Химия (органическая химия)

Классификация и номенклатура органических соединений. Галогенпроизводные углеводородов, карбонильные соединения. Характеристика спиртов и фенолов. Особенности гетероциклических соединений, предназначение аминокислот и пептидов, углеводов и аминов.

Рубрика Химия
Вид курс лекций
Язык русский
Дата добавления 14.10.2017
Размер файла 1,2 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Министерство образования и науки Российской Федерации

Федеральное государственное бюджетное образовательное учреждение

высшего профессионального образования

«Хакасский государственный университет им. Н.Ф. Катанова»

(ХГУ им. Н.Ф. Катанова)

Институт естественных наук и математики

Конспект лекций по дисциплине для студентов,

обучающихся по специальностям и направлениям

050100.62-«Естественнонаучное образование» профиля «Химия»,

020400.62-«Биология» профиля « Биоэкология»,

280700. 62-профиль «Техносферная безопасность»

Химия (органическая химия)

Абакан 2013

ББК 24.2

Ф 638

Ф 638 ХИМИЯ (ОРГАНИЧЕСКАЯ ХИМИЯ): конспект лекций по дисциплине для студентов, обучающихся по специальностям и направлениям 050100.62 - «Естественнонаучное образование» профиля «Химия», 020400.62 - «Биология» профиля «Биоэкология», 280700. 62 - профиль «Техносферная безопасность» / Сост. Л.А. Фисун. - Абакан:

Учебное пособие является частью учебно-методического комплекса дисциплины «Химия (Органическая химия)».

Оно включает в себя конспект 17 лекций, охватывающий все разделы читаемого курса. Пособие предназначено для организации самостоятельной работы студентов при подготовке к лекционным, практическим занятиям, итоговому контролю и выполнению домашних заданий и контрольных работ по дисциплине.

Учебное пособие по органической химии предназначено для студентов по направлению подготовки 050100.62 - «Естественнонаучное образование» профиля «Химия», 020400.62 - «Биология» профиля «Биоэкология», 280700. 62 - профиль «Техносферная безопасность», а также может быть полезным студентам других специальностей и направлений.

ББК 24.2

ОГЛАВЛЕНИЕ

ПРЕДИСЛОВИЕ

ЛЕКЦИЯ №1. Введение. Предмет органической химии. Основные этапы ее развития

ЛЕКЦИЯ № 2. Классификация и номенклатура органических соединений

ЛЕКЦИЯ №3. Химическая связь. Взаимное влияние атомов

ЛЕКЦИЯ №4. Изомерия

ЛЕКЦИЯ №5. Классификация органических реакций и реагентов. Органические кислоты и основания

ЛЕКЦИЯ №6. Углеводороды. Алканы

ЛЕКЦИЯ №7. Непредельные углеводороды

ЛЕКЦИЯ №8. Арены (ароматические углеводороды

ЛЕКЦИЯ №9. Галогенпроизводные углеводородов

ЛЕКЦИЯ №10. Спирты. Фенолы

ЛЕКЦИЯ №11. Карбонильные соединения

ЛЕКЦИЯ №12. Карбоновые кислоты и их производные

ЛЕКЦИЯ №13. Гетерофункциональные соединения

ЛЕКЦИЯ №14. Углеводы

ЛЕКЦИЯ №15. Амины

ЛЕКЦИЯ №16. Аминокислоты. Пептиды

ЛЕКЦИЯ №17. Гетероциклические соединения

ПРЕДИСЛОВИЕ

Учебное пособие включает в себя конспект 17 лекций, охватывающий все разделы читаемого курса.

В пособии в компактной и доступной форме представлен обширный теоретический и фактический материал по изучению строения, свойств, получения и применения органических соединений различных классов. В работу включены краткие как исторические, так и современные сведения о достижениях в области органической химии.

Пособие предназначено для организации самостоятельной работы студентов при подготовке к лекционным, практическим занятиям, итоговому контролю и выполнению домашних заданий и контрольных работ по дисциплине.

Учебное пособие по органической химии предназначено для студентов по направлениям подготовки 050100.62 - «Естественнонаучное образование» профиля «Химия», 020400.62 - «Биология» профиля «Биоэкология», 280700. 62 - профиль «Техносферная безопасность», а также может быть полезным студентам других специальностей и направлений.

Химия (органическая химия) [Текст] : учебно-методический комплекс по дисциплине : конспект лекций / М-во образования и науки Рос. Федерации, ФГБОУ ВПО "Хакасский государственный университет им. Н. Ф. Катанова" ; [сост. Л. А. Фисун]. - Абакан : Изд-во ФГБОУ ВПО "Хакасский государственный университет им. Н. Ф. Катанова", 2014. - 136 с.

ЛЕКЦИЯ №1. ВВЕДЕНИЕ. ПРЕДМЕТ ОРГАНИЧЕСКОЙ ХИМИИ. ОСНОВНЫЕ ЭТАПЫ ЕЕ РАЗВИТИЯ

План

1. Предмет органической химии.

2. Основные исторические этапы развития органической химии.

3. Основные источники органических соединений.

4. Теория химического строения им. А.М. Бутлерова.

Органическая химия - наука, всесторонне изучающая органические соединения. Органические соединения - это углеводороды и их функциональных производные.

Органические соединения известны человеку с глубокой древности: этиловый спирт, уксусная кислота, масла, растительные красители и другие. Однако систематическое изучение органических соединений началось во второй половине 18 века.

Термины «органическая химия», «органические вещества» введены в начале 19 века (1809г.) шведом Й.Я. Берцелиусом для обозначения веществ, выделяемых из животных и растительных организмов. В настоящее время известно более 10 миллионов органических соединений, при этом число синтетических органических соединений несравнимо больше веществ, встречающихся в природе.

Таблица 1.

Распространение углерода в природе

Источники углерода

Количество, 109т

Источники углерода

Количество, 109т

Газы- гидраты

104

Наземная растительность

830

Уголь,нефть, газ

5000

Торф

500

Почва

1400

Атмосфера

3,6

Вода

980

Морские растения

3,0

Органические соединения образованы небольшим числом элементов - углеродом, водородом, серой, кислородом, азотом, фосфором. В состав организма человека, например, входит 24 элемента, на долю четырех из них - углерода, водорода, кислорода и азота приходится около 99% соединений. Архитектура, состав и строение органических соединений весьма разнообразны, разнообразны и уникальны их свойства.

Современная органическая химия характеризуется достаточно развитыми теоретическими представлениями, позволяющими систематизировать, объяснять и прогнозировать свойства, существование органических соединений и их роль в жизни человека.

Фундаментом теоретической органической химии является теория химического строения им. А.М. Бутлерова (1861 год), основные положения которой сформулированы следующим образом:

1. Атомы в молекулах соединяются между собой в определенной последовательности, согласно их валентности. Химическое строение - это определенная последовательность расположения связей между атомами.

2. Свойства органических веществ зависят не только от природы и числа атомов, но и от химического строения. Каждое химическое соединение имеет только одну химическую формулу, которая дает представление об его химических свойствах.

3. Явление существования нескольких соединений с одинаковым качественным и количественным составом, но с разными строением и свойствами, называется изомерией, а сами соединения - изомерами.

4. Атомы в молекулах оказывают друг на друга взаимное влияние. Химический характер каждого конкретного атома в молекуле зависит от природы связанных с ним атомов.

5. Химическое строение соединения может быть установлено по его химическим и физическим свойствам. И, наоборот, зная строение, можно определить его свойства.

Теория химического строения позволила систематизировать фактический материал органической химии, объяснять ее закономерности, предсказывать новые факты.

Достижения современной теории связаны с развитием стереохимических представлений, электронной теории, квантовой химии, глубоким проникновением физико-химических, физических и математических методов исследований, применением компьютерных технологий.

На рубеже 20 и 21 веков органическая химия достигла впечатляющих успехов в понимании тонких механизмов химических реакций, выявлении закономерностей влияния структуры на свойства органических соединений, направленного синтеза необходимых веществ и материалов.

Многие направления органической химии развивались в последние десятилетия столь интенсивно, что выросли в самостоятельные научные дисциплины - стереохимия, химия высокомолекулярных соединений и полимеров, химия природных и физиологически активных соединений, химия элементоорганических соединений, физическая органическая химия, химия гетероциклов, биоорганическая химия, молекулярная биология и т.д.

ЛЕКЦИЯ № 2. КЛАССИФИКАЦИЯ И НОМЕНКЛАТУРА ОРГАНИЧЕСКИХ СОЕДИНЕНИЙ

План

1. Классификация органических соединений:

а) по строению углеродного скелета;

б) по природе функциональных групп.

2. Номенклатура органических соединений.

В органической химии особенно актуальны вопросы классификации и номенклатуры, т.к. объектами изучения являются миллионы соединений. Классифицировать органические соединения можно по разным признакам, например по составу, строению, свойствам, применению. Однако важнейшими признаками классификации органических соединений являются строение углеродного скелета молекулы и наличие в ее составе функциональных групп.

Родоначальными соединениями в органической химии являются углеводороды.

По природе функциональных групп органические соединения делят на классы. Все классы органических соединений взаимосвязаны. Переход от одних классов соединений к другим осуществляется в основном за счет превращения функциональных групп без изменения углеродного скелета.

Соединения близкого строения, но отличающиеся по составу на гомологическую разность (СН2), называются гомологами. Гомологи, расположенные в порядке возрастания их молекулярной массы, образуют гомологический ряд. Состав молекул всех членов гомологического ряда может быть выражен одной общей формулой. Формула любого последующего гомолога может быть получена прибавлением к формуле предыдущего соединения гомологической разности. Гомологические ряды могут быть построены для всех классов органических соединений. Зная свойства одного из членов гомологического ряда, можно сделать выводы о свойствах других представителей того же ряда.

Классификация органических соединений:

1. по строению углеродного скелета

2. по природе функциональных групп.

В молекулах производных углеводородов содержатся функциональные группы, т.е. атомы или группы атомов, определяющие свойства соединения и принадлежность его к определенному классу. Важнейшие функциональные группы и классы органических соединений представлены в таблице 2.

Таблица 2.

Основные классы органических соединений

Функциональная группа

Общая формула

Класс соединений

отсутствует

R-H или Аr-Н

Углеводороды

карбоксильная

R-СООН

Карбоновые кислоты

алкоксикарбонильная

R-COOR

Сложные эфиры

карбонильная

R-CН=О или R2С=О

Альдегиды и кетоны

гидроксильная

R-ОН или Аr-ОН

Спирты и фенолы

сульфгидрильная

R-SH

Тиолы

сульфо-

R-SО3H

Сульфокислоты

амино-

R-NН2, R2NН, R3N

Амины

алкоксильная

R-O-R

Простые эфиры

нитро-

R-NО2

Нитросоединения

Галоген: F, CI, Br, J (HaI)

R-HаI

Галогенопроизводные

Основные химические превращения с участием органических соединений протекают по связи С-ФГ.

Соединения, в состав которых входит одна функциональная группа, называются монофункциональными, если несколько- полифункциональми (поли - означает «много») соединениями. Соединения, в состав которых входят разные функциональные группы, называются гетерофункциональными («гетеро» - по-латыни означает «разный»).

В настоящее время в органической химии общепринятой является систематическая номенклатура (заместительная и радикально-функциональная), разработанная Международным союзом чистой и прикладной химии (IUPAC). Наряду с ней сохранились и используются тривиальная и рациональная номенклатуры.

Тривиальная номенклатура состоит из исторически сложившихся названий, которые не отражают состава и строения вещества. Они являются случайными и отражают природный источник вещества (молочная кислота, лимонная кислота), характерные свойства (глицерин), способ получения (пировиноградная кислота, пиррол), имя первооткрывателя (кетон Михлера, реактив Гриньяра), область применения (аскорбиновая кислота) и т.д. Преимуществом тривиальных названий является их лаконичность, поэтому употребление некоторых из них разрешено правилами IUPAC.

Рациональная номенклатура учитывает строение называемого соединения. Названия образуются от первых членов гомологического ряда (метан, этилен, ацетилен, метиловый спирт - карбинол и т.д.), у которых один или несколько атомов водорода замещены на другие атомы или группы атомов:

СН3 - СН - СН2 - СН3 СН3 - СН=СН2Н5

диметилэтилметан метилэтилэтилен

Номенклатура IUPAC является научной и отражает состав, химическое и пространственное строение соединения. Название соединения выражается при помощи сложного слова, составные части которого отражают определенные элементы строения молекулы вещества.

Название соединения представляет собой составное слово, корень которого включает название родоначальной структуры или основы (систематические - метан, этан и т.д., тривиальные - бензол, фенол и т.д.), префиксы и суффиксы, характеризующих число и характер заместителей, степень ненасыщенности.

Таблица 3.

Гомологический ряд алканов

Значение n в формуле
CnH2n+2

Название алкана

Молекулярная формула

1

Метан

СН4

2

Этан

С2Н6

3

Пропан

С3Н8

4

Бутан

С4Н10

5

Пентан

С5Н12

6

Гексан

С6Н14

7

Гептан

С7Н16

8

Октан

С8Н18

9

Нонан

С9Н20

10

Декан

С10Н22

В молекулах углеводородов и их функциональных производных принято различать первичные, вторичные, третичные и четвертичные атомы углерода. Первичный атом углерода связан только с одним атомом углерода, вторичный - с двумя, третичный - с тремя, а четвертичный - с четырьмя другими атомами углерода.

ЛЕКЦИЯ № 3. ХИМИЧЕСКАЯ СВЯЗЬ. ВЗАИМНОЕ ВЛИЯНИЕ АТОМОВ В ОРГАНИЧЕСКИХ СОЕДИНЕНИЯХ

План

1. Типы химической связи в органических соединениях.

2. Ковалентная связь, её основные характеристики.

3. Водородная связь, межмолекулярные взаимодействия.

4. Электронные эффекты: индуктивный, мезомерный.

Проблема химической связи является наиболее важной в химии, так как свойства веществ, их реакционная способность зависят от состава, строения и типа химической связи между атомами.

Химическая связь есть результат взаимодействия двух или более атомов, приводящий к уменьшению энергии и образованию устойчивой многоатомной системы, например молекулы.

В зависимости от характера распределения электронной плотности в области связывания атомов различают три основные типа химической связи - ковалентную, ионную и металлическую.

Молекулы органических соединений построены из атомов, как правило, соединенных друг с другом посредством ковалентных связей. Ионные связи в индивидуальных органических соединениях встречаются редко.

Для объяснения свойств химической связи в настоящее время применяют две теории - метод валентных связей (МВС) и метод молекулярных орбиталей (ММО).

Согласно методу валентных связей химическая связь образуется парой электронов, имеющих противоположные спины. При этом происходит повышение электронной плотности в пространстве между ядрами, что приводит к их стягиванию. Ковалентные связи - связи локализованные. Химическая связь образуется в том направлении, где возможность перекрывания атомных орбиталей наибольшая. Чем больше перекрывание атомных орбиталей, тем прочнее связь.

Известны два механизма образования общих электронных пар: обобществление неспаренных электронов с противоположными спинами двух атомов (обменный механизм) и обобществление неподеленной пары одного из атомов (донорно-акцепторный механизм).

Основные характеристики химической связи:

1. Энергия связи. Химическая связь возникает лишь в том случае, если полная энергия взаимодействующих атомов уменьшается, т.е. при образовании связи энергия всегда выделяется. Энергия связи - мера прочности связи. Чем больше выделяется энергии при образовании связи, тем больше энергии надо затратить на её разрыв, следовательно, чем больше энергия связи, тем устойчивее соединение. Энергия связи изменяется в очень широких пределах - от 10 до 1000кДж/моль.

2. Длина связи - расстояние между ядрами связанных атомов, позволяет судить о равноценности или не равноценности химических связей, их кратности. Она зависит от размеров электронных оболочек и степени их перекрывания. С уменьшением длины связи обычно растет энергия связи и устойчивость молекул.

3. Насыщаемость - способность атомов образовывать ограниченное число ковалентных связей; благодаря насыщаемости связей молекулы имеют определенный состав.

4. Направленность - определяет пространственную структуру молекул. Атомные орбитали пространственно ориентированы, поэтому их перекрывание происходит по определенным направлениям, что и обусловливает направленность ковалентной связи. Количественно направленность выражается в виде валентных углов между направлениями химической связи в молекулах.

5. Полярность - смещение общей электронной пары в сторону ядра одного из атомов, критерием способности атома притягивать электрон может служить электроотрицательность (ЭО). Связь неполярная, если различие электроотрицательностей атомов (Д ) меньше 0,5; если Д = 0,5-2,0 - связь полярная; если Д > 2,0 , то связь ионная.

Вследствие смещения электронной пары к одному из ядер повышается плотность отрицательного заряда у данного атома, и атом получает заряд, называемый эффективным зарядом д-, у другого атома плотность отрицательного заряда понижается, его эффективный заряд д+.

Мерой полярности связи служит дипольный момент связи м = q? (Кл. м), равный произведению эффективного заряда на длину диполя.

Дипольный момент молекулы равен векторной сумме всех дипольных моментов химических связей, определяется геометрией молекулы. Чем больше дипольный момент молекулы, тем она полярнее. Полярность молекулы в значительной степени определяет физические и химические свойства вещества.

6. Поляризуемость - способность электронной оболочки атома или молекулы деформироваться под воздействием внешнего поля, например иона, полярной молекулы и т. д. Поляризуемость это временная поляризация, которая исчезает при снятии действия поля. Поляризуемость определяет реакционную способность молекулы и зависит от длины связи.

7. Кратность. При образовании ковалентной связи различают два типа перекрывания атомных орбиталей. Перекрывание атомных орбиталей вдоль оси, соединяющей ядра атомов, называется у-перекрыванием или у-связью, симметричной относительно оси связи. Боковое перекрывание р-атомных орбиталей с параллельными осями называется р- перекрыванием или р-связью, которая не обладает осевой симметрией и слабее у-связи. По кратности различают одинарную (у-связь), двойную (комбинация у и р- связей), тройную (комбинация у и 2р-связей) связи. При увеличении кратности связи уменьшается длина связи и увеличивается её энергия.

Атом углерода формирует связи за счет электронов разных энергетических состояний - s-р-состояний, но, несмотря на различие форм исходных атомных орбиталей, образованные ими связи, например в метане оказываются равноценными. Для разрешения данной проблемы Л. Полинг сформулировал два постулата - направленной валентности и гибридизации орбиталей. Валентные орбитали,например 2s, 2px, 2pу, 2рz углерода при образовании связи гибридизуются (смешиваются) и образуют эквивалентные (одинаковые по форме и энергии) атомные гибридные орбитали. Электронная плотность гибридизованных орбиталей сконцентрирована по одну сторону от ядра, что обеспечивает максимальное перекрывание орбиталей, а значит образование более прочной химической связи.

sp3- гибридизация. В образовании гибридной орбитали участвуют одна s- и три р-орбитали. 4sp3- гибридизованные орбитали атома образуют 4 у-связи с соседними атомами. Это характерно для насыщенных соединений углерода - углеводородов и их производных.

sp2- гибридизация. В ненасыщенных соединениях атом углерода находится в sp2-гибридном состоянии, в этом случае происходит смешение одной s-орбитали с двумя р-орбиталями с образованием трех эквивалентных sp2-гибридизованных орбиталей, при перекрывании которых с орбиталями соседних атомов образуются 3 у-связи.

Перекрывание негибридизованных р-орбиталей (боковое перекрывание) приводит к образованию другого вида ковалентной связи - р-связи. Двойная связь между двумя углеродными атомами описывается в рамках теории гибридизации как сочетание одной у- и одной р-связей.

sp- гибридизация - комбинация s-орбитали и одной р-орбитали. При этом образуются две эквивалентные гибридные sp-орбитали, при перекрывании которых с орбиталями соседних атомов образутся 2 у-связи. У каждого атома углерода остаются по две негибридизованные р- орбитали, которые, перекрываясь, образуют две р-связи. Таким образом, тройная связь между двумя углеродными атомами - сочетание одной у- и двух р-связей.

Различие в форме и направленности гибридизованных орбиталей проявляется в длинах связей, валентных углах и других характеристиках.

Ниже представлена зависимость структуры соединений от гибридизации атома углерода.

Гибридизация Геометрия молекулы Примеры

sp3 тетраэдрическая алканы и их производные

sp2 тригональная этилен и его гомологи, бензол,

карбонильная и карбоксильная

группы и др.

sp линейная ацетилен и его гомологи,

нитрил, кумулированные

углеводороды и др.

Ионная связь возникает при электростатическом взаимодействии отрицательно и положительно заряженных ионов в химическом соединении. Эта связь возникает лишь в случае большой разности электроотрицательности атомов.

Водородная связь. Атом водорода, связанный с сильно электроотрицательным атомом (фтора, кислорода, азота), способен взаимодействовать с неподеленной электронной парой другого сильно электроотрицательного атома этой же или другой молекулы с образованием дополнительной слабой связи, называемой водородной связью. Если водородная связь образуется между разными молекулами, она называется межмолекулярной, если связь образуется между двумя группами одной и той же молекулы, то она называется внутримолекулярной. Внутримолекулярная связь образуется в том случае, когда возможно замыкание пятичленного или шестичленного цикла. Водородная связь обозначается тремя точками ···. Образование межмолекулярных водородных связей обусловливает ассоциацию молекул, что приводит к существенному изменению физических свойств веществ: повышению вязкости, диэлектрической постоянной, температур плавления и кипения, теплот парообразования и плавления.

Важную роль водородные связи играют в белках, у которых спиральные полимерные структуры объединяются связями N-H···O. Двойные спирали нуклеиновых кислот соединяются межмолекулярными водородными связями N-Н···N и N-H···О.

Между молекулами органических соединений происходят вандерваальсовы взаимодействия -- ориентационные, индуктивные, дисперсные, которые определяют физические свойства веществ.

Взаимное влияние атомов в молекуле. Отклонения от постоянных свойств химических связей в молекуле связаны с проявлением взаимного влияния атомов. Использование представлений о взаимном влинии позволяет предсказывать свойства стабильных молулекул, определять стабильность органических ионов и радикалов. Это влияние передается, в основном, через систему ковалентных связей, с помощью так называемых электронных эффектов.

Взаимное влияние, передающееся по цепи у-связей, называется индуктивным электронным эффектом. Индуктивный электронный эффект (обозначается буквой I) может быть положительным и отрицательным.

Большинство функциональных групп проявляют -I-эффект: галогены, аминогруппа, гидроксильная, карбонильная, карбоксильная группы. +I-эффект проявляют алифатические углеводородные радикалы, т. е. алкильные радикалы (метил, этил и т. д.).

Индуктивный эффект передается по цепи с затуханием. Направление смещения электронной плотности всех у-связей указывается прямыми стрелками (>).

Влияние заместителя на распределение электронной плотности, передаваемое по р-связям, называют мезомерным эффектом (обозначается буквойМ). Мезомерный эффект может быть отрицательным и положительным. В структурных формулах его изображают изогнутой стрелкой, начинающейся у центра электронной плотности и завершающейся в том месте, куда смещается электронная плотность.

Наличие электронных эффектов ведет к перераспределению электронной плотности в молекуле и появлению частичных зарядов на отдельных атомах. Это определяет реакционную способность молекулы, направленность химических реакций с её участием.

ЛЕКЦИЯ № 4. ИЗОМЕРИЯ

План

1. Структурная изомерия.

2. Конформационная изомерия.

3. Геометрическая изомерия.

4. Оптическая изомерия.

Изомеры - это вещества, имеющие одинаковый состав и молекулярную массу, но разные физические и химические свойства. Различия в свойствах изомеров обусловлены различиями в их химическом или пространственном строении. В связи с этим различают два вида изомерии.

1. Структурная изомерия

Структурные изомеры отличаются химическим строением, т.е. природой и последовательностью связей между атомами в молекуле. Структурные изомеры выделяют в чистом виде. Они существуют как индивидуальные, устойчивые вещества, для их взаимного превращения необходима высокая энергия - порядка 350 - 400 кДж/моль. В динамическом равновесии находятся только структурные изомеры -- таутомеры. Таутомерия - распространенное явление в органической химии. Она возможна при переносе подвижного атома водорода в молекуле (карбонильные соединения, амины, гетероциклы и т.д.), внутримолекулярных взаимодействиях (углеводы).

Все структурные изомеры представляют в виде структурных формул и называют по номенклатуре ИЮПАК. Например, составу С4Н8О соответствуют структурные изомеры:

а) с различным углеродным скелетом

неразветвленная С-цепь - СН3-СН2-СН2-СН=О (бутаналь, альдегид) и разветвленная С-цепь -

(2-метилпропаналь, альдегид) или

цикл - (циклобутанол, циклический спирт);

б) с различным положением функциональной группы

бутанон-2, кетон;

в) с различным составом функциональной группы

3-бутенол-2, непредельный спирт;

г) метамерии

Гетероатом функциональной группы может быть включен в углеродный скелет (цикл или цепь). Один из возможных изомеров этого вида изомерии -

СН3-О-СН2-СН=СН2

(3-метоксипропен-1, простой эфир);

д) таутомерии (кето-енольной)

енольная форма кетоформа

Таутомеры находятся в динамическом равновесии, при этом в смеси преобладает более устойчивая форма - кетоформа.

Для ароматических соединений структурную изомерию рассматривают только для боковой цепи.

2. Пространственная изомерия (стереоизомерия)

Пространственные изомеры имеют одинаковое химическое строение, различаются по пространственному расположению атомов в молекуле. Это различие и создает разницу в физических и химических свойствах. Пространственные изомеры изображают в виде различных проекций или стереохимических формул. Раздел химии, изучающий пространственное строение и его влияние на физические и химические свойства соединений, на направление и скорость их реакций, называется стереохимией.

а) Конформационная (поворотная) изомерия

Не меняя ни валентных углов, ни длин связей, можно представить себе множество геометрических форм (конформаций) молекулы, отличающихся друг от друга взаимным поворотом углеродных тетраэдров вокруг соединяющей их у-С-С-связи. В результате такого вращения возникают поворотные изомеры (конформеры). Энергия различных конформеров неодинакова, но энергетический барьер, разделяющий различные конформационные изомеры, для большинства органических соединений невелик. Поэтому при обычных условиях, как правило, нельзя зафиксировать молекулы в одной строго определенной конформации. Обычно в равновесии сосуществуют несколько легко переходящих друг в друга конформационных изомеров.

Способы изображения и номенклатуру изомеров можно рассмотреть на примере молекулы этана. Для нее можно предвидеть существование двух, максимально различающихся по энергии конформаций, которые могут быть изображены в виде перспективных проекций (1) («лесопильные козлы») или проекций Ньюмена (2):

заторможенная конформация заслоненная конформация

В перспективной проекции (1) связь С-С надо представить себе уходящей вдаль; стоящий слева углеродный атом приближен к наблюдателю, стоящий справа - удален от него.

В проекции Ньюмена (2) молекулу рассматривают вдоль связи С-С. Три линии, расходящиеся под углом 120о из центра круга, обозначают связи ближайшего к наблюдателю углеродного атома; линии, «высовывающиеся» из-за круга - связи удаленного углеродного атома.

Изображенную справа конформацию называют заслоненной. Это название напоминает о том, что атомы водорода обеих СН3-групп находятся друг против друга. Заслоненная конформация имеет повышенную внутреннюю энергию и поэтому невыгодна. Конформацию, изображенную слева, называют заторможенной, подразумевая, что свободное вращение вокруг связи С-С «тормозится» в этом положении, т.е. молекула существует преимущественно в этой конформации.

Минимум энергии, необходимый для полного вращения молекулы вокруг определенной связи, называется барьером вращения для данной связи. Барьер вращения в молекуле, подобной этану, может быть выражен через изменение потенциальной энергии молекулы как функции изменения двугранного (торсионного - ф ) угла системы.
Энергетический профиль вращения вокруг связи С-С в этане показан на рисунке 1. Барьер вращения, разделяющий две формы этана, составляет около 3 ккал/моль (12,6 кДж/моль). Минимумы кривой потенциальной энергии соответствуют заторможенным конформациям, максимумы - заслоненным. Поскольку при комнатной температуре энергия некоторых столкновений молекул может достигать 20 ккал/моль (около 80 кДж/моль), то этот барьер в 12,6 кДж/моль легко преодолевается и вращение в этане рассматривают как свободное. В смеси всех возможных конформаций преобладают заторможенные конформации.

Рис.1. Диаграмма потенциальной энергии конформаций этана.

Для более сложных молекул число возможных конформаций возрастает. Так, для н-бутана можно изобразить уже шесть конформаций, возникающих при повороте вокруг центральной связи С2 - С3 и отличающихся взаимным расположением СН3-групп. Различные заслоненные и заторможенные конформации бутана отличаются по энергии. Энергетически более выгодны заторможенные конформации.

Энергетический профиль вращения вокруг связи С23 в бутане показан на рисунке 2.

Рис.2. Диаграмма потенциальной энергии конформаций н-бутана.

Для молекулы с длинной углеродной цепью число конформационных форм возрастает.

Для молекулы алициклических соединений характерны различные конформационные формы цикла (например, для циклогексана кресло, ванна, твист-формы).

Итак, конформации - это различные пространственные формы молекулы, имеющей определенную конфигурацию. Конформерами являются стереоизомерные структуры, соответствующие энергетическим минимумам на диаграмме потенциальной энергии, находящиеся в подвижном равновесии и способные к взаимопревращению путем вращения вокруг простых у-связей.

Если барьер таких превращений становится достаточно высоким, то можно разделить стереоизомерные формы (пример - оптически активные дифенилы). В таких случаях говорят уже не о конформерах, а о реально существующих стереоизомерах.

б) Геометрическая изомерия

Геометрические изомеры возникают в результате отсутствия в молекуле:

1. вращения атомов углерода относительно друг друга - следствие жесткости двойной связи С=С или циклической структуры;

2. двух одинаковых групп при одном атоме углерода двойной связи или цикла.

Геометрические изомеры, в отличие от конформеров, могут быть выделены в чистом виде и существуют как индивидуальные, устойчивые вещества. Для их взаимного превращения необходима более высокая энергия - порядка 125-170 кДж/моль (30-40 ккал/моль).

Различают цис-транс-(Z,E) изомеры; цис-формами называют геометрические изомеры, у которых одинаковые заместители лежат по одну сторону от плоскости р-связи или цикла, транс-формами называют геометрические изомеры, у которых одинаковые заместители лежат по разные стороны от плоскости р-связи или цикла.

Простейшим примером могут служить изомеры бутена-2, который существует в виде цис- , транс-геометрических изомеров:

цис-бутен-2 транс-бутен-2

температура плавления

-138,90С - 105,60С

температура кипения

3,720С 1,000С

плотность

0,724 0,604

1,2 - дихлорциклопропан существует в виде цис- , транс-изомеров:

цис-1,2-дихлорциклопропан транс-1,2-дихлорциклопропан

В более сложных случаях применяется Z,E-номенклатура (номенклатура Канна, Ингольда, Прелога - КИП, номенклатура старшинства заместителей). В соединении

1-бром -2-метил-1-хлорбутене-1 (Br)(CI)С=С(СН3) - СН2-СН3 все заместители при атомах углерода с двойной связью различные; поэтому данное соединение существует в виде Z-, E- геометрических изомеров:

Е-1-бром-2-метил-1-хлорбутен-1 Z-1-бром-2-метил-1-хлорбутен-1.

Для обозначения конфигурации изомера указывают расположение старших заместителей при двойной связи (или цикле) - Z-(от немецкого Zusammen - вместе) или Е-(от немецкого Entgegen - напротив).

В Z,E-системе старшими считаются заместители с большим порядковым (атомным) номером. Если атомы, непосредственно связанные с ненасыщенными атомами углерода, одинаковы, то переходят ко "второму слою", в случае необходимости - к "третьему слою" и т. д.

В первой проекции старшие группы находятся напротив друг друга относительно двойной связи, поэтому это Е-изомер. Во второй проекции старшие группы расположены по одну сторону относительно двойной связи (вместе), поэтому это Z-изомер.

Геометрические изомеры широко распространены в природе. Например, природные полимеры каучук (цис-изомер) и гуттаперча (транс-изомер), природная фумаровая (транс-бутендиовая кислота) и синтетическая малеиновая (цис-бутендиовая кислота) кислоты, в составе жиров - цис-олеиновая, линолевая, линоленовая кислоты.

в) Оптическая изомерия

Молекулы органических соединений могут быть хиральными и ахиральными. Хиральность(от греч. сheir - рука) -- несовместимость молекулы со своим зеркальным отражением.

Хиральные вещества способны вращать плоскость поляризации света. Это явление называют оптической активностью, а соответствующие вещества - оптически активными. Оптически активные вещества встречаются в виде пар оптических антиподов - изомеров, физические и химические свойства которых в обычных условиях одинаковы, за исключением одного - знака вращения плоскости поляризации: один из оптических антиподов отклоняет плоскость поляризации в право (+, правовращающий изомер), другой - влево (-, левовращающий). Определить конфигурацию оптических антиподов можно экспериментально с помощью прибора - поляриметра.

Оптическая изомерия появляется тогда, когда в молекуле присутствует асимметрический атом углерода (существуют и другие причины хиральности молекулы). Так называют атом углерода в sр3 - гибридизации и связанный с четырьмя различными заместителями. Возможны два тетраэдрических расположения заместителей вокруг асимметрического атома. При этом две пространственные формы нельзя совместить никаким вращением; одна из них является зеркальным изображением другой :

Обе зеркальные формы составляют пару оптических антиподов или энантиомеров.

Изображают оптические изомеры в виде проекционных формул Э. Фишера. Их получают в результате проецирования молекулы с асимметрическим атомом углерода. При этом сам асимметрический атом углерода на плоскости обозначают точкой, на горизонтальной линии указывают символы заместителей, выступающих перед плоскостью рисунка. На вертикальной линии (прерывистой или сплошной) указывают заместители, которые удалены за плоскость рисунка. Ниже приведены различные способы записи проекционной формулы, отвечающей левой модели на предыдущем рисунке:

В проекции главную углеродную цепь изображают вертикально; главную функцию, если она находится в конце цепи, указывают в верхней части проекции. Например, стереохимические и проекционные формулы (+) и (-) аланина - СН3 -*СН(NН2)-СООН представляют следующим образом:

Смесь с одинаковым содержанием энантиомеров называется рацематом. Рацемат не обладает оптической активностью и характеризуется отличными от энантиомеров физическими свойствами.

Правила преобразования проекционных формул.

1. Формулы можно вращать в плоскости чертежа на 180о, не меняя их стереохимического смысла:

2. Две (или любое четное число) перестановки заместителей у одного асимметрического атома не меняют стереохимического смысла формулы:

3. Одна (или любое нечетное число) перестановка заместителей у асимметрического центра приводит к формуле оптического антипода:

4. Поворот в плоскости чертежа на 90о превращает формулу в антипод.

5. Вращение любых трех заместителей по часовой стрелке или против не меняет стереохимического смысла формулы:

6. Проекционные формулы нельзя выводить из плоскости чертежа.

Оптической активностью обладают органические соединения, в молекулах которых хиральными центрами являются и другие атомы, например кремния, фосфора, азота, серы.

Соединения с несколькими асимметрическими атомами углерода существуют в виде диастереомеров, т.е. пространственных изомеров, не составляющих друг с другом оптических антиподов.

Диастереомеры отличаются друг от друга не только оптическим вращением, но и всеми другими физическими константами: у них разные температуры плавления и кипения, разные растворимости и др.

Число пространственных изомеров определяют по формуле Фишера N=2n, где n - число асимметрических атомов углерода. Число стереоизомеров может уменьшаться из-за частичной симметрии, появляющейся в некоторых структурах. Оптически неактивные диастереомеры называют мезо-формами.

Номенклатура оптических изомеров:

а) D- , L- номенклатура

Для определения D- или L-ряда изомера конфигурацию (положение ОН-группы у асимметричного атома углерода) сравнивают с конфигурациями энантиомеров глицеринового альдегида (глицериновый ключ):

L-глицериновый альдегид D-глицериновый альдегид

Применение D-, L-номенклатуры в настоящее время ограничено тремя классами оптически активных веществ: углеводами, аминокислотами и оксикислотами.

б) R -, S-номенклатура (номенклатура Кана, Ингольда и Прелога)

Для определения R(правый)- или S(левый)-конфигурации оптического изомера необходимо расположить заместители в тетраэдре (стереохимической формуле) вокруг асимметрического углеродного атома таким образом, чтобы самый младший заместитель (обычно это водород) имел направление «от наблюдателя». Если переход трех остальных заместителей от старшего к среднему и младшему по старшинству происходит по часовой стрелке - это R-изомер (падение старшинства совпадает с движением руки при написании верхней части буквы R). Если переход происходит против часовой стрелки - это S-изомер (падение старшинства совпадает с движением руки при написании верхней части буквы S).

Для определения R- или S-конфигурации оптического изомера по проекционной формуле необходимо путем четного числа перестановок расположить заместители так, чтобы самый младший из них оказался внизу проекции. Падение старшинства остальных трех заместителей по часовой стрелке соответствует R-конфигурации, против часовой стрелки - S-конфигурации.

Получают оптические изомеры следующими методами:

а) выделение из природных материалов, содержащих оптически активные соединения, например белки и аминокислоты, углеводы, многие оксикислоты (винная, яблочная, миндальная), терпеновые углеводороды, терпеновые спирты и кетоны, стероиды, алкалоиды и др.

б) расщепление рацематов;

в) асимметрический синтез;

г) биохимическое получение оптически активных веществ.

ЗНАЕТЕ ЛИ ВЫ, ЧТО

-Явление изомерии (от греч.- isos -- разный и meros - доля, часть) открыто в 1823г. Ю. Либихом и Ф. Вёлером на примере солей двух неорганических кислот: циановой Н-О-С?N и гремучей Н-О-N= С.

-В 1830 г. Ж.Дюма распространил представление об изомерии на органические соединения.

-В 1831г. термин «изомер» для органических соединений предложил Й. Берцелиус.

-Стереоизомеры природных соединений характеризуются разной биологической активностью (аминокислоты, углеводы, алкалоиды, гормоны, феромоны, лекарственные вещества природного происхождения и т.д.).

ЛЕКЦИЯ № 5. КЛАССИФИКАЦИЯ ОРГАНИЧЕСКИХ РЕАКЦИЙ И РЕАГЕНТОВ. ОРГАНИЧЕСКИЕ КИСЛОТЫ И ОСНОВАНИЯ

План

1. Классификация органических реакций:

а) по характеру изменения связей в реагирующих веществах;

б) по конечному результату (или по направлению) реакции.

2. Кислотно-основные взаимодействия.

Органических реакций очень много, однако, используя различные критерии, их можно классифицировать. В результате всё многообразие реакций можно свести к небольшому числу типов реакций.

Взаимодействующие в органической реакции вещества подразделяют на реагент и субстрат. При этом считается, что реагент атакует субстрат. Субстратом, как правило, считают молекулу, которая предоставляет атом углерода для новой связи.

Классификация органических реакций:

1. по характеру изменения связей в реагирующих веществах реакции подразделяют на радикальные и ионные.

а) Радикальные реакции протекают с участием радикалов (R.) - частиц с неспаренным электроном и образуемых в результате гомолитического разрыва ковалентной связи, например CI:CI > ·CI + ·CI. Для радикалов характерна высокая реакционная активность, реакции с их участием протекают с очень большой скоростью. Примеры радикальных реагентов: ·CI,·Br, ·J, ·NO2, ·OH, ·R(алкил) и др.

б) Ионные реакции протекают с участием ионов, образуемых в результате гетеролитического разрыва ковалентной связи: Е :N > Е+ + :N-.

Электрофилы (электро+фил - любящий электрон) (Е): Br+, Cl+, H+, R+, NO2 + и нейтральные молекулы с электронодефицитным центром - SO3, BF3, соли алюминия, цинка, железа (III) и др. Электрофил представляет незаполненные, вакантные орбитали для образования ковалентной связи.

Нуклеофилы (нуклеос+фил - любящий протон) (N): Hal-, OH-, RO-, RS-, RCOO-, R-, CN- и нейтральные молекулы с неподеленной электронной парой, например H2O:, ROH, :NH3, RNH2 и др. За счет пары электронов нуклеофил способен образовывать новую ковалентную связь.

2. по конечному результату (или по направлению) реакции подразделяют:

а) реакции присоединения - символ А (анг.-addition). Присоединение реагента к субстрату происходит по р-связям или по у-связям циклических структур (размыкание цикла), в результате реакций образуются новые ковалентные у-связи. Реакции присоединения могут быть электрофильными (АЕ):

нуклеофильными (АN):

радикальными АR:

Реакции присоединения водорода называют гидрированием, воды - гидратацией, галогенов - галогенированием (хлорирование, бромирование и т.д.), галогеноводородов - гидрогалогенированием и др.

б) реакции замещения - символ S (анг.-substitution). Замещение происходит по у-связям субстрата, в результате реакций образуются новые ковалентные у-связи. Реакции замещения могут быть электрофильными (SЕ):

нуклеофильными (SN):

Н3Сд+д- H + Нд+-Clд- > Н3С-Cl + HОН,

радикальными (SR):

Н3С-H + Cl-Cl > Н3С-Cl + HCl.

в) реакции отщепления или элиминирования - символ Е (анг.- elimiation). Отщепление происходит по у-связям субстрата. В результате б, Я-отщепления образуются новые р-связи, в результате б,г- или б,д-отщепления образуются новые ковалентные у-связи циклических соединений.

Например:

СI-СН2-СН2-СН2-СI + Zn> + Zn СI2

Реакции отщепления водорода называют дегидрированием, воды - дегидратацией, галогенов - дегалогенированием (дехлорирование, дебромирование и т.д.), галогеноводородов - дегидрогалогенированием и др.

г) перегруппировки. В процессе перегруппировок внутри молекулы происходит миграция атома или групп атомов от одного атома к другому. Например:

д) окислительно-восстановительные. Окислительно-восстановительный характер органических реакций определяют иначе по сравнению с неорганическими реакциями. Так, окисление - образование новых связей углерода с атомами более электроотрицательных элементов (галогены, кислород, азот, сера и т.д.), иногда в реакциях этого типа число атомов водорода в продукте реакции может уменьшаться. Например:

СН3-СН2-ОН + [О] > СН3-СН=О

Восстановление - образование новых связей С-Н, при этом часто число атомов водорода в продукте реакции увеличивается. Например:

СН3-СН=СН-СН3 + Н2 > СН3-СН2-СН2-СН3

е) по числу реагирующих частиц. Большинство органических реакций состоят из нескольких последовательных или параллельных элементарных стадий. В зависимости от числа частиц, участвующих в скорость-определяющей стадии (самой медленной или лимитирующей), различают мономолекулярные и бимолекулярные реакции. Например, реакции мономолекулярного и бимолекулярного нуклеофильного замещения (символы SN1 и SN2), мономолекулярного и бимолекулярного отщепления (символы Е1 и Е2) и др.

Кислотно-основные взаимодействия

В настоящее время существуют две основных теории кислот и оснований: теория Брёнстеда-Лоури (1923 г.) и теория Льюиса (1926 г.).

Кислоты Брёнстеда - это соединения, способные отдавать протон (доноры протона).

Основания Брёнстеда - это соединения, способные присоединять протон (акцепторы протона). Для взаимодействия с протоном основание должно иметь свободную пару электронов или электроны р-связи.

Кислоты и основания образуют сопряженные кислотно-основные пары:

В зависимости от природы элемента, с которым связан протон, различают четыре основных типа органических кислот Брёнстеда:

O-H-кислоты - карбоновые кислоты, спирты, фенолы;

S-H-кислоты - тиолы;

N-H-кислоты - амины, амиды, имиды;

C-H-кислоты - углеводороды и их производные.

Мерой силы кислоты является константа кислотности (ионизации) Ка или рКа. Чем больше Ка (или меньше рКа), тем сильнее кислота.

В зависимости от природы атома, к неподеленной паре электронов которого присоединяется протон, основания Брёнстеда делят на три основных типа:

N (аммониевые) основания - амины, нитрилы, азотсодержащие гетероциклические соединения;

О (оксониевые) основания - спирты, простые эфиры, альдегиды, кетоны, карбоновые кислоты и их функциональные производные;

S (сульфониевые) основания - тиолы, сульфиды.

Особый тип оснований Бренстеда представляют р-основания, в которых центром основности являются электроны р-связи (алкены, арены).
При прочих равных условиях для элементов одного периода с ростом электроотрицательности атома кислотность соединений увеличивается, так как высокая электроотрицательность атома при кислотном центре стабилизирует образующийся при отщеплении протона анион. Так, кислотность уменьшается в ряду:

OH-кислоты> NH-кислоты> CH-кислоты

Для элементов одной подгруппы с возрастанием заряда ядра и поляризуемости атома кислотность соединений увеличивается:

OH-кислоты < SH-кислоты

Введение заместителя в углеводородный радикал влияет на силу кислоты. Электроноакцепторные (ЭА) заместители увеличивают, а электронодонорные (ЭД) - уменьшают кислотность, поскольку электроноакцепторные заместители стабилизируют сопряженное основание (анион), а электронодонорные заместители - дестабилизируют.

Основность уменьшается в ряду:

N-основания > О-основания > S-основания (NOS)

Введение электронодонорных заместителей увеличивает, а введение электроакцепторных - понижает основность.

Дж. Льюисом была предложена более общая теория кислот и оснований.

Основания Льюиса - это доноры пары электронов (спирты, алкоголят-анионы, простые эфиры, амины и т.д.)

Кислоты Льюиса - это акцепторы пары электронов, т.е. соединения, имеющие вакантную орбиталь (ион водорода и катионы металлов: H+, Ag+, Na+, Fe2+; галогениды элементов второго и третьего периодов BF3, AlCl3, FeCl3, ZnCl2; галогены; соединения олова и серы: SnCl4, SO3). Кислотно-основное взаимодействие по Льюису - это доноро-акцепторное взаимодействие и любую гетеролитическую реакцию можно представить как взаимодействие кислоты и основания Льюиса.

ЛЕКЦИЯ 6. УГЛЕВОДОРОДЫ. АЛКАНЫ

План

1. Классификация углеводородов.

2. Алканы.

3. Гомологический ряд, номенклатура, получение.

4. Изомерия, строение.

5. Свойства.

Углеводороды - органические соединения, состоящие из атомов двух элементов - углерода и водорода. Поэтому общую формулу углеводородов можно представить в виде СхНy.

Классификацию органических веществ, рассмотренную ранее, можно распространить и на углеводороды. Изучение углеводородов начинается с класса ациклических предельных соединений - алканов.

КЛАССИФИКАЦИЯ УГЛЕВОДОРОДОВ

АЛКАНЫ

Алканы (парафины) - насыщенные или предельные углеводороды с открытой углеродной цепьюи общей формулой - СnH2n+2.

Гомологический ряд:

метан - СН4

этан - СН3-СН3

пропан - СН3-СН2-СН3

бутан - СН3-СН2-СН2-СН3

...

Подобные документы

  • Использование магнийорганических соединений и химия элементоорганических соединений. Получение соединений различных классов: спиртов, альдегидов, кетонов, эфиров. История открытия, строение, получение, реакции и применение магнийорганических соединений.

    курсовая работа [34,4 K], добавлен 12.12.2009

  • Синтез и свойства N,S,О-содержащих макрогетероциклов на основе первичных и ароматических аминов с участием Sm-содержащих катализаторов. Гетероциклические соединения, их применение. Методы идентификации органических соединений ЯМР- и масс-спектроскопией.

    дипломная работа [767,1 K], добавлен 22.12.2014

  • Органическая химия и медицина. Какие бывают лекарства и почему они лечат. Полимеры в медицине. Применение различных полимерных материалов в сельском хозяйстве. Органическая химия и ее применение в пищевой промышленности. Добавки в продукты питания.

    доклад [19,4 K], добавлен 13.01.2010

  • Классификация углеводов (моносахариды, олигосахариды, полисахариды) как самых распространенных органических соединений. Химические свойства вещества, его роль в питании как основного источника энергии, характеристика и место глюкозы в жизни человека.

    реферат [212,0 K], добавлен 20.12.2010

  • Изомерия как явление существования соединений, одинаковых по составу, но разных по строению и свойствам. Межклассовая изомерия, определяемая природой функциональной группы. Виды пространственной изомерии. Типы номенклатуры органических соединений.

    презентация [990,3 K], добавлен 12.03.2017

  • Значение атома углерода в химическом строении органических соединений. Карбоновая кислота – представитель предельных одноосновных кислот. Циклические и ароматические углеводороды. Определение и химическое строение липидов. Виды спиртов. Получение мыла.

    учебное пособие [5,9 M], добавлен 25.04.2011

  • Основные операции при работе в лаборатории органической химии. Важнейшие физические константы. Методы установления строения органических соединений. Основы строения, свойства и идентификация органических соединений. Синтезы органических соединений.

    методичка [2,1 M], добавлен 24.06.2015

  • Общие сведения, распространение и значимость гетероциклических органических соединений. Особенности строения гетероциклов, их классификация и номенклатура. Шестичленные гетероциклы - азины и их аналоги. Взаимопревращение пятичленных гетероциклов.

    контрольная работа [1,2 M], добавлен 05.08.2013

  • Понятие гетероциклических соединений, их сущность и особенности, основные химические свойства и общая формула. Классификация гетероциклических соединений, разновидности, отличительные черты и способы получения. Реакции электрофильного замещения.

    реферат [250,5 K], добавлен 21.02.2009

  • Понятие гетероциклических соединений, их сущность и особенности, основные химические свойства и общая формула. Классификация гетероциклических соединений, разновидности, отличительные черты и способы получения. Реакции электрофильного замещения.

    реферат [248,9 K], добавлен 21.02.2009

  • Номенклатура, классификация, химические свойства аминов. Основные и кислотные свойства, реакции ацилирования и алкилирования. Взаимодействие аминов с азотистой кислотой. Восстановление азотсодержащих органических соединений, перегруппировка Гофмана.

    курсовая работа [608,4 K], добавлен 25.10.2014

  • Изучение строения и свойств аминов как органических соединений, являющихся производными аммиака. Номенклатура аминов и замена атомов водорода углеводородными радикалами. Синтез, анализ, химические реакции аминов и их взаимодействие с азотистой кислотой.

    презентация [1,2 M], добавлен 02.08.2015

  • Взаимное влияние атомов и способы его передачи в органических молекулах. Роль ионизации в проявлении биологической активности. Фосфолипиды как структурные компоненты клеточных мембран. Стереохимия органических соединений. Реакции аминокислот, белки.

    курс лекций [1,8 M], добавлен 05.03.2013

  • Строение молекулы, номенклатура, изомерия, физические, химические свойства, методы получения и сферы применения альдегидов или органических соединений, содержащих карбонильную группу, в которой атом углерода связан с радикалом и одним атомом водорода.

    презентация [331,9 K], добавлен 23.03.2016

  • Характеристика гетероциклических соединений, их биологическое значение, распространение в природе, участие в построении аминокислот и классификация. Строение гемма крови и хлорофилла. Структура фурана, фурфурола, имидазола, тиазола, пирана, пиридина.

    реферат [41,5 K], добавлен 22.06.2010

  • Общая характеристика, краткие сведения об истории открытия элементов и их распространённости в природе. Физико-химические свойства железа, кобальта и никеля. Свойства соединений железа в степенях окисления. Цис-, транс-изомерия соединений платины.

    реферат [36,7 K], добавлен 21.09.2019

  • Жизнь как непрерывный физико-химический процесс. Общая характеристика природных соединений. Классификация низкомолекулярных природных соединений. Основные критерии классификации органических соединений. Виды и свойства связей, взаимное влияние атомов.

    презентация [594,7 K], добавлен 03.02.2014

  • Бионеметаллы и биометаллы, биолиганды. Биологическая роль неорганических соединений. Транспорт ионов металлов. Металлосодержащие ферменты. Ферментативный катализ окислительно-восстановительных реакций. Бионеорганическая химия и охрана окружающей среды.

    реферат [1,3 M], добавлен 12.11.2008

  • Понятие и сущность соединений. Описание и характеристика ароматических гетероциклических соединений. Получение и образование соединений. Реакции по атомному азоту, электрофильного замечания и нуклеинового замещения. Окисление и восстановление. Хинолин.

    лекция [289,7 K], добавлен 03.02.2009

  • Классификация органических соединений по углеродному скелету и по функциональным группам. Взаимосвязь химического строения органических молекул с их реакционным центром. Влияние электронно-пространственного строения на механизмы химических превращений.

    курс лекций [1,2 M], добавлен 19.12.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.