Полногеномное сравнение распределения ретроэлементов в ДНК человека и шимпанзе
Краткая характеристика и классификация мобильных элементов ДНК человека. Общая характеристика ретроэлементов. Эволюция автономных ретроэлементов. Появление метода репрезентативного дифференциального анализа и метода супрессионной вычитающей гибридизации.
Рубрика | Биология и естествознание |
Вид | диссертация |
Язык | русский |
Дата добавления | 18.11.2018 |
Размер файла | 4,6 M |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
212. Tanaka, I. and H. Ishihara, Unusual long target duplication by insertion of intracisternal A- particle element in radiation-induced acute myeloid leukemia cells in mouse. FEBS Lett, 1995. 376(3): p. 146-50.
213. Lankenau, S., V.G. Corces, and D.H. Lankenau, The Drosophila micropia retrotransposon encodes a testis-specific antisense RNA complementary to reverse transcriptase. Mol Cell Biol, 1994. 14(3): p. 1764-75.
214. Arkhipova, I.R. and Y.V. Ilyin, Properties of promoter regions of mdg1 Drosophila retrotransposon indicate that it belongs to a specific class of promoters. Embo J, 1991. 10(5): p. 1169-77.
215. Arkhipova, I.R., Complex patterns of transcription of a Drosophila retrotransposon in vivo and in vitro by RNA polymerases II and III. Nucleic Acids Res, 1995. 23(21): p. 4480-7.
216. Jacks, T., et al., Characterization of ribosomal frameshifting in HIV-1 gag-pol expression. Nature, 1988. 331(6153): p. 280-3.
217. Lower, R., J. Lower, and R. Kurth, The viruses in all of us: characteristics and biological significance of human endogenous retrovirus sequences. Proc. Natl. Acad. Sci. U S A, 1996. 93(11): p. 5177-5184.
218. Ченок, Р., Ройзман, Б., Мелник, Д., Шоуп, Р., Вирусология, ed. Б. Филдс, Найп, Д. 1989, М.: Мир.
219. Goodwin, T.J. and R.T. Poulter, Multiple LTR-retrotransposon families in the asexual yeast Candida albicans. Genome Res, 2000. 10(2): p. 174-91.
220. Kim, J.M., et al., Transposable elements and genome organization: a comprehensive survey of retrotransposons revealed by the complete Saccharomyces cerevisiae genome sequence. Genome Res, 1998. 8(5): p. 464-78.
221. Flavell, A.J., et al., Ty1-copia group retrotransposon sequences in amphibia and reptilia. Mol Gen Genet, 1995. 246(1): p. 65-71.
222. Laten, H.M., Phylogenetic evidence for Ty1-copia-like endogenous retroviruses in plant genomes. Genetica, 1999. 107(1-3): p. 87-93.
223. Malik, H.S., S. Henikoff, and T.H. Eickbush, Poised for contagion: evolutionary origins of the infectious abilities of invertebrate retroviruses. Genome Res, 2000. 10(9): p. 1307-18.
224. Varmus, H., Replication of Retroviruses, in RNA tumor viruses 2nd ed. 1985, Cold Spring Harbor laboratory Press: NY. p. 369-512.
225. Дуглас, Р.Л., Трансформация и онкогенез: ретровирусы, in Вирусология, Б. Филдс, Найп, Д., Editor. 1989, Мир: М.
226. Jamain, S., et al., Transduction of the human gene FAM8A1 by endogenous retrovirus during primate evolution. Genomics, 2001. 78(1-2): p. 38-45.
227. Vazquez-Manrique, R.P., et al., Evolution of gypsy endogenous retrovirus in the Drosophila obscura species group. Mol Biol Evol, 2000. 17(8): p. 1185-93.
228. Georgiev, G.P., Mobile genetic elements in animal cells and their biological significance. Eur J Biochem, 1984. 145(2): p. 203-20.
229. Shiba, T. and K. Saigo, Retrovirus-like particles containing RNA homologous to the transposable element copia in Drosophila melanogaster. Nature, 1983. 302(5904): p. 119-24.
230. Garfinkel, D.J., J.D. Boeke, and G.R. Fink, Ty element transposition: reverse transcriptase and virus-like particles. Cell, 1985. 42(2): p. 507-17.
231. Kim, A., et al., Retroviruses in invertebrates: the gypsy retrotransposon is apparently an infectious retrovirus of Drosophila melanogaster. Proc Natl Acad Sci U S A, 1994. 91(4): p. 1285-9.
232. Yieh, L., et al., The Brf and TATA-binding protein subunits of the RNA polymerase III transcription factor IIIB mediate position-specific integration of the gypsy-like element, Ty3. J Biol Chem, 2000. 275(38): p. 29800-7.
233. Farabaugh, P.J., et al., Three downstream sites repress transcription of a Ty2 retrotransposon in Saccharomyces cerevisiae. Mol Cell Biol, 1993. 13(4): p. 2081-90.
234. Lammel, U. and C. Klambt, Specific expression of the Drosophila midline-jumper retro-transposon in embryonic CNS midline cells. Mech Dev, 2001. 100(2): p. 339-42.
235. Friant, S., et al., Interactions between Ty1 retrotransposon RNA and the T and D regions of the tRNA(iMet) primer are required for initiation of reverse transcription in vivo. Mol Cell Biol, 1998. 18(2): p. 799-806.
236. Lauermann, V. and J.D. Boeke, Plus-strand strong-stop DNA transfer in yeast Ty retrotransposons. Embo J, 1997. 16(21): p. 6603-12.
237. Suck, G. and W. Traut, TROMB, a new retrotransposon of the gypsy-Ty3 group from the fly Megaselia scalaris. Gene, 2000. 255(1): p. 51-7.
238. Lyubomirskaya, N.V., et al., Two Drosophila retrotransposon gypsy subfamilies differ in ability to produce new DNA copies via reverse transcription in Drosophila cultured cells. Nucleic Acids Res, 1993. 21(14): p. 3265-8.
239. Becker, J., J.L. Becker, and M. Best-Belpomme, Characterization and purification of DNA-RNA complexes related with 1731 and copia-like transposable elements in a Drosophila cell line. Cell Mol Biol, 1990. 36(4): p. 449-60.
240. Lankenau, D.H., et al., Micropia: a retrotransposon of Drosophila combining structural features of DNA viruses, retroviruses and non-viral transposable elements. J Mol Biol, 1988. 204(2): p. 233-46.
241. Flavell, A.J., Role of reverse transcription in the generation of extrachromosomal copia mobile genetic elements. Nature, 1984. 310(5977): p. 514-6.
242. Shank, P.R. and H.E. Varmus, Virus-specific DNA in the cytoplasm of avian sarcoma virus-infected cells is a precursor to covalently closed circular viral DNA in the nucleus. J Virol, 1978. 25(1): p. 104-4.
243. Jordan, I.K. and J.F. McDonald, Evolution of the copia retrotransposon in the Drosophila melanogaster species subgroup. Mol Biol Evol, 1998. 15(9): p. 1160-71.
244. Leblanc, P., et al., Invertebrate retroviruses: ZAM a new candidate in D.melanogaster. Embo J, 1997. 16(24): p. 7521-31.
245. Whalen, J.H. and T.A. Grigliatti, Molecular characterization of a retrotransposon in Drosophila melanogaster, nomad, and its relationship to other retrovirus-like mobile elements. Mol Gen Genet, 1998. 260(5): p. 401-9.
246. Tanda, S., et al., Retrovirus-like features and site specific insertions of a transposable element, tom, in Drosophila ananassae. Mol Gen Genet, 1988. 214(3): p. 405-11.
247. Friesen, P.D. and M.S. Nissen, Gene organization and transcription of TED, a lepidopteran retrotransposon integrated within the baculovirus genome. Mol Cell Biol, 1990. 10(6): p. 3067-77.
248. Springer, M.S. and R.J. Britten, Phylogenetic relationships of reverse transcriptase and RNase H sequences and aspects of genome structure in the gypsy group of retrotransposons. Mol Biol Evol, 1993. 10(6): p. 1370-9.
249. Scherer, G., et al., B104, a new dispersed repeated gene family in Drosophila melanogaster and its analogies with retroviruses. J Mol Biol, 1982. 157(3): p. 435-51.
250. Yuki, S., et al., Nucleotide sequence characterization of a Drosophila retrotransposon, 412. Eur J Biochem, 1986. 158(2): p. 403-10.
251. Temin, H.M., Retroviruses and evolution. Cell Biophys, 1986. 9(1-2): p. 9-16.
252. Bowen, N.J. and J.F. McDonald, Genomic analysis of Caenorhabditis elegans reveals ancient families of retroviral-like elements. Genome Res, 1999. 9(10): p. 924-35.
253. Beeman, R.W., et al., Woot, an active gypsy-class retrotransposon in the flour beetle, Tribolium castaneum, is associated with a recent mutation. Genetics, 1996. 143(1): p. 417-26.
254. Christopher, M.E. and A.G. Good, Evolution of a functionally related lactate dehydrogenase and pyruvate decarboxylase pseudogene complex in maize. Genome, 1999. 42(6): p. 1167-75.
255. Vieira, C., G. Piganeau, and C. Biemont, High copy numbers of multiple transposable element families in an Australian population of Drosophila simulans. Genet Res, 2000. 76(1): p. 117-9.
256. Kenna, M.A., et al., Invading the yeast nucleus: a nuclear localization signal at the C terminus of Ty1 integrase is required for transposition in vivo. Mol Cell Biol, 1998. 18(2): p. 1115-24.
257. Umezu, K., et al., Structural analysis of aberrant chromosomes that occur spontaneously in diploid Saccharomyces cerevisiae: retrotransposon Ty1 plays a crucial role in chromosomal rearrangements. Genetics, 2002. 160(1): p. 97-110.
258. Levin, H.L., A novel mechanism of self-primed reverse transcription defines a new family of retroelements. Mol Cell Biol, 1995. 15(6): p. 3310-7.
259. Syomin, B.V., T.Y. Leonova, and Y.V. Ilyin, Evidence for horizontal transfer of the LTR retrotransposon mdg3, which lacks an env gene. Mol Genet Genomics, 2002. 267(3): p. 418-23.
260. Yieh, L., et al., Mutational analysis of the transcription factor IIIB-DNA target of Ty3 retroelement integration. J Biol Chem, 2002. 277(29): p. 25920-8.
261. Smit, A.F., Identification of a new, abundant superfamily of mammalian LTR- transposons. Nucleic Acids Res, 1993. 21(8): p. 1863-72.
262. Lee, S.H., X. Wang, and J. DeJong, Functional interactions between an atypical NF-kappaB site from the rat CYP2B1 promoter and the transcriptional repressor RBP-Jkappa/CBF1. Nucleic Acids Res, 2000. 28(10): p. 2091-8.
263. Herniou, E., et al., Retroviral diversity and distribution in vertebrates. J Virol, 1998. 72(7): p. 5955-66.
264. Rowe, W.P., Leukemia virus genomes in the chromosomal DNA of the mouse. Harvey Lect, 1978. 71: p. 173-92.
265. Ono, M., Molecular biology of type A endogenous retrovirus. Kitasato Arch Exp Med, 1990. 63(2-3): p. 77-90.
266. Jaenisch, R., Endogenous retroviruses. Cell, 1983. 32(1): p. 5-6.
267. Martin, M.A., et al., Identification and cloning of endogenous retroviral sequences present in human DNA. Proc Natl Acad Sci U S A, 1981. 78(8): p. 4892-6.
268. Patience, C., D.A. Wilkinson, and R.A. Weiss, Our retroviral heritage. Trends Genet., 1997. 13(3): p. 116-120.
269. Taruscio, D. and A. Mantovani, Human endogenous retroviral sequences: Possible roles in reproductive physiopathology. Biol. Reprod., 1998. 59(4): p. 713-724.
270. Lower, R., The pathogenic potential of endogenous retroviruses: facts and fantasies. Trends Microbiol, 1999. 7(9): p. 350-6.
271. Chene, L., et al., High-level replication of human immunodeficiency virus in thymocytes requires NF-kappaB activation through interaction with thymic epithelial cells. J Virol, 1999. 73(3): p. 2064-73.
272. Knossl, M., R. Lower, and J. Lower, Expression of the human endogenous retrovirus HTDV/HERV-K is enhanced by cellular transcription factor YY1. J. Virol., 1999. 73(2): p. 1254-1261.
273. Li, S., et al., Image reconstructions of helical assemblies of the HIV-1 CA protein. Nature, 2000. 407(6802): p. 409-13.
274. Yuan, B., X. Li, and S.P. Goff, Mutations altering the moloney murine leukemia virus p12 Gag protein affect virion production and early events of the virus life cycle. Embo J, 1999. 18(17): p. 4700-10.
275. Harris, J.M., E.M. McIntosh, and G.E. Muscat, Expression and cytoplasmic localisation of deoxyuridine triphosphate pyrophosphatase encoded by a human endogenous retrovirus. Arch Virol, 2000. 145(2): p. 353-63.
276. Harris, J.M., E.M. McIntosh, and G.E. Muscat, Structure/function analysis of a dUTPase: catalytic mechanism of a potential chemotherapeutic target. J. Mol. Biol., 1999. 288(2): p. 275-287.
277. Yang, J., et al., An ancient family of human endogenous retroviruses encodes a functional homolog of the HIV-1 Rev protein. Proc. Natl. Acad. Sci. USA, 1999. 96(23): p. 13404-13408.
278. Magin, C., R. Lower, and J. Lower, cORF and RcRE, the Rev/Rex and RRE/RxRE homologues of the human endogenous retrovirus family HTDV/HERV-K. J. Virol., 1999. 73(11): p. 9496-9507.
279. Andersson, A.C., et al., Developmental expression of HERV-R (ERV3) and HERV-K in human tissue. Virology, 2002. 297(2): p. 220-5.
280. Magin, C., et al., Corf, the Rev/Rex homologue of HTDV/HERV-K, encodes an arginine-rich nuclear localization signal that exerts a trans-dominant phenotype when mutated. Virology, 2000. 274(1): p. 11-6.
281. Boese, A., M. Sauter, and N. Mueller-Lantzsch, A rev-like NES mediates cytoplasmic localization of HERV-K cORF. FEBS Lett, 2000. 468(1): p. 65-7.
282. Tachedjian, G., H.E. Aronson, and S.P. Goff, Analysis of mutations and suppressors affecting interactions between the subunits of the HIV type 1 reverse transcriptase. Proc Natl Acad Sci U S A, 2000. 97(12): p. 6334-9.
283. Roebuck, K.A. and M. Saifuddin, Regulation of HIV-1 transcription. Gene Expr, 1999. 8(2): p. 67-84.
284. Cullen, B.R., HIV-1 auxiliary proteins: making connections in a dying cell. Cell, 1998. 93(5): p. 685-92.
285. Shimura, M., et al., Micronuclei formation and aneuploidy induced by Vpr, an accessory gene of human immunodeficiency virus type 1. Faseb J, 1999. 13(6): p. 621-37.
286. Burton, M., et al., Human T-cell leukemia virus type 1 Tax shuttles between functionally discrete subcellular targets. J Virol, 2000. 74(5): p. 2351-64.
287. Slattery, J.P., G. Franchini, and A. Gessain, Genomic evolution, patterns of global dissemination, and interspecies transmission of human and simian T-cell leukemia/lymphotropic viruses. Genome Res, 1999. 9(6): p. 525-40.
288. Paulus, C., et al., Competitive inhibition of human immunodeficiency virus type-1 protease by the Gag-Pol transframe protein. J Biol Chem, 1999. 274(31): p. 21539-43.
289. Tristem, M., Identification and characterization of novel human endogenous retrovirus families by phylogenetic screening of the human genome mapping project database. J Virol, 2000. 74(8): p. 3715-30.
290. Huder, J.B., et al., Identification and characterization of two closely related unclassifiable endogenous retroviruses in pythons (Python molurus and Python curtus). J Virol, 2002. 76(15): p. 7607-15.
291. Benit, L., et al., ERV-L elements: a family of endogenous retrovirus-like elements active throughout the evolution of mammals. J Virol, 1999. 73(4): p. 3301-8.
292. Mang, R., J. Goudsmit, and A.C. van der Kuyl, Novel endogenous type C retrovirus in baboons: complete sequence, providing evidence for baboon endogenous virus gag-pol ancestry. J Virol, 1999. 73(8): p. 7021-6.
293. Akiyoshi, D.E., et al., Identification of a full-length cDNA for an endogenous retrovirus of miniature swine. J Virol, 1998. 72(5): p. 4503-7.
294. Hanger, J.J., et al., The nucleotide sequence of koala (Phascolarctos cinereus) retrovirus: a novel type C endogenous virus related to Gibbon ape leukemia virus. J Virol, 2000. 74(9): p. 4264-72.
295. Martin, J., et al., Interclass transmission and phyletic host tracking in murine leukemia virus-related retroviruses. J Virol, 1999. 73(3): p. 2442-9.
296. Kjellman, C., H.O. Sjogren, and B. Widegren, HERV-F, a new group of human endogenous retrovirus sequences. J Gen Virol, 1999. 80(Pt 9): p. 2383-92.
297. Anderssen, S., et al., Comparative analyses of LTRs of the ERV-H family of primate-specific retrovirus-like elements isolated from marmoset, African green monkey, and man. Virology, 1997. 234(1): p. 14-30.
298. Kim, H.S., O. Takenaka, and T.J. Crow, Isolation and phylogeny of endogenous retrovirus sequences belonging to the HERV-W family in primates. J Gen Virol, 1999. 80(Pt 10): p. 2613-9.
299. Kabat, P., et al., Human endogenous retrovirus HC2 is a new member of the S71 retroviral subgroup with a full-length pol gene. Virology, 1996. 226(1): p. 83-94.
300. Cordonnier, A., J.T. Casella, and T. Heidmann, Isolation of novel human endogenous retrovirus-like elements with foamy virus-related pol sequence. J. Virol., 1995. 69(9): p. 5890-5897.
301. de Parseval, N., et al., Characterization of the three HERV-H proviruses with an open envelope reading frame encompassing the immunosuppressive domain and evolutionary history in primates. Virology, 2001. 279(2): p. 558-69.
302. Choi, J.Y., et al., Isolation and phylogeny of new endogenous retroviral sequences belonging to the HERV-F family. AIDS Res Hum Retroviruses, 2001. 17(4): p. 367-70.
303. Dupressoir, A. and T. Heidmann, Germ line-specific expression of intracisternal A-particle retrotransposons in transgenic mice. Mol Cell Biol, 1996. 16(8): p. 4495-503.
304. Franklin, G.C., et al., Expression of human sequences related to those of mouse mammary tumor virus. J Virol, 1988. 62(4): p. 1203-10.
305. Medstrand, P. and J. Blomberg, Characterization of novel reverse transcriptase encoding human endogenous retroviral sequences similar to type A and type B retroviruses: differential transcription in normal human tissues. J. Virol., 1993. 67(11): p. 6778-6787.
306. Andersson, M.l., et al., Diversity of human endogenous retrovirus class II-like sequences. J. Gen. Virol., 1999. 80(Part 1): p. 255-260.
307. Tonjes, R.R., F. Czauderna, and R. Kurth, Genome-wide screening, cloning, chromosomal assignment, and expression of full-length human endogenous retrovirus type K. J Virol, 1999. 73(11): p. 9187-95.
308. Mayer, J., et al., An almost-intact human endogenous retrovirus K on human chromosome 7. Nat Genet, 1999. 21(3): p. 257-8.
309. Medstrand, P., et al., Structure and genomic organization of a novel human endogenous retrovirus family: HERV-K (HML-6). J. Gen. Virol., 1997. 78( 7): p. 1731-1744.
310. Mayer, J., E. Meese, and N. Mueller-Lantzsch, Human endogenous retrovirus K homologous sequences and their coding capacity in Old World primates. J. Virol., 1998. 72(3): p. 1870-1875.
311. Barbulescu, M., et al., Many human endogenous retrovirus K (HERV-K) proviruses are unique to humans. Curr. Biol., 1999. 9: p. 861-868.
312. Buzdin, A., et al., A Technique for Genome-Wide Identification of Differences in the Interspersed Repeats Integrations between Closely Related Genomes and Its Application to Detection of Human-Specific Integrations of HERV-K LTRs. Genomics, 2002. 79(3): p. 413-22.
313. Lebedev, Y., et al., Differences in HERV-K LTR insertions in orthologous loci of human and great apes. Gene, 2000. 247(1-2): p. 265-277.
314. Medstrand, P. and D.L. Mager, Human-specific integrations of the HERV-K endogenous retrovirus family. J. Virol., 1998. 72(12): p. 9782-9787.
315. Turner, G., et al., Insertional polymorphisms of full-length endogenous retroviruses in humans. Curr Biol, 2001. 11(19): p. 1531-5.
316. Lavrentieva, I., et al., Subfamilies and nearest-neighbour dendrogram for the LTRs of human endogenous retroviruses HERV-K mapped on human chromosome 19: physical neighbourhood does not correlate with identity level. Hum. Genet., 1998. 102(1): p. 107-116.
317. Tassabehji, M., et al., Identification of a novel family of human endogenous retroviruses and characterization of one family member, HERV-K(C4), located in the complement C4 gene cluster. Nucleic Acids Res, 1994. 22(24): p. 5211-7.
318. Dangel, A.W., et al., Complement component C4 gene intron 9 as a phylogenetic marker for primates: long terminal repeats of the endogenous retrovirus ERV-K(C4) are a molecular clock of evolution. Immunogenetics, 1995. 42(1): p. 41-52.
319. Seifarth, W., et al., Rapid identification of all known retroviral reverse transcriptase sequences with a novel versatile detection assay. AIDS Res Hum Retroviruses, 2000. 16(8): p. 721-729.
320. Seifarth, W., et al., Proviral structure, chromosomal location, and expression of HERV-K-T47D, a novel human endogenous retrovirus derived from T47D particles. J. Virol., 1998. 72(10): p. 8384-8391.
321. Seifarth, W., et al., Retrovirus-like particles released from the human breast cancer cell line T47-D display type B- and C-related endogenous retroviral sequences. J. Virol., 1995. 69(10): p. 6408-6416.
322. Repaske, R., et al., Nucleotide sequence of a full-length human endogenous retroviral segment. J Virol, 1985. 54(3): p. 764-72.
323. Tristem, M., et al., Characterization of a novel murine leukemia virus-related subgroup within mammals. J Virol, 1996. 70(11): p. 8241-6.
324. Rabson, A.B., et al., mRNA transcripts related to full-length endogenous retroviral DNA in human cells. Nature, 1983. 306(5943): p. 604-7.
325. Martin, J., et al., Human endogenous retrovirus type I-related viruses have an apparently widespread distribution within vertebrates. J. Virol., 1997. 71(1): p. 437-43.
326. Maeda, N. and H.S. Kim, Three independent insertions of retrovirus-like sequences in the haptoglobin gene cluster of primates. Genomics, 1990. 8(4): p. 671-83.
327. Kannan, P., et al., Identification of a retinoic acid-inducible endogenous retroviral transcript in the human teratocarcinoma-derived cell line PA-1. J. Virol., 1991. 65(11): p. 6343-6348.
328. Seifarth, W., et al., HERV-IP-T47D, a novel type C-related human endogenous retroviral sequence derived from T47D particles. AIDS Res Hum Retroviruses, 2000. 16(5): p. 471-480.
329. Kroger, B. and I. Horak, Isolation of novel human retrovirus-related sequences by hybridization to synthetic oligonucleotides complementary to the tRNA(Pro) primer- binding site. J Virol, 1987. 61(7): p. 2071-5.
330. de Parseval, N. and T. Heidmann, Physiological knockout of the envelope gene of the single-copy ERV-3 human endogenous retrovirus in a fraction of the Caucasian population. J Virol, 1998. 72(4): p. 3442-5.
331. O'Connell, C., et al., ERV3, a full-length human endogenous provirus: chromosomal localization and evolutionary relationships. Virology, 1984. 138(2): p. 225-35.
332. Cohen, M., N. Kato, and E. Larsson, ERV3 human endogenous provirus mRNAs are expressed in normal and malignant tissues and cells, but not in choriocarcinoma tumor cells. J Cell Biochem, 1988. 36(2): p. 121-8.
333. O'Brien, S.J., et al., Mapping of an endogenous retroviral sequence to human chromosome 18. Nature, 1983. 303(5912): p. 74-7.
334. La Mantia, G., et al., Identification of regulatory elements within the minimal promoter region of the human endogenous ERV9 proviruses: accurate transcription initiation is controlled by an Inr-like element. Nucleic Acids Res., 1992. 20(16): p. 4129-4136.
335. La Mantia, G., et al., Identification and characterization of novel human endogenous retroviral sequences prefentially expressed in undifferentiated embryonal carcinoma cells. Nucleic Acids Res, 1991. 19(7): p. 1513-20.
336. Lania, L., et al., Structural and functional organization of the human endogenous retroviral ERV9 sequences. Virology, 1992. 191(1): p. 464-468.
337. Costas, J. and H. Naveira, Evolutionary history of the human endogenous retrovirus family ERV9. Mol Biol Evol, 2000. 17(2): p. 320-30.
338. Werner, T., et al., S71 is a phylogenetically distinct human endogenous retroviral element with structural and sequence homology to simian sarcoma virus (SSV). Virology, 1990. 174(1): p. 225-38.
339. Blond, J.l., et al., Molecular characterization and placental expression of HERV-W, a new human endogenous retrovirus family. J. Virol., 1999. 73(2): p. 1175-1185.
340. Schulte, A.M. and A. Wellstein, Structure and phylogenetic analysis of an endogenous retrovirus inserted into the human growth factor gene pleiotrophin. J. Virol., 1998. 72(7): p. 6065-6072.
341. Schulte, A.M., et al., Influence of the human endogenous retrovirus-like element HERV-E.PTN on the expression of growth factor pleiotrophin: a critical role of a retroviral Sp1-binding site. Oncogene, 2000. 19(35): p. 3988-98.
342. Lapuk, A.V., et al., A human endogenous retrovirus-like (HERV) LTR formed more than 10 million years ago due to an insertion of HERV-H LTR into the 5' LTR of HERV-K is situated on human chromosomes 10, 19 and Y. J Gen Virol, 1999. 80(Pt 4): p. 835-9.
343. Pavlicek, A., et al., Processed pseudogenes of human endogenous retroviruses generated by LINEs: their integration, stability, and distribution. Genome Res, 2002. 12(3): p. 391-9. 2002 [doi].
344. Fujinami, R.S. and J.E. Libbey, Endogenous retroviruses: are they the cause of multiple sclerosis? Trends Microbiol, 1999. 7(7): p. 263-4.
345. Blond, J.L., et al., An envelope glycoprotein of the human endogenous retrovirus HERV-W is expressed in the human placenta and fuses cells expressing the type D mammalian retrovirus receptor. J Virol, 2000. 74(7): p. 3321-9.
346. Mi, S., et al., Syncytin is a captive retroviral envelope protein involved in human placental morphogenesis. Nature, 2000. 403(6771): p. 785-9.
347. Moreau, K., et al., In vivo retroviral integration: fidelity to size of the host DNA duplication might Be reduced when integration occurs near sequences homologous to LTR ends. Virology, 2000. 278(1): p. 133-6.
348. Schon, U., et al., Cell type-specific expression and promoter activity of human endogenous retroviral long terminal repeats. Virology, 2001. 279(1): p. 280-91.
349. Sjottem, E., S. Anderssen, and T. Johansen, The promoter activity of long terminal repeats of the HERV-H family of human retrovirus-like elements is critically dependent on Sp1 family proteins interacting with a GC/GT box located immediately 3' to the TATA box. J. Virol., 1996. 70(1): p. 188-198.
350. Kjellman, C., et al., HERV-F (XA34) is a full-length human endogenous retrovirus expressed in placental and fetal tissues. Gene, 1999. 239(1): p. 99-107.
351. Casau, A.E., et al., Germ cell expression of an isolated human endogenous retroviral long terminal repeat of the HERV-K/HTDV family in transgenic mice. J. Virol., 1999. 73(12): p. 9976-9983.
352. Herbst, H., M. Sauter, and N. Mueller-Lantzsch, Expression of human endogenous retrovirus K elements in germ cell and trophoblastic tumors. Am. J. Pathol., 1996. 149(5): p. 1727-1735.
353. Herbst, H., et al., Human endogenous retrovirus (HERV)-K transcripts in gonadoblastomas and gonadoblastoma-derived germ cell tumours. Virchows Arch., 1999. 434(1): p. 11-15.
354. Lin, C.S., D.A. Goldthwait, and D. Samols, Induction of transcription from the long terminal repeat of Moloney murine sarcoma provirus by UV-irradiation, x-irradiation, and phorbol ester. Proc Natl Acad Sci U S A, 1990. 87(1): p. 36-40.
355. Boronat, S., H. Richard-Foy, and B. Pina, Specific deactivation of the mouse mammary tumor virus long terminal repeat promoter upon continuous hormone treatment. J Biol Chem, 1997. 272(35): p. 21803-10.
356. Caricasole, A., et al., Bone morphogenetic proteins and retinoic acid induce human endogenous retrovirus HERV-K expression in NT2D1 human embryonal carcinoma cells. Dev Growth Differ, 2000. 42(4): p. 407-11.
357. de Parseval, N., H. Alkabbani, and T. Heidmann, The long terminal repeats of the HERV-H human endogenous retrovirus contain binding sites for transcriptional regulation by the Myb protein. J Gen Virol, 1999. 80(Pt 4): p. 841-5.
358. Inoue, D., et al., Identification of an osteoclast transcription factor that binds to the human T cell leukemia virus type I-long terminal repeat enhancer element. J Biol Chem, 1997. 272(40): p. 25386-93.
359. Akopov, S.B., et al., Long terminal repeats of human endogenous retrovirus K family (HERV-K) specifically bind host cell nuclear proteins. FEBS Letters, 1998. 421(3): p. 229-233.
360. Schneider, P.M., et al., The endogenous retroviral insertion in the human complement C4 gene modulates the expression of homologous genes by antisense inhibition. Immunogenetics, 2001. 53(1): p. 1-9.
361. Medstrand, P., J.R. Landry, and D.L. Mager, Long terminal repeats are used as alternative promoters for the endothelin B receptor and apolipoprotein C-I genes in humans. J Biol Chem, 2001. 276(3): p. 1896-903.
362. Kowalski, P.E., J.D. Freeman, and D.L. Mager, Intergenic splicing between a HERV-H endogenous retrovirus and two adjacent human genes. Genomics, 1999. 57(3): p. 371-9.
363. Feuchter-Murthy, A.E., J.D. Freeman, and D.L. Mager, Splicing of a human endogenous retrovirus to a novel phospholipase A2 related gene. Nucleic Acids Res., 1993. 21(1): p. 135-143.
364. Kapitonov, V.V. and J. Jurka, The long terminal repeat of an endogenous retrovirus induces alternative splicing and encodes an additional carboxy-terminal sequence in the human leptin receptor. J. Mol. Evol., 1999. 48(2): p. 248-251.
365. Mager, D.L., et al., Endogenous retroviruses provide the primary polyadenylation signal for two new human genes. Genomics, 1999. 59(3): p. 255-263.
366. Baust, C., et al., HERV-K-T47D-Related long terminal repeats mediate polyadenylation of cellular transcripts. Genomics, 2000. 66(1): p. 98-103.
367. Stoye, J.P. and J.M. Coffin, A provirus put to work. Nature, 2000. 403(6771): p. 715, 717.
368. An, D.S., Y. Xie, and I.S. Chen, Envelope gene of the human endogenous retrovirus HERV-W encodes a functional retrovirus envelope. J Virol, 2001. 75(7): p. 3488-9.
369. Lin, L., B. Xu, and N.S. Rote, Expression of endogenous retrovirus ERV-3 induces differentiation in BeWo, a choriocarcinoma model of human placental trophoblast. Placenta, 1999. 20(1): p. 109-18.
370. Berkhout, B., M. Jebbink, and J. Zsiros, Identification of an active reverse transcriptase enzyme encoded by a human endogenous HERV-K retrovirus. J. Virol., 1999. 73(3): p. 2365-2375.
371. Boller, K., et al., Characterization of the antibody response specific for the human endogenous retrovirus HTDV/HERV-K. J. Virol., 1997. 71(6): p. 4581-4588.
372. Padow, M., et al., Analysis of human immunodeficiency virus type 1 containing HERV-K protease. AIDS Res Hum Retroviruses, 2000. 16(18): p. 1973-80.
373. Ureta-Vidal, A., et al., Mother-to-child transmission of human T-cell-leukemia/lymphoma virus type I: implication of high antiviral antibody titer and high proviral load in carrier mothers. Int J Cancer, 1999. 82(6): p. 832-6.
374. Czauderna, F., et al., Establishment and characterization of molecular clones of porcine endogenous retroviruses replicating on human cells. J Virol, 2000. 74(9): p. 4028-38.
375. Patience, C., Y. Takeuchi, and R.A. Weiss, Infection of human cells by an endogenous retrovirus of pigs. Nat Med, 1997. 3(3): p. 282-6.
376. Specke, V., S. Rubant, and J. Denner, Productive infection of human primary cells and cell lines with porcine endogenous retroviruses. Virology, 2001. 285(2): p. 177-80.
377. Gao, F., et al., Origin of HIV-1 in the chimpanzee Pan troglodytes troglodytes. Nature, 1999. 397(6718): p. 436-41.
378. Chen, Z., et al., Genetic characterization of new West African simian immunodeficiency virus SIVsm: geographic clustering of household-derived SIV strains with human immunodeficiency virus type 2 subtypes and genetically diverse viruses from a single feral sooty mangabey troop. J Virol, 1996. 70(6): p. 3617-27.
379. Towers, G., et al., A conserved mechanism of retrovirus restriction in mammals. Proc Natl Acad Sci U S A, 2000. 97(22): p. 12295-9.
380. Conrad, B., et al., A human endogenous retroviral superantigen as candidate autoimmune gene in type I diabetes. Cell, 1997. 90(2): p. 303-13.
381. Hasuike, S., et al., Isolation and localization of an IDDMK1,2-22-related human endogenous retroviral gene, and identification of a CA repeat marker at its locus. J Hum Genet, 1999. 44(5): p. 343-7.
382. Sutkowski, N., et al., Epstein-Barr virus transactivates the human endogenous retrovirus HERV- K18 that encodes a superantigen. Immunity, 2001. 15(4): p. 579-89.
383. Mangeney, M., et al., The full-length envelope of an HERV-H human endogenous retrovirus has immunosuppressive properties. J Gen Virol, 2001. 82(Pt 10): p. 2515-8.
384. Gaudin, P., et al., Infrequency of detection of particle-associated MSRV/HERV-W RNA in the synovial fluid of patients with rheumatoid arthritis. Rheumatology (Oxford), 2000. 39(9): p. 950-4.
385. Nelson, P.N., et al., Molecular investigations implicate human endogenous retroviruses as mediators of anti-retroviral antibodies in autoimmune rheumatic disease. Immunol Invest, 1999. 28(4): p. 277-89.
386. Nakagawa, K., et al., Direct evidence for the expression of multiple endogenous retroviruses in the synovial compartment in rheumatoid arthritis. Arthritis Rheum., 1997. 40(4): p. 627-638.
387. Gwynn, B., et al., Intracisternal A-particle element transposition into the murine beta- glucuronidase gene correlates with loss of enzyme activity: a new model for beta-glucuronidase deficiency in the C3H mouse. Mol Cell Biol, 1998. 18(11): p. 6474-81.
388. Gaudieri, S., et al., Different evolutionary histories in two subgenomic regions of the major histocompatibility complex. Genome Res, 1999. 9(6): p. 541-9.
389. Kulski, J.K. and R.L. Dawkins, The P5 multicopy gene family in the MHC is related in sequence to human endogenous retroviruses HERV-L and HERV-16. Immunogenetics, 1999. 49(5): p. 404-412.
390. Andersson, G., et al., Retroelements in the human MHC class II region. Trends Genet., 1998. 14(3): p. 109-114.
391. Kulski, J.K., et al., Comparison between two human endogenous retrovirus (HERV)-rich regions within the major histocompatibility complex. J Mol Evol, 1999. 48(6): p. 675-83.
392. Kulski, J.K., et al., Coevolution of PERB11 (MIC) and HLA class I genes with HERV-16 and retroelements by extended genomic duplication. J Mol Evol, 1999. 49(1): p. 84-97.
393. Dawkins, R., et al., Genomics of the major histocompatibility complex: haplotypes, duplication, retroviruses and disease. Immunol Rev, 1999. 167: p. 275-304.
394. Hughes, J.F. and J.M. Coffin, Evidence for genomic rearrangements mediated by human endogenous retroviruses during primate evolution. Nat Genet, 2001. 29(4): p. 487-9.
395. Svoboda, J., et al., Retroviruses in foreign species and the problem of provirus silencing. Gene, 2000. 261(1): p. 181-8.
396. Lorincz, M.C., D. Schubeler, and M. Groudine, Methylation-mediated proviral silencing is associated with MeCP2 recruitment and localized histone H3 deacetylation. Mol Cell Biol, 2001. 21(23): p. 7913-22.
397. Lorens, J.B., et al., Optimization of regulated LTR-mediated expression. Virology, 2000. 272(1): p. 7-15.
398. Koch, K.S., et al., Site-specific integration of targeted DNA into animal cell genomes. Gene, 2000. 249(1-2): p. 135-44.
399. Yuan, C.C., W. Miley, and D. Waters, A quantification of human cells using an ERV-3 real time PCR assay. J Virol Methods, 2001. 91(2): p. 109-17.
400. Johnson, W.E. and J.M. Coffin, Constructing primate phylogenies from ancient retrovirus sequences. Proc Natl Acad Sci U S A, 1999. 96(18): p. 10254-60.
401. Shih, A., E.E. Coutavas, and M.G. Rush, Evolutionary implications of primate endogenous retroviruses. Virology, 1991. 182(2): p. 495-502.
402. Cech, T.R., T.M. Nakamura, and J. Lingner, Telomerase is a true reverse transcriptase. A review. Biochemistry (Mosc), 1997. 62(11): p. 1202-5.
403. Pardue, M.L., et al., Evolutionary links between telomeres and transposable elements. Genetica, 1997. 100(1-3): p. 73-84.
404. Kennell, J.C., et al., Reverse transcriptase activity associated with maturase-encoding group II introns in yeast mitochondria. Cell, 1993. 73(1): p. 133-46.
405. Biessmann, H., et al., Frequent transpositions of Drosophila melanogaster HeT-A transposable elements to receding chromosome ends. Embo J, 1992. 11(12): p. 4459-69.
406. Willer, A., et al., Two groups of endogenous MMTV related retroviral env transcripts expressed in human tissues. Virus Genes, 1997. 15(2): p. 123-133.
407. Temin, H.M., Origin of retroviruses from cellular moveable genetic elements. Cell, 1980. 21(3): p. 599-600.
408. Finnegan, D.J., Retroviruses and transposable elements--which came first? Nature, 1983. 302(5904): p. 105-6.
409. Doolittle, R.F. and D.F. Feng, Tracing the origin of retroviruses. Curr Top Microbiol Immunol, 1992. 176: p. 195-211.
410. Tristem, M., et al., Easel, a gypsy LTR-retrotransposon in the Salmonidae. Mol Gen Genet, 1995. 249(2): p. 229-36.
411. Miller, R.H. and W.S. Robinson, Common evolutionary origin of hepatitis B virus and retroviruses. Proc Natl Acad Sci U S A, 1986. 83(8): p. 2531-5.
412. Okada, N. and M. Hamada, The 3' ends of tRNA-derived SINEs originated from the 3' ends of LINEs: a new example from the bovine genome. J Mol Evol, 1997. 44(Suppl 1): p. S52-6.
413. Kimmel, B.E., O.K. ole-MoiYoi, and J.R. Young, Ingi, a 5.2-kb dispersed sequence element from Trypanosoma brucei that carries half of a smaller mobile element at either end and has homology with mammalian LINEs. Mol Cell Biol, 1987. 7(4): p. 1465-75.
414. Ono, S., So much "junk" DNA in our genome. Brookhaven Symp Biol, 1972. 23: p. 366-70.
415. Orgel, L.E. and F.H. Crick, Selfish DNA: the ultimate parasite. Nature, 1980. 284(5757): p. 604-7.
416. Hickey, D.A., Selfish DNA: a sexually-transmitted nuclear parasite. Genetics, 1982. 101(3-4): p. 519-31.
417. Lozovskaya, E.R., D.L. Hartl, and D.A. Petrov, Genomic regulation of transposable elements in Drosophila. Curr Opin Genet Dev, 1995. 5(6): p. 768-73.
418. McKinnon, R.D., et al., Expression of small cytoplasmic transcripts of the rat identifier element in vivo and in cultured cells. Mol Cell Biol, 1987. 7(6): p. 2148-54.
419. Martignetti, J.A. and J. Brosius, BC200 RNA: a neural RNA polymerase III product encoded by a monomeric Alu element. Proc Natl Acad Sci U S A, 1993. 90(24): p. 11563-7.
420. Liu, W.M., et al., Cell stress and translational inhibitors transiently increase the abundance of mammalian SINE transcripts. Nucleic Acids Res, 1995. 23(10): p. 1758-65.
421. Faure, E., M. Best-Belpomme, and S. Champion, X-irradiation activates the Drosophila 1731 retrotransposon LTR and stimulates secretion of an extracellular factor that induces the 1731- LTR transcription in nonirradiated cells. J Biochem (Tokyo), 1996. 120(2): p. 313-9.
422. Kuo, K.W., et al., Expression of transposon LINE-1 is relatively human-specific and function of the transcripts may be proliferation-essential. Biochem Biophys Res Commun, 1998. 253(3): p. 566-70.
423. Vasil'eva, L.A., V.A. Ratner, and E.V. Bubenshchikova, [Stress induction of retrotransposon transposition in Drosophila: reality of the phenomenon, characteristic features, possible role in rapid evolution]. Genetika, 1997. 33(8): p. 1083-93.
424. Miki, Y., Retrotransposal integration of mobile genetic elements in human diseases. J Hum Genet, 1998. 43(2): p. 77-84.
425. Vieira, J., et al., Factors contributing to the hybrid dysgenesis syndrome in Drosophila virilis. Genet Res, 1998. 71(2): p. 109-17.
426. Vincent, A. and T.D. Petes, Mitotic and meiotic gene conversion of Ty elements and other insertions in Saccharomyces cerevisiae. Genetics, 1989. 122(4): p. 759-72.
427. Parket, A., O. Inbar, and M. Kupiec, Recombination of Ty elements in yeast can be induced by a double-strand break. Genetics, 1995. 140(1): p. 67-77.
428. Moore, J.K. and J.E. Haber, Capture of retrotransposon DNA at the sites of chromosomal double- strand breaks. Nature, 1996. 383(6601): p. 644-6.
429. Morrish, T.A., et al., DNA repair mediated by endonuclease-independent LINE-1 retrotransposition. Nat Genet, 2002. 31(2): p. 159-65.
430. Biessmann, H., et al., HeT-A, a transposable element specifically involved in "healing" broken chromosome ends in Drosophila melanogaster. Mol Cell Biol, 1992. 12(9): p. 3910-8.
431. Hagan, C.R. and C.M. Rudin, Mobile genetic element activation and genotoxic cancer therapy: potential clinical implications. Am J Pharmacogenomics, 2002. 2(1): p. 25-35.
432. Kazakov, V.I. and N.V. Tomilin, Increased concentration of some transcription factor binding sites in human retroposons of the Alu family. Genetica, 1996. 97(1): p. 15-22.
433. Banville, D. and Y. Boie, Retroviral long terminal repeat is the promoter of the gene encoding the tumor-associated calcium-binding protein oncomodulin in the rat. J Mol Biol, 1989. 207(3): p. 481-90.
434. Friesen, P.D., et al., Bidirectional transcription from a solo long terminal repeat of the retrotransposon TED: symmetrical RNA start sites. Mol. Cell. Biol., 1986. 6(5): p. 1599-1607.
435. Conte, C., B. Dastugue, and C. Vaury, Promoter competition as a mechanism of transcriptional interference mediated by retrotransposons. Embo J, 2002. 21(14): p. 3908-16.
436. Michel, D., et al., Recent evolutionary acquisition of alternative pre-mRNA splicing and 3' processing regulations induced by intronic B2 SINE insertion. Nucleic Acids Res, 1997. 25(16): p. 3228-34.
437. Krane, D.E. and R.C. Hardison, Short interspersed repeats in rabbit DNA can provide functional polyadenylation signals. Mol Biol Evol, 1990. 7(1): p. 1-8.
438. Konstantinova, I.M., et al., [A new class of RNP particles containing small RNA homologous to short dispersed DNA repetitive sequences]. Mol Biol (Mosk), 1995. 29(4): p. 761-71.
439. Bladon, T.S. and M.W. McBurney, The rodent B2 sequence can affect expression when present in the transcribed region of a reporter gene. Gene, 1991. 98(2): p. 259-63.
440. Djikeng, A., et al., RNA interference in Trypanosoma brucei: cloning of small interfering RNAs provides evidence for retroposon-derived 24-26-nucleotide RNAs. Rna, 2001. 7(11): p. 1522-30.
441. Higashiyama, T., et al., Zepp, a LINE-like retrotransposon accumulated in the Chlorella telomeric region. Embo J, 1997. 16(12): p. 3715-23.
442. Arkhipova, I.R. and H.G. Morrison, Three retrotransposon families in the genome of Giardia lamblia: two telomeric, one dead. Proc Natl Acad Sci U S A, 2001. 98(25): p. 14497-502.
443. Biessmann, H. and J.M. Mason, Telomere maintenance without telomerase. Chromosoma, 1997. 106(2): p. 63-9.
444. Xie, W., et al., Targeting of the yeast Ty5 retrotransposon to silent chromatin is mediated by interactions between integrase and Sir4p. Mol Cell Biol, 2001. 21(19): p. 6606-14.
445. Prades, C., et al., SINE and LINE within human centromeres. J Mol Evol, 1996. 42(1): p. 37-43.
446. Laurent, A.M., J. Puechberty, and G. Roizes, Hypothesis: for the worst and for the best, L1Hs retrotransposons actively participate in the evolution of the human centromeric alphoid sequences. Chromosome Res, 1999. 7(4): p. 305-17.
447. Neuer-Nitsche, B., X.N. Lu, and D. Werner, Functional role of a highly repetitive DNA sequence in anchorage of the mouse genome. Nucleic Acids Res, 1988. 16(17): p. 8351-60.
448. Tikhonov, A.P., et al., Target sites for SINE integration in Brassica genomes display nuclear matrix binding activity. Chromosome Res, 2001. 9(4): p. 325-37.
449. Pearlman, R.E., N. Tsao, and P.B. Moens, Synaptonemal complexes from DNase-treated rat pachytene chromosomes contain (GT)n and LINE/SINE sequences. Genetics, 1992. 130(4): p. 865-72.
450. Laurent, A.M., et al., Site-specific retrotransposition of L1 elements within human alphoid satellite sequences. Genomics, 1997. 46(1): p. 127-32.
451. Прокофьева-Бельговская, А., Гетерохроматические районы хромосом. 1986, М.: Наука.
452. Miklos, G.L., et al., Microcloning reveals a high frequency of repetitive sequences characteristic of chromosome 4 and the beta-heterochromatin of Drosophila melanogaster. Proc Natl Acad Sci U S A, 1988. 85(7): p. 2051-5.
453. Vaury, C., A. Bucheton, and A. Pelisson, The beta heterochromatic sequences flanking the I elements are themselves defective transposable elements. Chromosoma, 1989. 98(3): p. 215-24.
454. Wensink, P.C., S. Tabata, and C. Pachl, The clustered and scrambled arrangement of moderately repetitive elements in Drosophila DNA. Cell, 1979. 18(4): p. 1231-46.
455. Tulin, A.V., et al., Heterochromatic Stellate gene cluster in Drosophila melanogaster: structure and molecular evolution. Genetics, 1997. 146(1): p. 253-62.
456. Moyzis, R.K., et al., The distribution of interspersed repetitive DNA sequences in the human genome. Genomics, 1989. 4(3): p. 273-89.
457. Carmena, M. and C. Gonzalez, Transposable elements map in a conserved pattern of distribution extending from beta-heterochromatin to centromeres in Drosophila melanogaster. Chromosoma, 1995. 103(10): p. 676-84.
458. Le, M.H., D. Duricka, and G.H. Karpen, Islands of complex DNA are widespread in Drosophila centric heterochromatin. Genetics, 1995. 141(1): p. 283-303.
459. Junakovic, N., et al., Accumulation of transposable elements in the heterochromatin and on the Y chromosome of Drosophila simulans and Drosophila melanogaster. J Mol Evol, 1998. 46(6): p. 661-8.
460. Terrinoni, A., et al., Intragenomic distribution and stability of transposable elements in euchromatin and heterochromatin of Drosophila melanogaster: non-LTR retrotransposon. J Mol Evol, 1997. 45(2): p. 145-53.
461. Wevrick, R., V.P. Willard, and H.F. Willard, Structure of DNA near long tandem arrays of alpha satellite DNA at the centromere of human chromosome 7. Genomics, 1992. 14(4): p. 912-23.
462. Neitzel, H., et al., Beta-heterochromatin in mammals: evidence from studies in Microtus agrestis based on the extensive accumulation of L1 and non-L1 retroposons in the heterochromatin. Cytogenet Cell Genet, 1998. 80(1-4): p. 165-72.
463. Boissinot, S., A. Entezam, and A.V. Furano, Selection against deleterious LINE-1-containing loci in the human lineage. Mol Biol Evol, 2001. 18(6): p. 926-35.
464. Khodarev, N.N., et al., LINE L1 retrotransposable element is targeted during the initial stages of apoptotic DNA fragmentation. J Cell Biochem, 2000. 79(3): p. 486-95.
465. Lohe, A.R. and D.L. Brutlag, Adjacent satellite DNA segments in Drosophila structure of junctions. J Mol Biol, 1987. 194(2): p. 171-9.
466. Brutlag, D., et al., Synthesis of hybrid bacterial plasmids containing highly repeated satellite DNA. Cell, 1977. 10(3): p. 509-19.
467. Petrov, D.A. and D.L. Hartl, Trash DNA is what gets thrown away: high rate of DNA loss in Drosophila. Gene, 1997. 205(1-2): p. 279-89.
468. von Sternberg, R.M., et al., Genome canalization: the coevolution of transposable and interspersed repetitive elements with single copy DNA. Genetica, 1992. 86(1-3): p. 215-46.
469. Makalowskiy, W., SINEs as a genomic scrap yard: an essay on genomic evolution, in The impact of short interspersed elements (SINEs) on the host genome, R.J. Maraia, Editor. 1995, R. G. Landes Company: Austin.
470. Lamar, E.E. and E. Palmer, Y-encoded, species-specific DNA in mice: evidence that the Y chromosome exists in two polymorphic forms in inbred strains. Cell, 1984. 37(1): p. 171-7.
471. Kunkel, L.M., et al., Specific cloning of DNA fragments absent from the DNA of a male patient with an X chromosome deletion. Proc Natl Acad Sci U S A, 1985. 82(14): p. 4778-82.
472. Chien, Y., et al., A third type of murine T-cell receptor gene. Nature, 1984. 312(5989): p. 31-5.
473. Kavathas, P., et al., Isolation of the gene encoding the human T-lymphocyte differentiation antigen Leu-2 (T8) by gene transfer and cDNA subtraction. Proc Natl Acad Sci U S A, 1984. 81(24): p. 7688-92.
474. Travis, G.H. and J.G. Sutcliffe, Phenol emulsion-enhanced DNA-driven subtractive cDNA cloning: isolation of low-abundance monkey cortex-specific mRNAs. Proc Natl Acad Sci U S A, 1988. 85(5): p. 1696-700.
475. Palazzolo, M.J. and E.M. Meyerowitz, A family of lambda phage cDNA cloning vectors, lambda SWAJ, allowing the amplification of RNA sequences. Gene, 1987. 52(2-3): p. 197-206.
476. Kuze, K., A. Shimizu, and T. Honjo, A new vector and RNase H method for the subtractive hybridization. Nucleic Acids Res, 1989. 17(2): p. 807.
477. Rubenstein, J.L., et al., Subtractive hybridization system using single-stranded phagemids with directional inserts. Nucleic Acids Res, 1990. 18(16): p. 4833-42.
478. Welcher, A.A., A.R. Torres, and D.C. Ward, Selective enrichment of specific DNA, cDNA and RNA sequences using biotinylated probes, avidin and copper-chelate agarose. Nucleic Acids Res, 1986. 14(24): p. 10027-44.
479. Lopez-Fernandez, L.A. and J. del Mazo, Construction of subtractive cDNA libraries from limited amounts of mRNA and multiple cycles of subtraction. Biotechniques, 1993. 15(4): p. 654-6, 658-9.
480. Sharma, P., A. Lonneborg, and P. Stougaard, PCR-based construction of subtractive cDNA library using magnetic beads. Biotechniques, 1993. 15(4): p. 610, 612.
481. Hla, T. and T. Maciag, Isolation of immediate-early differentiation mRNAs by enzymatic amplification of subtracted cDNA from human endothelial cells. Biochem Biophys Res Commun, 1990. 167(2): p. 637-43.
482. Timblin, C., J. Battey, and W.M. Kuehl, Application for PCR technology to subtractive cDNA cloning: identification of genes expressed specifically in murine plasmacytoma cells. Nucleic Acids Res, 1990. 18(6): p. 1587-93.
483. Hara, E., et al., Subtractive cDNA cloning using oligo(dT)30-latex and PCR: isolation of cDNA clones specific to undifferentiated human embryonal carcinoma cells. Nucleic Acids Res, 1991. 19(25): p. 7097-104.
484. Herfort, M.R. and A.T. Garber, Simple and efficient subtractive hybridization screening. Biotechniques, 1991. 11(5): p. 598, 600, 602-4.
485. Wang, Z. and D.D. Brown, A gene expression screen. Proc Natl Acad Sci U S A, 1991. 88(24): p. 11505-9.
486. Cook, D. and L. Sequeira, The use of subtractive hybridization to obtain a DNA probe specific for Pseudomonas solanacearum race 3. Mol Gen Genet, 1991. 227(3): p. 401-10.
487. Sverdlov, E.D., [Subtractive hybridization--a technique for extracting DNA sequences, discriminating between two closely-related genomes]. Mol Gen Mikrobiol Virusol, 1993(6): p. 3-12.
488. Cruz-Reyes, J.A. and J.P. Ackers, A DNA probe specific to pathogenic Entamoeba histolytica. Arch Med Res, 1992. 23(2): p. 271-5.
489. Wieland, I., et al., A method for difference cloning: gene amplification following subtractive hybridization. Proc Natl Acad Sci U S A, 1990. 87(7): p. 2720-4.
490. Clapp, J.P., et al., Genomic subtractive hybridization to isolate species-specific DNA sequences in insects. Insect Mol Biol, 1993. 1(3): p. 133-8.
491. Rubin, C.M., et al., Paucity of novel short interspersed repetitive element (SINE) families in human DNA and isolation of a novel MER repeat. Genomics, 1993. 18(2): p. 322-8.
492. Venter, J.C., et al., The sequence of the human genome. Science, 2001. 291(5507): p. 1304-51.
493. Sverdlov, E.D. and O.D. Ermolaeva, [Subtractive hybridization. Theoretical analysis, and a principle of the trap]. Bioorg Khim, 1993. 19(11): p. 1081-8.
494. Ermolaeva, O.D. and E.D. Sverdlov, Subtractive hybridization, a technique for extraction of DNA sequences distinguishing two closely related genomes: critical analysis. Genet Anal, 1996. 13(2): p. 49-58.
495. Lisitsyn, N. and M. Wigler, Cloning the differences between two complex genomes. Science, 1993. 259(5097): p. 946-51.
496. Ayyanathan, K., et al., Development of specific DNA probes and their usage in the detection of Plasmodium vivax infection in blood. Mol Cell Probes, 1995. 9(4): p. 239-46.
497. Drew, A.C. and P.J. Brindley, Female-specific sequences isolated from Schistosoma mansoni by representational difference analysis. Mol Biochem Parasitol, 1995. 71(2): p. 173-81.
498. Milner, J.J., E. Cecchini, and P.J. Dominy, A kinetic model for subtractive hybridization. Nucleic Acids Res, 1995. 23(1): p. 176-87.
499. Ermolaeva, O.D. and M.C. Wagner, SUBTRACT: a computer program for modeling the process of subtractive hydridization. Comput Appl Biosci, 1995. 11(4): p. 457-62.
...Подобные документы
Общая характеристика отряда приматов: образ жизни, строение. Особенности подотряда полуобезьян. Характеристика высших приматов - семейств широконосых, узконосых и человекообразных обезьян. Сравнение кисти руки гориллы и человека, стопы гориллы и шимпанзе.
презентация [869,9 K], добавлен 16.05.2012Развитие взглядов на происхождение человека. Центр происхождения человека. Доказательства происхождения человека от животных. Влияние окружающей среды на появление человека. Эволюция гоминид. Биологический, социальный и трудовой факторы эволюции.
реферат [37,7 K], добавлен 26.04.2006Анализ влияния мозга человека на его деятельность и чувства, с указанием многочисленных примеров из жизни, а также его основные отличия от мозга шимпанзе. Сравнение мужского и женского пространственного мышления. Сущность развития мышления человека.
реферат [50,8 K], добавлен 24.11.2009Сущность генеалогического метода и его применение в генетике человека. Особенности наследования различных признаков. Гипотеза и ход исследования родословной. Генетические закономерности наследования признаков человека и сравнение результатов с гипотезой.
практическая работа [90,5 K], добавлен 20.05.2009Характеристика изменений, которые происходят в геноме клетки, и возникают при вставке мобильных генетических элементов в геном. Мобильные генетические элементы в геноме Drosophila Melanogaster (дрозофила чернобрюхая). Мобильные элементы гетерохроматина.
курсовая работа [72,8 K], добавлен 29.05.2015Тайна происхождения человека и его расселения на территории Земли. Путь гоминизации многих видов приматов. Теория африканского происхождения человека. Родословная человека, факторы антропогенеза. Основные этапы эволюции человека. Современный тип людей.
презентация [1,3 M], добавлен 21.05.2015Эволюция человека, ее отличие от эволюции животных и движущие силы. Гипотезы естественного происхождения человека. Признаки человека и его место в системе животного мира. Основные этапы антропогенеза и характерные черты развития предков человека.
контрольная работа [27,6 K], добавлен 03.09.2010Систематическое положение человека. Род гиббонов, орангутангов, горилл, шимпанзе: виды, места обитания, строение тела, образ жизни. Биологическая теория происхождения человека Ч. Дарвина. Основные группы доказательств происхождения человека от животных.
презентация [8,7 M], добавлен 18.05.2010Возраст человека: абсолютный, биологический, паспортный, психический, социальный. Критерии биологического возраста. Эволюция человека. Характеристика австралопитека. Расизм, его социальные корни. Прогрессивная общественность в борьбе против расизма.
реферат [33,0 K], добавлен 31.10.2008Характеристика радиочастотных (РЧ) воздействий. Выводы ученых по исследованию популярных марок телефонов и их влияния на здоровье человека, системы организма человека, наиболее подверженные вредному влиянию. Меры по защите населения от РЧ-излучения.
научная работа [21,5 K], добавлен 09.02.2009Основные признаки этапов эволюции человека. Размер и образ жизни дриопитеков. Отличия австралопитеков от человека умелого, период его появления и размер мозга. Внешний вид человека прямоходящего. Ареал обитания неандертальцев. Орудия труда кроманьонца.
презентация [2,2 M], добавлен 06.04.2015Начало научного представления о происхождении человека. Идеи Дарвина и их революционная роль в учении об антропогенезе. Австралопитек как прямой предок рода Homo. Эволюция приматов до человека, ее движущие силы. Виды рода Homo и появление Homo sapiens.
реферат [613,2 K], добавлен 09.09.2012Механизм эволюции прокариотического и эукариотического геномов. Свойства, отбор и динамика рисунка локализации мобильных генетических элементов. Роль мобильных генетических элементов и горизонтального переноса генетического материала в эволюции генома.
курсовая работа [84,5 K], добавлен 30.09.2009Представления о происхождении человека в Европейском средневековье. Современные взгляды на проблему происхождения человека. Предположения Ч. Дарвина о происхождении человека. Проблема прародины современного человека. Особенности хода эволюции человека.
реферат [36,8 K], добавлен 26.11.2010Вопросы происхождения и сущности жизни издавна стали предметом интереса человека в его стремлении разобраться в окружающем мире. Гипотезы возникновения жизни. Доказательство родства человека и животных. Эволюция человека. Теории появления человека.
реферат [33,0 K], добавлен 05.06.2008Исследование различных версий о происхождении человека: появление во Вселенной, сотворение, рождение, прибытие из других миров, метаморфоз. Портреты пращуров. Закономерности эволюции предков людей. О прямохождении (причины формирования "двуногости").
реферат [27,3 K], добавлен 01.06.2010Характеристика и классификация микроорганизмов. Систематика, метаболизм и клиническое значение энтеробактерий. Сравнительный анализ традиционного и экспресс-метода биохимической идентификации при определении представителей семейства Enterobacteriaceae.
дипломная работа [8,9 M], добавлен 23.01.2018Розвиток палеонтологічних, ембріологічних, гістологічних досліджень; порівняльна анатомія та її значення. Співвідношення обсягу мозку з вагою тіла як найбільш поширений показник рівня інтелекту. Характерні відмінності в будові черепів людини та шимпанзе.
реферат [363,9 K], добавлен 16.08.2010Первый экологический кризис – смена анаэробной атмосферы на аэробную. Особенности биосинтеза органических соединений при хемосинтезе. Нюансы фотосинтеза, цикл превращения солнечной энергии в углеводы. Эволюция живых организмов, появление человека.
реферат [35,8 K], добавлен 18.11.2009Разработка метода рекомбинантных ДНК. Анализ наследования семейных заболеваний и изучение генетического сцепления у человека в случаях, когда возникают осложнения: генетическая гетерогенность и фенокопии. Карта генетического сцепления генома человека.
учебное пособие [2,0 M], добавлен 11.08.2009