Вища геодезія

Системи координат, що застосовуються у вищій геодезії. Зв’язок між геодезичною, приведеною і геоцентричною широтами. Довжини дуг меридіана та паралелі, площа сфероїдальної трапеції. Методи розв’язування головних геодезичних задач на поверхні еліпсоїда.

Рубрика Геология, гидрология и геодезия
Вид книга
Язык украинский
Дата добавления 19.08.2017
Размер файла 1,4 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

(3.6)

де радіус сфери визначається як функція середньої широти , на якій розташований трикутник, за відомими формулами .

Недоліком даного способу є те, що сторони трикутника виражаються в частинах радіуса, а також необхідність визначати тригонометричні функції малих кутів з досить високою точністю (10-12 розрядів).

б) за теоремою Лежандра

Теорема Лежандра для малих сферичних трикутників: якщо сторони плоского і сферичного трикутників відповідно рівні між собою, то кути плоского трикутника рівні кутам сферичного трикутника, зменшеними на одну третину сферичного надлишку.

Нехай - сферичний, а - плоский трикутник, сторони якого рівні відповідним сторонам сферичного трикутника (рис. 3.3). Такий трикутник носить назву лежандровий трикутник.

Размещено на http://www.allbest.ru/

Рис.3.3

Згідно теореми Лежандра, значення кутів плоского (лежандрового) трикутника буде

(3.7)

Сферичний надлишок можна обчислити, наприклад, за формулами (3.4).

Отже, якщо у сферичному трикутнику відома вихідна сторона, наприклад, і сферичні кути (див. рис.3.3), то за першою формулою (3.4) обчислюємо сферичний надлишок трикутника і знаходимо плоскі кути . Потім розв'язуємо трикутник за стороною та знайденими плоскими кутами, застосовуючи формули плоскої тригонометрії (теорему синусів), тобто

(3.8)

Точність розв'язування сферичних трикутників, які можна розв'язувати за теоремою Лежандра, залежить не тільки від розмірів сторін, але і від форми трикутника. Аналізом формул встановлено, що допустимі розміри сторін трикутника знаходяться в межах від 75 до 150 км.

в) за способом аддитаментів

У попередньому способі для застосування формул плоскої тригонометрії вводилися поправки за сферичність у кути.

Можливим є також спосіб використання сферичних кутів, але з введенням поправок в сторони трикутника. Розглянемо даний спосіб.

Із сферичного трикутника (рис.3.3) за теоремою синусів маємо

(3.9)

де - відома сторона, - шукана сторона даного сферичного трикутника.

Поскільки сторони сферичного трикутника є малими в порівнянні з радіусом сфери , то їх тригонометричні функції розкладемо в ряд, обмежуючись членами третього порядку:

Позначивши

і, крім того

напишемо

Або остаточно

(3.10)

і, аналогічно, для другої сторони

. (3.11)

З цих формул видно, що головні члени представляють собою розв'язування сферичного трикутника як плоского, причому кути в них є сферичними. Поправочні члени називають аддитаментами. Тому і розв'язування сферичного трикутника за формулами (3.10), (3.11) називають способом аддитаментів. Строго кажучи, аддитаментами називалися малі поправки до логарифму головного члена, коли формули виводились із застосуванням логарифмів. Хоча логарифмічні методи втратили своє значення і на практиці не застосовуються, проте в назвах окремих способів, і в тому числі при розв'язуванні сферичних трикутників, збереглися первісні терміни.

Отже, якщо від вихідної сторони відняти її аддитамент і розв'язати трикутник зі сферичними кутами за формулами плоскої тригонометрії, то, додавши до знайдених довжин сторін їхні аддитаменти, отримаємо довжини сторін сферичного трикутника.

Точність розв'язування малих сферичних трикутників способом аддитаментів є аналогічною, як і для розв'язування їх за теоремою Лежандра.

г) за виміряними сторонами

У випадку, коли в геодезичній мережі вимірюються лише сторони трикутників, виникає потреба обчислення горизонтальних кутів, які в подальшому можуть мати окреме застосування, наприклад, для передачі геодезичного азимута від однієї сторони до іншої.

Порядок обчислень при цьому буде наступний. Виміряні між пунктами прямолінійні відстані редукують на поверхню еліпсоїда, згідно теорії редукцій геодезичних вимірювань з фізичної поверхні Землі на поверхню еліпсоїда.

За знайденими таким чином сторонами сферичного трикутника обчислюють плоскі кути (див. рис.3.3), використовуючи наступні формули плоскої тригонометрії:

Якщо довжини сторін не перевищують 100 км, то достатньо обчислити сферичний надлишок за формулами (3.2), а потім одну третину його додати до кожного плоского кута згідно формули (3.7).

3.4.2 Розв'язування головних геодезичних задач

а) на поверхні сфери

Використання сфери вигідно, в першу чергу, для наближеного розв'язування головних геодезичних задач - прямої та оберненої.

Введемо наступні позначення координат на сфері (рис.3.4):

- географічна широта;

- географічна довгота;

- азимут дуги великого кола;

Размещено на http://www.allbest.ru/

- сферична відстань (довжина дуги великого кола, виражена в частинах радіуса сфери

Пряма геодезична задача

Нехай задані географічні координати 1, 1 деякої точки Q1 (рис. 3.4б), а також полярні координати і 1 другої точки Q2. Вимагається за цими даними знайти географічні координати 2, 2 точки Q2 і азимут 2 з другої точки на першу. Таким чином, пряма геодезична задача полягає в перетворенні полярних координат в географічні (сферичні).

Обернена геодезична задача.

Нехай задані географічні координати 1, 1 і 2, 2 двох точок Q1 і Q2 (рис. 3.4б). Необхідно знайти найкоротшу відстань (довжину дуги великого кола) між даними точками та азимути 1 і 2 з однієї точки на другу. Отже, обернена геодезична задача зводиться до перетворення географічних (сферичних) координат в полярні.

Розв'язування прямої і оберненої геодезичних задач на сфері, як легко можна побачити, представляє собою розв'язування полярного сферичного трикутника Q1PQ2 (рис.3.4б). В даному випадку розв'язування цього трикутника зводиться до визначення за двома сторонами і кутом між ними третьої сторони та прилеглих до неї кутів. Для розв'язування можна використати замкнуті формули сферичної тригонометрії:

Формули для розв'язування прямої геодезичної задачі:

(3.21)

де визначається за формулою (3.20). Різниця довгот знайдеться, якщо розділити рівняння (3.12) на (3.17)

Шляхом ділення рівнянь (3.19) на (3.18) дістанемо формулу для оберненого азимута

Формули для розвязування оберненої геодезичної задачі:

Для обчислення прямого азимута треба розділити рівняння (3.12) на (3.14)

Для обчислення оберненого азимута необхідно розділити рівняння (3.13) на (3.15)

Формулу для sin отримаємо, якщо помножимо рівняння (3.12) на sin1, а рівняння (3.14) - на cos1 і додамо їх

(3.26)

Обчислення арксинуса можна замінити обчисленням арктангенса, використавши формулу зв'язку, аналогічну (3.21).

Із трикутника Q1 PQ2 (див. рис. 3.4.б) можна отримати і інші варіанти формул для розв'язування прямої та оберненої геодезичних задач.

б) на поверхні еліпсоїда

В практиці розв'язування головних геодезичних задач на поверхні еліпсоїда між точками 1 і 2 використовуються різноманітні лінії, що дають однозначне положення точки 2 по відношенню до точки 1. За такі лінії можна прийняти прямий нормальний переріз, геодезичну лінію, центральний переріз, хорду тощо. Використання кожної з вказаних ліній вносить свої особливості в методи розв'язування головних геодезичних задач на поверхні еліпсоїда. Ми будемо розглядати тільки ті методи, які базуються на використанні геодезичної лінії і найбільш часто зустрічаються в практиці.

Раніше нами були отримані диференційні рівняння, що характеризують зміну широти і довготи при переміщені вздовж будь-якої кривої на поверхні еліпсоїда

і зміна азимуту вздовж геодезичної лінії

Ці три рівняння представляють собою систему звичайних диференційних рівнянь першого порядку, що пов'язують чотири змінних - B, L, A, s, з яких довжина геодезичної лінії s прийнята як незалежна змінна. Проінтегрувавши їх по незалежній змінній s між точками Q1 і Q2,, отримаємо

Інтеграли (3.29) не виражаються в елементарних функціях, тому для їх наближеного розв'язування застосовують розклади в ряди або підінтегральних функцій або самих інтегралів з наступним почленним інтегруванням кожного ряду. При цьому для практичного застосування можливими є два варіанти їх розв'язування.

Поскільки розв'язування головних геодезичних задач на сфері виконується строго за формулами сферичної тригонометрії (див. п. 3.4.2.а), а форма земного еліпсоїда незначно відрізняється від сфери, доцільним є наступний порядок розв'язування:

обчислення за заданими елементами на еліпсоїді відповідних елементів на сфері, тобто здійснити перехід з еліпсоїда на сферу;

розв'язування головних геодезичних задач на сфері;

обчислення за елементами на сфері відповідних елементів на еліпсоїді, тобто провести зворотній перехід зі сфери на еліпсоїд.

Перехід з еліпсоїда на сферу, котре ще називають геодезичним зображенням, базується на зображенні геодезичної лінії еліпсоїда на сфері у вигляді дуги великого кола, причому кожній точці геодезичної лінії відповідала б єдина точка дуги великого кола як її зображення. Така відповідність вважається встановленою, якщо знайдені математичні залежності між елементами B, L, A, s в кожній точці геодезичної лінії на еліпсоїді та елементами , , , у відповідній точці дуги великого кола на сфері.

В загальному вигляді ці залежності можна записати системою наступних диференційних рівнянь:

Очевидно, що аргументами функцій fi будуть широта B, азимут A та квадрат ексцентриситета e2, як аргумент радіусів кривини M і N еліпсоїда.

Проінтегрувавши диференційні рівняння (3.30) при певних умовах, можна отримати необхідні формули для взаємного переходу з еліпсоїда на сферу. Одним із найбільш відомих способів розв'язування головної геодезичної задачі вказаним вище шляхом є спосіб Бесселя.

Саме такий варіант є практичним втіленням так званого прямого шляху розв'язування головних геодезичних задач. Прямий шлях полягає в безпосередньому розв'язуванні сфероїдного трикутника Q1PQ2 (див. рис.3.1) за відомими двома сторонами і кутом між ними, а саме:

в прямій геодезичній задачі відомі сторони Q1P = 900-B1; Q1Q2=s і кут A1, із розв'язування трикутника визначаються інші його елементи - різниця довгот, котра служить для визначення геодезичної довготи L2, сторона Q2P = 900 - B2 і кут A2' (A2 = 3600 - A2');

в оберненій геодезичній задачі відомі сторони Q1P, Q2P та різниця довгот; із розв'язування трикутника визначається строна s , кут A1 і кут A2', за яким обчислюють азимут A2 = 3600 - A2'.

Сторони Q1P і Q2 P сфероїдного трикутника Q1PQ2 можуть досягати декількох тисяч кілометрів (наприклад, при розташуванні сторони Q1Q2 на широті 500, вказані сторони будуть біля 4 000 км). Розв'язування таких значних за розмірами трикутників пов'язано з досить великими труднощами, адже при цьому немає кінцевих замкнутих формул, поскільки сторони сфероїдних трикутників, що представляють собою дуги меридіанів і паралелей та геодезичні лінії на поверхні еліпсоїда, виражаються еліптичними інтегралами. Ось чому на практиці, при розв'язуванні сфероїдних трикутників, їх спочатку проектують на допоміжну сферу, на котрій виконують розв'язування, після чого здійснюють обернений перехід на еліпсоїд.

У всіх способах прямого шляху розв'язування головних геодезичних задач сферична поверхня використовується як проміжна інстанція, причому вона може бути використана і при виводі формул, і в процесі практичних обчислень. Способи, що базуються на прямому шляху, придатні для розв'язування прямих та обернених геодезичних задач на поверхні земного еліпсоїда при будь-яких віддалях між двома точками і з будь-якою практично необхідною точністю.

Побічний шлях полягає у визначенні приростів (різниць) широт, довгот і азимутів у функції заданих величин, після чого за знайденими приростами визначаються остаточні величини.

Так, наприклад, при розв'язуванні прямої геодезичної задачі попередньо визначаються різниці:

В правих частинах цих рівнянь через f1, f2 і f3 позначені функції, що виражаються розкладами приростів широти, довготи та азимута в ряди за степенями довжини s:

(3.32)

Після чого знаходять

Кількість членів розкладів утримується в залежності від довжини s : чим більша відстань, тим більше членів в рядах (3.32) при одній і тій же точності обчислень треба утримувати.

Це і є розглянутий нами вище другий варіант розв'язування рівнянь (3.29), який відомий ще як непрямий або побічний шлях розв'язування головних геодезичних задач.

Перші коефіцієнти цих рядів задані рівняннями (3.27) і (3.28). Інші коефіцієнти знаходять шляхом послідовного диференціювання перших коефіцієнтів за змінними B і A як складних функцій. Так, наприклад, загальний запис для похідних вищих порядків широти буде мати вигляд

Часткові похідні для другої похідної будуть наступними

Враховуючи відомі співвідношення та позначення (див. розділ 2):

З врахуванням отриманих виразів та формули (3.28) остаточно отримаємо

Аналогічним чином можна отримати і вирази для похідних вищих порядків. Приведемо без виводу вирази для похідних широти до п'ятого порядку включно

(3.34)

Вирази для похідних шостого і вище порядків мають досить складний вид і мало перспектив на їх застосування в практичних обчисленнях.

Приведемо ще вирази для аналогічних похідних довготи та азимута

.(3.35)

(3.36)

У виразах для похідних п'ятого порядку (3.34), (3.35), (3.36) знехтувано стисненням еліпсоїда (=0) та прийнято, що M=N=R, де R - середній радіус еліпсоїда (земної кулі; можна прийняти R=a).

Практичні розрахунки показують, що з врахуванням похідних до третього порядку можна розв'язувати пряму геодезичну задачу на відстані до 40 км з точністю 0.0002” в широті та довготі і 0.001” в азимуті, а з врахуванням наведених похідних до пятого порядку і до 100 км з такою ж точністю.

Обчислення за цими формулами при “ручних” рахунках були надзвичайно громідзкими, тому застосовувались певні раціональні прийоми, що дозволяли перетворювати формули для їх широкого практичного застосування. Вкажемо лише на два з них, що мали широке практичне використання при опрацюванні геодезичних мереж 1-го класу: метод допоміжної точки Шрейбера та метод середніх аргументів Гаусса.

В зв'язку з широким впровадженням комп'ютерної техніки на даний час можна вважати, що найбільш оптимальним шляхом розв'язування головних геодезичних задач є використання чисельних методів інтегрування диференційних рівнянь (3.27) і (3.28). Одним із найефективніших чисельних методів для вказаної задачі є метод Рунге-Кутта четвертого порядку. Детальніше про цей шлях буде розглянуто в п.3.6.4.

в) в просторі

Для розв'язування головних геодезичних задач в просторі використовують системи просторових декартових (X, Y, Z), геодезичних (B, L, H) та топоцентричних горизонтальних - декартових (x', y',z') та полярних (A, z,D) координат і зв'язки між ними (див. розділи 1 і 2).

Пряма геодезична задача формулюється наступним чином. Задані геодезичні координати B1,L1,H1 початкової точки Q1 і топоцентричні полярні координати z12, A12, D точки Q2 відносно початкової точки Q1. Необхідно визначити геодезичні координати B2,L2,H2 точки Q2.

Поставлену задачу розв'язують в такій послідовності:

а) за формулами зв'язку (2.32) обчислюють просторові декартові координати X1,Y1,Z1 точки Q1;

б) обчислюють елементи матриці перетворення координат A1 за формулою (2.37).

в) використовуючи формули (2.34), обчислюють топоцентричні декартові координати x2',y2',z2';

г) за формулою (2.36) обчислюють декартові координати X2,Y2,Z2 точки Q2;

д) для переходу до геодезичних координат B2,L2,H2 точки Q2 використовують формули зв'язку (2.33).

Обернена геодезична задача . Задані геодезичні координати B,L,H двох точок Q1 та Q2. Необхідно знайти топоцентричні полярні координати z12, A12, D точки Q2 відносно початкової точки Q1.

Для розв'язування поставленої задачі можна застосувати таку схему:

а) від геодезичних координат B,L,H точок Q1 та Q2 за формулами (2.32) переходять до декартових Xi,Yi,Zi (де і=1,2);

б) обчислюють елементи транспонованої матриці перетворення координат за формулою

в) за формулою (2.38) обчислюють топоцентричні декартові координати xi',yi',zi' (і=1,2) точки Q1 відносно точки Q2 і навпаки.

г) топоцентричні полярні координати z12, A12, D точки Q2 відносно початкової точки Q1 і z21, A21, D точки Q1 відносно точки Q2 обчислюють за формулами (2.35).

Приведені вище схеми можна використовувати також і для розв'язування головної геодезичної задачі між точками на поверхні еліпсоїда. Для цього в цих формулах достатньо прийняти H1=H2=0. Розв'язком при цьому, наприклад, в оберненій геодезичній задачі будуть азимути прямого і оберненого нормальних перерізів та довжина хорди цих перерізів.

3.5 Диференційні формули

Диференційні формули встановлюють залежність між малими (диференційними) змінами координат початкової і кінцевої точок відповідної лінії (дуги великого кола на сфері, геодезичної лінії на еліпсоїді, хорди в просторі), її довжини та азимутів.

Застосування диференційних формул пов'язано, в основному, з розв'язуванням задач з переобчислення геодезичних координат на поверхні земного еліпсоїда чи геоцентричних прямокутних в просторі у випадках зміни вихідних координат, а також аналогічних задач у випадку зміни (уточнення) розмірів відлікового еліпсоїда. Особливо це може стосуватися задач, що виникають при поєднанні пунктів, координати яких віднесені до референцних та загальноземного еліпсоїдів та визначені різними методами (класичними і супутниковими, наприклад).

Диференційні формули дозволяють значно скоротити обчислювальну роботу, яка вимагається при подібному переобчислені вже врівноважених координат всіх опорних геодезичних пунктів. Це виявляється можливим тому, що повторне обчислення координат замінюється обчисленням незначних поправок до вже відомих координат пунктів. Такими формулами для обчислення поправок в координати та азимути напрямів і є диференційні формули.

Крім вищеназваних, диференційні формули можна використовувати і в інших задачах. Так в п. 3.6. буде наведена схема розв'язування оберненої геодезичної задачі, одним із важливих етапів якої є застосування диференційних формул для довжини геодезичної лінії та азимута цієї лінії.

3.5.1 Диференційні формули для геодезичної лінії

Сім змінних B1, L1, B2, L2, s, A1, A2 геодезичної лінії зв'язані між собою складною залежністю, котра визначається формулами розв'язування головних геодезичних задач. З цих семи змінних чотири є незалежними; від них залежать решта три.

Зміну трьох залежних змінних представимо у вигляді повних диференціалів

Ці рівняння показують, як змінюється довжина геодезичної лінії та її азимути у випадку, якщо кінці цієї лінії отримують деякі малі зміщення, котрі виражені диференціалами координат. Рівняння (3.37) приймаються за вихідні співвідношення, з яких потім знаходять інші залежності між цими диференціалами.

Часткові похідні можна знайти, застосовуючи при цьому два підходи. Перший - менш строгий- полягає в тому, що при виводі формул користуються геометричним представленням часткових диференціалів, що складають праві частини рівнянь (3.37), а другий - строгий - в тому, що часткові похідні знаходять диференціюванням за відповідними змінними рівнянь, що використовують для розв'язування головних геодезичних задач. В курсах вищої геодезії [1,5,7] ці підходи розглядаються детальніше. Ми обмежимося лише готовими формулами, які будемо класифікувати за впливами:

зміни широти B2 на величини s, A1, A2 при постійній величині довготи L2 та незмінному положенні початкової точки Q1

Тут m - приведена довжина геодезичної лінії. Для більшості випадків її можна обчислити за формулою:

зміни довготи L2 на величини s, A1, A2 при постійній величині широти B2 та незмінному положенні початкової точки Q1

Аналогічні вирази будуть і в тому випадку, коли кінцева точка Q2 залишається в незмінному положенні, а зміщення отримала початкова точка Q1 . Різниця буде лише в тому, що у формулах (3.38) та (3.39) поміняються місцями індекси 1 і 2. Повні диференційні формули запишуться в цьому випадку в наступному виді

(3.40)

зміни широти B1 на величини B2, L2, A2 при постійній величині довготи L1 , азимута A1 та довжини геодезичної лінії s

(3.41)

зміни довжини геодезичної лінії s на величини B2, L2, A2 при постійній величині широти B1, довготи L1 , азимута A1

зміни азимута A1 на величини B2, L2, A2 при постійній величині широти B1, довготи L1 та довжини геодезичної лінії s

Рис. 3.5 дає геометричне представлення про величини, що входять в диференційні формули (3.38)- (3.43).

Размещено на http://www.allbest.ru/

Рис. 3.5

Всі наведені вище формули є наближеними, поскільки в них не прийняті до уваги диференціали другого і більш вищих порядків. Тому вони тим точніші, чим менші величини диференціалів незалежних змінних.

3.5.2 Диференційні формули для довільної точки простору

Встановимо залежності між малими змінами просторових декартових і геодезичних координат довільної точки в просторі. В загальному вигляді ці залежності можна записати

Часткові похідні в цих залежностях можна знайти із рівнянь (2.32)

Для цього попередньо визначимо похідні двох функцій

Після цього можна легко знайти часткові похідні, наприклад

(3.46)

3.5.3 Диференційні формули для системи геодезичних координат

Зміна розмірів еліпсоїда і його орієнтування відносно фізичної поверхні Землі викликає зміну геодезичних координат всіх точок навколишнього простору.

Формули, за якими визначаються малі зміни геодезичних координат B, L, H точок земної поверхні або навколоземного простору, що викликані малими змінами розмірів еліпсоїда і його паралельним зсувом в просторі носять назву диференційних формул системи геодезичних координат.

Нехай деякий еліпсоїд заданих розмірів (a, ) встановлений відносно земної поверхні так, що вісь обертання його паралельна до осі обертання Землі, а центр еліпсоїда незначно віддалений від центра інерції Землі.

Якщо тепер змінимо форму і розміри еліпсоїда: велику (екваторіальну) піввісь на величину da, а стиснення на величину d , то, відповідно, зміняться при цьому і геодезичні координати B,L,H всіх точок простору, проте прямокутні координати X,Y,Z цих точок залишаться попередніми, поскільки не змінилося положення осей координат.

Здійснивши паралельне зміщення еліпсоїда в просторі разом з осями координат OXYZ , отримаємо додаткові зміни геодезичних координат. Зміняться на цей раз і прямокутні координати всіх точок (в результаті переносу початку координат) на величини dx, dy, dz.

Вказані зміщення (перехід від одної системи геодезичних координат до другої) можна проілюструвати геометрично (рис. 3.6).

В загальному вигляді залежності між всіма вказаними змінами можна записати у вигляді системи диференційних рівнянь

Размещено на http://www.allbest.ru/

Рис.3.6

Диференціали da, d та dB, dL, dH, dx,dy,dz представляють собою поправки до старих значень розмірів еліпсоїда (a,) і координат (B,L,H,X,Y,Z) довільної точки простору для отримання нових значень цих величин в другій системі геодезичних координат.

Часткові похідні в рівняннях ( 3.49) знаходимо шляхом диференціювання по відповідних змінних правих частин рівнянь (3.43). Раніше (див. п.3.5.2) нами вже отримано частину похідних (3.46). Аналогічним чином знаходять і інші похідні в (3.49).

Підставивши ці похідні в рівняння (3.49) та після відповідних перетворень, отримаємо остаточно

(3.50)

(3.52)

Умовою застосування вказаних диференційних формул є паралельність осей обертання та площин початкових меридіанів обох еліпсоїдів.

Отримані вище формули можуть використовуватись:

для обчислення поправок в координати при переході до другої системи геодезичних координат (при відомих параметрах da, d, dx,dy,dz);

для встановлення нової системи геодезичних координат (визначення вказаних п'яти невідомих параметрів).

Поправки da, d легко знайти, поскільки параметри еліпсоїдів, що застосовуються в практичних роботах, переважно відомі. Що стосується інших трьох поправок, то вони визначаються наступним чином. За геодезичними координатами декількох пунктів Qi (i=1,2,...,n), відомими в двох системах координат, з допомогою формул (3.50-3.52) можна визначити лінійний зсув dx,dy,dz одної системи відліку геодезичних координат відносно другої.

Вказану задачу можна сформулювати ще так. Дано координати окремих пунктів геодезичної мережі - (X,Y,Z), визначених з допомогою GPS в системі WGS-84. Обчислити параметри перетворення для геодезичної мережі, у якій більшість пунктів є з відомими координатами B,L,H в системі деякого референцного еліпсоїда, причому деякі з них є спільними (відомі координати в обох системах відліку).

Розв'язування цієї задачі дістанемо за допомогою наступного алгоритму:

для спільних пунктів виконуємо перетворення декартових X,Y,Z, заданих в системі WGS-84 в геодезичні B,L,H координати за допомогою формул ( 2.33));

визначаємо три параметри перетворення dx,dy,dz на основі формул (3.50-3.52 );

для пунктів GPS, які не належать до спільних, використовуючи параметри перетворення, знаходимо координати (B,L,H)REF в системі референцного еліпсоїда;

Нехай референцна система XYZ визначена в іншій системі X0Y0Z0 положенням початку координат dx,dy,dz і кутами x, y, z, на які треба повернути систему XYZ відповідно навколо осей X, Y, Z, щоб ці осі стали паралельні відповідно осям X0,Y0, Z0.

В такій постановці декартові координати із одної системи в іншу будуть перетворюватись за формулами:

При невеликих кутах повороту осей однієї системи координат відносно другої, що має місце в практиці, матриця перетворення R має елементи

У формулі (3.54) R' - транспонована матриця R, - масштабний множник. Для більшості задач, що виникають при переобчислені координат сучасних систем координат можна вважати, що =1.

Перетворення (3.54) називається ще перетворенням або трансформацією Гельмерта.

Формулу (3.54) можна представити і в такому виді:

(3.55)

Кожен пункт Qi (i=1,2,...,n), координати якого відомі в двох системах координат, утворює систему рівнянь (3.55). Шукані параметри зв'язку двох систем координат можна обчислити з оцінкою точності, застосовуючи принцип найменших квадратів.

Розв'язування сформульованої вище задачі зв'язку двох систем координат дістанемо за допомогою наступного алгоритму:

1) для спільних пунктів виконуємо перетворення геодезичних координат B,L,H в декартові X,Y,Z за допомогою формул (2.32);

2) визначаємо шість параметрів перетворення dx,dy,dz і на основі формул (3.54) або (3.55).

3) для пунктів загальноземної системи координат, які не належать до спільних, використовуючи параметри перетворення, знаходимо координати (X,Y,Z)REF в референцній системі;

4) перетворюємо обчислені в попередньому кроці координати із декартових (X,Y,Z)REF в геодезичні (B,L,H)REF.

Точність переобчислених координат буде залежати:

від похибок формул, що застосовуються при обчисленнях;

від методів переходу виміряних елементів геодезичних мереж на поверхню референц-еліпсоїда;

від врівноважень, виконаних в геодезичних мережах кожної системи незалежно одна від другої.

3.5 Диференційні формули

Диференційні формули встановлюють залежність між малими (диференційними) змінами координат початкової і кінцевої точок відповідної лінії (дуги великого кола на сфері, геодезичної лінії на еліпсоїді, хорди в просторі), її довжини та азимутів.

Застосування диференційних формул пов'язано, в основному, з розв'язуванням задач з переобчислення геодезичних координат на поверхні земного еліпсоїда чи геоцентричних прямокутних в просторі у випадках зміни вихідних координат, а також аналогічних задач у випадку зміни (уточнення) розмірів відлікового еліпсоїда. Особливо це може стосуватися задач, що виникають при поєднанні пунктів, координати яких віднесені до референцних та загальноземного еліпсоїдів та визначені різними методами (класичними і супутниковими, наприклад).

Диференційні формули дозволяють значно скоротити обчислювальну роботу, яка вимагається при подібному переобчислені вже врівноважених координат всіх опорних геодезичних пунктів. Це виявляється можливим тому, що повторне обчислення координат замінюється обчисленням незначних поправок до вже відомих координат пунктів. Такими формулами для обчислення поправок в координати та азимути напрямів і є диференційні формули.

Крім вищеназваних, диференційні формули можна використовувати і в інших задачах. Так в п. 3.6. буде наведена схема розв'язування оберненої геодезичної задачі, одним із важливих етапів якої є застосування диференційних формул для довжини геодезичної лінії та азимута цієї лінії.

3.5.1 Диференційні формули для геодезичної лінії

Сім змінних B1, L1, B2, L2, s, A1, A2 геодезичної лінії зв'язані між собою складною залежністю, котра визначається формулами розв'язування головних геодезичних задач. З цих семи змінних чотири є незалежними; від них залежать решта три.

Зміну трьох залежних змінних представимо у вигляді повних диференціалів

Ці рівняння показують, як змінюється довжина геодезичної лінії та її азимути у випадку, якщо кінці цієї лінії отримують деякі малі зміщення, котрі виражені диференціалами координат. Рівняння (3.37) приймаються за вихідні співвідношення, з яких потім знаходять інші залежності між цими диференціалами.

Часткові похідні можна знайти, застосовуючи при цьому два підходи. Перший - менш строгий- полягає в тому, що при виводі формул користуються геометричним представленням часткових диференціалів, що складають праві частини рівнянь (3.37), а другий - строгий - в тому, що часткові похідні знаходять диференціюванням за відповідними змінними рівнянь, що використовують для розв'язування головних геодезичних задач. В курсах вищої геодезії [1,5,7] ці підходи розглядаються детальніше. Ми обмежимося лише готовими формулами, які будемо класифікувати за впливами:

зміни широти B2 на величини s, A1, A2 при постійній величині довготи L2 та незмінному положенні початкової точки Q1

Тут m - приведена довжина геодезичної лінії. Для більшості випадків її можна обчислити за формулою:

зміни довготи L2 на величини s, A1, A2 при постійній величині широти B2 та незмінному положенні початкової точки Q1

Аналогічні вирази будуть і в тому випадку, коли кінцева точка Q2 залишається в незмінному положенні, а зміщення отримала початкова точка Q1 . Різниця буде лише в тому, що у формулах (3.38) та (3.39) поміняються місцями індекси 1 і 2. Повні диференційні формули запишуться в цьому випадку в наступному виді

(3.40)

зміни широти B1 на величини B2, L2, A2 при постійній величині довготи L1 , азимута A1 та довжини геодезичної лінії s

(3.41)

зміни довжини геодезичної лінії s на величини B2, L2, A2 при постійній величині широти B1, довготи L1 , азимута A1

зміни азимута A1 на величини B2, L2, A2 при постійній величині широти B1, довготи L1 та довжини геодезичної лінії s

Рис. 3.5 дає геометричне представлення про величини, що входять в диференційні формули (3.38)- (3.43).

Размещено на http://www.allbest.ru/

Рис. 3.5

Всі наведені вище формули є наближеними, поскільки в них не прийняті до уваги диференціали другого і більш вищих порядків. Тому вони тим точніші, чим менші величини диференціалів незалежних змінних.

3.5.2 Диференційні формули для довільної точки простору

Встановимо залежності між малими змінами просторових декартових і геодезичних координат довільної точки в просторі. В загальному вигляді ці залежності можна записати

Часткові похідні в цих залежностях можна знайти із рівнянь (2.32)

Для цього попередньо визначимо похідні двох функцій

Після цього можна легко знайти часткові похідні, наприклад

(3.46)

3.5.3 Диференційні формули для системи геодезичних координат

Зміна розмірів еліпсоїда і його орієнтування відносно фізичної поверхні Землі викликає зміну геодезичних координат всіх точок навколишнього простору.

Формули, за якими визначаються малі зміни геодезичних координат B, L, H точок земної поверхні або навколоземного простору, що викликані малими змінами розмірів еліпсоїда і його паралельним зсувом в просторі носять назву диференційних формул системи геодезичних координат.

Нехай деякий еліпсоїд заданих розмірів (a, ) встановлений відносно земної поверхні так, що вісь обертання його паралельна до осі обертання Землі, а центр еліпсоїда незначно віддалений від центра інерції Землі.

Якщо тепер змінимо форму і розміри еліпсоїда: велику (екваторіальну) піввісь на величину da, а стиснення на величину d , то, відповідно, зміняться при цьому і геодезичні координати B,L,H всіх точок простору, проте прямокутні координати X,Y,Z цих точок залишаться попередніми, поскільки не змінилося положення осей координат.

Здійснивши паралельне зміщення еліпсоїда в просторі разом з осями координат OXYZ , отримаємо додаткові зміни геодезичних координат. Зміняться на цей раз і прямокутні координати всіх точок (в результаті переносу початку координат) на величини dx, dy, dz.

Вказані зміщення (перехід від одної системи геодезичних координат до другої) можна проілюструвати геометрично (рис. 3.6).

В загальному вигляді залежності між всіма вказаними змінами можна записати у вигляді системи диференційних рівнянь

Размещено на http://www.allbest.ru/

Рис.3.6

Диференціали da, d та dB, dL, dH, dx,dy,dz представляють собою поправки до старих значень розмірів еліпсоїда (a,) і координат (B,L,H,X,Y,Z) довільної точки простору для отримання нових значень цих величин в другій системі геодезичних координат.

Часткові похідні в рівняннях ( 3.49) знаходимо шляхом диференціювання по відповідних змінних правих частин рівнянь (3.43). Раніше (див. п.3.5.2) нами вже отримано частину похідних (3.46). Аналогічним чином знаходять і інші похідні в (3.49).

Підставивши ці похідні в рівняння (3.49) та після відповідних перетворень, отримаємо остаточно

(3.50)

(3.52)

Умовою застосування вказаних диференційних формул є паралельність осей обертання та площин початкових меридіанів обох еліпсоїдів.

Отримані вище формули можуть використовуватись:

для обчислення поправок в координати при переході до другої системи геодезичних координат (при відомих параметрах da, d, dx,dy,dz);

для встановлення нової системи геодезичних координат (визначення вказаних п'яти невідомих параметрів).

Поправки da, d легко знайти, поскільки параметри еліпсоїдів, що застосовуються в практичних роботах, переважно відомі. Що стосується інших трьох поправок, то вони визначаються наступним чином. За геодезичними координатами декількох пунктів Qi (i=1,2,...,n), відомими в двох системах координат, з допомогою формул (3.50-3.52) можна визначити лінійний зсув dx,dy,dz одної системи відліку геодезичних координат відносно другої.

Вказану задачу можна сформулювати ще так. Дано координати окремих пунктів геодезичної мережі - (X,Y,Z), визначених з допомогою GPS в системі WGS-84. Обчислити параметри перетворення для геодезичної мережі, у якій більшість пунктів є з відомими координатами B,L,H в системі деякого референцного еліпсоїда, причому деякі з них є спільними (відомі координати в обох системах відліку).

Розв'язування цієї задачі дістанемо за допомогою наступного алгоритму:

для спільних пунктів виконуємо перетворення декартових X,Y,Z, заданих в системі WGS-84 в геодезичні B,L,H координати за допомогою формул ( 2.33));

визначаємо три параметри перетворення dx,dy,dz на основі формул (3.50-3.52 );

для пунктів GPS, які не належать до спільних, використовуючи параметри перетворення, знаходимо координати (B,L,H)REF в системі референцного еліпсоїда;

Нехай референцна система XYZ визначена в іншій системі X0Y0Z0 положенням початку координат dx,dy,dz і кутами x, y, z, на які треба повернути систему XYZ відповідно навколо осей X, Y, Z, щоб ці осі стали паралельні відповідно осям X0,Y0, Z0.

В такій постановці декартові координати із одної системи в іншу будуть перетворюватись за формулами:

У формулі (3.54) R' - транспонована матриця R, - масштабний множник. Для більшості задач, що виникають при переобчислені координат сучасних систем координат можна вважати, що =1.

Перетворення (3.54) називається ще перетворенням або трансформацією Гельмерта.

Формулу (3.54) можна представити і в такому виді:

(3.55)

Кожен пункт Qi (i=1,2,...,n), координати якого відомі в двох системах координат, утворює систему рівнянь (3.55). Шукані параметри зв'язку двох систем координат можна обчислити з оцінкою точності, застосовуючи принцип найменших квадратів.

Розв'язування сформульованої вище задачі зв'язку двох систем координат дістанемо за допомогою наступного алгоритму:

1) для спільних пунктів виконуємо перетворення геодезичних координат B,L,H в декартові X,Y,Z за допомогою формул (2.32);

2) визначаємо шість параметрів перетворення dx,dy,dz і на основі формул (3.54) або (3.55).

3) для пунктів загальноземної системи координат, які не належать до спільних, використовуючи параметри перетворення, знаходимо координати (X,Y,Z)REF в референцній системі;

4) перетворюємо обчислені в попередньому кроці координати із декартових (X,Y,Z)REF в геодезичні (B,L,H)REF.

Точність переобчислених координат буде залежати:

від похибок формул, що застосовуються при обчисленнях;

від методів переходу виміряних елементів геодезичних мереж на поверхню референц-еліпсоїда;

від врівноважень, виконаних в геодезичних мережах кожної системи незалежно одна від другої.

3.6 Алгоритми та числові приклади розв'язування головних геодезичних задач

3.6.1 Алгоритм та числовий приклад розв'язування прямої і оберненої геодезичних задач на поверхні сфери

Вихідні дані:

1=49o50'11.4596”, 1=24o00'17.1502”,

s=22488.169 м, 12=191o49'06.17”.

Позначення

Числові значення

R

2

2

2

6378245

3.52576123996 10-3

49038'19.57”

-00 03'49.995”

23056'27.155

11046'10.663”

Обернена геодезична задача

Вихідні дані:

1=47o, 1=25o, 2=48o, 2=26o.

Позначення

Числові значення

1

2

R

s

10

33040'29.749”

214024'44.079”

2.11871024001 10-2

6378245

135136.530 м

3.6.2 Алгоритм та числовий приклад розв'язування прямої і оберненої геодезичних задач на поверхні еліпсоїда на основі методу із середніми аргументами (формул Гаусса)

а) алгоритм

У випадку невиконання поставлених умов повторюють обчислення за формулами, які виділені у прямокутнику.

Обернена геодезична задача

В залежності від знаків P і Q знаходимо азимут.

б) числовий приклад

Для еліпсоїда Красовського:

Вихідні дані:

Пряма геодезична задача

Позначення

Числові значення

Bmo

Amo

b1

a1

l1

Bm1

Am1

b2

a2

l2

Bm2

Am2

b3

a3

l3

Bm3

Am3

b4

a4

l4

Bm4

Am4

B2

L2

A2

50o

45o

6.657144 10-3

7.911677 10-3

1.032793 10-2

50o11'26.56”

45o13'35.95”

6.6306144 10-3

7.9967807 10-3

1.0409943 10-2

50o11'23.831”

45o13'44.727”

6.63033218 10-3

7.99690367 10-3

1.04102177 10-2

50o11'23.8021”

45o13'44.740”

6.63033178 10-3

7.99690187 10-3

1.04102165 10-2

50o11'23.8020”

45o13'44.740”

50o22'47.6041”

24o35'47.2613”

225o27'29.479”

Обернена геодезична задача

Позначення

Числові значення

b

l

Bm

Mm

Nm

P

Q

Am'

Am

a

A1

A2

s

6.63033178 10-3

1.04102166 10-2

50o11'23.80205”

6373274.198

6390878.516

42595.70715

42256.42824

45o13'44.7397”

45o13'44.7397”

7.99690851 10-3

44o59'59.999”

225o27'29.480”

60000.000

3.6.3 Алгоритм та числовий приклад розв'язування прямої геодезичної задачі на поверхні еліпсоїда на основі методу допоміжної точки (формул Шрейбера)

а) алгоритм

Сталими величинами є параметри прийнятого еліпсоїда

Пряма геодезична задача

Індекс при величинах ставиться в залежності від точки, в якій вони обчислюються.

.

б) числовий приклад

Для еліпсоїда Красовського:

Пряма геодезична задача

Вихідні дані:

Позначення

Числові значення

M1

N1

t1

12

x

y

b

Bo

B2

Mo

No

to

o2

l

a

L2

A2

6373064.589

6390808.453

1.19175359

2.78419638 10-3

2.2097258 10-5

42427.0319

42426.0944

6.65702199 10-3

50o22'53.1094”

50o22'47.6040”

6373485.248

6390949.059

1.20799452

2.74007253 10-3

1.04102173 10-2

8.01899886 10-3

24o35'47.2615”

225o27'29.479”

3.6.4 Алгоритм та числовий приклад розв'язування прямої і оберненої геодезичних задач на поверхні еліпсоїда на основі методу переходу на поверхню сфери (формул Бесселя)

а) алгоритм

Сталими величинами є параметри прийнятого еліпсоїда.

Пряма геодезична задача

обернена геодезична задача

б) числовий приклад

Для еліпсоїда Красовського:

Вихідні дані:

Пряма геодезична задача

Позначення

Числові значення

M

k

k

A

B

C

D

A

B

C

5403841.5063

0.5008387837

0.0050482372

1.0012608672

1.2604702642 10-3

1.98345 10-7

8.3758 10-11

3.3502219560 10-3

2.1065196 10-6

6.5744 10-10

3.9278049473 10-1

3.9245934675 10-1

3.9245971091 10-1

3.9245971049 10-1

0.8438003018

57o3750.4710

248o5653.645

0.5281512583

6.582475737 10-4

L2

40o1323.2437

Обернена геодезична задача

Позначення

Числові значення

l

0.5274930109

...

Подобные документы

  • Обчислення довжини дуги меридіану та паралелі. Наближене розв'язування трикутників за теоремою Лежандра та способом аддитаментів. Пряма задача проекції Гауса-Крюгера і розрахунок геодезичних координат пункту за плоскими прямокутними координатами.

    курсовая работа [317,4 K], добавлен 10.05.2011

  • Стан української мережі станцій супутникової геодезії. Системи координат, їх перетворення. Системи відліку часу. Визначення координат пункту, штучних супутників Землі в геоцентричній системі координат за результатами спостережень, методи їх спостереження.

    курсовая работа [2,2 M], добавлен 27.11.2015

  • Сутність стереофотограметричного методу зйомки на площі. Фізико-географічна характеристика ділянки робіт. Розрахунок геодезичних та плоских прямокутних координат вершин рамки заданої трапеції та планово-висотних опорних точок; метрологічні прилади.

    курсовая работа [573,1 K], добавлен 05.10.2014

  • Предмет науки геодезії та історія її розвитку. Значення планово-картографічного матеріалу в сільському господарстві. Суть завдання врівноваження геодезичних побудов та їх основні способи. Проведення оцінки точності при параметричному методі врівноваження.

    реферат [1,1 M], добавлен 14.11.2010

  • Призначення геодезії у будівництві, сучасні досягнення геодезичної науки та виробництва. Одиниці мір, що використовуються в геодезії. Вимірювання відстаней до недоступної точки за допомогою далекомірів. Загальнодержавні геодезичні мережі опорних точок.

    методичка [1,1 M], добавлен 15.09.2014

  • Методична розробка семінару з дисципліни "Геодезія", побудованого у цікавій для студентів формі вікторини. Змагання з кращих знань з питань: відображення поверхні Землі, теодолітна зйомка місцевості, нівелірні роботи, тахеометрична зйомка місцевості.

    методичка [3,9 M], добавлен 23.02.2010

  • Суть та область застосування метода проекцій з числовими відмітками. Визначення довжини прямої і кута її нахилу до основної площини. Особливість креслень в проекціях з числовими відмітками або планів. Взаємне положення двох площин, прямої та площини.

    методичка [44,0 K], добавлен 11.10.2009

  • Нормативно-правове забезпечення землеустрою. Аналіз фізико-географічних та екологічних умов території Гарасимівської сільської ради. Методи та способи геодезичних робіт в землеустрої. Охорона праці при проведенні геодезичних і землевпорядних робіт.

    дипломная работа [3,7 M], добавлен 24.08.2014

  • Вивчення графоаналітичних прийомів аналізу карт, методи картометрії і морфометрії. Точність вимірювань довжин і площ на картах. Визначення прямокутних координат точки. Емпіричні способи введення поправок і різного роду редукцій для корекції результату.

    реферат [19,2 K], добавлен 21.11.2010

  • Розробка проекту топографо-геодезичних робіт для створення цифрових планів. Визначення чисельного та якісного складу працівників, необхідних для виконання даної роботи. Складання календарного графіку, кошторису на виконання польових та камеральних робіт.

    курсовая работа [1,0 M], добавлен 13.11.2014

  • Описание систем координат, применяемых в геодезии. Технологические схемы преобразования координат. Составление каталогов геодезических, пространственных прямоугольных, плоских прямоугольных координат Гаусса-Крюгера в системах ПЗ-90.02, СК-42, СК-95.

    курсовая работа [653,2 K], добавлен 28.01.2014

  • Предмет и задачи геодезии, понятия о форме и размерах Земли. Системы координат, принятые в геодезии. Система плоских прямоугольных координат Гаусса-Крюгера. Изображение рельефа на топографических картах и планах. Решение инженерно-геодезических задач.

    курс лекций [2,8 M], добавлен 13.04.2012

  • Створення цифрового плану місцевості в масштабі 1:500 згідно польових даних на території ПАТ "Дніпроважмаш". Топографо-геодезичне забезпечення району робіт. Топографічне знімання території. Камеральна обробка результатів польових геодезичних вимірювань.

    дипломная работа [3,1 M], добавлен 13.08.2016

  • Сутність, методи та аналіз зображення рельєфу на геодезичних картах. Загальна характеристика зображення рельєфних моделей горизонталями. Особливості відображення рельєфу за допомогою штриховки, відмивки і гіпсометричного способу на картах малих масштабів.

    реферат [1,4 M], добавлен 20.05.2010

  • Геодезическая система отсчета WGS-84, ее исходное определение и реализация. Топографические карты СК-63, их отличия. Единая государственная система геодезических координат 1995 г. Процедура обеспечения требуемого автоматического преобразования координат.

    реферат [23,2 K], добавлен 16.12.2013

  • Общеземные системы координат. Системы картографических координат. Местные системы, история их введения и особенности применения. Основные национальные системы высот. Недостатки использующихся систем высот. Балтийская система высот в Республике Беларусь.

    курсовая работа [2,0 M], добавлен 01.03.2015

  • Основна ціль фототріангуляції, суть даного методу. Особливості будування маршрутної та блочної фототріангуляції. Сутність способів незалежних та частково залежних моделей, обчислення просторових координат точок. Побудова фототріангуляції методом в’язок.

    реферат [240,8 K], добавлен 23.10.2012

  • Особливості геологічної будови, віку і геоморфології поверхні окремих ділянок видимої півкулі Місяця та їх моделювання. Геолого-геоморфологічна характеристика регіону кратерів Тімохаріс та Ламберт. Розвиток місячної поверхні в різних геологічних ерах.

    курсовая работа [855,4 K], добавлен 08.01.2018

  • Цель предварительных вычислений в полигонометрии. Вычисление рабочих координат. Уравнивание угловых и линейных величин. Вычисление весов уравненных значений координат узловой точки. Оценка точности полевых измерений и вычисления координат узловой точки.

    лабораторная работа [84,2 K], добавлен 09.08.2010

  • Суть моніторингу навколишнього природного середовища. Експериментальні геодезичні спостереження за станом деформацій земної поверхні на території Львівсько-Волинського кам’яновугільного басейну на прикладі м. Нововолинська. Фактори формування рельєфу.

    дипломная работа [5,3 M], добавлен 26.07.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.