Химия (органическая химия)

Классификация и номенклатура органических соединений. Галогенпроизводные углеводородов, карбонильные соединения. Характеристика спиртов и фенолов. Особенности гетероциклических соединений, предназначение аминокислот и пептидов, углеводов и аминов.

Рубрика Химия
Вид курс лекций
Язык русский
Дата добавления 14.10.2017
Размер файла 1,2 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Взаимодействие с соединениями типа NH2-X (Х - Н, -NН2 , -ОН и другие). Особенность реакций с указанными нуклеофилами - продукты присоединения легко отщепляют молекулу воды с образованием

более устойчивых соединений:

Полученные в этой реакции соединения (оксимы, гидразоны, фенилгидразоны и т.д.) широко используются для идентификации карбонильных соединений и для синтеза новых соединений.

Взаимодействие с галогенидами фосфора. В результате этой реакции образуются гем-дигалогенпроизводные, при гидролизе которых вновь образуются карбонильные соединения:

б) окисление - восстановление карбонильных соединений

Альдегиды в этих реакциях проявляют большую реакционную способность, чем кетоны. В реакциях окисления окисляется атом водорода при углеродном атоме карбонильной группы.

Примеры реакций.

Окисление альдегидов слабыми окислителями сопровождается образованием карбоновых кислот с таким же, как в исходном альдегиде, числом углеродных атомов:

R-СН=О + Аg(NН3)2ОН > R-СООН + Аg + NН4ОН + NН3 (реакция «серебряного зеркала»)

R-СН=О + Cu (ОН)2 > R-СООН + Cu2О + Н2О

Обе реакции протекают при нагревании, являются качественными реакциями на альдегидную группу. Кетоны в этих условиях не окисляются, окисление с разрывом углерод-углеродных связей протекает довольно в жестких условиях с образованием соединений (кетоны, карбоновые кислоты), содержащих по сравнению с исходным, меньшее число атомов углерода.

Восстановление карбонильных соединений в зависимости от природа восстановителя и условий реакций происходит до спиртов и углеводородов. При восстановлении альдегидов образуются первичные спирты, кетонов - вторичные спирты.

Под действием концентрированной щелочи альдегиды, у которых отсутствует атом водорода у б-углеродного атома, подвергаются окислительно-восстановительному превращению, приводящему к образованию спирта и карбоновой кислоты (реакция Канниццаро):

Н2С=О + NаОН > Н3 С-ОН + НСООН

в) реакции альдольно-кротоновой конденсации

Для альдегидов и кетонов очень важными являются реакции конденсации, в частности альдольной и кротоновой конденсаций.

Так, альдольная конденсация (А.П. Бородин) идет в мягких условиях (в щелочной или кислой среде). Осуществляется по типу нуклеофильного присоединения, при этом одна молекула карбонильного соединения выступает в качестве субстрата - карбонильной компоненты, другая - в качестве реагента - метиленовой компоненты, имеющей подвижный атом водород в б-положении радикала. В результате возникает новая С-С-связь и образуется вещество, содержащее одновременно альдегидную (или кетонную) и спиртовую группы - альдоль. Процессы альдольной конденсации имеют большое значение для синтетического получения углеводов. И в природе сложный процесс фотосинтеза углеводов в растениях проходит через стадию альдольной конденсации.

Кротоновая конденсация идет в более жестких условиях как реакция замещения атома кислорода карбонильной группы одной молекулы и двух атомов водорода в б-положении другой молекулы альдегида или кетона.

альдоль кротон

Альдегиды вступают в реакции конденсации и с соединениями других классов, например с фенолами, ароматическими аминами и т.д. На этом основано, в частности, очень важное использование их в промышленности пластических масс.

г) полимеризация альдегидов

Альдегиды, особенно их низшие представители, склонны к полимеризации. Реакция идет с разрывом р-связи альдегидных групп, причем атомы карбонильного кислорода одной молекулы альдегида соединяются с атомами карбонильного углерода другой молекулы. Так, например формальдегид полимеризуется по схеме:

nCH2=O > (-CH2-O-)n

формальдегид полимер (параформ)

При длительном стоянии водных растворов формальдегида, особенно при низких температурах, а также при упаривании в них образуется белый осадок - параформ (или параформальдегид) с величиной n от 10 до 50. При нагревании до 140-160оС параформальдегид деполимеризуется и превращается в газообразный формальдегид, процесс ускоряется в присутствии кислот.

Альдегиды в реакциях полимеризации могут образовать циклические полимеры. Так, из уксусного альдегида образуется жидкий циклический тример (полимер, образованный тремя молекулами мономера), называемый паральдегидом:

этаналь паральдегид

Муравьиный альдегид образует триоксиметилен или тетраоксиметилен:

Описанные процессы полимеризации альдегидов обратимы: при нагревании полимеров, особенно в присутствии следов минеральных кислот, они деполимеризуются и распадаются на молекулы исходного альдегида.

Для ароматических карбонильных соединений характерны химические реакции как по карбонильной группе, так и по бензольному кольцу (SЕ ). При этом в результате взаимного влияния данных групп реакционная активность карбонильных соединений несколько отлична от алифатических альдегидов и кетонов (понижается реакционная активность в реакциях АN-типа, окисления). В реакциях электрофильного замещения карбонильная группа является заместителем 2 рода (электроноакцепторная группа) и ориентирует входящий электрофил в мета-положение.

Применение. Метаналь находит применение в органическом синтезе, производстве синтетических смол (фенолформальдегидная смола), лекарственных препаратов, красителей, дезинфицирующих средств, пласмасс. Этаналь широко применяется в промышленности, органическом синтезе. Ацетон - в производстве взрывчатых веществ, в органическом синтезе широкого круга соединений, в парфюмерии, является прекрасным растворителем самых разнообразных соединений.

Бензальдегид применяют в пищевой промышленности, парфюмерии, в органическом синтезе.

Знаете ли вы, что

-В середине 19 века(1835г.) Либих, действуя различными окислителями на спирты, получил соединения, в которых на 2 атома водорода меньше, чем в исходном спирте, поэтому название полученных соединений - алкоголь дегидрированный или альдегид.

-А.М. Бутлеров в первые получил уротропин - продукт присоединения аммиака к формальдегиду (6:1). При нитровании уротропина образуется сильнейшее взрывчатое вещество - гексоген. Смесь уротропина и хлорида кальция используется в медицине («Кальцекс»), смесь уротропина и парафина является основным компонентом «сухого горючего».

-В 1872 году русский химик и музыкант Александр Порфирьевич Бородин впервые осуществил альдольную конденсацию.

-Как душистые вещества, ацетали используются в парфюмерии. -Небольшое количество ацеталей (50-200 мг/г) образуется в виноградных винах в процессе их "созревания" и "старения" - в результате взаимодействия содержащихся в винах спиртов (главным образом, этилового) с альдегидами (образующихся в вине в качестве продуктов окисления этих спиртов). В числе других веществ ацетали создают характерный аромат ("букет") вин.

-Формальдегид образуется при неполном сгорании различных органических веществ. Он содержится в дыме угля, дерева, на этом основано консервирующее действие дыма при получении мясных и рыбных копченостей. Формальдегид - токсичен.

-Акролеин содержится в дыме, в жаренных продуктах, карамели, сильно раздражает дыхательные пути.

-Многие карбонильные соединения имеют приятные запахи, например фенилуксусный альдегид - запах гиацинта, коричный альдегид - запах корицы, бензальдегид - горького миндаля, гептанон-2 - гвоздичный запах, запах сыра «рокфор», ацетофенон - запах черемухи.

ЛЕКЦИЯ № 12. КАРБОНОВЫЕ КИСЛОТЫ И ИХ ПРОИЗВОДНЫЕ

План

1. Классификация карбоновых кислот.

2. Номенклатура, получение.

3. Изомерия, строение.

4. Монокарбоновые кислоты (предельные, непредельные, ароматические).

5. Дикарбоновые кислоты.

6. Производные карбоновых кислот.

Производные углеводородов, содержащие карбоксильную группу -СООН,называются карбоновыми кислотами.

Карбоновые кислоты классифицируют по двум структурным признакам:

а) по природе радикала, различают - алифатические R(CООН)n (предельные, непредельные) и ароматические кислоты Аr(СООН)n;

б) по числу карбоксильных групп, различают - монокарбоновые ( n =1), ди- и поликарбоновые (n ? 2) кислоты.

Номенклатура. По номенклатуре ИЮПАК названия кислот образуют от названия углеводорода, добавляя окончание -овая кислота, например, СН3СООН - этановая кислота. Широко распространены тривиальные названия кислот: уксусная, масляная, олеиновая, винная, щавелевая и т.д.

Получение.

а) Окисление алкенов, алкинов, первичных спиртов и альдегидов (см. «Химические свойства» соответствующих классов соединений):

R-СН= СН-СН3 + [О] > R-СООН + СН3-СООН

алкен

R-СН2 -ОН + [О] > R-СН=О + [О] > R-СООН

спирт альдегид кислота

Окислители - КМnО4, К2Сr2О7 в кислой среде.

б) Окисление алканов:

R-CH2-CH2-R' + [O] > R-COOH + R'-COOH + H2O

Окисление осуществляют в присутствии катализаторов - солей кобальта или марганца.

в) Окисление алкилбензолов (см. «Химические свойства ароматических углеводородов»).

г) Гидролиз нитрилов, производных карбоновых кислот в кислой или щелочной среде:

R-C?N + 2H2O + HСl > R-COOH + NH4Сl

R-C?N + H2O + NaOH > R-COONa + NH3

X: -OR, -Наl, -OCOR, -NH2.

д) Металлорганический синтез:

Строение. Атомы углерода и кислорода карбоксильной группы находятся в состоянии sр2-гибридизации. у-связь С-О образована перекрыванием sр2-sр2-гибридизованных орбиталей, у-связь О-Н - перекрыванием sр2 - s- орбиталей, р- связь С-О - перекрыванием негибридизованных р-р-орбиталей. Карбоксильная группа представляет собой плоскую р,р- сопряженную систему:

В результате сопряжения связь С-О становится короче по сравнению с аналогичной связью в спиртах, связь С=О - длиннее по сравнению с аналогичной связью в карбонильных соединениях, т.е. происходит заметное выравнивание длин связей в карбоксильной группе.

Межмолекулярное взаимодействие карбоновых кислот характеризуется сильными водородными связями, в результате чего образуются линейные ассоциаты и циклические димеры:

и

Водородная связь в карбоновых кислотах более прочная, чем в спиртах. Это обусловливает более высокие растворимость в воде, температуры кипения и плавления карбоновых кислот по сравнению со спиртами близкой молекулярной массы.

Взаимное влияние карбонильной и гидроксильной групп в составе карбоксильной группы обусловливает химические свойства, отличные от свойств карбонильных соединений и спиртов. Реакции с участием карбоксильной группы протекают по следующим основным направлениям: кислотно-основное взаимодействие, нуклеофильное замещение, декарбоксилирование.

Химические свойства карбоновых кислот рассмотрены далее на примере предельных монокарбоновых кислот.

Монокарбоновые кислоты (предельные, непредельные, ароматические кислоты).

Общая молекулярная формула предельных монокарбоновых кислот

Сn Н22.

Таблица 4.

Гомологический ряд предельных монокарбоновых кислот

Кислота

Формула

Тпл., ?С

Ткип., ?С

Ацильный остаток - кислотный остаток

Муравьиная

(метановая)

H-COOH

+8,25

100,5

формил - формиаты

Уксусная

(этановая)

CH3COOH

+16,60

118,5

ацетил - ацетаты

пропионовая

(пропановая)

CH3-CH2-COOH

-20,70

141,1

пропионил - пропионаты

масляная

(бутановая)

CH3-(CH2)2-COOH

-3,10

163,0

бутирил - бутираты

валериановая

CH3-(CH2)3-COOH

-34,50

186,0

валерил - валераты

капроновая

CH3-(CH2)4-COOH

-1,50

205,3

капроноил

лауриновая

CH3-(CH2)10-COOH

+44,30

225

лаурил

пальмитиновая

CH3-(CH2)14-COOH

+62,60

271

пальмитил-пальмитаты

стеариновая

CH3-(CH2)16-COOH

+69,40

287

стеарил - стеараты

В таблице приведены названия ацильных (R-СО-) и кислотных (R-СОО-) остатков некоторых монокарбоновых кислот предельного ряда.

Изомерия. Для предельных монокарбоновых кислот характерна структурная изомерия (различное строение углеродной цепи и различное расположение функциональной группы ). Например, молекулярной формуле С4Н8О2 соответствуют изомеры: СН3-СН2-СН2-СООН (бутановая кислота), (СН3)2 СН-СООН (2-метилпропановая или изобутановая кислота), СН3-СН2-СООСН3 (метилпропаноат) (подробно см. раздел «Изомерия»).

Физические свойства. Кислоты с числом атомов углерода от 1 до 9 - бесцветные жидкости с неприятными запахами, с С? 10 - твердые вещества без запаха. Кислоты с числом атомов углерода от 1 до 3 хорошо растворяются в воде, с С? 4 - не растворимые в воде вещества, но хорошо растворимые в органических растворителях (спирт, эфир).

Химические свойства.

а) кислотные свойства

Водные растворы карбоновых кислот имеют кислую реакцию:

кислота карбоксилат-ион

Делокализация электронной плотности (р,р- сопряжение) в карбоксилат-ионе приводит к полному выравниванию порядков длин обеих связей С-О, увеличению его стабильности по сравнению с алкоголят- и фенолят-ионами. Поэтому карбоновые кислоты по силе превосходят спирты и фенолы, угольную кислоту, но уступают таким минеральным кислотам, как соляная, серная, азотная и фосфорная.

На силу карбоновых кислот существенное влияние оказывает природа радикала при карбоксильной группе: электронодонорные группы дестабилизируют карбоксилат-ион и, следовательно, уменьшают кислотные свойства, электроноакцепторные - стабилизируют карбоксилат-ион и увеличивают кислотные свойства.

В гомологическом ряду предельных монокарбоновых кислот с увеличением числа атомов углерода в составе кислоты кислотные свойства понижаются. Самая сильная кислота - муравьиная.

Карбоновые кислоты образуют соли при взаимодействии с активными металлами, оксидами металлов, основаниями, солями. Например, СН3-СООН + Nа2СО3 > СН3-СООNа + СО2 + Н2О

Соли низших карбоновых кислот хорошо растворимы в воде, высших - растворимы только натриевые и калиевые соли. Соли карбоновых кислот и щелочных металлов подвергаются гидролизу и их водные растворы имеют щелочную среду:

R-COO- Na+ + HOH - R-COOH + NaOH

Соли карбоновых кислот используют для получения производных карбоновых кислот, углеводородов, поверхностно-активных веществ.

Огромное значение в народном хозяйстве имеют натриевые и калиевые соли высших жирных кислот - мыла. Обычное твердое мыло представляет собой смесь натриевых солей различных кислот, главным образом пальмитиновой и стеариновой: С15Н31СООNa (пальмитат натрия) и С17Н35СООNa (стеарат натрия). Калиевые мыла - жидкие.

Мыло в глубокой древности получали из жира и буковой золы. В эпоху Возраждения вернулись к забытому ремеслу, рецепты держали в секрете. Сейчас получают мыла главным образом исходя из растительных и животных жиров.

Мыла являются поверхностно-активными веществами (ПАВ), химическим гибридом, состоящим из гидрофильного (карбоксилат-ион) и гидрофобного (страх, боязнь) конца (углеводородный радикал). Мыла резко снижают поверхностное натяжение воды, вызывают смачивание частиц или поверхностей, обладающих водоотталкивающим действием, способствуют образованию устойчивой пены.

В жесткой воде моющая способность мыла резко снижается, растворимые натриевые или калиевые соли высших жирных кислот вступают в обменную реакцию с имеющимися в жесткой воде растворимыми кислыми карбонатами щелочноземельных металлов, главным образом кальция:

2C15H31COONa + Ca(HCO3)2 > (C15H31COO)2Ca + 2NaHCO3

Получающиеся при этом нерастворимые кальциевые соли высших жирных кислот образуют осадки.

Огромные количества мыла применяют в быту для гигиенических целей, для стирки и т.д., а также в различных отраслях промышленности, особенно для мытья шерсти, тканей и других текстильных материалов.

б) нуклеофильное замещение - SN (образование функциональных производных карбоновых кислот)

Основной тип реакций карбоновых кислот - нуклеофильное замещение у sр2-гибридизованного атома углерода карбоксильной группы, в результате которого гидроксильная группа замещается на другой нуклеофил. Вследствие р,р-сопряжения в карбоксильной группе подвижность гидроксильной группы по сравнению со спиртами значительно меньше, поэтому реакции нуклеофильного замещения проводят в присутствии катализатора - минеральной кислоты или щелочи.

Реакции сопровождаются образованием функциональных производных карбоновых кислот - галогенангидридов (1), ангидридов (2), сложных эфиров (3), амидов (4):

в) декарбоксилирование

Декарбоксилирование - это удаление карбоксильной группы в виде СО2. В зависимости от условий реакции образуются соединения разных классов. Электроноакцепторые группы в составе радикала при карбоксильной группе облегчают протекание реакций этого типа.

Примеры реакций декарбоксилирования:

1) термический распад натриевых или калиевых солей в присутствии натронной извести

R-COONa + NaOH > R-Н + Na2СО3

2) термический распад кальциевых или бариевых солей

R-COO-Са-ООС-R > R-СО-R + СаСО3

3) электролиз натриевых или калиевых солей (синтез Кольбе)

2R-COONa + 2НОН > R-R + 2NaОН +2CO2 + Н2

г) замещение атомов водорода у б-углеродного атома

Атом галогена в б-галогензамещенных кислотах легко замещается под действием нуклеофильных реагентов. Поэтому б-галогензамещенные кислоты являются исходными веществами в синтезе широкого круга замещенных кислот, в том числе б-амино- и б-гидроксикислот:

пропионовая к-та б-хлорпропионовая к-та

В результате влияния атома галогена на карбоксильную группу галогенпроизводные кислоты (например, трихлоруксусная кислота) являются во много раз более сильными кислотами и приближаются в этом отношении к сильным неорганическим кислотам.

д) специфические свойства муравьиной кислоты

В составе муравьиной кислоты наряду с карбоксильной группой можно выделить карбонильную группу, поэтому муравьиная кислота проявляет свойства как карбоновых кислот, так и альдегидов:

1. окисление

НСООН + [O]> СО2 + Н2О

окислители: Сu(ОН)2, [Ag(NH3)2]ОН (реакция «серебряного зеркала»)

2. дегидратация

НСООН + Н24(конц.) >СО + Н2О

Нахождение в природе и применение кислот:

а) муравьиная кислота - бесцветная жидкость с острым запахом, смешивается с водой. Впервые выделена в ХVII веке из красных муравьев перегонкой с водяным паром. В природе свободная муравьиная кислота встречается в выделениях муравьев, в соке крапивы, в поте животных. В промышленности муравьиную кислоту получают, пропуская оксид углерода через нагретую щелочь:

NaOH + CO > H-COONa

H-COONa + H2SO4 > H-COOH + NaHSO4

Применяют муравьиную кислоту при крашении тканей, в качестве восстановителя, в различных органических синтезах.

б) уксусная кислота

Безводная уксусная кислота (ледяная уксусная кислота) - бесцветная жидкость с характерным острым запахом и кислым вкусом, замерзает при температуре +160С, образуя кристаллическую массу, напоминающую лед. 70-80 % водный раствор кислоты называется уксусной эссенцией.

Она широко распространена в природе, содержится в выделениях животных, в растительных организмах, образуется в результате процессов брожения и гниения в кислом молоке, в сыре, при скисании вина, прогаркании масла и т.п. Используют в пищевой промышленности в качестве вкусовой приправы и консерванта, широко - в производстве искусственных волокон, растворителей, в получении лекарственных препаратов.

в) масляная кислота - бесцветная жидкость, растворы кислоты имеют неприятный запах старого сливочного масла и пота. Встречается в природе в виде сложных эфиров, эфиры глицерина и масляной кислоты входят в состав жиров и сливочного масла. Используют в органическом синтезе для получения ароматных сложных эфиров.

в) изовалериановая кислота - бесцветная жидкость с острым запахом, в разбавленных растворах имеет запах валерианы. Встречается в корнях валерианы, используют для получения лекарственных веществ и эссенций.

г) пальмитиновая, стеариновая кислоты

Это твердые вещества со слабыми запахами, плохо растворимые в воде. Широко распространены в природе, в виде сложных эфиров с глицерином входят в состав жиров. Используют для получения свечей, поверхностно-активных веществ.

Непредельные кислоты

Непредельные кислоты - карбоновые кислоты, содержащие в углеводородном радикале кратные связи (двойные или тройные). Наибольшее значение имеют непредельные моно- и дикарбоновые кислоты с двойными связями.

Номенклатура и изомерия.

Названия для непредельных кислот составляют по номенклатуре ИЮПАК, однако чаще всего применяют тривиальные названия:

СH2=CH-CОOH - 2-пропеновая или акриловая кислота

CH3-CH=CH-CОOH - 2-бутеновая или кротоновая кислота

СH2=C(СH3)-CОOH - 2-метилпропеновая или метакриловая кислота

CH2=CH-CH2-CОOH - 3-бутеновая или винилуксусная кислота

CH3-(СН2)7-CH=CH-(СН2 )7-CОOH - олеиновая кислота

СН3 -(СН2)4 -CH=CH-СН2 -CH=CH-(СН2 )7-CОOH - линолевая кислота

СН3-СН2-CH=CH-СН2-CH=CH-СН2-CH=CH-(СН2)7-CОOH- линоленовая кислота.

Структурная изомерия непредельных кислот обусловлена изомерией углеродного скелета (например, кротоновая и метакриловая кислоты) и изомерией положения двойной связи (например, кротоновая и винилуксусная кислоты).

Непредельным кислотам с двойной связью, так же как и этиленовым углеводородам, свойственна и геометрическая или цис-транс изомерия.

Химические свойства. По химическим свойствам непредельные кислоты аналогичны моно- и дикарбоновым кислотам, но имеют ряд отличительных особенностей, обусловленных наличием в молекуле кратных связей и карбоксильной группы и их взаимным влиянием.

Непредельные кислоты, особенно содержащие кратную связь в б-положении к карбоксильной группе, являются более сильными кислотами, чем предельные. Так, непредельная акриловая кислота (К=5,6*10-5) в четыре раза сильнее пропионовой кислоты (К=1,34*10-5).

Непредельные кислоты вступают во все реакции по месту кратных связей, свойственные непредельным углеводородам.

а) Электрофильной присоединение:

1. галогенирование

вCH2=бCH-COOH + Br2 > СH2 Br- CHBr-COOH

пропеновая кислота б,в-дибромпропионовая к-та

Это качественная реакция на непредельные кислоты, по количеству израсходованного галогена (брома или иода) можно определить количество кратных связей.

2. гидрогалогенирование

бCH2 д+ = вCHд->COOH + Нд+ - Brд- > СH2 Br-CH2-COOH

У б,в-непредельных кислот реакция присоединения протекает против правила Марковникова.

б) Гидрирование

В присутствии катализаторов (Pt, Ni) водород присоединяется по месту двойной связи и непредельные кислоты переходят в предельные:

CH2=CH-COOH + Н2 > CH3-CH2-COOH

акриловая кислота пропионовая кислота

Процесс гидрирования (гидрогенизация) имеет большое практическое значение, особенно для превращения высших непредельных жирных кислот в предельные; на этом основано превращение жидких масел в твердые жиры.

в) Окисление

В условиях реакции Вагнера (см. «Алкены») непредельные кислоты окисляются до дигидроксикислот, при энергичном окислении - до карбоновых кислот.

Нахождение в природе и применение кислот:

а) акриловая CH2=CH-COOH и метакриловая CH2=C(СH3)-COOH кислоты - бесцветные жидкости с острыми запахами. Кислоты и их сложные (метиловые) эфиры легко полимеризуются, на этом основано их использование в промышленности полимерных материалов (органического стекла).

Нитрил акриловой кислоты - акрилонитрил CH2=CH-C?N применяют в производстве синтетического каучука и высокомолекулярной смолы полиакрилонитрила (ПАН), из которой получают синтетическое волокно нитрон (или орлон) - один из видов искусственной шерсти.

б) высшие непредельные кислоты

-цис-олеиновая кислота в виде эфира с глицерином входит в состав почти всех жиров животного и растительного происхождения, особенно высоко содержание олеиновой кислоты в оливковом («прованском») масле - до 80 % , калиевые и натриевые соли олеиновой кислоты являются мылами;

-цис, цис-линолевая и цис, цис-линоленовая кислоты в виде эфира с глицерином входят в состав многих растительных масел, например в соевое, конопляное, льняное масло. Линолевая и линоленовая кислоты называются незаменимыми кислотами, поскольку не синтезируются в организме человека. Именно эти кислоты обладают наибольшей биологической активностью: они участвуют в переносе и обмене холестерина, синтезе простагландинов и других жизненно важных веществ, поддерживают структуру клеточных мембран, необходимы для работы зрительного аппарата и нервной системы, влияют на иммунитет. Отсутствие в пище этих кислот тормозит рост животных, угнетает их репродуктивную функцию, вызывает различные заболевания.

Сложные эфиры кислот используют в производстве лаков и красок (высыхающие масла).

Ароматические монокарбоновые кислоты

Кислоты являются бесцветными кристаллическими веществами, некоторые из них имеют слабый приятный запах. Для них характерна сопряженная (р, р) система:

Важнейшие представители:

бензойная кислота

фенилуксусная кислота

транс-коричная кислота

Ароматические кислоты являются более сильными кислотами, чем предельные кислоты (кроме муравьиной кислоты). Для кислот этого типа характерны все реакции насыщенных карбоновых кислот в карбоксильной группе и реакции электрофильного замещения в бензольном кольце (карбоксильная группа - заместитель 2 рода, м-ориентант).

Нахождение в природе и применение кислот:

Ароматические кислоты используют для получения красителей, душистых и лекарственных веществ; сложные эфиры кислот содержатся в эфирных маслах, смолах и бальзамах. Бензойная кислота и ее натриевая соль содержатся в плодах калины, рябины, бруснике, клюкве, придают им горьковатый вкус, обладают бактерицидными свойствами, широко используются в консервировании пищевых продуктов.

Амид о-сульфобензойной кислоты называют сахарином , он слаще сахара в 400 раз.

Производные карбоновых кислот.

Общая формула производных карбоновых кислот:

,

где Х: - Hal, -ООС-R, -OR, -NH2.

Для производных карбоновых кислот наиболее характерны реакции нуклеофильного замещения (SN). Поскольку продукты этих реакций содержат ацильную группу R-С=О, реакции называют ацилированием, а карбоновые кислоты и их производные - ацилирующими реагентами.

В общем виде процесс ацилирования может быть представлен следующей схемой:

По ацилирующей способности производные карбоновых кислот располагаются в следующий ряд:

соли < амиды < сложные эфиры <ангидриды <галогенангидриды

В этом ряду предыдущие члены могут быть получены из последующих ацилированием соответствующего нуклеофила (например, спирта, аммиака и т.д.). Все функциональные производные могут быть получены непосредственно из кислот и превращаются в них при гидролизе.

Амиды, в отличии от других производных карбоновых кислот, образуют межмолекулярные водородные связи и являются твердыми веществами (амид муравьиной кислоты HCONH2 - жидкость).

Сложные эфиры

Методы получения. Основной способ получения сложных эфиров - реакции нуклеофильного замещения:

а) реакция этерификации R-СООН + RО-Н - R-СО-ОR + Н2 О

Реакцию проводят в присутствии катализатора - минеральной кислоты. Реакции этерификации обратимы. Для смешения равновесия в сторону образования сложного эфира используют избыток одного из реагентов или удаление продуктов из сферы реакции.

б) ацилирование спиртов галогенангидридами и ангидридами

в) из солей карбоновых кислот и алкилгалогенидов

R-COONa + RCl > RCOOR + NaCl

Номенклатура. По номенклатуре ИЮПАК название сложных эфиров составляют следующим образом:

СН3 -СН2 -СН2О-ОСН3

углеводород радикал

радикал+углеводород+оат - метилбутаноат.

Если указывают тривиальные названия ацильных остатков , то название данного эфира - метилбутират. Эфиры можно называть по радикально-функциональной номенклатуре - метиловый эфир масляной кислоты.

Физические свойства. Сложные эфиры представляют собой бесцветные жидкости, нерастворимые в воде и обладающие по сравнению с исходными кислотами и спиртами низкими температурами кипения и плавления, что обусловлено отсутствием в эфирах межмолекулярных водородных связей. Многие сложные эфиры обладают приятным запахом, часто запахом ягод или фруктов (фруктовые эссенции).

Химические свойства. Для сложных эфиров наиболее характерны реакции нуклеофильного замещения (SN), протекающие в присутствии кислотного или основного катализатора. Важнейшими SN-реакциями являются гидролиз, аммонолиз и переэтерификация.

Кислотный гидролиз сложных эфиров - реакция обратимая, щелочной гидролиз протекает необратимо.

RCOOR + Н2О(Н+) - RCOOН + ROH

RCOOR + NaOH > RCOO- Na+ + ROH

Жиры

Жиры (триглицериды) - сложные эфиры, образованные глицерином и высшими предельными и непредельными кислотами.

Из жиров выделено несколько десятков разнообразных предельных и непредельных кислот; почти все они содержат неразветвленные цепи углеродных атомов, число которых, как правило, четное и колеблется от 4 до 26. Однако именно высшие кислоты, преимущественно с 16 и 18 углеродными атомами - главная составная часть всех жиров. Из предельных высших жирных кислот наиболее важны пальмитиновая С15Н31СООН и стеариновая С17Н35СООН, из непредельных - олеиновая С17Н33СООН (с одной двойной связью), линолевая С17Н31СООН (с двумя двойными связями) и линоленовая С17Н29СООН (с тремя двойными связями). Непредельные кислоты, содержащие в радикале фрагмент (-СН2-СН=СН-), называются незаменимыми.

Простые триглицериды содержат остатки одинаковых, смешанные - разных жирных кислот. Названия составляют на основе названий ацильных остатков, входящих в их состав жирных кислот:

трипальмитин диолеостеарин

Значение жиров исключительно велико. Прежде всего они - важнейшая составная часть пищи человека и животных наряду с углеводами и белковыми веществами. Наибольшей пищевой ценностью обладают растительные масла, которые наряду с незаменимыми жирными кислотами содержат необходимые для организма фосфолипиды, витамины, полезные фитостерины (предшественники витамина D). Суточная потребность взрослого человека в жирах 80-100г.

Жиры практически не растворимы в воде, но хорошо растворимы в спирте, эфире и других органических растворителях. Температура плавления жиров зависит от того, какие кислоты входят в их состав. Жиры, содержащие преимущественно остатки предельных кислот (животные жиры - говяжье, баранье или свиное сало), имеют наиболее высокие Тпл. и представляют собой твердые или мазеобразные вещества. Жиры, содержащие преимущественно остатки непредельных кислот (растительные масла - подсолнечное, оливковое, льняное и т.д.), жидкости с более низкими температурами плавления.

Химические свойства триглицеридов определяются наличием сложноэфирной связи и ненасыщенностью:

а) гидрогенизация (гидрирование) жиров

Присоединение водорода по месту двойных связей в остатках кислот ведут в присутствии катализатора - мелкораздробленного металлического никеля при 160-2400С и давлении до 3 атм. При этом жидкие жиры и масла превращаются в твердые насыщенные жиры - саломас, который широко применяют в производстве маргарина, мыла, глицерина.

б) гидролиз жиров

При щелочном гидролизе (омылении) жиров образуются соли жирных кислот (мыла) и глицерин, при кислотном - жирные кислоты и глицерин.

в) присоединение и окисление

Трилглицериды, содержащие остатки ненасыщенных жирных кислот, вступают в реакции присоединения по двойной связи (бромирование, иодирование) и окисления перманганатом калия. Обе реакции позволяют определить степень ненасыщенности жиров.

Все жиры являются горючими веществами. При их горении выделяется большое количество тепла: 1г жира при горении дает 9300кал.

Знаетели вы, что

-В 1906году русским ученым С.А. Фокиным разработан, а в 1909г. им же осуществлен в промышленном масштабе метод гидрогенизации (отверждение) жиров.

-Маргарин ( с греч. - «жемчуг») получен в 1869 году. Различные его сорта получают, смешивая саломас с молоком, а в некоторых случаях - с яичным желтком. Получается продукт, по внешнему виду напоминающий сливочное масло, приятный запах маргарина достигается введением в его состав специальных ароматизаторов - сложных композиций различных веществ, непременной составной частью которых является диацетил (бутандион) - жидкость желтого цвета, содержится в коровьем масле.

-Однако встречаются и животные жиры, содержащие значительное количество непредельных кислот и представляющие собой жидкие вещества (ворвань, тресковый жир или рыбий жир).

-Растительные жиры- масла добывают из семян и мякоти плодов различных растений. Они отличаются высоким содержанием олеиновой и других непредельных кислот и содержат лишь незначительное количество стеариновой и пальмитиновой кислот (подсолнечное, оливковое, хлопковое, льняное и др. масла). Лишь в некоторых растительных жирах преобладают предельные кислоты, и они являются твердыми веществами (кокосовое масло, масло какао и др.).

-Сложные эфиры фруктовых эссенций обладают приятным запахом фруктов, цветов, например изоамилацетат - запахом груш, амилформиат - вишен, этилформиат - рома, изоамилбутират - ананасов и т.д. Их применяют в кондитерском производстве, при изготовлении безалкогольных напитков, в парфюмерии.

-Из полиметилметакрилата готовят исключительно ценный синтетический материал - органическое стекло (плексиглас). Последнее превосходит силикатное стекло по прозрачности и по способности пропускать УФ-лучи. Его используют в машино- и приборостроении, при изготовлении различных бытовых и санитарных предметов, посуды, украшений, часовых стекол. Благодаря физиологической индифферентности полиметилметакрилат нашел применение для изготовления зубных протезов и т.п.

-Винилацетат - эфир винилового спирта и уксусной кислоты. Его получают, например, при пропускании смеси паров уксусной кислоты и ацетилена над ацетатами кадмия и цинка при 180-220оС:

СН3-СООН + СН?СН > СН3-СО-О-СН=СН2

Винилацетат - бесцветная жидкость, легко полимеризуется, образуя синтетический полимер - поливинилацетат (ПВА), применяется для изготовления лаков, клеев, искусственной кожи.

Дикарбоновые кислоты

Дикарбоновые кислоты содержат две карбоксильные группы. Наиболее известными являются кислоты линейного строения, содержащие от 2 до 6 атомов углерода:

НООС-СООН - этандиовая (номенклатура ИЮПАК) или щавелевая кислота (тривиальная номенклатура)

НООС-СН2 -СООН - пропандиовая или малоновая кислота

НООС-СН2-СН2-СООН - бутандиовая или янтарная кислота

НООС-СН2-СН2-СН2-СООН - пентандиовая или глутаровая кислота

НООС-СН2-СН2-СН2-СООН - адипиноавя кислота

Физические свойства. Двухосновные кислоты - кристаллические вещества с высокими температурами плавления, причем у кислот с четным числом атомов углерода она выше; низшие кислоты растворимы в воде.

Химические свойства. По химическим свойствам двухосновные кислоты аналогичны монокарбоновым кислотам, но имеют ряд отличительных особенностей, обусловленных наличием в молекулах двух карбоксильных групп и их взаимным влиянием.

Дикарбоновые кислоты более сильные кислоты, чем монокарбоновые кислоты с тем же числом атомов углерода: Кион. щавелевой кислоты (Н2С2О4) - 5,9 *10-2 , 6,4*10-5, уксусной кислоты - 1,76 *10-5 . По мере увеличения расстояния между карбоксильными группами кислотные свойства дикарбоновых кислот уменьшаются. Дикарбоновые кислоты могут образовывать два ряда солей - кислые, например НООС-СООNa и средние - NaООС-СООNa.

Дикарбоновые кислоты имеют ряд специфических свойств, которые определяются наличием в молекуле двух карбоксильных групп. Например, отношение дикарбоновых кислот к нагреванию.

Превращения дикарбоновых кислот при нагревании зависят от числа атомов углерода в их составе и определяются возможностью образования термодинамически стабильных пяти- и шестичленных циклов.

При нагревании щавелевой и малоновой кислот происходит декарбоксилирование с образованием монокарбоновых кислот:

НООС-СООН> НСООН + СО2 и далее НСООН > СО + Н2 О

НООС-СН2 -СООН > СН3-СООН + СО2

Янтарная, глутаровая кислоты при нагревании легко отщепляют воду с образованием пяти- и шестичленных циклических ангидридов:

Адипиновая кислота при нагревании декарбоксилирует с образованием циклического кетона - циклопентанона:

Дикарбоновые кислоты взаимодействуют с диаминами и диолами с образованием соответственно полиамидов и полиэфиров, которые используются в производстве синтетических волокон.

Наряду с насыщенными дикарбоновыми кислотами известны непредельные, ароматические дикарбоновые кислоты.

Нахождение в природе и применение кислот:

Щавелевая кислота широко распространена в растительном мире. В виде солей содержится в листьях щавеля, ревеня, кислицы. В организме человека образует труднорастворимые соли (оксалаты), например оксалат кальция, которые отлагаются в виде камней в почках и мочевом пузыре. Применяют как отбеливающее средство: удаление ржавчины, красок, лака, чернил; в органическом синтезе.

Малоновая кислота (сложные эфиры и соли - малоноаты) содержится в некоторых растениях, например сахарной свекле. Широко используется в органическом синтезе для получения карбоновых кислот.

Янтарная кислота (соли и сложные эфиры называются сукцинатами) участвует в обменных процессах, протекающих в организме. Является промежуточным соединением в цикле трикарбоновых кислот. В 1556 году немецким алхимиком Агриколой впервые выделена из продуктов сухой перегонки янтаря. Кислота и ее ангидрид широко используются в органическом синтезе.

Фумаровая кислота (НООС-СН=СН-СООН - транс-бутендиовая кислота), в отличие от цис-малеиновой, широко распространена в природе, содержится во многих растениях, много - в грибах, участвует в процессе обмена веществ, в частности в цикле трикарбоновых кислот.

Малеиновая кислота(цис-бутендиовая кислоты) в природе не встречается. Кислота и ее ангидрид широко используются в органическом синтезе.

Орто-фталевая кислота, широкое применение имеют производные кислоты - фталевый ангидрид, сложные эфиры - фталаты (репелленты).

Терефталевая кислота- крупнотоннажный промышленный продукт, применяют для получения целого ряда полимеров - например, волокно лавсан, полиэтилентерефталат (ПЭТФ), из которого изготавливают пластиковые посуду, бутыли и т.д.

ЛЕКЦИЯ № 13. ГЕТЕРОФУНКЦИОНАЛЬНЫЕ СОЕДИНЕНИЯ

План

1. Номенклатура, изомерия, строение, свойства гидроксикислот.

2. Номенклатура, изомерия, строение, свойства оксокислот.

Гетерофункциональные соединения - производные углеводородов, содержащие различные функциональные группы, причем природа этих групп и их количество могут быть разными.

Некоторые биологически важные гетерофункциональные органические соединения - метаболиты, биорегуляторы, структурные элементы биополимеров, лекарственные средства. Наиболее распространенными гетерофункциональными соединениями являются гидрокси-, оксо- и аминокислоты.

1. Гидроксикислоты

Гидроксикислоты - гетерофункциональные соединения, содержащие карбоксильную и гидроксильную группы. Эти соединения могут быть алифатическими или ароматическими. По взаимному расположению функциональных групп различают б-, Я-, г-, д - и т.д. гидроксикислоты. Названия гидроксикислот составляют по общим правилам номенклатуры ИЮПАК (см. «Номенклатура» ) Однако для многих кислот широко используют тривиальные названия:

2-гидроксиэтановая кислота 2-гидроксипропановая кислота

гидроксиуксусная кислота б-гидроксипропионовая кислота

гликолевая кислота молочная кислота

3- гидроксипропановая кислота

в- гидроксипропионовая кислота

В природе широко распространены полигидроксикарбоновые кислоты (содержат несколько гидроксильных групп) и гидроксиполикарбоновые кислоты (содержат несколько карбоксильных групп):

НООС-СН2-СН(ОН)-СООН 2-гидроксибутандиовая, 2-гидроксиянтарная кислота, яблочная кислота

НООС-СН(ОН)-СН(ОН)-СООН 2,3-дигидроксибутандиовая, винная кислота

НООС-СН2- С(ОН))(СООН)-СН2-СООН 3-гидрокси-3-карбоксипентандиовая кислота, лимонная кислота.

Получение:

а) из природного сырья;

б) щелочной гидролиз галогензамещенных кислот (см. «Галогенпроизводные углеводородов»);

в) циангидриный синтез

г) взаимодействие аминокислот с азотистой кислотой

д) присоединение воды к непредельным кислотам

Изомерия. Структурная изомерия гидроксикарбоновых кислот обусловлена изомерией углеродного скелета и изомерией положения гидроксильной группы (например, б-гидроксипропионовая и в- гидроксипропионовая кислоты). Молекулы всех б-гидроксикарбоновых кислот, кроме гликолевой кислоты, содержат асимметрический атом углерода (хиральный центр) и, следовательно, могут существовать в виде пары энантиомеров:

Некоторые кислоты содержат два асимметрических атома углерода (хлоряблочная, винная кислоты) и, следовательно, могут существовать в виде как энантиомеров, так и диастереомеров (см. «Изомерия»).

Химические свойства.

Гидроксикислоты дают реакции, характерные для карбоксильной и гидроксильной групп, при этом могут участвовать как одна, так и обе функции.

1. Кислотность. Благодаря -I- эффекту гидроксильной группы гидроксикислоты по силе превосходят обычные карбоновые кислоты. По мере удаления ОН-группы от карбоксильной ее влияние на кислотные свойства уменьшается.

2. По карбоксильной группе гидроксикислоты образуют соли (соли и эфиры молочной кислоты называются лактатами, винной - тартратами, лимонной - цитратами, яблочной - малатами), сложные эфиры, галогенангидриды; по ОН-группе гидроксикислоты образуют галогензамещенные кислоты (SN-замещение), сложные эфиры (SN-замещение), оксокислоты (окисление).

3. Специфические свойства

Свойства обусловлены присутствием обеих групп и их взаимным расположением.

а) Отношение гидроксикислот к нагреванию.

б-гидроксикарбоновые кислоты при нагревании образуют продукты межмолекулярной дегидратации - циклические сложные эфиры, называемые лактидами:

Я-гидроксикислоты при нагревании переходят в б,Я-непредельные кислоты:

г,д-гидроксиокислоты претерпевают внутримолекулярное ацилирование с образованием циклических сложных эфиров - лактонов:

г-гидроксимасляная кислота г-бутиролактон

б) Образование комплексных соединений.

б-гидроксикислоты образуют окрашенные хелатные комплексы с ионами переходных металлов (Cu2+ , Fe3+ и др.):

в) Отношение к серной кислоте.

В присутствии концентрированной серной кислоты б-гидроксикислоты разлагаются с образованием муравьиной кислоты и соответствующего карбонильного соединения - альдегида или кетона:

Нахождение в природе и применение кислот:

-Гликолиевая кислота содержится во многих растениях, например, свекле и винограде.

-Молочная кислота широко распространена в природе, является продуктом молочнокислого брожения углеводов, при этом образуется рацемическая D,L-молочная кислота. В мышцах человека при интенсивной работе образуется и накапливается L(+)-молочная (мясо-молочная) кислота - продукт расщепления и дальнейшего превращения полисахарида гликогена.

-Яблочная кислота содержится в незрелых яблоках, рябине, фруктовых соках. Является ключевым соединением в цикле трикарбоновых кислот. В организме образуется путем гидратации фумаровой кислоты и далее окисляется до щавелевоуксусной кислоты.

-Лимонная кислота содержится в плодах цитрусовых, винограде, крыжовнике, листьях табака. Является ключевым соединением в цикле трикарбоновых кислот.

-Винная кислота имеет 3 стереоизомера: D-винную кислоту, L-винную кислоту и оптически неактивную мезовинную кислоту (см. «Изомерия»). D-винная кислота содержится во многих растениях, например в винограде и рябине.

-Сорбиновая кислота (2,4-гексадиеновая) кислота СН3-СН=СН-СН=СН-СООН была получена из ягод рябины (на латыни - sorbus). Эта кислота - прекрасный консервант, поэтому ягоды рябины не плесневеют.

-Салициловая кислота - ароматическая гидроксикарбоновая кислота (фенолкарбоновая кислота), широко распространена в природе

Салициловая кислота и ее сложные эфиры (салол, аспирин) широко используются в медицине, кислота - консервант пищевых продуктов.

2. Оксокислоты

Оксокислоты - гетерофункциональные соединения, содержащие карбоксильную и карбонильную (альдегидную или кетонную) группы. В зависимости от взаимного расположения этих групп различают б -, Я -,д-, г - и т.д. оксокарбоновые кислоты.

Для получения оксокислот применимы обычные методы введения карбоксильной и оксогрупп.

Химические свойства.

Оксокислоты проявляют свойства, характерные для карбоксильной и карбонильной групп. Причем оксокислоты - более сильные кислоты, чем гидроксикислоты, легко подвергаются декарбоксилированию с образованием карбонильных соединений:

CH3-CO-CH2-COOH > CH3-CO-CH3 + CO2 .

Я-Оксокислоты и их эфиры обладают специфическими свойствами, которые связаны с их повышенной СН-кислотностью.

Я-оксокислоты существуют в виде двух таутомерных форм: кетонной и енольной, причем содержание енольной формы в равновесной смеси значительное (кето-енольная таутомерия). Енольные формы дополнительно стабилизируются за счет образования внутримолекулярной водородной связи. Например, кето-енольные формы ацетоуксусного эфира:

92,5% кетоформа 7,5% енольная форма и щавелевоуксусной кислоты:

ЛЕКЦИЯ № 14. УГЛЕВОДЫ

План

1. Классификация углеводов.

2. Моносахариды. Состав, свойства.

3. Дисахариды. Состав, свойства.

4. Полисахариды. Состав, свойства.

Углеводами называются соединения с общей формулой Сn 2О) m, где n ? 4. Углеводы широко распространены в животном и растительном мире, они играют важную роль во многих жизненных процессах. До 80% сухого вещества растений приходится на углеводы, до 2% сухого вещества - в животных организмах.

В растениях углеводы образуются в результате фотосинтеза в зеленом листе:

6СО2 + 6Н2О > С6Н12О6 + 6О2

хлорофилл

Организм животных и человека неспособен синтезировать углеводы, поэтому удовлетворяет потребность в них с различными пищевыми продуктами растительного происхождения (в сутки взрослому человеку необходимо 400-500г углеводов).

Углеводы делятся на два вида: простые или моносахариды, монозы (не подвергаются гидролизу) и сложные - ди-, олиго- и полисахариды (способны гидролизоваться до моносахаридов).

Моносахариды являются гетерофункциональными соединениями, в молекулах которых содержатся карбонильная группа (альдозы и кетозы) и несколько гидроксильных групп. По числу атомов углерода в составе моноз выделяют триозы (3 атома углерода), тетрозы, пентозы, гексозы. Например, альдопентоза или кетопентоза, альдогексоза или кетогексоза.

В основу наименований моносахаридов в большинстве случаев положены тривиальные названия, которые имеют окончание - оза.

Для углеводов характерны особенности в строении, следовательно, и в свойствах.

В молекуле моносахарида имеется несколько асимметрических атомов углерода, поэтому для них характерна оптическая изомерия - наличие антиподов, диастереоизомеров, которые можно представить в виде проекций Фишера. Общее число стереоизомеров (N) определяют по формуле: N= 2n, где n - число асимметрических атомов углерода.

Принадлежность моносахаридов к D- или L-ряду определяется по расположению ОН-группы у последнего асимметрического атома углерода. Если эта группа расположена справа относительно углеродного скелета, что соответствует стандарту - D-глицериновому альдегиду (см. «Изомерия»), то моносахариды относятся к D-ряду, если слева - к L- ряду:

...

Подобные документы

  • Использование магнийорганических соединений и химия элементоорганических соединений. Получение соединений различных классов: спиртов, альдегидов, кетонов, эфиров. История открытия, строение, получение, реакции и применение магнийорганических соединений.

    курсовая работа [34,4 K], добавлен 12.12.2009

  • Синтез и свойства N,S,О-содержащих макрогетероциклов на основе первичных и ароматических аминов с участием Sm-содержащих катализаторов. Гетероциклические соединения, их применение. Методы идентификации органических соединений ЯМР- и масс-спектроскопией.

    дипломная работа [767,1 K], добавлен 22.12.2014

  • Органическая химия и медицина. Какие бывают лекарства и почему они лечат. Полимеры в медицине. Применение различных полимерных материалов в сельском хозяйстве. Органическая химия и ее применение в пищевой промышленности. Добавки в продукты питания.

    доклад [19,4 K], добавлен 13.01.2010

  • Классификация углеводов (моносахариды, олигосахариды, полисахариды) как самых распространенных органических соединений. Химические свойства вещества, его роль в питании как основного источника энергии, характеристика и место глюкозы в жизни человека.

    реферат [212,0 K], добавлен 20.12.2010

  • Изомерия как явление существования соединений, одинаковых по составу, но разных по строению и свойствам. Межклассовая изомерия, определяемая природой функциональной группы. Виды пространственной изомерии. Типы номенклатуры органических соединений.

    презентация [990,3 K], добавлен 12.03.2017

  • Значение атома углерода в химическом строении органических соединений. Карбоновая кислота – представитель предельных одноосновных кислот. Циклические и ароматические углеводороды. Определение и химическое строение липидов. Виды спиртов. Получение мыла.

    учебное пособие [5,9 M], добавлен 25.04.2011

  • Основные операции при работе в лаборатории органической химии. Важнейшие физические константы. Методы установления строения органических соединений. Основы строения, свойства и идентификация органических соединений. Синтезы органических соединений.

    методичка [2,1 M], добавлен 24.06.2015

  • Общие сведения, распространение и значимость гетероциклических органических соединений. Особенности строения гетероциклов, их классификация и номенклатура. Шестичленные гетероциклы - азины и их аналоги. Взаимопревращение пятичленных гетероциклов.

    контрольная работа [1,2 M], добавлен 05.08.2013

  • Понятие гетероциклических соединений, их сущность и особенности, основные химические свойства и общая формула. Классификация гетероциклических соединений, разновидности, отличительные черты и способы получения. Реакции электрофильного замещения.

    реферат [250,5 K], добавлен 21.02.2009

  • Понятие гетероциклических соединений, их сущность и особенности, основные химические свойства и общая формула. Классификация гетероциклических соединений, разновидности, отличительные черты и способы получения. Реакции электрофильного замещения.

    реферат [248,9 K], добавлен 21.02.2009

  • Номенклатура, классификация, химические свойства аминов. Основные и кислотные свойства, реакции ацилирования и алкилирования. Взаимодействие аминов с азотистой кислотой. Восстановление азотсодержащих органических соединений, перегруппировка Гофмана.

    курсовая работа [608,4 K], добавлен 25.10.2014

  • Изучение строения и свойств аминов как органических соединений, являющихся производными аммиака. Номенклатура аминов и замена атомов водорода углеводородными радикалами. Синтез, анализ, химические реакции аминов и их взаимодействие с азотистой кислотой.

    презентация [1,2 M], добавлен 02.08.2015

  • Взаимное влияние атомов и способы его передачи в органических молекулах. Роль ионизации в проявлении биологической активности. Фосфолипиды как структурные компоненты клеточных мембран. Стереохимия органических соединений. Реакции аминокислот, белки.

    курс лекций [1,8 M], добавлен 05.03.2013

  • Строение молекулы, номенклатура, изомерия, физические, химические свойства, методы получения и сферы применения альдегидов или органических соединений, содержащих карбонильную группу, в которой атом углерода связан с радикалом и одним атомом водорода.

    презентация [331,9 K], добавлен 23.03.2016

  • Характеристика гетероциклических соединений, их биологическое значение, распространение в природе, участие в построении аминокислот и классификация. Строение гемма крови и хлорофилла. Структура фурана, фурфурола, имидазола, тиазола, пирана, пиридина.

    реферат [41,5 K], добавлен 22.06.2010

  • Общая характеристика, краткие сведения об истории открытия элементов и их распространённости в природе. Физико-химические свойства железа, кобальта и никеля. Свойства соединений железа в степенях окисления. Цис-, транс-изомерия соединений платины.

    реферат [36,7 K], добавлен 21.09.2019

  • Жизнь как непрерывный физико-химический процесс. Общая характеристика природных соединений. Классификация низкомолекулярных природных соединений. Основные критерии классификации органических соединений. Виды и свойства связей, взаимное влияние атомов.

    презентация [594,7 K], добавлен 03.02.2014

  • Бионеметаллы и биометаллы, биолиганды. Биологическая роль неорганических соединений. Транспорт ионов металлов. Металлосодержащие ферменты. Ферментативный катализ окислительно-восстановительных реакций. Бионеорганическая химия и охрана окружающей среды.

    реферат [1,3 M], добавлен 12.11.2008

  • Понятие и сущность соединений. Описание и характеристика ароматических гетероциклических соединений. Получение и образование соединений. Реакции по атомному азоту, электрофильного замечания и нуклеинового замещения. Окисление и восстановление. Хинолин.

    лекция [289,7 K], добавлен 03.02.2009

  • Классификация органических соединений по углеродному скелету и по функциональным группам. Взаимосвязь химического строения органических молекул с их реакционным центром. Влияние электронно-пространственного строения на механизмы химических превращений.

    курс лекций [1,2 M], добавлен 19.12.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.