусловливает высокую проницаемость капилляров для различных веществ, включая высокомолекулярные соединения.

Медиальный гипоталамус выполняет важную роль в регулировании метаболических процессов. При этом особое значение имеет гипофизарная зона (мелкоклеточные ядра средней группы), нейроны которой вырабатывают гормоны, регулирующие функции аденогипофиза - рилизинг-гормоны (либерины) и гормоны-ингибиторы (статины). Секреторная активность нейронов гипофизотропной зоны гипоталамуса, выделяющих либерины и статины, регулируется содержанием в крови гормонов гипофиза и периферических эндокринных желез по принципу отрицательной обратной связи. Кроме того, эти же нейроны гипофизотропной зоны получают афферентные нервные сигналы от вегетативных ядер ствола мозга, лимбической системы, от нейронов, опосредующих биологические ритмы, а также зрительные, слуховые и обонятельные сигналы. Интегрируя всю эту обширную информацию (гормональную и нервную), они направляют ответную реакцию в аденогипофиз в виде нейрогормонов. Таким образом, медиальный гипоталамус представляет собой связующее звено между нервной системой и аденогипофизом, и управляет деятельностью периферических эндокринных желез, а гипоталамус в целом является главным нервным центром регуляции эндокринной системы.

В поддержании постоянства внутренней среды организма существенную роль играют антидиуретический гормон (АДГ) и окситоцин, синтезируемые в гипоталамических ядрах передней группы - супраоптическом и паравентрикулярном. Последние, в отличие от всех других ядер гипоталамуса, имеют хорошо различимые внешние контуры и лучше изучены. Сурпаоптическое ядро состоит только из крупных нейросекреторных клеток, а в паравентрикулярном центральная часть занята крупными нейронами, периферия - мелкими. Названные гормоны синтезируются крупными нейронами обоих ядер, но АДГ большей частью образуется в супраоптическом, а окситоцин - в паравентрикулярном. Эти гормоны в составе секреторных гранул переносятся по аксонам в нейрогипофиз и там выделяются в капиллярную сеть. Мелкие клетки паравентрикулярного ядра, как и нейроны мелкоклеточных ядер средней группы, вырабатывают либерины и статины, которые выделяются из их аксонов в первичную капиллярную сеть гипофиза.

В супраоптическом и паравентрикулярном ядрах гипоталамуса имеются две группы нейронов-осморецепторов, которые реагируют на изменение концентрации осмотически активных веществ в плазме крови. Одна из этих групп нейронов связана с нервными центрами, регулирующими чувство жажды (потребление воды), другая - с центрами, регулирующими поступление в кровь антидиуретического гормона (объема выделяемой мочи). Эти нейроны-рецепторы обладают высокой чувствительностью - они возбуждаются при отклонении осмоляльности плазмы крови даже на 2% от нормы (для сравнения волюморецепторы реагируют только на отклонение объема крови от нормы не менее чем на 10%). Эти же нейроны-осморецепторы воспринимают нервные импульсы из внутренних органов. Так, потребление питьевой воды увеличивает объем циркулирующей крови и снижает осмотическое давление в воротной вене, что приводит к физиологическому набуханию печени. Импульсы от её осморецепторов передаются в супраоптическое и паравентрикулярное ядра и вызывают торможение выделения АДГ. Когда буферная емкость гепатоцитов исчерпывается, избыток воды начинает снижать осмолярность артериальной крови. Это улавливается осморецепторными нейронами гипоталамуса, импульсы от которых усиливают торможение выделения АДГ. Кроме того, сигналы об увеличении объема циркулирующей крови передаются от волюморецепторов предсердий и вен в супраоптическое ядро и также вызывают подавление синтеза АДГ и усиление диуреза. Таким образом, гипоталамус поддерживает постоянство осмолярности внеклеточных жидкостей по механизму нейрогуморального рефлекса, в котором афферентное звено представлено нервными импульсами от внутренних органов и нейронов-осморецепторов супраоптического и паравентрикулярного ядрер, а эфферентные - выделением гормона в кровь.

...

Подобные документы

  • Рефлексы, участвующие в регуляции дыхания. Разновидности рецепторов бронхо-легочного аппарата, принимающих участие в регуляции дыхания. Рефлексы, возникающие при изменении объема легких. Дополнительные разновидности патологических дыхательных движений.

    презентация [2,4 M], добавлен 08.01.2014

  • Схема головного мозга человека. Отделы промежуточного мозга и мозжечка; ядра таламуса и гипоталамуса, их функции и симптомы поражения. Афферентные связи коры мозжечка; связи вестибулоцеребеллюма, спиноцеребеллюма и неоцеребеллюма. Мозжечок как компаратор.

    презентация [2,3 M], добавлен 08.01.2014

  • Представления о регулировании физиологических функций. Механизмы регуляции: нервно-рефлекторные и гуморальные. Виды нервных волокон. Законы проведения возбуждения. Функциональное значение нейронов структурных элементов, процессы, протекающие в них.

    контрольная работа [29,6 K], добавлен 21.01.2010

  • Общее строение головного мозга, его отделы. Строение мозжечка - отдела головного мозга, отвечающего за координацию движений, регуляцию равновесия и мышечного тонуса. Клинические проявления, развивающиеся при поражении мозжечка или его недостаточности.

    контрольная работа [28,8 K], добавлен 16.09.2015

  • Понятие возбудимости и раздражимости, способность живых клеток воспринимать изменения внешней среды и отвечать на раздражения реакцией возбуждения. Скорость протекания циклов возбуждения в нервной ткани (лабильность). Свойств биологических мембран.

    реферат [1005,0 K], добавлен 31.12.2012

  • Характеристика анатомии мозжечка, переднего мозга и их физиологических параметров. Расположение, строение и нейрофизиология мозжечка и переднего мозга. Проводящие пути, филогенетические отделы и функции мозжечка. Распределение серого и белого вещества.

    презентация [5,7 M], добавлен 13.12.2013

  • Система регуляции деятельности внутренних органов посредством гормонов. Функции эндокринной системы, участие в гуморальной (химической) регуляции функций организма и координирование деятельности всех органов и систем. Функция паращитовидных желёз.

    реферат [17,2 K], добавлен 22.04.2009

  • Уровни регуляции произвольных движений и действий. Путь двигательного анализатора и строение сензомоторных отделов коры. Экстрапирамидная система. Нарушения двигательных функций. Поражение коркового звена, подкорковых структур и мозжечка. Формы апраксий.

    презентация [405,6 K], добавлен 13.03.2014

  • Исследование расположения и функций мозжечка, отдела головного мозга позвоночных, отвечающего за координацию движений, регуляцию равновесия и мышечного тонуса. Описания процесса обработки нервных сигналов, поступающих от органов чувств, их корректировки.

    презентация [2,9 M], добавлен 25.11.2011

  • Особенности строения плазматической мембраны, сущность ее барьерной и транспортной функций и основные компоненты липопротеинового комплекса. Механизмы транспорта веществ через плазмолемму, ее рецепторная функция и особенности межклеточных контактов.

    лекция [30,7 K], добавлен 27.07.2013

  • Физиологические и анатомические особенности вегетативной нервной системы. Высшие вегетативные центры мозга, их структура и назначение. Гипоталамус как высший центр регуляции вегетативных функций. Тонус вегетативной нервной системы и его измерение.

    реферат [16,3 K], добавлен 10.07.2011

  • Общее понятие и особенности функций высшей нервной деятельности человека. История открытия механизмов условных рефлексов и изучение их физиологии И.П. Павловым. Исследование высших функций мозга в трудах философов античности Гиппократа и Декарта.

    реферат [20,1 K], добавлен 17.04.2011

  • Пути и механизмы регуляции иммунитета с помощью нейромедиаторов, нейропептидов и гормонов. Парасимпатический отдел вегетативной нервной системы и регуляция иммунного ответа. Механизмы регуляции иммунного ответа соматотропином и опиоидными пептидами.

    презентация [243,2 K], добавлен 02.12.2016

  • Сущность клеточного цикла - периода жизни клетки от одного деления до другого или от деления до смерти. Биологическое значение митоза, его основные регуляторные механизмы. Два периода митотического деления. Схема активации циклинзависимой киназы.

    презентация [823,0 K], добавлен 28.10.2014

  • Контуры регуляции функций. Схема локальной регуляция функции. Состав внутренней среды. Схема гомеостатического механизма. Формирование систем регуляции. Понятие о функциональном элементе ткани по А.М. Чернуху. Механизм взаимосвязи между клетками.

    презентация [290,4 K], добавлен 15.02.2014

  • Этапы развития физиологии. Гуморальная, нервная и метаболическая регуляция функций организма. Электрические явления в возбудимых тканях. Распространение возбуждения по нервным волокнам. Современные представления о мышечном сокращении и расслаблении.

    презентация [3,0 M], добавлен 16.10.2012

  • Предмет и роль физиологии в системе медицинского образования, краткая история, современные тенденции и задачи физиологии. Организм и внешняя среда, исследование физиологии целостного организма. Метод графической регистрации и биоэлектрических явлений.

    курсовая работа [63,3 K], добавлен 02.01.2013

  • Анализ механизмов прохождения веществ через клеточную мембрану. Основные процессы, с помощью которых вещества проникают через мембрану. Свойства простой и облегченной диффузии. Типы активного транспорта. Ионные каналы, их отличие от поры, градиент.

    презентация [282,3 K], добавлен 06.11.2014

  • Строение ствола мозга, основные функции его тонических рефлексов. Особенности функционирования продолговатого мозга. Расположение варолиева моста, анализ его функций. Ретикулярная формация мозга. Физиология среднего и промежуточного мозга, мозжечка.

    презентация [751,7 K], добавлен 09.10.2016

  • Обзор особенностей структуры, биосинтеза, транспорта, рецепции, действия и метаболизма мужских половых гормонов андрогенов. Изучение полового поведения и агрессивности у самцов млекопитающих. Характеристика регуляции сперматогенеза и гомеостаза кальция.

    реферат [2,1 M], добавлен 20.04.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.