Особливість вивчення водних екосистем

Абіотичні та гідрофізичні фактори водних екосистем. Сольовий склад океанічних та континентальних вод. Суть евригалінних і стеногалінних гідробіонтів. Роль калію в метаболічних реакціях рослин. Використання азоту в біосинтетичних процесах водоростей.

Рубрика Экология и охрана природы
Вид методичка
Язык украинский
Дата добавления 22.07.2017
Размер файла 191,6 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Алюміній виявляє токсичний вплив на водяні організми. Так, гостра токсичність Al(NO3)3 для дафній виявляється при концентрації 5 мг/дм3. Нітрат алюмінію у такій же концентрації викликає у форелі різні порушення координації рухів, перекидання набік. Токсичний і сульфат алюмінію. При концентрації 10 мг/дм3 у м'якій воді під його впливом уже через 5 годин гине триголкова колюшка, а при концентрації 0,1 мг/дм3 смерть наступає через 6 діб. Токсичність хлориду алюмінію виявляється по відношенню до безхребетних і риб при концентрації 5 мг/дм3.

У донних грунтах гідроксиди алюмінію зв'язують фосфати, переводячи їх у менш розчинну і менш доступну для рослин сполуку. У невеликих концентраціях алюміній може стимулювати ріст і розвиток рослин. Але вже в концентраціях від 10 до 60 мг/кг грунту він пригнічує їх розвиток, порушуючи фосфорне живлення.

5. Кисень гідросфери та його роль у водних екосистемах

5.1 Кругообіг кисню в водних екосистемах. Формування кисневого режиму водних екосистем

Основним джерелом кисню у воді є його проникнення з повітря та виділення фотосинтезуючими рослинами. Внаслідок фотосинтезу відбувається окиснення води з виділенням молекулярного кисню і відновлення діоксиду вуглецю.

Розчинність атмосферного кисню у воді залежить від температури, солоності і атмосферного тиску. Обмін з атмосферою має динамічний характер і включає два етапи: інвазію - надходження кисню в воду з повітря і евазію - перехід кисню в атмосферу при перенасичені ним поверхневого шару води. Обмін киснем між водним середовищем і атмосферою прискорюється при турбулентному перемішуванні водних мас, а також в умовах впливу вітру на поверхню води.

За рахунок інвазії кисень надходить у водні екосистеми разом з іншими газами повітря - вуглекислим газом, азотом і аргоном. На частку кожного з них в атмосфері припадає за об'ємом: азоту - 78,084 %, кисню - 20,946 % і аргону - 0,934 %. Щоб розрахувати, яка кількість кисню розчиняється у воді з повітря, приймається до уваги закон Генрі-Дальтона: розчинність кожної складової частини суміші газів у рідині пропорційна тиску цього газу у даній суміші. Виходячи з коефіцієнтів їх поглинання водою (при 0С і тиску 1 атм вони становлять 0,049 л на 1 л води, азоту - 0,023 і аргону - 0,053), в 1 л води при 0С і тиску 1 атм будуть такі об'єми газів: азоту - 18,72 см3, або 63,3 %; кисню - 10,29 см3, або 34,9 % і аргону - 0,53 см3, або 1,8 %. Як видно з цих даних, вміст кисню у воді більший, ніж азоту, тоді як в атмосфері - навпаки.

Таблиця 17 Розчинність кисню при атмосферному тиску 1 атм, температурі 0С і різній солоності води

Солоність,

О2, мг/дм3

0

14,6

15

13,2

25

12,3

35

11,5

Вміст кисню в воді визначається в абсолютних величинах або відносних (відсотках насичення). Під відсотком насичення розуміють відхилення у той чи інший бік від природного нормального насичення води киснем за певних умов (температура, рН, хвилювання). Слід підкреслити, що за рахунок інвазії атмосферного кисню максимальне насичення не може перевищувати 100 %. Більші значення вмісту кисню 100 % виникають внаслідок фотосинтетичної діяльності водоростей і вищих водяних рослин, за рахунок якої насиченість води киснем може досягати 150-200 %, або навіть більше.

Насиченість води киснем менше 100 % свідчить про несприятливі умови для його інвазії з повітря, знижене утворення за рахунок фотосинтезу та значне витрачання на окиснення та біологічний розклад (деструкцію) органічних речовин.

Кругообіг кисню у водних екосистемах складається з кількох пов'язаних між собою процесів, які формують прибуткову і витратну частини їх кисневого балансу. Кожна з них включає зовнішні і внутрішньоводоймні процеси. До зовнішніх елементів прибуткової частини належить надходження кисню у водні об'єкти з водою інших джерел (наприклад, річкового стоку), атмосферних опадів та підземних вод, до прибуткової частини - інвазія його з повітря, а також внутрішньоводоймне утворення кисню в процесі фотосинтезу водоростей і вищих водяних рослин. Витратна частина у балансі кисню водних екосистем включає споживання гідробіонтами в процесі дихання, хімічне окиснення, винос з водним стоком та евазію в атмосферу (рис. 126).

Найбільшою водною екосистемою є Світовий океан. Хоча розчинність кисню у солоній воді знижується, але загальна кількість кисню у океанічній воді набагато перевищує його вміст у наземних екосистемах. Світовий океан забезпечує підтримання динамічної рівноваги в масштабах планетарного газообміну. Як відзначає О.П.Виноградов (1967) “... океанічна вода регулює об'єм кисню атмосфери і його ізотопний склад, швидкість проникнення кисню (як і інших газів) атмосфери і “нового” кисню з фотосинтезуючого шару в океанічну воду, первісний і кінцевий об'єми розчиненого кисню”.

Масштаби виділення кисню за рахунок фотосинтетичної діяльності морськими (океанічними) рослинами, які живуть в освітленому сонячною радіацією шарі води, досить значні. Завдяки цьому, а також внаслідок атмосферної аерації рівень кисню у поверхневому шарі Світового океану близький до повного насичення (93-97 %). Зі зниженням температури від екватора до полюсів середня концентрація кисню підвищується від 4,5-5,0 мг/дм3 у низьких широтах до 6,0-7,0 мг/дм3 в Антарктиці і до 7,5-8,0 мг/дм3 в Арктиці.

Вміст кисню від поверхні до більш глибоких морських океанічних глибин поступово спадає. Так, у високих широтах Світового океану (за винятком північної частини Тихого океану) концентрація його в глибинних водах становить лише 50-70 % насичення, а в північній частині Атлантичного океану - дещо вища (70-80 % насичення).

В континентальних водоймах існують певні сезонні особливості кисневого режиму. Так, у найбільш теплий літній сезон провідну роль відіграє фотосинтез водоростей і вищих водяних рослин, завдяки якому вода збагачується киснем. Але в літні жаркі дні часто можна спостерігати різке падіння насиченості води киснем, що зумовлене зменшенням його поглинання з повітря, а також витрачанням на окиснення органічних речовин. Гострий дефіцит кисню може відчуватись і у водоймах з великими площами заростей вищих водяних рослин, а також при “цвітінні” води внаслідок масового розвитку водоростей, коли в нічні години різко гальмується фотосинтетична діяльність, але триває дихання рослин і водяних тварин. Взимку, коли кисень витрачається на окиснення відмерлих і дихання живих організмів, а інвазія з повітря різко обмежена внаслідок крижаного покриття водойм, його дефіцит може досягти критичного рівня і викликати масову загибель риб та інших водяних організмів. Такі явища досить часто спостерігаються в Київському водосховищі, в підльодовий період, коли з р. Прип'ять та верхнього Дніпра надходять води, збіднілі киснем. Зареєстровані непоодинокі випадки падіння концентрації кисню в зимовий період у Київському водосховищі - до 0,4-1,3 мг/дм3, або 3-9 % насичення. Особливо погіршуються умови під час тривалого льодоставу.

В річках, де більш швидка течія і відсутні застійні зони, концентрація кисню у воді значно вища порівняно з озерами та водосховищами. Особливо високе насичення киснем характерне для гірських річок з швидкою течією, де на протязі їхнього русла утворюються водоспади і відбувається додаткове перемішування води.

Найбільш чітко такі зміни можна простежити на прикладі р. Дністер. Водний стік Дністра формується на північно-східних схилах Карпатських гір. Основним джерелом живлення верхнього Дністра є дощові та снігові атмосферні опади. У середній частині він зарегульований трьома греблями - Дністровського, Буферного та Дубосарського водосховищ. Нижче Дубосарського водосховища, біля впадіння у Дністровський лиман, знаходяться Дністровські плавні і багато невеликих озер, проток, гребель, що формують водно-болотні угіддя. На різних ділянках ріки вміст кисню істотно відрізняється. Газовий режим верхнього Дністра та його гірських приток характеризується значним вмістом (9,1-14,0 мг/дм3) розчиненого кисню. У нижній течії він залежить від водності та надходжень забруднюючих речовин. Так, у маловодні роки (1985-1987) його рівень не перевищував 8,1-9,6 мг/дм3. У наступні роки, коли водність ріки зростала, а навесні затоплювались плавневі зарості вищих водяних рослин, істотно підвищувався і рівень розчиненого кисню. Особливо чітко простежувалась роль вищих водяних рослин у газовому режимі в Дністровському лимані. Так, у північній частині лиману, де розташований широкий пояс вищих водяних рослин, під час весняної повені, коли в них інтенсивно проходить водообмін, насичення води киснем зростає до 140-150 % (Шевцова Л.В. та інш., 1998).

Процеси формування кисневого режиму у зв'язку з водообміном можна проілюструвати на прикладі Дніпровсько-Бузької гирлової області. Кисневий режим, який великою мірою визначає стан цієї унікальної екосистеми, залежить від масштабів і режиму попусків води через Каховський гідровузол.

Концентрація кисню в Дніпровсько-Бузькому лимані закономірно знижується з глибиною, що обумовлено послабленням фотосинтетичної і атмосферної аерації і поглинанням кисню дном. При зменшенні попусків води через Каховський гідровузол знижується концентрація розчиненого кисню у поверхневому і особливо у придонних шарах води. Це значною мірою обумовлено проникненням солоної води з моря, що посилюється при зменшенні попусків Каховської ГЕС. Морські води, які мають більшу щільність, концентруються в придонних шарах. Чим більше надходить морської води, тим вище над дном розміщується зона стрибка щільності (пікноклин) і зв'язаної з ним зони кисневого стрибка (оксиклин).

Так, якщо при попусках 1000 м3/с концентрація розчиненого кисню в поверхневих шарах води лиману коливалась в межах 9-9,5 мг/дм3, а у придонних - 8-8,3 мг/дм3, то проведені розрахунки показали, що при попусках 150 м3/с середня по лиману концентрація кисню у нижньому шарі води становила б всього 0,8-3 мг О2/дм3. При цьому з'являлись безкисневі (анаеробні) зони на значних частинах лиману (Романенко В.Д., Оксіюк, О.П., Жукинський В.М. та ін., 1990).

В Дніпровсько-Бузькому лимані в період “цвітіння” води основним джерелом органічної речовини є фітопланктон. Вміст кисню в період “цвітіння” води істотно падає, бо значна його кількість витрачається на окиснення органічних речовин.

Таким чином, в естуарних екосистемах кисневий режим може істотно змінюватися в залежності від характеру водообміну, надходження солоної морської води або її витіснення річковим стоком, а також, як і в інших водних екосистемах, від фотосинтетичної діяльності водоростей та вищих водяних рослин (як джерела кисню) та від процесів біологічного і хімічного окиснення органічних ті мінеральних речовин.

5.2 Роль кисню в розкладі органічних речовин та формуванні якості води

Кисень водних екосистем відіграє виключно важливу роль у процесах розкладу розчинених органічних речовин, відмерлих рослин і тварин, при яких складні органічні речовини перетворюються на прості (СО2, вода, азот), знову включаються в кругообіг речовин у гідросфері. У воді можуть утворюватись сполуки кисню з іншими хімічними елементами. Більшість таких сполук (оксидів) прямо або опосередковано взаємодіє з водою, утворюючи гідрооксиди, які належать до різних класів неорганічних сполук. Частина з них має кислу реакцію, інші - лужну, і є певна група нейтральних сполук.

У формуванні якості води найбільшу роль відіграють процеси, пов'язані з розпадом органічних речовин. Як в океанічних (морських), так і в континентальних водах постійно міститься значна кількість розчинених органічних речовин - білків, амінокислот, гумінових кислот, вуглеводів, вітамінів та інших сполук, які потрапляють у воду після розпаду відмерлих організмів, а також надходять у водойми з водозбірної площі. В океанічних водах загальна кількість розчиненої органічної речовини значно перевищує її кількість, зосереджену в живих організмах. Вважається, що на розчинену органічну речовину в Світовому океані припадає близько 90-98 %, і лише 2-10 % - на органічну речовину живих організмів та детрит. Згідно з розрахунками, загальна кількість розчиненої органічної речовини становить 21012 т С, а середня концентрація вуглецю у воді - 5-6 мг/дм3.

У континентальних водоймах вміст розчиненої органічної речовини також перевищує її кількість у живих організмах. Так, в дніпровських водосховищах після стабілізації їх гідрохімічного режиму концентрація органічної речовини становила: в Київському - 5,2-18,2, в Кременчуцькому - 7,5-19,6, а в Каховському - 7,5-19,2 мг С/дм3. Ці цифри дають лише загальне уявлення про вміст органічної речовини у водосховищах. В залежності від сезону року, інтенсивності розвитку фітопланктону та його відмирання, скидання стічних вод комунально-побутових та промислових підприємств, сільського господарства, вони можуть істотно змінюватись.

У водоймах постійно протікають процеси біохімічного (біологічного) розпаду розчинених у воді органічних речовин, в яких використовується значна кількість кисню. На цьому базуються методи визначення концентрації органічної речовини у воді. В їх основу покладено визначення кількості кисню, що витрачається на окиснення органічної речовини перманганатом калію (перманганатна окиснюваність), або дихроматом калію (дихроматна окиснюваність). Перманганатна окиснюваність відображає, в основному, кількісні показники легко окиснюваних органічних речовин а також, частково, гумусних сполук. Дихроматом окиснюються як легко-, так і важкоокиснювані органічні речовини. Співставлення цих методів дає уявлення про якісний склад органічних речовин у природних водах.

Як свідчать багаторічні спостереження за формуванням якості води дніпровських водосховищ, величина дихроматної окиснюваності в них коливається в діапазоні 14,2-67,1, а перманганатної - в межах 5,0-24,6 мг О2/дм3. У гірських водотоках концентрація органічних речовин дещо менша. Так, у верхній течії Дністра концентрація хімічно стійких органічних речовин не перевищує 6,4-15,4 мг О2/дм3 (дихроматна окиснюваність). У середній течії його граничні коливання більші (7,7-21,6 мг О2/дм3).

Розклад органічних речовин у водних екосистемах постійно відбувається за участю бактерій. Цей процес визначає біологічне (біохімічне) споживання кисню (БСК). Розклад білків у воді і донних відкладах розглядається як процес, пов'язаний з діяльністю бактерій та їх протеолітичних ферментів. При гідролізі білків утворюються більш прості молекули пептидів та амінокислот, які надалі зазнають бактеріального (бактерії амоніфікатори) розпаду шляхом дезамінування або декарбоксилювання. Аміак, що при цьому утворюється, окиснюється бактеріями Nitrosomonas до нітритів, а далі бактеріями Nitrobacter до нітратів (цикл Виноградського). На цьому завершується процес біологічного окиснення органічних речовин.

Визначаючи кількість кисню, спожитого бактеріями на окиснення органічної речовини в одиниці об'єму води протягом певного часу, звичайно за 5 діб, при температурі 20, можна встановити швидкість розкладу (деструкції) органічних речовин у воді - біохімічне споживання кисню, або БСК5. Вміст органічної речовини у воді оцінюється за показником БСКповн., яке звичайно завершується за 20 діб. Бактеріальна деструкція органічної речовини залежить від концентрації розчиненого кисню. Її перебіг нормальний при його концентрації 8 мг О2 /дм3 і більше. При концентрації 6 мг О2 /дм3 його швидкість знижується на 10 %, при 4 - на 25 %, а при 2 мг О2 /дм3 становить всього 40 % від такої при 8 мг О2 /дм3. Перманганатна і дихроматна окиснюваність та БСК є важливими показниками якості води та екологічного стану водних об'єктів.

5.3 Роль кисню у життєдіяльності гідробіонтів

Підтримання життєдіяльності гідробіонтів тісно пов'язане з енергетичними процесами, які грунтуються на окиснювано-відновних реакціях, що протікають за участю кисню. Розщеплення молекул білків, жирів і вуглеводів при аеробних процесах значно ефективніше, ніж при їх перетворенні без участі кисню.

При гліколізі (анаеробний процес) чистий вихід АТФ (аденозинтрифосфорної кислоти) становить 2 молекули на 1 моль глюкози, тоді як повне згорання глюкози за участю кисню до СО2 і води дає 36 моль АТФ на 1 моль глюкози. Аеробне дихання є не тільки більш ефективним з точки зору енергозабезпечення, але й таким, яке менше зашлаковує організм. В той же час наявність гліколітичного шляху енергозабезпечення є виключно важливим еколого-фізіологічним фактором, за допомогою якого гідробіонти можуть тривалий час перебувати в середовищі з низьким рівнем розчиненого кисню.

На відміну від повітря, у водному середовищі концентрація розчиненого кисню має дуже широкий діапазон коливань, і гідробіонти періодично відчувають його гострий дефіцит. У таких випадках і відбувається часткове або повне переключення з аеробного дихання на анаеробне, при якому скорочується споживання кисню і зростає виділення вуглекислоти.

Пригнічення дихання при зниженні концентрації розчиненого кисню у воді до 6 мг О2/дм3 відзначено у гамарид вже через 9 годин на 77,3 %, у хірономід після 10-21 годин на 43,5-58,1 %, а у дрейсени - протягом 123 годин на 59,6-63,5 %. У таких умовах у вказаних безхребетних значно підвищується рівень гліколітичних процесів, різко зростає виділення вуглекислоти. Повернення таких організмів до аеробного дихання після нормалізації кисневого режиму води відбувається не відразу. Так, у водяних віслюків через 24 години споживання кисню залишалось зниженим. У післяанаеробний період анаеробні процеси у гамарид, хірономід, дрейсени продовжувались ще тривалий час, що підтверджувалось більш високим рівнем виділення вуглекислоти (до 0,13-0,70 мг/дм3 за годину).

Пригнічення аеробних і активацію анаеробних процесів викликає не тільки дефіцит кисню, а й присутність у воді токсичних речовин, які блокують ферментативні системи дихання. Причиною виникнення гіпоксичного стану водяних організмів можуть бути і інші чинники. Наприклад, при підвищенні м'язового навантаження, особливо в пусковий період швидкого (стартового) плавання риб, може виникати тканинна гіпоксія. В таких випадках анаеробні шляхи продукування хімічної енергії в тканинах риб набувають першочергового значення, незважаючи на їх невелику, в порівнянні з аеробним окисненням, енергетичну ефективність. Найлегше засвоюються водяними тваринами вуглеводи, які можуть використовуватися як в аеробних, так і в анаеробних умовах. В той же час найбільшою метаболічною енергією характеризуються не вуглеводи (4,1 ккал/г), а ліпіди (9,3 ккал/г). Саме цим пояснюється, що при переході риб на тривале крейсерське плавання основну роль у забезпеченні їх енергією відіграють саме ліпіди. У розрахунку на 1 моль субстрату при окисненні жирних кислот утилізується у 3 рази більше біологічно корисної енергії, ніж при розщепленні вуглеводів. У зв'язку з тим, що розпад жирних кислот іде метаболічним шляхом -окиснення і дає як кінцевий продукт ацетил-КоА, який потім надходить у цикл Кребса для повного згорання до СО2 і води, то тривала робота м'язів риб та інших водяних тварин обов'язково потребує постійного надходження кисню, тобто аеробних умов.

5.4 Особливості використання гідробіонтами кисню з води

У процесі еволюції у гідробіонтів різних трофічних рівнів сформувались механізми адаптації до більш низького рівня кисню у воді в порівнянні з атмосферним повітрям. Як відзначає В.І. Вернадський, “боротьба за існування в гідросфері - це боротьба за газ, ... боротьба за кисень”. Відносно невелика концентрація кисню у воді (в середньому 7-10 мг О2/дм3) і її досить широкий діапазон коливань у гідросфері ставлять певні вимоги до функціонування органів зовнішнього дихання (газообміну) та внутрішньоклітинного і тканинного засвоєння кисню.

У вищих водяних рослин газообмін здійснюється через численні дихальця, які пронизують всю структуру їх тіла. В залежності від умов існування, різні екологічні групи водяних рослин мають характерні анатомо-морфологічні і фізіологічні адаптивні пристосування. Зокрема це стосується інтенсивності поглинання кисню і вуглекислоти рослинами в залежності від того, чи має листя контакт з атмосферою, чи воно повністю занурене у воду. Утилізація кисню при безпосередньому контакті листя з атмосферою більш ефективна з урахуванням більш високого (майже у 20 разів) його вмісту в повітрі, ніж у воді. Для занурених водяних рослин характерною є велика поверхня листя, внаслідок чого полегшується поглинання ними кисню та інших газів. Цьому сприяє розчленування листкової пластинки на довгі нитковидні пасма, наявність значних за об'ємом повітряносних порожнин та великих міжклітинників, по яких надходить кисень у нижні частини рослин та їх кореневу систему.

Для більшості вищих водяних рослин мінімальна концентрація кисню в грунтовій воді, при якій нормально функціонує коренева система, становить близько 1-2 мг О2/дм3. У повітряно-водяних рослин стійкість до кисневого дефіциту вища, і це дозволяє їм нормально розвиватись і при нижчому вмісті кисню в перезволожених грунтах. Це пов'язано не тільки зі стійкістю кореневих тканин до низького рівня кисню, але і з тим, що дефіцит кисню компенсується його переміщенням у корені з наземних частин рослин по їхній повітряноносній системі. Певну роль у цьому процесі відіграють і анаеробні прикореневі бактерії: вони виділяють невелику кількість кисню, який проте перебуває в безпосередньому контакті з корінням.

Дихання у водяних тварин може здійснюватись через поверхню тіла без участі транспортної системи переносу кисню кров'ю, або через окремі ділянки тіла, які перетворені в спеціальні органи дихання (зябра, трахейні зябра, легені) та мають розвинуту систему його транспорту.

Перший шлях може забезпечити потреби в кисні лише невеликих організмів, які мають сферичну форму або дуже сплющене тіло, завдяки чому кисень може легко проникати на усю його товщу (найпростіші, плоскі черви). Кисень може дифундувати в організм і у досить структурованих організмів, наприклад, у медуз і губок, у яких поглинаючі кисень клітини розташовані тонким шаром на поверхні більш інертної маси тіла.

До водяних тварин з так званим шкірним диханням належать найпростіші, кишковопорожнинні, губки, малощетинкові черви, коловертки, деякі представники гіллястовусих та веслоногих ракоподібних. Зовнішні покриви їх тіла досить тонкі, часто мають численні вирости, які збільшують площу проникнення кисню в організм. У більшості ж багатоклітинних тварин сформовані спеціальні органи зовнішнього дихання, вони мають транспортну систему крові і лімфи, через яку кисень надходить до всіх клітин організму.

У таких водяних безхребетних, як багатощетинкові черви, більшість молюсків і ракоподібних, голкошкірих та асцидій, є зябра з великою поверхнею, вкритою тонким епітелієм. При їх омиванні водою під час плавання або прокачування її через зябра забезпечується надходження кисню до епітеліальних клітин, а далі - до лімфатичних і кровоносних судин, по яких він розноситься по всьому тілу.

У личинок деяких комах (одноденки, веснянки, бабки), які пристосувались до дихання розчиненим у воді киснем, органами зовнішнього дихання є трахейні зябра. Морфологічно вони представлені тонкостінними зовнішніми або внутрішніми виростами, всередині яких проходить система розгалужених трахейних капілярів. У різних личинок вони можуть мати різну форму і розташовуватись на різних ділянках тіла. Так, у личинок бабок трахейні зябра розташовані в прямій кишці, яка розширюється перед анальним отвором, утворюючи зябровий міхур.

Зябровий апарат риб побудований таким чином, що забезпечує активне прокачування води через систему пелюсток, які мають розвинуту систему капілярного кругообігу і де відбувається газообмін. Існують два механізми, які забезпечують омивання зябер водою: нагнітання та всмоктування води до зябер за рахунок плавання риби з відкритим ротом. При значній швидкості плавання таких риб, як тунець, смугастий окунь, луфар, забезпечується висока ефективність зябрової вентиляції. Подібний “напірний” тип дихання, коли вода проходить через зябра тільки в одному напрямі (у більшості риб відсутні рухи типу “вдих - видих”), забезпечує максимальне видобування кисню із води з відносно невеликими витратами енергії на ці процеси.

Високій ефективності обміну кисню між водою і організмом риб сприяє анатомічна будова зябрових пластинок, в яких рух крові у капілярах протилежний до току води. Завдяки цьому постійно зберігається градієнт концентрації кисню і вуглекислоти між кров'ю, що протікає через зябра, і водою. При таких умовах постійно здійснюється дифузія кисню з води в кров, завдяки чому її насичення киснем досягає майже того ж рівня, що і в омиваючій зябра воді.

Еколого-фізіологічні особливості дихальної системи риб чітко відображають умови їх існування. Так, у швидкоплаваючих риб загальна зяброва поверхня значно більша, ніж у малорухливих риб, які мешкають у придонних шарах води. Дихальна поверхня зябер у швидкоплаваючої макрелі більша в 5 разів, а у щуки і тріски - в 1,5 рази, ніж у малорухливої камбали та риби-вудильщика.

При нормальних умовах існування риб функціонує не більше 60 % зябрових пелюсток. В той же час, коли риби потрапляють в середовище з низьким вмістом кисню або значно прискорюється швидкість їх плавання, починають активно функціонувати всі зяброві структури. При адаптації до змін концентрації кисню у воді вмикаються два механізми: зябровий апарат газообміну та система транспорту кисню за участю дихальних пігментів крові, які активно зв'язують кисень. Завдяки дихальним пігментам різко підвищується загальна киснева ємність крові риб та безхребетних.

У деяких видів арктичних риб родини білокровних риб (Chaenichthydae), які живуть у дуже холодних і інтенсивно аерованих водах, пігментні речовини в крові відсутні і транспорт кисню здійснюється лише через біологічні рідини. Представником так званих білокровних видів риб є крокодилова, або льодяна білокривка (Chaenocephalus aceratus), яка веде малорухливий спосіб життя, має досить низький рівень обміну речовин.

Для риб, які живуть у водному середовищі з невисоким вмістом кисню (застійні зони), характерною є висока хімічна спорідненість гемоглобіну до кисню, тобто гемоглобін таких риб має дуже високу зв'язуючу здатність до кисню. Навпаки, у риб, які мешкають у добре аерованому і збагаченому киснем середовищі, гемоглобін менш інтенсивно насичується киснем. Крім того, при зниженні насичення води киснем зростає чисельність еритроцитів. Навпаки, при його високому рівні у воді кількість формених елементів крові зменшується. Такі особливості гемоглобіну є ще одним фізіологічним механізмом адаптації риб до умов середовища.

Адаптація системи дихання у риб до газового режиму середовища виявляється і в утворенні додаткових органів, які забезпечують більш широкі можливості пристосування до екологічних умов.

Так, у риб, що живуть у пересихаючих водоймах, додатково розвинулись навколозяброві порожнини, стінки яких мають зморшкувату структуру, вкриту епітелієм і густою мережею кровоносних капілярів. У таких “лабіринтах” може тривалий час підтримуватись достатня ступінь вологості, яка запобігає пересиханню зябер при виході риб з води на сушу. Завдяки таким утворенням у в'юнів (Misgurnus fossilis) та південноамериканського сомика (Hoplosternum thoracatum) газообмін з повітрям здійснюється через спеціальні утворення, розташовані у задньому відділі кишкового тракту і пронизані густою мережею кровоносних капілярів.

Риби, які здійснюють досить тривалі міграції по суші, на певний час можуть переходити переважно на шкірне дихання. Так, у звичайного вугра при виході на сушу на шкірне дихання припадає близько 66 % надходження кисню в організм. При перебуванні у воді за його рахунок забезпечується не більше 10 % кисню, а решта надходить в організм риби через зябра. Певний час можуть перебувати на суші деякі вищі раки (річковий рак, краби). У них зяброва система газообміну багата на слизові клітини розміщена всередині тіла, під панциром, завдяки їх секреторній діяльності в дихальній порожнині постійно підтримується достатній рівень вологи.

У багатьох видів риб для повітряного дихання у процесі еволюції сформувався плавальний міхур, у стінках якого розміщена система капілярних судин. Артерії, які приносять окиснену кров, утворюють поблизу від епітелію плавального міхура сітку капілярів, переплетеною з такою ж сіткою відвідних венозних капілярів. Ця сітка виконує дві найбільш важливі функції: з одного боку, вона підвищує концентрацію кисню в крові, яка надходить до епітелію плавального міхура, а з другого, запобігає втратам кисню з венозною кров'ю.

Таким чином, в процесі еволюції у водяних тварин сформувалися досить ефективні системи засвоєння кисню з води і виведення вуглекислоти. Так, костисті риби можуть засвоювати до 85 % кисню, розчиненого у воді. У хрящових риб ця величина становить 70-77 %. Значно менша ефективність дихання (10-25 %) у міног, які, в числі небагатьох видів риб, використовують для омивання зябер рухи типу вдих - видих. Іншою особливістю риб є значно більша ефективність тканинної утилізації кисню з крові (у 2,5-3 рази) у порівнянні з наземними тваринами.

6. Діоксид вуглецю в водних екосистемах

Діоксид вуглецю (СО2) входить до складу атмосферного повітря, де він складає 0,03 об'ємних %, або 0,047 вагових %. Основним джерелом зростання концентрації СО2 в атмосфері є гниття рослин, дихання тварин та продукти повного окиснення вуглецю, що надходять у повітря при спалюванні кам'яного вугілля, нафти, газу та інших енергоносіїв (рис. 129).

Діоксид вуглецю є кінцевим продуктом дихального обміну і одночасно вихідним метаболітом гетеротрофних організмів, який використовується автотрофами в процесі фотосинтезу. На відміну від рослин, у яких метаболічні механізми спрямовані на перенесення і тканинну утилізацію найбільшої кількості СО2 з навколишнього середовища, у тварин, навпаки, сформувались ефективні фізіологічні механізми його видалення з дихаючих тканин та виведення з організму.

6.1 Хімічні та біологічні перетворення діоксиду вуглецю у водних екосистемах

Основними джерелами надходження діоксиду вуглецю у водне середовище є його інвазія з атмосфери, дихання гідробіонтів, виділення із солей вугільної кислоти в результаті хімічних реакцій та процеси гниття органічних речовин. Коефіцієнт розчинності СО2 у воді вищий, ніж кисню. Він становить при нульовій температурі 1,713 (для кисню цей показник становить 0,049).

Між атмосферою і водним середовищем відбувається постійний обмін діоксидом вуглецю, який пов'язаний з урівноваженням його парціального тиску (“атмосфера - вода”). У зв'язку з цим, при зростанні концентрації СО2 в атмосфері збільшується і його вміст у воді. І, навпаки, коли підвищується концентрація діоксиду вуглецю у воді, відбувається його перехід у атмосферу. Коефіцієнт розчинності діоксиду вуглецю у воді залежить від її температури та концентрації розчинених солей (табл. 18). Як в прісних, так і в морських водах розчинність СО2 значно перевищує рівень розчинності кисню. При цьому насиченість солоної морської води менша, ніж прісної.

Таблиця Відносна об'ємна розчинність повітря та газів у воді (долі одиниць) при парційному тиску 1 атм

Газ

Температура, С

0

10

20

30

40

Повітря

0,0288

0,0226

0,0187

0,0161

0,0142

СО2

1,713

1,194

0,878

0,655

0,530

О2

0,049

0,038

0,031

0,0276

0,0237

Вміст СО2 в континентальних водоймах може коливатись у дуже широких межах. Так, в дніпровських водосховищах після стабілізації гідрохімічного режиму, в залежності від сезону року, біологічних і хімічних процесів, що відбуваються у товщі води і донних відкладах, його концентрація може коливатись від 0 до 55-60 мг/дм3. Найбільш високий його вміст - в період льодоставу (20-60 мг/дм3).

У літні дні внаслідок інтенсифікації процесів фотосинтезу водоростей і вищих водяних рослин, в ході якого засвоюється діоксид вуглецю, його концентрація у поверхневих водах знижується до аналітичного нуля. Одночасно змінюється і активна реакція води в лужний бік (до рН 9-9,7). Влітку мають місце і добові коливання вмісту СО2 у воді, що пов'язано з більшою фотосинтетичною активністю рослинних організмів, зокрема планктонних водоростей, в світловій фазі.

Вміст діоксиду вуглецю в природних водоймах може коливатись внаслідок не тільки біологічних процесів, а й хімічних перетворень його сполук. Розчинений у воді діоксид вуглецю частково вступає в реакцію з водою, внаслідок чого утворюється вугільна кислота:

Н2О + СО2 Н2СО3 .

Як двохосновна кислота Н2СО3 може утворювати два види солей: середні вуглекислі (карбонати) з аніоном СО32 та кислі вуглекислі, або бікарбонати (НСО3). У зв'язку з цим у водному розчині відбуваються такі реакції:

Н2О + СО2 Н2СО3 Н+ + НСО3 2Н+ + СО32 .

Кількісні співвідношення окремих форм вугільної кислоти (Н2СО3, НСО3, СО32) у воді, як видно з наведеного рівняння, обумовлюють величину рН.

У відповідності із законом діючих мас можна розрахувати кількісні співвідношення між окремими формами двуоксиду вуглецю та його сполук при різних значеннях рН. Таке співвідношення молярних концентрацій окремих форм похідних вугільної кислоти відображене (у відсотках до її загального вмісту) в таблиці 19.

Таблиця 19 Співвідношення між окремими формами вугільної кислоти залежно від рН води, % (молярна частка)

Форми

Молярна частка при рН:

Н2СО3

4

5

6

7

8

9

10

СО2 + Н2СО3

НСО3

СО32

99,7

0,3

-

96,7

3,8

-

71,5

28,5

-

20,0

80,0

-

2,4

97,5

0,4

0,2

95,7

4,1

-

79,4

29,6

Стійкість рН природних вод обумовлена наявністю НСО3 і СО32. У випадках відсутності або низьких концентрацій цих іонів рН води при насиченні СО2 зміщується у кислу сторону. Сума різних форм вугільної кислоти (СО2, Н2СО3, НСО3 і СО32) складає карбонатну систему. Поряд з вуглекислотою та її похідними вона включає іони водню, кальцію, магнію та інші розчинені речовини.

Наявність карбонатів у природних водах обумовлена реакціями розчинення карбонатних порід та хімічного вивітрювання алюмосилікатів під впливом дії на них розчиненого у воді діоксиду вуглецю:

СаСО3 + Н2О + СО2 Са2+ + 2НСО3 ;

MgCO3 + H2O + CO2 Mg2+ + 2HCO3 ;

K2Al2Si6O16 + 2H2O + CO2 K2CO3 + H4Al2Si2O9 + 4Si2 .

Карбонатна система є одним з ефективних регуляторів вмісту СО2 і рН природних вод. Так, підвищення концентрації розчиненого СО2 у воді викликає зростання концентрації іонів водню, що, в свою чергу, знижує вміст СО32. Насичення води карбонатом кальцію при цьому зменшується, а сам СаСО3 розчиняється. І, навпаки, при зниженні вмісту СО2 (коли підвищується рН) зростає концентрація СО32, внаслідок чого солі (переважно карбонат кальцію) випадають в осад, а частково осідають на листя і стебла водяних рослин, утворюючи білий наліт. Карбонатна система відіграє важливу буферну роль, запобігаючи різким змінам рН водного середовища, які негативно позначається на гідробіонтах.

Концентрація вільного діоксиду вуглецю може перевищувати концентрацію його збалансованих сполук з гідрокарбонатними іонами. Про це свідчить зрушення активної реакції води в кислу сторону. У такому випадку говорять про вуглекислотну агресивність води.

Оцінюючи роль вуглекислоти як основного джерела вуглецю у живій речовині, В.І. Вернадський відзначав, що вона утворюється з вугільної кислоти атмосфери, або з вугільної кислоти, розчиненої у воді. Всі інші джерела вуглецю, які жива речовина використовує у земній корі, генетично зв'язані з нею. Головна маса рослинного життя зосереджена у гідросфері, але вона повністю залежить від атмосферного СО2, який є для неї головним джерелом живлення.

6.2 Фотосинтез. Фіксація вуглекислоти автотрофними і гетеротрофними організмами

Метаболічна роль діоксиду вуглецю тісно пов'язана з фотосинтезом - одним із найбільш фундаментальних і важливих процесів біосфери.

Процес фотосинтезу в гідросфері пов'язаний з діяльністю різних фотосинтезуючих організмів. До них належать зелені і пурпурні бактерії, прохлорофіти, деякі галобактерії, а також водорості: діатомові, евгленофітові, зелені, динофітові, криптофітові, золотисті, жовтозелені та інші. Фотосинтез у цих організмів відбувається за участю хлорофілу та інших пігментних речовин. Виняток становлять галобактерії, у яких цю функцію виконує білковий комплекс бактеріородопсину.

У водоростей і вищих водяних рослин фотосинтез відбувається з виділенням кисню. У інших фототрофних бактерій у процесі фотосинтезу О2 не утворюється, оскільки замість води донором електронів виступають сульфіди та тіосульфат.

Для водоростей, вищих водяних рослин, в яких вода служить донором електронів, підсумкове рівняння фотосинтезу має такий вигляд:

6 СО2 + 12 Н2О С6Н12О6 + 6О2 + 6Н2О.

При проходженні цієї реакції запасається вільна енергія

СО2 + Н2О (СН2О) + О2 + ,

де - енергія, що дорівнює 470 кДж/моль вуглецю.

Процес фотосинтезу протікає в дві стадії: світловій і темновій. У світловій стадії енергія сонячної радіації використовується для утворення АТФ з АДФ і високоенергетичних переносників електронів.

Під час “темнових” реакцій, які каталізуються відповідними ферментами, енергетичні продукти (АТФ), що утворились під час “світлових” реакцій, використовуються для перетворення СО2 в глюкозу. Перетворення СО2 в органічні речовини отримало назву “фіксація вуглецю”. Вуглекислота фіксується в карбоксильних групах органічних сполук, але не в хлорофілі. Такими первинними продуктами фіксації СО2 є фосфогліцерат та фосфорний ефір рибулози. В процесі фотосинтезу важливим ланцюгом перетворення світлової енергії в хімічну є поглинання світла хлорофілом.

Існує кілька форм хлорофілу, які відрізняються за молекулярною структурою. Для синьозелених водоростей і всіх еукаріотних рослин основним фотосинтезуючим пігментом є хлорофіл а. У зелених і евгленофітових водоростей, вищих водяних рослин існують два пігменти - хлорофіл а і хлорофіл b. Наявність двох пігментів значно розширює спектр поглинання світла в процесі фотосинтезу. У деяких водоростей, зокрема діатомових і бурих, замість хлорофілу b функціонує хлорофіл с. У автотрофних організмів у перетворенні енергії приймають участь, крім хлорофілів, і інші пігменти - каротиноїди та фікобіліни.

Тривалий час вважалося, что СО2 для організму тварин є шкідливим кінцевим продуктом обміну речовин, а його наявність у воді може викликати у гетеротрофних організмів тільки отруєння. Проте встановлено, що не тільки у автотрофних, але й у гетеротрофних організмів СО2 може використовуватись у реакціях карбоксилювання для побудови органічної біомаси. Існує певний зв'язок між інтенсивністю перебігу реакцій карбоксилювання в організмі риб і концентрацією розчиненого діоксиду вуглецю у воді. Найбільш інтенсивно СО2 утилізується в реакціях карбоксилювання в органах, для яких характерним є біосинтетична спрямованість метаболічних процесів. Так, включення вуглецю (14С) найбільше у залозистій тканині гепатопанкреасу риб (короп). Воно перевищує в 6 разів відповідні показники у тканинах нирок, в 13 разів - в зябрах, в 18 - в селезінці, в 27 - в міокарді і у 83 рази в порівнянні з скелетними м'язами. У метаболічних реакціях синтезу органічних сполук, крім діоксиду вуглецю як субстрату реакції карбоксилювання, важлива роль належить іонам-активаторам або інгібіторам карбоксилаз.

У різних водяних тварин активність реакцій карбоксилювання співпадає з біосинтетичною спрямованістю обміну речовин в окремих органах. У двостулкових молюсків таким органом є мантія, в якій утилізація СО2 пов'язана з утворенням карбонатно-кальцієвої структури черепашки.

Встановлення метаболічної ролі СО2 у водяних тварин, як і раніше у теплокровних, свідчить про загальнобіологічне значення реакцій карбоксилювання. Оптимальна концентрація СО2 у водному середовищі є важливим екологічним фактором, необхідним для нормальної життєдіяльності гідробіонтів різних трофічних рівнів.

6.3 Адаптація риб до змін вмісту СО2 у воді

Спостереження за поведінкою риб різних видів і вікових груп свідчать, що поряд з позитивним впливом розчиненого у воді СО2 на їх організм, мають місце прояви негативних реакцій. Такі різнонаправлені ефекти пов'язані з вмістом розчиненого у воді діоксиду вуглецю. При деяких рівнях розчиненого СО2, не тільки різко гальмується ріст риб, але й настає їх смерть. У той же час вода, позбавлена СО2, негативно впливає на вихід личинок при інкубації ікри та їх подальший розвиток. При відсутності у воді СО2 переважна більшість ікри синця, ляща, плоскирки і плітки гине ще до стадії викльовування. Так саме діє підвищення концентрації СО2 до 12,1-15,4 мг/дм3. Цьогорічна молодь осетра і севрюги при концентрації СО2 у воді в межах 0,03-0,45 ммоль/дм3 (в середньому 17 мг/дм3), не відстає в рості, а при її підвищенні до 1,1-1,2 ммоль/дм3 (в середньому 52 мг/дм3) спостерігається різке пригнічення їх росту і зменшення поїдання корму.

Діоксид вуглецю є важливим елементом у механізмі регуляції дихання у риб, зокрема, при збудженні дихального центру. Наприклад, у пічкурів при збільшенні концентрації СО2 у воді від 3,5 до 50 мг/дм3 кількість дихальних рухів зростала від 61 до 100 за 1 хвилину. При подальшому її зростанні (до 109 мг/дм3) порушувалась координація рухів, пригнічувався дихальний ритм зябер, і зрештою риба гинула.

Різні види риб виявляють неоднакову чутливість до впливів вуглекислоти. З промислових видів риб найменш чутливі короп і карась, а з морських - опсанус. Значні коливання СО2 у воді витримує в'юн. При підвищенні концентрації СО2 у воді до 60-100 мг/дм3 він переходить на повітряне дихання. Поряд з цим, окремі прісноводні і морські риби виявляють підвищену чутливість навіть до невеликих змін концентрації СО2 у воді. Так, наростання дихальних рухів спостерігається у окуня вже при підвищенні насичення води діоксидом вуглецю на 0,8 %, а у гольяна - на 2,0 %.

Щоб забезпечити організм необхідною кількістю кисню в умовах гіперкапнії (підвищена напруга вуглекислоти в крові) у риб посилюється не тільки інтенсивність дихальних рухів зябрових покришок, але й зяброва вентиляція. Так, у форелі при загрозі розвитку гіперкапнії об'єм вентиляції зябер збільшується майже у 4 рази.

Негативний вплив підвищеного вмісту СО2 у воді пов'язаний з тим, що, проникаючи у кров, він зв'язується з гемоглобіном, внаслідок чого зменшується здатність останнього до перенесення кисню. У свою чергу це приводить до ненасиченості тканин киснем, посилення гліколітичних процесів і закислення внутрішнього середовища. При підвищенні концентрації розчиненого СО2 у воді і загрозі розвитку вуглекислотної ацидемії (закислення крові) включаються гомеостатичні механізми підтримання кислотно-лужної рівноваги в організмі. Це, в першу чергу, бікарбонатна та інші буферні системи крові, ренальні і екстраренальні механізми підтримання збалансованого вмісту кислих і лужних компонентів у біологічних рідинах і тканинах.

На відміну від наземних тварин, які можуть регулювати парціальний тиск О2 і СО2 в альвеолярному повітрі за рахунок зміни частоти і глибини дихання, риби позбавлені можливості змінювати напругу газів в омиваючій зябра воді. Другою особливістю водяних тварин є те, що не тільки розчинений у воді кисень, але й діоксид вуглецю та гідрокарбонат натрію (NаHCО3) можуть проникати в організм через зябра і шкіру. Майже 92,7 % вуглецю із NaHCO3 надходить через залозистий апарат зябер в організм верхівки, коропа та деяких осетрових, і тільки 7,3-14,8 % проникає через шкіру. Проникаючи в організм, ці речовини можуть поповнювати резерв кислот і гідрокарбонатів і тим самим впливати на кислотно-лужну рівновагу. Відомо, що у регуляції активної реакції крові (рН) приймають участь білкова, гідрокарбонатна і фосфатна буферні системи, але найбільш лабільною щодо впливу вуглекислоти є гідрокарбонатна буферна система. Це підтверджується прямою залежністю між вмістом вільної вуглекислоти у водному середовищі та змінами концентрації гідрокарбонатних іонів у крові риб.

Саме накопичення у плазмі крові гідрокарбонатів є вирішальним фактором гомеостатичної стабілізації рН в умовах тривалого перебування риб у середовищі з підвищеним вмістом СО2. Зростання гідрокарбонатів плазми відбувається за рахунок обміну іонів водню (Н+) вугільної кислоти з іншими буферними системами (білковою, фосфатною). При тривалому перебуванні риб у середовищі із значно підвищеним рівнем СО2 у воді, коли підтримання співвідношення кислих і лужних елементів в організмі риб не може забезпечуватись лише гідрокарбонатною системою, включаються ниркові та інші механізми підтримування гомеостазу, які забезпечують виведення з організму кислих фосфатів з сечею, утримання гідрокарбонатів і вихід лужних елементів (Na, K, Ca) з кісткових депо у кров, внаслідок чого в ній зростає концентрація лужних елементів. Внаслідок цього розширюються межі адаптації риб до вуглекислотного впливу та забезпечується підтримання рН внутрішнього середовища у межах фізіологічного оптимуму.

Як свідчать експериментальні дані, коропи дворічного віку можуть досить ефективно регулювати рН крові при перебуванні їх у водному середовищі з концентрацією СО2 у воді від 0,1 до 0,8 ммоль/дм3. Із збільшенням її до 1,1 і особливо до 2,05 ммоль/дм3 рівень зростання гідрокарбонатів у крові риб недостатній для збалансування кислотних еквівалентів, що і супроводжується розвитком вуглекислотної ацидемії.

При незбалансованному підвищенні в крові риб вмісту молекулярної СО2 і гідрокарбонатів розвиваються глибокі порушення фізіологічних процесів, які можуть закінчуватись загибеллю риб. Таким чином, існують межі компенсаторного підвищення СО2 у воді, вище яких організм не може нормально існувати. У коропів дворічного віку коливання СО2 у воді від 0,1 до 0,8 ммоль/дм3 не супроводжуються змінами кислотно-лужної рівноваги крові. Для інших видових і вікових груп риб межі толерантності до вмісту СО2 у воді можуть бути іншими. Але загальна реакція буферних систем на зміни газового режиму води у всіх риб схожа. Наявність зв'язку між вмістом розчиненого у воді СО2 та окремих форм вугільної кислоти у крові, визначає характер впливу газового режиму водного середовища на еколого-фізіологічні показники в організмі риб. У зв'язку з цим діоксид вуглецю в оптимальному діапазоні концентрацій є не тільки регулятором процесу дихання, а й важливим субстратом у біосинтетичних реакціях.

7. Кругообіг та роль азоту у водних екосистемах

Кругообіг азоту у біосфері, в тому числі і гідросфері, включає чотири основні процеси: азотфіксацію, або біологічне засвоєння молекулярного азоту повітря, амоніфікацію, або розклад (за участю мікроорганізмів) азотмістких органічних сполук (білків, нуклеїнових кислот, сечовини тощо) до утворення вільного аміаку (NH3); нітрифікацію, або окиснення аміаку і утворення нітритів (NO2), нітратів (NO3) та азотної кислоти (НNO3). Завершується цикл азоту процесом денітрифікації, що включає мікробіологічне відновлення окиснених сполук азоту (NO2, NO3) до газоподібного азоту (N2). На цій стадії частина азоту у вільному стані переходить в атмосферу. Денітрифікація запобігає надмірному накопиченню оксидів азоту, які можуть бути токсичними для гідробіонтів, в донному грунті і воді.

Кругообіг азоту в водних екосистемах пов'язаний з утилізацією атмосферного N2 та надходженням з водозбірної площі легкорозчинних у воді мінеральних форм азоту нітратних (NO3), нітритних (NO2) та амонійних (NH4+) іонів. Крім того, у водойми можуть надходити органічні сполуки алохтонного (іззовні) і автохтонного (внутрішньоводоймного) походження, які містять у своєму складі азот. При деструкції органічних речовин відбувається гідроліз білків до більш дрібних молекул, які можуть дифундувати через оболонку клітин, де вони розпадаються з виділенням аміаку.

Більшість організмів гідросфери засвоюють азот тільки у формі амонійних солей, нітратів або деяких низькомолекулярних органічних сполук (наприклад, амінокислот). У зв'язку з цим, фіксацію азоту, тобто перетворення газоподібного азоту у нітрати, які засвоюються водяними організмами, за важливістю можна порівняти з фотосинтезом. Саме ці два процеси визначають існування різних форм життя на Землі.

У метаболічні реакції азот включається у молекулярній або нітратній формі. Як у процесах азотфіксації, так і асиміляції азоту з нітратів, кінцевим продуктом реакції є утворення амінокислот та приєднання їх до різних молекул-акцепторів. На цьому завершується цикл утворення білків та їх похідних.

7.1 Азотфіксація у водних екосистемах

Азотфіксація - це засвоєння молекулярного азоту повітря за допомогою мікроорганізмів-азотфіксаторів. Основну масу азоту на Землі (4,61017 т) становить молекулярний азот атмосфери.

Молекулярний азот повітря в водних екосистемах можуть засвоювати лише діазотрофи, тобто мікроорганізми, до яких належать два роди архебактерій, 38 родів бактерій і 20 родів синьозелених водоростей (ціанобактерій). Найважливіші серед них - бактерії родів Azotobacter, Clostridium, актиноміцети роду Frankia, деякі синьозелені водорості, а також симбіотичні бактерії роду Rhizobium.

Засвоєння атмосферного N2 мікроорганізмами базується на ферментативних процесах за участю нітрогенази, яка каталізує азотфіксацію. Про значення азотфіксації свідчать розрахунки Дж. Постгейта (Postgate, 1974), згідно яких протягом року таким шляхом на Землі утворюється 108-109 т біологічного азоту. Це становить приблизно 90 % азоту суші, який знаходиться в кругообігу.

Основним джерелом азоту, що надходить до живих організмів, є атмосферний азот, біологічно фіксований грунтовими, морськими і прісноводними мікроорганізмами. У водних екосистемах автотрофні і гетеротрофні мікроорганізми можуть здійснювати азотфіксацію як в аеробних, так і в анаеробних умовах. Процес азотфіксації включає розщеплення молекули азоту на два атоми. При цьому витрачається енергія (672 кДж/моль) на активацію азоту у реакції за схемою:

2N2 + 3H2 2NH3 + 53,8 кДж/моль.

Ця реакція каталізується ферментом нітрогеназою, яка інактивується в присутності кисню. У водоймах, особливо у донних відкладах, ці процеси відбуваються досить активно за участю анаеробних бактерій роду Clostridium.

Здатність до азотфіксації мають деякі сульфатредукуючі, фотосинтезуючі та метанутворюючі бактерії. Вони найбільш поширені в морських екосистемах.

Як і азотфіксуючі бактерії, мікроводорості утилізують азот за участю фермента нітрогенази. Більшість синьозелених водоростей, здатних до азотфіксації, мають нитчасту структуру. В них знаходяться великі товстостінні клітини - гетероцисти, в яких немає продукуючої кисень фотосистеми. Для них характерним є дуже низький вміст або повна відсутність фотосинтетичних біліпротеїнів, які визначають колір водоростевих клітин. Тому гетероцисти виділяються своєю блідістю на фоні більш яскраво забарвлених клітин синьозелених водоростей. Важливою морфо-функціональною особливістю гетероцист є те, що в їх стінках є гліколіпіди, які здатні зв'язувати кисень, Останнє має виняткове значення в процесах фіксації азоту синьозеленими водоростями, оскільки кисень інактивує ферментативну активність нітрогенази, без якої не може утилізуватись газоподібний азот. Наявність зв'язуючих кисень гліколіпідів у стінках гетероцист поряд з споживанням кисню на дихання водоростевих клітин забезпечує синьозеленим водоростям анаеробні умови, необхідні для фіксації N2.

...

Подобные документы

  • Характеристика токсичних речовин та шляхи їх надходження до водних екосистем. Основні водні об`єкти м. Чернігова. Забруднення водних систем міста комунальними, промисловими стоками. Використання методу біотестування для оцінки якості води водних об`єктів.

    курсовая работа [65,0 K], добавлен 21.09.2010

  • Загальна інформація про Цезій-137. Радіоактивне забруднення водних екосистем після аварії на ЧАЕС. Шляхи надходження радіонуклідів у водойми. Радіаційний стан водних систем районів розташування АЕС. Методологія управління радіоємністю водоймища.

    реферат [20,7 K], добавлен 12.02.2012

  • Використання кіральних властивостей проліну для оцінки рівня забруднення річкових екосистем. Гідрохімічні дослідження малих річок м. Чернівці. Аналіз індексів сапробності та еколого-географічних особливостей видів водоростей, виявлених у водоймах.

    автореферат [49,2 K], добавлен 08.06.2013

  • Загальна характеристика токсичних речовин та шляхи їх надходження до водних екосистем. Основні водні об`єкти м. Чернігова та їх забруднення комунальними та промисловими стоками. Метод біотестування для оцінки якості води основних водоймищ м. Чернігова.

    курсовая работа [164,0 K], добавлен 25.09.2010

  • Вивчення сутності біомоніторингу. Чинники забруднення довкілля. Характеристики водного середовища, пристосування до них живих організмів. Зміни водних екосистем при антропогенному забрудненні. Методи оцінки забруднення вод за допомогою тварин-індикаторів.

    курсовая работа [63,3 K], добавлен 10.08.2010

  • Проблема екологічно-збалансованого використання природних ресурсів (водних, земельних, біотичних, рекреаційних) приморських територій та збереження біорізноманіїтя приморських екосистем. Вирішення соціальних проблем, які виникли внаслідок підтоплення.

    реферат [24,4 K], добавлен 08.12.2010

  • Фактори водного середовища. Фізичні та хімічні властивості води. Дослідження динаміки водної екосистеми, біотичних взаємодій гідро біонтів. Взаємодія як двигун еволюції та динаміки популяції. Вплив антропогенних факторів на динаміку водних екосистем.

    курсовая работа [901,4 K], добавлен 11.04.2010

  • Поняття системного аналізу. Елементи системи та зв'язкі між ними. Структурний і функціональний аспекти вивчення природних екосистем. Механізм зворотного зв'язку. Гомеостаз системи "хижак-жертва". Закон безповоротності еволюції. Спіраль розвитку Абдєєва.

    реферат [208,2 K], добавлен 29.09.2009

  • Водні ресурси (поверхневі і підземні води), придатні для використання в народному господарстві. Використання та охорона водних ресурсів у промисловості і комунальному господарстві. Способи вирішення проблем раціонального використання водних ресурсів.

    курсовая работа [256,2 K], добавлен 13.05.2015

  • Структура й динаміка різних екологічних систем, рівні їхньої організації й ієрархії. Елементи механізму трофічних зв'язків. Характерні риси всіх екосистем. Гіпотеза Геї: причини і фактори становлення життя на нашій планеті. Фундаментальні типи екосистем.

    реферат [29,1 K], добавлен 20.06.2010

  • Характеристика та склад біосфери, взаємодія природних екосистем та виникнення живої речовини на Землі. Кругообіг хімічних речовин, склад і будова атмосфери, вміст твердих і рідких домішок, азоту та кисню. Вплив на біосферу та механізм її саморегуляції.

    реферат [250,3 K], добавлен 23.11.2009

  • Визначення причин деградації Азовського моря. Виявлення наслідків впливу антропогенного навантаження на екосистему Чорного моря. Ерозійні процеси - основна екологічна проблема Дніпра. Роль інтенсифікації сільського господарства в обмілінні малих річок.

    реферат [1,3 M], добавлен 13.09.2010

  • Використання водних ресурсів і їхня охорона мають ключове значення для досягнення стійкого розвитку. "Водні ресурси" - це всі придатні для господарського використання запаси поверхневих вод, включаючи ґрунтову й атмосферну вологу. Визначення ресурсів.

    дипломная работа [34,0 K], добавлен 15.07.2008

  • Водозабезпеченість України ресурсами місцевого стоку. Проблеми водних ресурсів, екологічна ситуація і стан питних вод в Одеській області. Шляхи вирішення проблем водних ресурсів в Україні. Роль водного фактора у формуванні неінфекційної захворюваності.

    доклад [18,9 K], добавлен 06.11.2012

  • Теоретико-методологічні основи раціонального використання водних ресурсів. Аналіз стану водовикористання і водоспоживання в Рівненській області. Еколого-економічне обгрунтування заходів з ресурсозбереження у галузі водовикористання і водоспоживання.

    диссертация [1,7 M], добавлен 21.12.2010

  • Розподіл води на Землі: океани і моря, річки і озера, льодовики і запаси підземних вод. Загальне рівняння водного балансу. Приклади реалізації інженерно-екологічного принципу в промисловому водопостачанні. Комплексне використання водних ресурсів.

    реферат [21,2 K], добавлен 19.12.2010

  • Аналіз природних умов басейну річки Замчисько: грунту рослинність, клімат, гідрогеологія. Оцінка впливу господарської діяльності на водозбір та хімічний склад вод річки. Антропогенне навантаження на басейн водойми, заходи реабілітації річкових екосистем.

    курсовая работа [803,7 K], добавлен 23.05.2019

  • Фактори, що впливають на розподіл водоростей у природі. Характеристика та особливості життєдіяльності екологічних груп водоростей. Життєвий цикл планктонних, бентосних, наземних, грунтових водоростей, їх зростання біля гарячих джерел, снігу і льоду.

    реферат [25,9 K], добавлен 20.04.2011

  • Важливість економічної оцінки водних ресурсів. Державний облік водокористування для забезпечення раціонального використання водних ресурсів. структура та формування ресурсів прісної води в Україні. Необхідність проведення водоохоронних заходів.

    курсовая работа [44,1 K], добавлен 29.09.2010

  • Заходи охорони і раціонального використання водних ресурсів, характеристика різних типів їх забруднення (хімічне, теплове). Причини кризової ситуації Дніпра, Чорного й Азовського морів. Вплив забруднень на життєдіяльність організмів і здоров`я людей.

    реферат [32,6 K], добавлен 10.11.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.