Основные направления исследований в физиологии
Сущность и проявления раздражимости и возбудимости. Механизмы и структуры пассивного транспорта. Гомосинаптическая и гетеросинаптическая модуляция. Участие мозжечка в регуляции вегетативных функций. Кодирование и анализ соматосенсорных сигналов.
Рубрика | Биология и естествознание |
Вид | шпаргалка |
Язык | русский |
Дата добавления | 15.09.2017 |
Размер файла | 2,7 M |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
31. Физиологические особенности новой коры. 32.Проекционные и ассоциативные зоны коры
Новая кора (неокортекс) представляет собой слой серого вещества общей площадью 1500-2200 см2, покрывающий большие полушария конечного мозга. Она составляет около 40% массы головного мозга. В коре имеется около 14 млрд. нейронов и около 140 млрд. глиальных клеток. Кора головного мозга является филогенетически наиболее молодой нервной структурой. У человека она осуществляет высшую регуляцию функций организма и психофизиологические процессы, обеспечивающие различные формы поведения.
Структурно-функциональная характеристика коры
Кора больших полушарий состоит из шести горизонтальных слоев, расположенных в направлении с поверхности в глубь.
I. Молекулярный слой имеет очень мало клеток, но большое количество ветвящихся дендритов пирамидных клеток, формирующих сплетение, расположенное параллельно поверхности. На этих дендритах образуют синапсы афферентные волокна, приходящие от ассоциативных и неспецифических ядер таламуса.
II. Наружный зернистый слой составлен в основном звездчатыми и частично малыми пирамидными клетками. Волокна клеток этого слоя расположены преимущественно вдоль поверхности коры, образуя кортикокортикальные связи.
III. Наружный пирамидный слой состоит преимущественно из пирамидных клеток средней величины. Аксоны этих клеток, как и зернистые клетки II слоя, образуют кортикокортикальные ассоциативные связи.
IV. Внутренний зернистый слой по характеру клеток и расположению их волокон аналогичен наружному зернистому слою. На нейронах этого слоя образуют синаптические окончания афферентные волокна, идущие от нейронов специфических ядер таламуса и, следовательно, от рецепторов сенсорных систем.
V. Внутренний пирамидный слой образован средними и крупными пирамидными клетками, причем гигантские пирамидные клетки Беца расположены в двигательной коре. Аксоны этих клеток образуют эфферентные кортикоспинальные и кортикобульбарный двигательные пути.
VI. Слой полиморфных клеток образован преимущественно веретенообразными клетками, аксоны которых образуют кортикоталамические пути.
Афферентные и эфферентные связи коры
В слоях I и IV происходят восприятие и обработка поступающих в кору сигналов. Нейроны II и III слоев осуществляют кортикокортикальные ассоциативные связи. Покидающие кору эфферентные пути формируются преимущественно в V - VI слоях. Более детально деление коры на различные поля проведено на основе цитоархитектонических признаков (формы и расположения нейронов) К.Бродманом, который выделил 11 областей, включающих в себя 52 поля, многие из которых характеризуются функциональными и нейрохимическими особенностями. По Бродману лобная область включает 8, 9, 10, 11, 12, 44, 45, 46, 47 поля. В прецентральную область входят 4 и 6 поле, в постцентральную - 1, 2, 3, 43 поля. Теменная область включает в себя поля 5, 7, 39, 40, а затылочная 17 18 19. Височная область состоит из очень большого количества цитоархитектонических полей: 20, 21, 22, 36, 37, 38, 41, 42, 52.
Рис. 1 Цитоархитектонические поля коры головного мозга человека (по К.Бродману): а - наружная поверхность полушария; б - внутренняя поверхность полушария
Гистологические данные показывают, что элементарные нейронные цепи, участвующие в обработке информации, расположены перпендикулярно поверхности коры. В моторной и различных зонах сенсорной коры имеются нейронные колонки диаметром 0,5-1,0 мм, которые представляют собой функциональное объединение нейронов. Соседние нейронные колонки могут частично перекрываться, а также взаимодействовать друг с другом по механизму латерального торможения и осуществлять саморегуляцию по типу возвратного торможения.
В филогенезе роль коры большого мозга в анализе и регуляции функций организма и подчинение себе нижележащих отделов ЦНС возрастает. Этот процесс называется кортиколизацией функций.
Проблема локализации функций имеет три концепции:
· Принцип узкого локализационизма - все функции помещены в одну, отдельно взятую структуру.
· Концепция эквипотенциализма - различные корковые структуры функционально равноценны.
· Принцип многофункциональности корковых полей.
Свойство мультифункциональности позволяет данной структуре включаться в обеспечение различных форм деятельности, реализуя при этом основную, генетически присущую ей функцию. Степень мультифункциональности различных корковых структур неодинакова: например, в полях ассоциативной коры она выше, чем в первичных сенсорных полях, а в корковых структурах выше, чем в стволовых. В основе мультифункциональности лежит многоканальность поступления в кору мозга афферентного возбуждения, перекрытие афферентных возбуждений, особенно на таламическом и корковым уровнях, модулирующее влияние различных структур (неспецифического таламуса, базальных ганглиев) на корковые функции, взаимодействие корково-подкорковых и межкорковых путей проведения возбуждения.
Одним из наиболее крупных вариантов функционального разделения новой коры головного мозга является выделение в ней сенсорной, ассоциативной и двигательной областей.
Сенсорные области коры больших полушарий
Сенсорные области коры - это зоны, в которые проецируются сенсорные раздражители. Сенсорные области коры иначе называют: проекционной корой или корковыми отделами анализаторов. Они расположены преимущественно в теменной, височной и затылочной долях. Афферентные пути в сенсорную кору поступают преимущественно от специфических сенсорных ядер таламуса (вентральных, задних латерального и медиального). Сенсорная кора имеет хорошо выраженные II и IVслои и называется гранулярной.
Зоны сенсорной коры, раздражение или разрушение которых вызывает четкие и постоянные изменения чувствительности организма, называются первичными сенсорными областями. Они состоят преимущественно из мономодальных нейронов и формируют ощущения одного качества. В первичных сенсорных зонах обычно имеется четкое пространственное (топографическое) представительство частей тела, их рецепторных полей. Вокруг первичных сенсорных зон находятся менее локализованные вторичные сенсорные зоны, полимодальные нейроны которых отвечают на действие нескольких раздражителей.
Важнейшей сенсорной областью является теменная кора постцентральной извилины и соответствующая ей часть парацентральной дольки на медиальной поверхности полушарий (поля 1-3), которую обозначают как первичная соматосенсорная область (S I). Здесь имеется проекция кожной чувствительности противоположной стороны тела от тактильных, болевых, температурных рецепторов, интероцептивной чувствительности и чувствительности опорно-двигательного аппарата от мышечных, суставных и сухожильных рецепторов. Проекция участков тела в этой области характеризуется тем, что проекция головы и верхних отделов туловища расположена в нижнелатеральных участках постцентральной извилины, проекция нижней половины туловища и ног - в верхнемедиальных зонах извилины, проекция нижней части голени и стоп - в коре парацентральной дольки на медиальной поверхности полушарий. При этом проекция наиболее чувствительных участков (язык, губы, гортань, пальцы рук) имеет относительно большие зоны по сравнению с другими частями тела (см.рис.2). Предполагается, что в зоне тактильной чувствительности языка расположена и проекция вкусовой чувствительности.
Кроме S I выделяют вторичную соматосенсорную область меньшую размером (S II). Она расположена на верхней стенке боковой борозды, на границе ее пересечения с центральной бороздой. Функции S II изучены плохо. Известно, что локализация поверхности тела в ней менее четкая, импульсация сюда поступает как от противоположной стороны тела, так и от «своей» стороны, предполагают ее участие в сенсорной и моторной координации двух сторон тела.
Другой первичной сенсорной зоной является слуховая кора (поля 41, 42), которая расположена в глубине латеральной борозды (кора поперечных височных извилин Гешля). В этой зоне в ответ на раздражение слуховых рецепторов кортиева органа формируются звуковые ощущения, изменяющиеся по громкости, тону и другим качествам. Здесь имеет четкая топическая проекция: в разных участках коры представлены различные участки кортиева органа. К проекционной коре височной доли относится также центр вестибулярного анализатора в верхней и средней височных извилинах (поля 20 и 21). Обработанная сенсорная информация используется для формирования «схемы тела» и регуляции функций мозжечка (височно-мостомозжечковый путь).
Рис. 2 Схема чувствительного и двигательного гомункулусов. Разрез полушарий во фронтальной плоскости: а - проекция общей чувствительности в коре постцентральной извилины; б - проекция двигательной системы в коре прецентральной извилины
¦ Еще одна первичная проекционная область новой коры расположена в затылочной коре - первичная зрительная область (кора части клиновидной извилины и язычковой дольки, поле 17). Здесь имеет топическое представительство рецепторов сетчатки, и каждой точке сетчатки соответствует свой участок зрительной коры, при этом зона желтого пятна имеет большую зону представительства. В связи с неполным перекрестом зрительных путей в зрительную область каждого полушария проецируются одноименные половины сетчатки. Наличие в каждом полушарии проекции сетчатки обоих глаз является основой бинокулярного зрения. Раздражение коры 17-го поля приводит к возникновению световых ощущений. Около поля 17 расположена кора вторичной зрительной области (поля 18 и 19). Нейроны этих зон полимодальны и отвечают не только на световые, но и на тактильные, слуховые раздражители. В данной зрительной области происходит синтез различных видов чувствительности и возникают более сложные зрительные образы и их опознавание. Раздражение этих полей вызывает зрительные галлюцинации, навязчивые ощущения, движения глаз.
Основная часть информации об окружающей среде и внутренней среда организма, поступившая в сенсорную кору, передается для дальнейшей ее обработки в ассоциативную кору.
Ассоциативные области коры
Ассоциативные области коры включают участки новой коры, расположенные рядом с сенсорными и двигательными зонами, но не выполняющие непосредственно чувствительных и двигательных функций. Границы этих областей обозначены не достаточно четко, неопределенность преимущественно связана со вторичными проекционными зонами, функциональные свойства которых являются переходными между свойствами первичных проекционных и ассоциативных зон. У человека ассоциативная кора составляет 70% неокортекса.
Основной физиологической особенностью нейронов ассоциативной коры является полимодальность: они отвечают на несколько раздражителей с почти одинаковой силой. Полимодальность (полисенсорность) нейронов ассоциативной коры создается за счет, во-первых, наличия кортикокортикальных связей с разными проекционными зонами, во-вторых, за счет главного афферентного входа от ассоциативных ядер таламуса, в которых уже произошла сложная обработка информации от различных чувствительных путей. В результате этого ассоциативная кора представляет собой мощный аппарат конвергенции различных сенсорных возбуждений, позволяющих произвести сложную обработку информации о внешней и внутренней среде организма и использовать ее для осуществления высших психофизиологических функций. В ассоциативной коре выделяют три ассоциативные системы мозга: таламотеменную, таламолобную и таламовисочную.
Таламотеменная система представлена ассоциативными зонами теменной коры (поля 5, 7, 40), получающими основные афферентные входы от задней группы ассоциативных ядер таламуса (латеральное заднее ядро и подушка). Теменная ассоциативная кора имеет эфферентные выходы на ядра таламуса и гипоталамуса, моторную кору и ядра экстрапирамидной системы. Основными функциями таламотеменной системы являются гнозис, формирование «схемы тела» и праксис. Под гнозисом понимают функцию различных видов узнавания: формы, величины, значения предметов, понимание речи, познание процессов, закономерностей. К гностическим функциям относится оценка пространственных отношений. В теменной коре выделяют центр стереогнозиса, расположенный сзади от средних отделов постцентральной извилины (поля 7, 40, частично 39) и обеспечивающий способность узнавания предметов на ощупь. Вариантом гностической функции является формирование в сознании трехмерной модели тела («схемы тела»), центр которой расположен в поле 7 теменной коры. Под праксисом понимают целенаправленное действие, центр его находится в надкраевой извилине (поля 39 и 40 доминантного полушария). Этот центр обеспечивает хранение и реализацию программы двигательных автоматизированных актов.
Таламолобная система представлена ассоциативными зонами лобной коры (поля 9-14), имеющими основной афферентный вход от ассоциативного медиодорсального ядра таламуса. Главной функцией лобной ассоциативной коры является формирование программ целенаправленного поведения, особенно в новой для человека обстановке. Реализация этой общей функции основывается на других функциях таламолобной системы: 1) формирование доминирующей мотивации обеспечивающей направление поведения человека. Эта функция основана на тесных двусторонних связях лоьной коры с лимбической системой и ролью последней в регуляции высших эмоций человека, связанных с его социальной деятельностью и творчеством.; 2) обеспечение вероятностного прогнозирования, что выражается изменением поведения в ответ на изменения обстановки окружающей среды и доминирующей мотивации; 3) самоконтроль действий путем постоянного сравнения результата действия с исходными намерениями, что связано с созданием аппарата предвидения (акцептора результата действия).
При повреждении префронтальной лобной коры, где пересекаются связи между лобной долей и таламусом, человек становится грубым, нетактичным, ненадежным, у него появляется тенденция к повторению каких-либо двигательных актов, хотя обстановка уже изменилась и надо выполнять другие действия.
Таламовисочная система изучена не достаточно. Но если говорить о височной коре, то надо отметить, что некоторые ассоциативные центры, например стереогнозиса и праксиса, включают в себя и участки височной коры (поле 39). В височной коре расположен слуховой центр речи Вернике, находящийся в задних отделах верхней височной извилины (поля 22, 37, 42 левого доминантного полушария). Этот центр обеспечивает речевой гнозис - распознавание и хранение устной речи, как собственной, так и чужой. В средней части верхней височной извилины (поле 22) находится центр распознавания музыкальных звуков и их сочетаний. На границе височной, теменной и затылочной долей (поле 39) находится центр чтения письменной речи, обеспечивающий распознавание и хранение образов письменной речи.
Двигательные области коры
В двигательной коре выделяют первичную и вторичную моторные области.
В первичной моторной коре (прецентральная извилина, поле 4) расположены нейроны, иннервирующие мотонейроны мышц лица, туловища и конечностей. В ней имеется четкая топографическая проекция мышц тела. При этом проекции мышц нижних конечностей и туловища расположены в верхних участках прецентральной извилины и занимают сравнительно небольшую площадь, а проекция мышц верхних конечностей, лица и языка расположены в нижних участках извилины и занимают большую площадь (см.рис.2). Основной закономерностью топографического представительства является то, что регуляция деятельности мышц, обеспечивающих наиболее точные и разнообразные движения (речь, письмо, мимика), требует участия больших по площади участков двигательной коры. Двигательные реакции на раздражение первичной моторной коры осуществляются с минимальным порогом (высокая возбудимость), и представлены элементарными сокращениями мышц противоположной стороны тела (для мышц головы сокращение может быть билатеральным). При поражении этой области коры утрачивается способность к тонким координированным движениям рук, особенно пальцев.
Вторичная двигательная кора (поле 6) расположена на латеральной поверхности полушарий, впереди прецентральной извилины (премоторная кора). Она осуществляет высшие двигательные функции, связанные с планированием и координацией произвольных движений. Кора поля 6 получает основную часть эфферентной импульсации базальных ядер и мозжечка и участвует в перекодировании информации о программе сложных движений. Раздражение коры поля 6 вызывает более сложные координированные движения, например, поворот головы, глаз и туловища в противоположную сторону, содружественные сокращения мышц-сгибателей или мышц-разгибателей на противоположной стороне. В премоторной коре расположены двигательные центры, связанные с социальными функциями человека: центр письменной речи в заднем отделе средней лобной извилины (поле 6), центр моторной течи Брока в заднем отделе нижней лобной извилины (поле 44), обеспечивающий речевой праксис, а также музыкальный моторный центр (поле 45), определяющий тональность речи, способность петь.
Афферентные и эфферентные связи моторной коры
В моторной коре лучше, чем в других зонах коры, выражен слой, содержащий гигантские пирамидные клетки Беца. Нейроны двигательной коры получают афферентные входы через таламус от мышечных, суставных и кожных рецепторов, а также от базальных ядер и мозжечка. Основной эфферентный выход двигательной коры на стволовые и спинальные моторные центры формируют пирамидные клетки V слоя. Пирамидные и сопряженные с ними вставочные нейроны расположены вертикально по отношению к поверхности коры и образуют нейронные двигательные колонки. Пирамидные нейроны двигательной колонки могут возбуждать или тормозить мотонейроны стволовых и спинальных центров. Соседние колонки в функциональном плане перекрываются, а пирамидные нейроны, регулирующие деятельность одной мышцы, расположены обычно не в одной, а в нескольких колонках.
Основные эфферентные связи двигательной коры осуществляются через пирамидные и экстрапирамидные пути, которые начинаются от гигантских пирамидных клеток Беца и менее крупных пирамидных клеток V слоя коры прецентральной извилины (60% волокон), премоторной коры (20% волокон) и постцентральной извилины (20% волокон). Крупные пирамидные клетки имеют быстропроводящие аксоны и фоновую импульсную активность около 5 Гц, которая при движении увеличивается до 20-30 Гц. Эти клетки иннервируют крупные (высокопороговые) Ь-мотонейроны в двигательных центрах ствола и спинного мозга, регулирующих физические движения. От мелких пирамидных клеток отходят тонкие медленнопроводящие миелиновые аксоны. Эти клетки имеют фоновую активность около 15 Гц, которая во время движения увеличивается или уменьшается. Они иннервируют мелкие (низкопороговые) Ь-мотонейроны в стволовых и спинальных двигательных центрах, регулирующие тонус мышц.
Пирамидные пути состоят из 1 млн волокон кортикоспинального пути, которые начинаются от коры верхней и средней трети прецентральной извилины, и 20 млн волокон кортикобульбарного пути, который начинается от коры нижней трети прецентральной извилины. Волокна пирамидного пути оканчиваются на Ь-мотонейронах двигательных ядер III - VII и IX - XII черепных нервов (кортикобульбарный путь) или на спинальных двигательных центрах (кортикоспинальный путь). Через двигательную кору и пирамидные пути осуществляются произвольные простые движения и сложные целенаправленные двигательные программы, например, профессиональные навыки, формирование которых начинается в базальных ганглиях и мозжечке и заканчивается во вторичной моторной коре. Большинство волокон пирамидных путей осуществляют перекрест, однако небольшая часть волокон остается неперекрещенными, что способствует компенсации нарушенных функций движения при односторонних поражениях. Через пирамидные пути осуществляет свои функции и премоторная кора: двигательные навыки письма, поворот головы, глаз и туловища в противоположную сторону, а также речь (речедвигательный центр Брока, поле 44). В регуляции письма и особенно устной речи имеется выраженная асимметрия больших полушарий мозга: у 95% правшей и 70% левшей устная речь контролируется левым полушарием.
К корковым экстрапирамидным путям относят кортикорубральные и кортикоретикулярные пути, начинающиеся приблизительно от тех зон, которые дают начало пирамидным путям. Волокна кортикорубрального пути оканчиваются на нейронах красных ядер среднего мозга, от которых далее идут руброспинальные пути. Волокна кортикоретикулярных путей оканчиваются на нейронах медиальных ядер ретикулярной формации моста (от них идут медиальные ретикулоспинальные пути) и на нейронах ретикулярных гигантоклеточных ядер продолговатого мозга, от которых начинаются латеральные ретикулоспинальные пути. Через эти пути осуществляется регуляция тонуса и позы, которые обеспечивают точные целенаправленные движения. Корковые экстрапирамидные пути являются компонентом экстрапирамидной системы головного мозга, к которой относятся мозжечок, базальные ганглии, моторные центры ствола. Экстрапирамидная система осуществляет регуляцию тонуса, позы равновесия, выполнение заученных двигательных актов, таких как ходьба, бег, речь, письмо. Поскольку кортикопирамидные пути отдают свои многочисленные коллатерали структурам экстрапирамидной системе, то обе системы работают в функциональном единстве.
Оценивая в общем плане роль различных структур головного и спинного мозга в регуляции сложных направленных движений, можно отметить, что побуждение (мотивация) к движению создается в лимбической системе, замысел движения - в ассоциативной коре больших полушарий, программы движений - в базальных ганглиях, мозжечке и премоторной коре, а выполнение сложных движений происходит через двигательную кору, моторные центры ствола и спинного мозга.
Межполушарные взаимоотношения в мозге
Межполушарные взаимоотношения у человека проявляются в двух формах - функциональной асимметрии больших полушарий и совместной их деятельности.
Функциональная асимметрия полушарий является важнейшим психофизиологическим свойством головного мозга человека. Выделяют психическую, сенсорную и моторную межполушарную функциональную асимметрии мозга. При исследовании психофизиологических функций было показано, что в речи словесный информационный канал контролируется левым полушарием, а несловесный канал (голос, интонация) - правым. Абстрактное мышление и сознание связаны, преимущественно, с левым полушарием. При выработке условного рефлекса в начальной фазе доминирует правое полушарие, а во время упрочения рефлекса - левое. Правое полушарие осуществляет обработку информации одновременно, синтетически, по принципу дедукции, лучше воспринимаются пространственные и относительные признаки предмета. Левое полушарие производит обработку информации последовательно, аналитически, по принципу индукции, лучше воспринимает абсолютные признаки предмета и временные отношения. В эмоциональной сфере правое полушарие обуславливает преимущественно отрицательные эмоции, контролирует проявления сильных эмоций, в целом оно более «эмоционально». Левое полушарие обуславливает в основном положительные эмоции, контролирует проявление более слабых эмоций.
В сенсорной сфере роль правого и левого полушарий лучше всего проявляется при зрительном восприятии. Правое полушарие воспринимает зрительный образ целостно, сразу во всех подробностях, легче решает задачу различения предметов и опознания визуальных образов предметов, которое трудно описать словами, создает предпосылки конкретно-чувственного мышления. Левое полушарие оценивает зрительный образ расчленено, аналитически, при этом каждый признак анализируется раздельно. Легче опознаются знакомые предметы и решаются задачи сходства предметов, зрительные образы лишены конкретных подробностей и имеют высокую степень абстракции; создаются предпосылки логического мышления.
Моторная асимметрия выражается, прежде всего, в право-леворукости, которая контролируется моторной корой противоположного полушария. Асимметрия других групп мышц имеет индивидуальный, а не видовой характер.
Рис. 3 Асимметрия полушарий мозга
Парность в деятельности больших полушарий обеспечивается наличием комиссуральной системы (мозолистого тела, передней и задней, гиппокампальной и хабенулярной комиссур, межталамического сращения), которые анатомически соединяют два полушария головного мозга. Иначе говоря, оба полушария связаны не только горизонтальными связями, но и вертикальными. Основные факты, полученные с помощью электрофизиологических методик, показали, что возбуждение из участка раздражения одного полушария передается через комиссуральную систему не только в симметричный участок другого полушария, но и в несимметричные участки коры. Исследование метода условных рефлексов показало, в процессе выработки рефлекса происходит «перенос» временной связи в другое полушарие. Элементарные же формы взаимодействия двух полушарий могут осуществляться через четверохолмие и ретикулярную формацию ствола.
Рис. 4 Основные зоны коры больших полушарий
Рис. 5 Речевые зоны коры
33. Кодирование и анализ соматосенсорных сигналов. Соматосенсорная и слуховая сенсорные системы. Обработка соматосенсорных и слуховых сигналов
вегетативный возбудимость модуляция мозжечок
Сенсорные системы, соматосенсорная и слуховая, генерируют сигналы и анализируют соматическую и звуковую информацию. Обе системы зависят, в первую очередь, от сенсорных рецепторов, которые реагируют на механические стимулы, возникающие в результате непосредственной деформации от осязания, или движения конечностей, или смещений, вызванных звуковыми волнами. Центральная нервная система снабжается информацией о месте прикосновения на поверхности тела благодаря сигналам, возникающим от механорецепторных нейронов со специфическими модальностями на коже и в подкожных тканях. Рецептивное поле соматосенсорного нейрона в ЦНС определяется как область периферии, в которой адекватный стимул приводит к изменению активности этого нейрона. Рецептивное поле может быть очень мало, как на кончиках пальцев, или обширно, как в средних участках спины. Концепция рецептивного поля для слуховых сенсорных нейронов более абстрактна. Первичные сенсорные афференты кодируют частотный состав звука с чрезвычайной чувствительностью и избирательностью, но не определяют его пространственной локализации. Скорее, карта звукового пространства выводится центральными нейронами из анализа временного хода и интенсивности входных сигналов, поступающих через оба уха.
Эти различия между двумя системами влияют на организацию проводящих путей и обработку сигналов в ЦНС. Соматосенсорная информация передается от периферических афферентов через нейроны второго порядка в ядрах задних столбов спинного мозга на нейроны вентробазального комплекса таламуса без существенных изменений. Таким образом, нейроны в первичной соматосенсорной коре, принимающие входные сигналы таламуса, имеют такие характеристики ответов, которые тесно связаны с характеристиками сенсорных клеток, напрямую иннервирующих кожу или суставы. Соматосенсорная кора соматотопически картирована. Клетки первичной соматосенсорной коры, объединенные в составе вертикальной колонки, имеют близкую локализацию рецептивных полей и сходный набор модальностей стимула. Вторичные (и ассоциативные) соматосенсорные области также соматотопически картированы, однако они содержат нейроны с более сложными характеристиками стимула, чем характеристики клеток первичной соматосенсорной коры, что предполагает иерархический способ извлечения признаков. «Значение» стимула в соматосенсорной системе зависит, в основном, от его положения на поверхности тела.
Значение звука определяется анализом его спектральных (частотных) и временных характеристик. Частотная избирательность слуховых волосковых клеток определяется их механической и электрической настройкой. Эпителий волосковых клеток организован тонотопически. Афферентные волокна избирательно иннервируют волосковые клетки, и, таким образом, характеризуются своей оптимальной частотой звука, на которую они реагируют лучше всего. Эфферентная отрицательная обратная связь на волосковых клетках улитки уменьшает их чувствительность и частотную избирательность. Афферентные волокна улитки образуют синаптические контакты в ядрах ствола мозга. Нейроны второго порядка проецируются в комплекс верхних олив или идут в составе путей, восходящих через нижние бугры четверохолмия в таламические ядра медиального коленчатого тела. Нейроны в первичной слуховой коре получают вход от обоих ушей и кодируют свойства звука более сложные, чем те, которые были распознаны на периферии. Локализация звука определяется нейронной переработкой, включающей сравнение входов от обоих ушей. Соответственно, центральный слуховой путь включает в себя сложный набор синаптических переключений и обратных связей, в которых происходит бинауральное сравнение, либо определение других аспектов временной организации и частотного состава стимула.
Наше знание о мире зависит от преобразования энергии окружающей среды в нейрональные сигналы. Как определяется значение электрических сигналов? Четыре принципа организации являются важными для сенсорной обработки. Первый из них -- это сохранение отношений ближайшего соседства в организации нервной системы, от рецептивной поверхности до коры. Проистекающая из этого принципа соматотопия (в слуховой системе -- тонотопия) лежит в основе таких синаптических процессов, как латеральное торможение, за счет которого более четко выявляются центральные области рецептивных полей. Второй принцип основан на том факте, что нервная система уделяет особое внимание сигналам, изменяющимся во времени. Таким образом, временная, или частотная, настройка является основным фактором для сенсорного анализа. Третий принцип -- это принцип параллельной обработки различных функциональных аспектов стимула. Четвертый -- это концепция иерархической, или последовательной, обработки, посредством которой более высокие уровни сенсорных путей объединяют входы от более низких уровней, с тем чтобы получить новые, более сложные сенсорные конструкции. В этой главе исследуются соматосенсорная и слуховая системы. В обеих системах могут быть прослежены сходные принципы нейрональной организации. В то же время, различающиеся функциональные потребности соматического восприятия и слуха дают наглядные примеры разнообразия сенсорных механизмов.
Соматосенсорная система: тактильное распознавание
Когда вы проводите кончиками пальцев по одежде или касаетесь ими острия карандаша, вы активируете осязательные рецепторы, которые сообщают вам о текстуре объекта или о локализации точки стимуляции. Если вы с силой сжимаете ручку молотка или теннисной ракетки, вы активируете рецепторы, которые находятся более глубоко в коже и реагируют на силу давления и растяжения, возникающие в результате такого контакта. Очевидно, что в этих различных ситуациях возникают и совершенно различные ощущения. Какие типы рецепторов снабжают нас столь разнообразными ощущениями, и как они организованы? Как мы различаем грубое от мягкого, яйцо от ручной гранаты? Осязание, чувство вибрации и проприоцепция (положение конечностей) обеспечиваются сигналами механорецепторов, проецирующимися через задние столбы спинного мозга в лемнисковую часть соматосенсорной системы, называемую так потому, что информация передается в таламус через специфическую структуру -- медиальный лемннск. В данном разделе мы описываем обработку этой системой кожной механорецепции. Роль рецепторов мышечного натяжения и суставных рецепторов, которые служат для проприоцепции, обсуждается в связи с функцией двигательного контроля.
Организация рецепторов тонкого прикосновения
Лишенная волосяного покрова поверхность кисти руки и пальцев принадлежит к числу самых чувствительных частей тела, и иннервируется приблизительно 17 000 кожных рецепторов! Афферентные волокна от этих рецепторов изучались у обезьян и у людей с использованием методики, получившей название микронейрографии. Вольфрамовые электроды вводятся в нерв и располагаются так, чтобы записывать импульсы от отдельного афферентного аксона во время механической стимуляции кожной поверхности. Область кожи, прикосновение к которой вызывает активность этого волокна, определяет его рецептивное поле. Область кожи около 3 мм в диаметре имеет очень низкий порог реагирования на прогиб. Границы этого рецептивного поля обозначены резким подъемом порога реагирования на прогиб ; за пределами этой области для возникновения разряда требуется гораздо более сильное прогибание кожи. В пределах рецептивного поля расположены локальные горячие точки, имеющие особенно высокую чувствительность (низкий порог). Они могут соответствовать положению отдельных рецепторных окончаний.
Среди тактильных афферентов гладкой (лишенной волос) кожи можно выделить быстро адаптирующиеся и медленно адаптирующиеся, имеющие малые или большие рецептивные поля. Быстро адаптирующиеся рецепторы с малыми рецептивными полями оканчиваются в тельцах Мейснера в поверхностных слоях кожи; медленно адапти рующиеся афференты с малыми рецептивными полями заканчиваются в дисках Меркеля. Тельца Пачини являются чувствительными к вибрации, быстро адаптирующимися рецепторами с большими рецепторными полями и находятся в более глубоких слоях кожи. Афферентные окончания в тельцах Руффиии -- медленно адаптирующиеся с большими рецепторными полями.
Медленно и быстро адаптирующиеся механорецепторы с малыми рецепторными полями расположены с наибольшей плотностью в кончиках пальцев (100/см2), их плотность резко снижается уже в средних фалангах пальцев. Этот паттерн дифференциальной иннервации проявляется в том, что корковые представительства кончиков пальцев имеют большую площадь (как мы вскоре увидим), и объясняет предпочтительное использование пальцев для тактильного анализа предметов. Только губы и язык иннервированы более обильно.
Кодирование стимула
Как качества отдельных осязательных афферентных нейронов связаны с восприятием? Кодируются ли специфическими типами рецепторов такие качества, как твердость и мягкость, или эти ощущения выводятся из конвергенции нескольких осязательных модальностей? Человек ощущает вибрацию кожи на частоте ниже 40 Гц как дрожание, а стимуляцию при частоте от 80 до 300 Гц как зуд. Частотная зависимость этих ощущений коррелирует с настройкой групп быстро адаптирующихся рецепторов. Афференты телец Мейснера лучше всего реагируют на стимуляцию при 30 Гц; афференты телец Пачини оптимально реагируют на кожную вибрацию на частотах 250 Гц. Таким образом, существует предположительная корреляция между свойствами ответа идентифицированных типов рецепторов и психофизически различимыми стимулами.
Однако пассивная вибрация кожи имеет ограниченное значение для познавательного процесса активного осязания, поэтому руки и пальцы быстро движутся по объекту, чтобы определить текстуру и очертания поверхности. Отведения активности от афферентных волокон у обезьян, обученных распознавать поверхностные очертания (выпуклые буквы), показывают, что важную роль в этом процессе играют медленно адаптирующиеся рецепторы с малыми рецепторными полями. Этот класс рецепторов также вносит значительный вклад в восприятие шершавости объекта. Быстроадаптирующиеся рецепторы, чувствительные к вибрации, могут быть связаны с оценкой надежности захвата объекта, возможно, потому, что выскальзывание схваченных объектов вызывает вибрацию кожи. Медленно адаптирующиеся рецепторы, расположенные глубоко в коже, чувствительны к растяжению в определенном направлении, а также к другим стимулам, которые возникают при схватывании объектов.
Центральные проводящие пути
Определение методом микронейрографии порога стимуляции для различных типов афферентных нейронов можно сопоставить с психофизической реакцией человека. Существует четкое соотношение между чувствительностью периферических афферентов и восприятием уровня стимула, особенно при пороговой чувствительности. Замечательно, что единичного потенциала действия в одном из классов механорецептивных афферентов (быстро адаптирующихся) было достаточно, чтобы вызывать поддающиеся описанию ощущения, соответствующее прогибу кожной поверхности всего лишь на 10 мкм. Впечатляет не только чувствительность кончиков пальцев, но также и процесс передачи информации в мозг. Передача информации от внешнего раздражителя к осознанному восприятию происходит с чрезвычайно высокой надежностью. Всего несколько синаптических контактов существуют на этом пути к коре, и каждый действует с высоким фактором надежности, так что передача осуществляется без каких-либо искажений. То, что стимулы, воздействующие непосредственно на поверхность тела, имеют быстрый доступ к сознанию, представляет собой явное преимущество.
Основные соматосенсорные пути передачи ощущений прикосновения, давления и вибрации в мозг. Периферические аксоны афферентных нейронов соединяются с телами клеток, расположенных в спинальных ганглиях. Центральные отростки афферентов от кожи, глубоких тканей, мышц и суставов входят в задние корешки, дают коллатерали для образования синапсов на спинальных нейронах и направляются в восходящем направлении в составе задних столбов, оканчиваясь на клетках второго порядка в клиновидном и тонком ядрах (которые называют ядрами задних столбов). Аксоны клеток второго порядка в ядрах задних столбов переходят на противоположную сторону и восходят в медиальный лемниск, оканчиваясь на клетках вентро-постеро-латерального (VPL) ядра таламуса. Пути от головы и шеи отличаются анатомически, но функционально аналогичны спинальным путям, оканчиваясь в вентро-постеро-медиальном (VPM) ядре таламуса. Клетки третьего порядка из VPL и VPM ядер таламуса проецируются в постцентральную извилину коры мозга -- первичную соматосенсорную область.
Всего три синапса находятся между возбуждением окончаний первичных афферентов кожи и активацией нейронов коры. Принцип сохранения отношений ближайшего соседства сохраняется на всех уровнях этого пути, обеспечивая соматотопическую проекцию тела на уровне коры. Левая сторона тела картируется на правую соматосенсорную область коры, контралатеральная организация возникает в результате перекрещивания аксонов, входящих в состав медиального лемниска.
Соматосенсорная кора
Первичная соматосенсорная кора (S1) находится в извилине коры непосредственно позади центральной борозды. Серое вещество коры имеет в толщину несколько миллиметров и состоит из шести различимых слоев. От других участков первичной сенсорной коры S1 отличается высокой плотностью гранулярных (звездчатых) клеток в слое 4, являющихся основным местом назначения таламических входов. Важная организационная особенность S1 состоит в том, что соседние точки на поверхности коры представляют соседние участки поверхности тела. Ноги и туловище проецируются более медиально, затем представлены руки, а вслед за ними голова и язык.
Стимуляция пре- и постцентральной извилин у пациентов, подвергающихся хирургической операции по удалению эпилептического очага, дала важные ранниесведения для построения этой соматотопической карты. Более подробные карты коры построены на основе исследований вызванных потенциалов (регистрация локального потенциала в ответ на стимуляцию кожи), осуществляемых на крысе, кролике, кошке и обезьяне. Важным наблюдением было то, что пропорции кортикальной карты тела всегда искажались. У обезьян и людей участки S1, картирующие руки, пальцы и губы, больше, чем те, которые связаны с туловищем или ногами. У других животных преобладают различные регионы тела: усы у крысы или мыши, лапа у енота или нос у утконоса.
Искажения соматотопической карты обусловлены более высокой плотностью иннервации тактильными рецепторами периферических зон в области кончиков пальцев, губ и языка. В то же время было показано, что корковые представительства не остаются неизменными, но могут видоизменяться из-за повреждений, которые модифицируют сенсорный вход в кору, или даже за счет дифференциальной стимуляции периферии. Например, обнаружено, что корковое представительство левой руки у музыкантов, играющих на струнных инструментах (например, на скрипке), больше, чем у контрольной группы людей. Подобные наблюдения подразумевают, что таламические входы в кору пластичны, и что объем или эффективность синаптических полей, формируемых ими, может меняться в результате деятельности.
Свойства ответов корковых нейронов
Каким образом информация обрабатывается в соматосенсорной коре? Ранее мы описали свойства кожных механорецепторов посредством регистрации их потенциалов действия во время стимуляции кожи. Подобные же эксперименты проводились, чтобы определить, как корковые нейроны реагируют на стимуляцию кожи. Металлические или стеклянные микроэлектроды, введенные в мозг с помощью микроманипуляторов, использовались для записи потенциалов действия отдельных корковых нейронов, так называвмой регистрации отдельных единиц (single--unit recording). В 1950-е годы Пауэлл и Маунткастл получили отведение от S1 с помощью таких электродов, подведенных перпендикулярно поверхности коры. Они обнаружили, что клетки, зарегистрированные по ходу одного вертикального прохода (track) электрода, имели перекрывающиеся рецептивные поля на поверхности тела. Более того, каждая клетка предпочтительно реагировала на один и тот же тип стимуляции -- кожную вибрацию, например. Прохождение через новый участок коры, отстоящий на несколько миллиметров в сторону, приводило к смещению рецептивного поля регистрируемых нейронов в другую область тела и, иногда, к изменению модальности эффективного стимула. Таким образом, Пауэлл и Маунткастл установили важный принцип, который прослеживается во всей коре: корковые клетки организованы в колонки (columns) в соответствии с расположением рецептивного поля (соматотопией) и модальностью стимула.
Латеральное торможение
Рецептивные поля корковых нейронов существенным образом отличаются от полей первичных афферентных нейронов. Рецептивное поле первичных осязательных афферентных нейронов -- это просто та область кожи, где стимуляция вызывает возбуждение. Рецептивное поле коркового нейрона, однако, устроено более сложно. Часто центральная область кожи, прикосновение к которой вызывает возбуждение, окружена областями торможения. Это тормозное окружение обусловлено синаптическими взаимодействиями по ходу соматосенсорного пути. Торможение осуществляется через тормозные интернейроны, которые связаны со всеми соседними клетками, что названо латеральным торможением.
Латеральное торможение -- это важный механизм для улучшения тактильного разрешения. Если касаться кожи двумя близко расположенными пробниками, афферентные окончания непосредственно под каждым пробником могут быть максимально активированы, но афферентные волокна, иннервирующие окружающие участки кожи, тоже будут возбуждены в результате распространения прогиба эластичной кожи. Если каждое афферентное волокно пропорционально вовлекает тормозные интернейроны в ядрах задних столбов, то максимально активированные афференты будут преобладать над своими менее активированными соседями. Вследствие этого, импульсация в волокнах, которые активированы в результате раздражения окружающих участков кожи, подавляется. Это улучшает способность коры отличать один большой пробник от двух маленьких.
Латеральное торможение может быть также рассмотрено как средство улучшения раз личения границ. Стимул, который приходится как на возбужденный центр, так и на тормозное окружение, будет менее эффективен, чем стимул, который прекращается (имеет границу) в пределах возбужденного центра. Это, опять же, иллюстрирует тот факт, что нервная система опирается на распознавание изменений, в данном случае -- пространственных границ.
Параллельная обработка сенсорных модальностей
Передне-центральная извилина может быть разделена на несколько областей на основе различий в клеточной организации и сенсорной модальности. Область За является непосредственно смежной с первичной моторной корой, и нейроны там реагируют прежде всего на мышечные рецепторы растяжения и на другие глубокие рецепторы Специфическая локализация рецепторного типа в пределах подобластей S1 иллюстрирует концепцию параллельной обработки в каждой сенсорной системе. Каждая область тела представлена в кожной зоне, так же как и в зоне глубоких рецепторов. Таким образом, соматотопическая корковая карта фактически состоит из множества представительств плана тела, по одному для каждой сенсорной модальности.
Точная анатомическая и функциональная организация соматосенсорной коры особенно ярко видна на примере проекции сенсорной иннервации от вибрисс мыши. Как и у людей, лицевая область коры у мыши непропорционально велика. Гистологические исследования Вулси и Ван дер Луза показали, что эта область соматосенсорной коры у мыши содержит характерные группы нервных клеток, собранных вместе в пучки в форме цилиндров, которые лежат перпендикулярно в коре. Эти скопления были названы бочонками за свою форму, которая была выявлена путем реконструкции по серийным срезам. Каждый бочонок -- от 100 до 400 мкм в диаметре -- состоит из кольца клеток, окружающих сердцевину, содержащую немногочисленные клетки.
Массив бочонков у мыши обычно организован в пять рядов. Замечательно, что этот паттерн точно соответствует рядам вибрисс на морде мыши -- один бочонок для одного уса. Если ус удалить сразу после рождения, соответствующий бочонок исчезает из коры. Деафферентация на более поздних этапах приводит к разнообразным изменениям, включая измененную экспрессию рецепторов нейромедиаторов в «бочоночной» коре. Функциональное значение бочонков подтверждено электрическим отведением от индивидуальных клеток коры. Каждая клетка отвечает на движение соответствующего уса -- некоторые избирательно возбуждаются при движении уса в конкретном направлении. Таким образом, значительная часть соматосенсорной коры мыши занята обработкой информации, поступающей от механорецепторов, расположенных на морде. Мышь использует свои вибриссы как чувствительные антенны, двигая ими вперед и назад, по мере того, как она движется, чтобы обнаруживать объекты по обе стороны своего пути.
Вторичная и ассоциативная соматосенсорная кора
Множественное представительство тела находится в первичной соматосенсорной коре (S1). По мере удаление от центральной борозды, от области 3b до 1 и до 2, рецептивные поля становятся больше, и организация по принципу «центр -- окружение», избирательность по направлению и интеграция субмодальности становятся все более выраженными в нейронном ответе. Область 1 лежит непосредственно позади области 3b и получает от нее активирующий вход. Область 2 получает вход как от 3a, так и от 3b.
В дополнение к первичной соматосенсорной коре, множественные представительства тела имеются в других, вторичных областях. В общем это зоны или полосы коры, которые лежат позади и вентролатеральнее по отношению к S1. У приматов вторичная соматосенсорная кора (S2) лежит на передней стенке боковой борозды, находясь вентральнее, чем S1. S2 также соматотопически организована, и получает вход как от таламуса, так и от S1. Если у приматов хирургически удалить S1, активность клеток в S2 значительно снижается. Если из S1 убраны только области 3b и 2 (где обрабатывается поверхностная, или кожная, стимуляция), то количество клеток в S2, отвечающих на кожную стимуляцию, специфически уменьшается. Результаты этих экспериментов свидетельствуют, что соматосенсорная информация поступает от S1 к S2. У других видов прямой таламический путь к S2 имеет более важное значение.
Поток информации от S1 к S2 также может быть иерархическим в том смысле, что эта информация обрабатывается в S1, a S2 затем имеет дело уже с производными свойствами соматочувствительности. Например, когда обезьяна прикасается кончиками пальцев к вращающемуся барабану, во многих нейронах в S1 импульсация возрастает пропорционально увеличению неровности поверхности барабана, как если бы они управлялись непосредственно афферентным входом. В S2, однако, многие нейроны сигнализируют об изменении текстуры, независимо от величины этого изменения. Другими словами, нейроны в S2 выводят концепцию (различие в качестве поверхности) из более простой информации, поступающей в S1. Другие наблюдения также свидетельствуют, что зона S2 имеет дело со сложными аспектами сенсорного кодирования. Например, множество клеток в S2 y приматов имеют билатеральные рецептивные поля, отвечая на стимуляцию сходных областей на обеих сторонах тела.
Области 5 и 7 по Бродману представляют собой соматосенсорную ассоциативную кору. Нейроны, расположенные здесь, реагируют на стимуляцию кожи или движение конечности, но требования к стимулу у них сложны и отличаются от профилей реакции первичных сенсорных афферентов. Более того, нейроны здесь могут также реагировать на зрительную стимуляцию. Хотя специфические функции вспомогательных областей соматосенсорной коры до конца не понятны, ясно то, что тенденция к более сложно организованным стимулам в них возрастает по мере удаления от центральной борозды.
Болевые и температурные проводящие пути
Информация о вредоносных стимулах и температуре передается в высшие центры специфическими рецепторами и по путям, в значительной степени отличным от ощущений положения, прикосновения и давления. Ощущения боли и температуры передаются по миелинизированным и немиелинизированным афферентам малого диаметра, имеющим свободные нервные окончания в коже и других тканях. Окончания морфологически не специализированы, но могут быть разделены на разные подтипы, лучше реагирующие на осязательные стимулы, нагрев или охлаждение, повреждение и боль. Ноцицептивные и температурно-чувствительные афферентные аксоны подразделяются по величине на два класса. А--волокна имеют от 1 до 4 мкм в диаметре и проводят возбуждение со скоростью от 6 до 25 м/с, а немиелинизированные С-аксоны от 0,1 до 1 мкм в диаметре -- со скоростью от 0,5 до 2 м/с.
Два типа волокон передают различные болевые ощущения. У человека короткий, интенсивный стимул, подаваемый на удаленный участок конечности, вызывает сначала острое и относительно короткое колющее болевое ощущение (первичная боль), за которым следует тупое, длительное ощущение жжения (вторичная боль). Электрофизиологические эксперименты показали, что первичная боль связана с активацией мелких миелинизированных волокон, а вторичная боль -- с активацией С-волокон.
Центральные пути боли
Ноцицептивные и температурно-чувствительные афферентные аксоны образуют синапсы на клетках второго порядка внутри задних столбов спинного мозга. Волокна от клеток второго порядка переходят на противоположную сторону и восходят по двум основным путям: латеральному и вентральному спиноталамическим трактам. Восходящие волокна оканчиваются в вентробазальном и медиальном ядрах таламуса -- поэтому они называются спиноталамическим трактом. Клетки в вентробазальном и медиальном ядрах таламуса проецируются на соматосенсорную кору и далее по всему мозгу. В отличие от нейронов высокого порядка в задних столбах (лемнисках), пути в таламусе и коре, получающие Ноцицептивные вхо можно найти в содержательной монографии Филдза о нейрофизиологических и клинических аспектах боли. Этот путь начинается в среднем мозге от группы клеток серого вещества периаквелуктальной области. Как было обнаружено в некоторых случаях, стимуляция этой области имплантированными электродами вызывает избирательное снижение сильной клинической боли. Считается, что задействованные в этом клетки являются энкефалинергическими и проецируются на серотонинергические нейроны в ростральной части ствола мозга (rostral medulla). Стволовые нейроны затем посылают нисходящие волокна по дорсолатеральному фуникулярному тракту спинного мозга в задние рога, а именно в I и II слои. Там они образуют синапсы с интернейронами и терминалями афферентных волокон, модулируя передачу в болевых путях. Нисходящие волокна сопровождаются норадренергическими волокнами, принадлежащими ко второму пути, берущему начало в дорсолатеральном отделе моста, который также задействован в модуляции боли.
...Подобные документы
Рефлексы, участвующие в регуляции дыхания. Разновидности рецепторов бронхо-легочного аппарата, принимающих участие в регуляции дыхания. Рефлексы, возникающие при изменении объема легких. Дополнительные разновидности патологических дыхательных движений.
презентация [2,4 M], добавлен 08.01.2014Схема головного мозга человека. Отделы промежуточного мозга и мозжечка; ядра таламуса и гипоталамуса, их функции и симптомы поражения. Афферентные связи коры мозжечка; связи вестибулоцеребеллюма, спиноцеребеллюма и неоцеребеллюма. Мозжечок как компаратор.
презентация [2,3 M], добавлен 08.01.2014Представления о регулировании физиологических функций. Механизмы регуляции: нервно-рефлекторные и гуморальные. Виды нервных волокон. Законы проведения возбуждения. Функциональное значение нейронов структурных элементов, процессы, протекающие в них.
контрольная работа [29,6 K], добавлен 21.01.2010Общее строение головного мозга, его отделы. Строение мозжечка - отдела головного мозга, отвечающего за координацию движений, регуляцию равновесия и мышечного тонуса. Клинические проявления, развивающиеся при поражении мозжечка или его недостаточности.
контрольная работа [28,8 K], добавлен 16.09.2015Понятие возбудимости и раздражимости, способность живых клеток воспринимать изменения внешней среды и отвечать на раздражения реакцией возбуждения. Скорость протекания циклов возбуждения в нервной ткани (лабильность). Свойств биологических мембран.
реферат [1005,0 K], добавлен 31.12.2012Характеристика анатомии мозжечка, переднего мозга и их физиологических параметров. Расположение, строение и нейрофизиология мозжечка и переднего мозга. Проводящие пути, филогенетические отделы и функции мозжечка. Распределение серого и белого вещества.
презентация [5,7 M], добавлен 13.12.2013Система регуляции деятельности внутренних органов посредством гормонов. Функции эндокринной системы, участие в гуморальной (химической) регуляции функций организма и координирование деятельности всех органов и систем. Функция паращитовидных желёз.
реферат [17,2 K], добавлен 22.04.2009Уровни регуляции произвольных движений и действий. Путь двигательного анализатора и строение сензомоторных отделов коры. Экстрапирамидная система. Нарушения двигательных функций. Поражение коркового звена, подкорковых структур и мозжечка. Формы апраксий.
презентация [405,6 K], добавлен 13.03.2014Исследование расположения и функций мозжечка, отдела головного мозга позвоночных, отвечающего за координацию движений, регуляцию равновесия и мышечного тонуса. Описания процесса обработки нервных сигналов, поступающих от органов чувств, их корректировки.
презентация [2,9 M], добавлен 25.11.2011Физиологические и анатомические особенности вегетативной нервной системы. Высшие вегетативные центры мозга, их структура и назначение. Гипоталамус как высший центр регуляции вегетативных функций. Тонус вегетативной нервной системы и его измерение.
реферат [16,3 K], добавлен 10.07.2011Особенности строения плазматической мембраны, сущность ее барьерной и транспортной функций и основные компоненты липопротеинового комплекса. Механизмы транспорта веществ через плазмолемму, ее рецепторная функция и особенности межклеточных контактов.
лекция [30,7 K], добавлен 27.07.2013Общее понятие и особенности функций высшей нервной деятельности человека. История открытия механизмов условных рефлексов и изучение их физиологии И.П. Павловым. Исследование высших функций мозга в трудах философов античности Гиппократа и Декарта.
реферат [20,1 K], добавлен 17.04.2011Пути и механизмы регуляции иммунитета с помощью нейромедиаторов, нейропептидов и гормонов. Парасимпатический отдел вегетативной нервной системы и регуляция иммунного ответа. Механизмы регуляции иммунного ответа соматотропином и опиоидными пептидами.
презентация [243,2 K], добавлен 02.12.2016Сущность клеточного цикла - периода жизни клетки от одного деления до другого или от деления до смерти. Биологическое значение митоза, его основные регуляторные механизмы. Два периода митотического деления. Схема активации циклинзависимой киназы.
презентация [823,0 K], добавлен 28.10.2014Контуры регуляции функций. Схема локальной регуляция функции. Состав внутренней среды. Схема гомеостатического механизма. Формирование систем регуляции. Понятие о функциональном элементе ткани по А.М. Чернуху. Механизм взаимосвязи между клетками.
презентация [290,4 K], добавлен 15.02.2014Этапы развития физиологии. Гуморальная, нервная и метаболическая регуляция функций организма. Электрические явления в возбудимых тканях. Распространение возбуждения по нервным волокнам. Современные представления о мышечном сокращении и расслаблении.
презентация [3,0 M], добавлен 16.10.2012Предмет и роль физиологии в системе медицинского образования, краткая история, современные тенденции и задачи физиологии. Организм и внешняя среда, исследование физиологии целостного организма. Метод графической регистрации и биоэлектрических явлений.
курсовая работа [63,3 K], добавлен 02.01.2013Анализ механизмов прохождения веществ через клеточную мембрану. Основные процессы, с помощью которых вещества проникают через мембрану. Свойства простой и облегченной диффузии. Типы активного транспорта. Ионные каналы, их отличие от поры, градиент.
презентация [282,3 K], добавлен 06.11.2014Строение ствола мозга, основные функции его тонических рефлексов. Особенности функционирования продолговатого мозга. Расположение варолиева моста, анализ его функций. Ретикулярная формация мозга. Физиология среднего и промежуточного мозга, мозжечка.
презентация [751,7 K], добавлен 09.10.2016Обзор особенностей структуры, биосинтеза, транспорта, рецепции, действия и метаболизма мужских половых гормонов андрогенов. Изучение полового поведения и агрессивности у самцов млекопитающих. Характеристика регуляции сперматогенеза и гомеостаза кальция.
реферат [2,1 M], добавлен 20.04.2012