Новые материалы в машиностроении

Проблемы современного материаловедения. Структурные особенности наноматериалов. Современные композиционные материалы. Фуллерены и фуллереноподобные материалы. Металлы и сплавы со специальными свойствами. Сплавы с памятью формы. Литые пористые сплавы.

Рубрика Производство и технологии
Вид курс лекций
Язык русский
Дата добавления 08.02.2016
Размер файла 2,7 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

2.2 Физические основы нанотехнологии

Физическими основаниями для новой парадигмы в технологии являются глубокие знания свойств каждого атома вещества из таблицы Менделеева и наличие сил притяжения между ними при расстояниях 0,1 r 1 нм. Разумеется, для разных атомов количественные характеристики потенциалов взаимодействия будут отличаться, но общий вид и наличие минимума энергии W0 на некотором расстоянии r0 - их универсальное свойство. В результате действия этих сил могут образовываться атомные конфигурации с прочными связями (ковалентными, ионными, металлическими) или слабыми (ван-дер-ваальсовыми, водородными и др.). Атомные ассоциаты, содержащие счетное количество атомов, называют молекулами или атомными кластерами. Ста- бильность этих образований определяется несколькими факторами. Главные из них - это тип и прочность внутренних связей, абсолютная температура T и характер окружения. Молекула (кластер) будут длительное время сохранять свою конфигурацию и свойства, если Wо >>Wex и W0>> kT (здесь W0 - энергия связи с возможными реагентами снаружи, k - постоянная Больцмана). При более строгом рассмотрении необходимо учесть квантовый характер взаимодействия любых микрочастиц (атомов, молекул, электронов, ионов и т.д.) и дискретный характер спектра разрешенных энергий (в отличие от непрерывного квазиклассического). Чем меньше частица и ниже температура, тем сильнее проявляются ее квантовые свойства. Однако, сильные изменения свойств наночастиц по сравнению с макрочастицами того же вещества наступают, как правило, задолго до проявления квантовых пределов (при размерах Rc 10... 100 нм). Для разных свойств (механических, электрических, магнитных, химических и др.) этот критический размер может быть разным даже для одного и того же вещества, как и характер их изменений при R < Rc.

2.3 Социально-экономические последствия нанореволюции

Сейчас трудно предвидеть все последствия начавшейся нанотехнологической революции так же, как 30 - 40 лет назад невозможно было предсказать все, что повлекла за собой тотальная информатизация общества, создание глобальной компьютерной сети Интернет и т.п. Однако все эксперты сходятся на том, что, скорее всего, эти последствия будут еще масштабнее и глубже, чем от информатизации. Умение использовать достижения новой науки и технологии, способность развивать ее - станет стратегическим преимуществом региона, страны.

Что же может дать развитие нанотехнологии в социальном плане? Сотрудник института глобального прогнозирования (Institute For Global Future, USA) Дж. Кэнтон считает, что использование нанотехнологии приведет к следующим переменам в жизни общества.

* Потребительские и промышленные товары станут более долговечными, качественными и компактными, а вместе с тем и более дешевыми.

* Медицинское обслуживание будет более доступным и эффективным. Появятся новые лекарственные препараты и диагностические средства. Нанобитехнология сделает жизнь людей более здоровой и продолжительной.

* Появятся связанные с Интернетом устройства, объединяющие функции телефона, телевизора и компьютера. Возникнет глобальная система связи, объединяющая всех, всегда и везде,

* Мир окружающих вещей станет «интеллектуальным» за счет встраивания чипов во все предметы быта и производства (посуду, бумагу, ткани, инструменты, бытовые приборы и т.п.).

* Общество станет более свободным и интеллектуальным.

* Наноэнергетика сделает мир более чистым в результате разработки новых типов двигателей, топливных элементов и транспортных средств.

* Сформируется новая экономика, основанная на нанотехнологиях и нанопродуктах. Е-бизнес (электронно-информационный) уступит лидирующие позиции NТ-бизнесу (нанотехнологическому).

* Быстрое развитие нанопромышленностн потребует коренной перестройки системы образования на всех уровнях, которая должна будет динамично реагировать на смену производственной парадигмы.

2.4 Структурные особенности наноматериалов

Материалы, обладающие необычной атомно-кристаллической решеткой и демонстрирующие уникальные свойства, получили название наноструктурных материалов (НСМ).

К этому новому классу относят материалы с размером морфологических элементов менее 100 нм. По геометрическим признакам эти элементы можно разделить на нольмерные атомные кластеры и частицы, одно- и двухмерные мультислои, покрытия и ламинарные структуры, трехмерные объемные нанокристаллические и нанофазные материалы.

Общепринято, что под наноматериалами подразумеваются или намеренно сконструированные, или природные материалы, в которых один или более размеров лежат в диапазоне нанометров. К данной категории относятся также так называемые «нано-нано» композиты, которые содержат более чем одну фазу, но все фазы менее 100 нм. В настоящее время уже широко используются ультрадисперсные порошки (УДП), занимающие в США более 90 % рынка ультрадисперсных материалов, нановолокна и нанопроволоки, нанопленки и нанопокрытия, и начинают получать все большее применение объемные наноматериалы -- нанокристаллические и нанозернистые (с размером зерен менее 100 нм).

Представление о нанокристаллах было введено в научную литературу в 80-х годах XX века X, Гляйтером (Германия) и независимо от него активно развивалось в России И. Д. Мороховым с сотрудниками.

Актуальность проблемы производства нано- или ультрадисперсных (УД) материалов определяется особенностью их физико-химических свойств, позволяющих создавать материалы с качественно и количественно новыми свойствами для использования на практике. Это связано с тем, что для материала таких малых размеров приобретает большее значение квантовая механика, а это существенным образом изменяет механические, оптические и электрические свойства вещества.

Первые исследования наноматериалов показали, что в них изменяются, по сравнению с обычными материалами, такие фундаментальные характеристики, как удельная теплоемкость, модуль упругости, коэффициент диффузии, магнитные свойства и др. Следовательно, можно говорить о наноструктурном состоянии твердых тел, принципиально отличном от обычного кристаллического или аморфного.

Анализ теоретических и экспериментальных исследований, выполненных к концу 70-х годов, позволил сделать вывод об особом ультрадисперсном состоянии твердых тел, отличном от традиционных и аморфных материалов, и дать определение этого понятия на основе физической природы. В этом случае к наноматериалам относят среды или материалы, которые характеризуются настолько малым размером морфологических элементов, что он соизмерим с одной или несколькими фундаментальными физическими величинами этого вещества (изменение периодов кристаллической решетки и др.).

По мере того как размер зерен или частиц становится все меньше и меньше, все большая доля атомов оказывается на границах или свободных поверхностях. Так, при размере структурных единиц 6 нм и толщине поверхностного слоя в один атом, почти половина атомов будет находиться на поверхности. Так как доля поверхностных атомов в ультрадисперсном материалах составляет десятки процентов, ярко проявляются все особенности поверхностных состояний, и разделение свойств на «объемные» и «поверхностные» приобретает, в какой-то мере, условный характер. Развитая поверхность оказывает влияние как на решеточную, так и на электронную подсистемы.

Появляются аномалии поведения электронов, квазичастиц (фононов, плазмонов, магнонов) и других элементарных возбуждений, которые влекут за собой изменения физических свойств наносистем, по сравнению с массивными материалами.

Поведение наноматериалов часто определяется процессами на границе частиц или зерен. Например, нанокерамика может деформироваться пластически достаточно заметно за счет скольжения по границам. Эта «сверхпластичная» деформация находится в сильном противоречии с хрупким поведением, ассоциирующимся с обычной керамикой. Из-за большого количества границ и, как следствие, этого большого количества коротких диффузионных расстояний, нанометаллы и керамики используют как твердофазный связующий агент для соединения вместе других (иногда разнородных) крупнозернистых материалов. Есть сведения, что некоторые керамики обладают исключительно низкой теплопроводностью. Это позволяет использовать их в качестве теплозащитных покрытий.

Уменьшение размера зерна металла с 10 микрометров до 10 нанометров дает повышение прочности примерно в 30 раз. Добавление нанопорошков к обычным порошкам при прессовании последних приводит к уменьшению температуры прессования, повышению прочности изделий. При диффузионной сварке использование между свариваемыми деталями тонкой прослойки нанопорошков соответствующего состава позволяет сваривать разнородные материалы, в том числе некоторые трудносвариваемые сплавы металла с керамикой, а также снижать температуру диффузионной сварки.

Научные исследования по данной проблеме проводились уже более 100 лет назад, В 1861 году химик Т.Грэхем использовал термин «коллоид» для описания растворов, содержащих частицы диаметром от 1 до 100 нм в суспензии.

Использование коллоидов можно считать одним из первых применений наноматериалов. Аналогичным образом достаточно давно применяются такие вещества, содержащие ультрадисперсные частицы, как аэрозоли, красящие пигменты, окрашивающие стеклоколлоидные частицы металлов.

В последние годы вошло в обиход понятие нанотехнологии. Этим понятием обозначают процессы получения нано- или ультрадисперсных материалов, а также технологические процессы получения приборов, устройств, конструкций с использованием наноматериалов.

В последнее десятилетие в промышленно развитых странах сформировалось научно-техническое направление «Наночастицы, материалы, технологии и устройства», которое становится самым быстрорастущим по объему финансирования в мире.

2.5 Нанопорошки: получение и свойства

Процессы, в результате которых происходит формирование нано- или ультрадисперсных структур - это кристаллизация, рекристаллизация, фазовые превращения, высокие механические нагрузки, интенсивная пластическая деформация, полная или частичная кристаллизация аморфных структур. Выбор метода получения наноматериалов определяется областью их применения, желательным набором свойств конечного продукта. Характеристики получаемого продукта -- гранулометрический состав и форма частиц, содержание примесей, величина удельной поверхности - могут колебаться в зависимости от способа получения в весьма широких пределах.

Так, в зависимости от условий получения, нанопорошки могут иметь сферическую, гексагональную, хлопьевидную, игольчатую формы, аморфную или мелкокристаллическую структуру. Методы получения ультрадисперсных материалов разделяют на химические, физические, механические и биологические.

Химические методы синтеза включают различные реакции и процессы, в том числе процессы осаждения, термического разложения или пиролиза, газофазных химических реакций, восстановления, гидролиза, электроосаждения. Регулирование скоростей образования и роста зародышей новой фазы осуществляется за счет изменения соотношения количества реагентов, степени пересыщения, а также температуры процесса. Как правило, химические методы -- многостадийные и включают некий набор из вышепоименованных процессов и реакций.

Способ осаждения заключается в осаждении различных соединений металлов из растворов их солей с помощью осадителей. Продуктом осаждения являются гидроксиды металлов. В качестве осадителя используют растворы щелочей натрия, калия и другие.

Регулируя рН и температуру раствора, создают условия, при которых получаются высокие скорости кристаллизации и образуется высокодисперсный гидроксид. Этим методом можно получать порошки сферической, игольчатой, чешуйчатой или неправильной формы с размером частиц до 100 нм.

Нанопорошки сложного состава получают методом соосаждения. В этом случае в реактор подают одновременно два или более растворов солей металлов и щелочи при заданной температуре и перемешивании. В результате получают гидроксидные соединения нужного состава.

Способ гетерофазного взаимодействия осуществляют путем ступенчатого нагрева смесей твердых солей металлов с раствором щелочи с образованием оксидной суспензии и последующим восстановлением металла. Таким способом получают металлические порошки с размером частиц в пределах 10...100 нм.

Гель-метод заключается в осаждении из водных растворов нерастворимых металлических соединений в виде гелей. Следующая стадия -- восстановление металла. Этот способ применяется для получения порошков железа и других металлов.

Способ восстановления и термического разложения -- обычно это следующая операция после получения в растворе ультрадисперсных оксидов или гидроксидов с последующим осаждением и сушкой. В качестве восстановителей, в зависимости от вида требуемого продукта, используют газообразные восстановители -- как правило, водород, оксид углерода или твердые восстановители.

Нанопорошки Fе, W, Ni, Со, Сu и ряда других металлов получают восстановлением их оксидов водородом. В качестве твердых восстановителей используют углерод, металлы или гидриды металлов.

Таким способом получают нанопорошки металлов: Мо, Сг, Рt, Ni и другие. Как правило, размер частиц находится в пределах 10...30 нм. Более сильными восстановителями являются гидриды металлов -- обычно гидрид кальция. Так получают нанопорошки Zг, Нf, Та, Nb.

В ряде случаев нанопорошки получают путем разложения формиатов, карбонатов, карбонилов, оксалатов, ацетатов металлов в результате процессов термической диссоциации или пиролиза. Так, за счет реакции диссоциации карбонилов металлов получают порошки Ni, Мо, Fе, W, Сг. Путем термического разложения смеси карбонилов на нагретой подложке получают полиметаллические пленки. УДП металлов, оксидов, а также смесей металлов и оксидов получают путем пиролиза формиатов металлов. Таким способом получают порошки металлов, в том числе Мn, Fе, Са, Zг, Ni, Со, их оксидов и металлооксидных смесей.

Физические методы. Способы испарения (конденсации), или газофазный синтез получения нанопорошков металлов, основаны на испарении металлов, сплавов или оксидов с последующей их конденсацией в реакторе с контролируемой температурой и атмосферой. Фазовые переходы пар - жидкость - твердое тело или пар - твердое тело происходят в объеме реактора или на поверхности охлаждаемой подложки или стенок.

Сущность способа состоит в том, что исходное вещество испаряется путем интенсивного нагрева, с помощью газа- носителя подается в реакционное пространство, где резко охлаждается. Нагрев испаряемого вещества осуществляется с помощью плазмы, лазера, электрической дуги, печей сопротивления, индукционным способом, пропусканием электрического тока через проволоку. Возможно также бестигельное испарение. В зависимости от вида исходных материалов и получаемого продукта, испарение и конденсацию проводят в вакууме, в инертном газе, в потоке газа или плазмы. Размер и форма частиц зависят от температуры процесса, состава атмосферы и давления в реакционном пространстве. В атмосфере гелия частицы будут иметь меньший размер, чем в атмосфере аргона -- более плотного газа. Таким методом получают порошки Ni, Мо, Fе, Тi, А1. Размер частиц при этом -- десятки нанометров.

В свое время появился, а в дальнейшем утвердился способ получения наноматериалов путем электрического взрыва проволок (проводников). В этом случае в реакторе между электродами помещают проволоки металла, из которого намечается получение нанопорошка, диаметром 0,1...1,0 мм. На электроды подают импульс тока большой силы (104...106 А/мм2). При этом происходит мгновенный разогрев и испарение проволок. Пары металла разлетаются, охлаждаются и конденсируются. Процесс идет в атмосфере гелия или аргона. Наночастицы оседают в реакторе. Таким способом получают металлические (Тi, Со, W, Fе, Мо) и оксидные (ТiO2, А12O3, Zг02) нанопорошки с крупностью частиц до 100 нм.

Механические методы. Способы измельчения материалов механическим путем в мельницах различного типа -- шаровых, планетарных, центробежных, вибрационных, гироскопических устройствах, аттриторах и симолойерах. Аттриторы и симолойеры - это высокоэнергетические измельчительные аппараты с неподвижным корпусом-- барабаном с мешалками, передающими движение шарам в барабане. Аттриторы имеют вертикальное расположение барабана, симолойеры - горизонтальное. Измельчение размалываемого материала размалывающими шарами в отличие от других типов измельчающих устройств происходит главным образом не за счет удара, а по механизму истирания. Емкость барабанов в установках этих двух типов достигает 400...600 л.

Механическим путем измельчают металлы, керамику, полимеры, оксиды, хрупкие материалы. Степень измельчения зависит от вида материала. Так, для оксидов вольфрама и молибдена получают крупность частиц порядка 5 нм, для железа -- порядка 10...20 нм.

Разновидностью механического измельчения является механосинтез, или механическое легирование, когда в процессе измельчения происходит взаимодействие измельчаемых материалов с получением измельченного материала нового состава. Так получают нанопорошки легированных сплавов, интерметаллидов, силицидов и дисперсноупрочненных композитов с размером частиц 5...15 нм.

Уникальным достоинством способа является то, что за счет взаимодиффузии в твердом состоянии здесь возможно получение «сплавов» таких элементов, взаимная растворимость которых при использовании жидкофазных методов пренебрежимо мала.

Положительной стороной механических способов измельчения является сравнительная простота установок и технологии, возможность измельчать различные материалы и получать порошки сплавов, а также возможность получать материал в большом количестве.

К недостаткам метода относятся возможность загрязнения измельчаемого порошка истирающими материалами, а также трудности получения порошков с узким распределением частиц по размерам, сложности регулирования состава продукта в процессе измельчения.

При получении наночастиц любым методом проявляется еще одна их особенность - склонность к образованию объединений частиц. Такие объединения называют агрегатами и агломератами. В результате, при определении размеров наночастиц, необходимо различать размеры отдельных частиц (кристаллитов) и размеры объединений частиц. Различие между агрегатами и агломератами не является четко определенным.

Считается, что в агрегатах кристаллиты более прочно связаны и имеют меньшую межкристаллитную пористость, чем в агломератах.

Проблема, связанная с агрегированием наночастиц, возникает при их компактировании. Например, при компактировании агрегированного порошка путем спекания, для достижения определенной плотности материала требуются температуры тем выше, чем более крупные объединения наночастиц имеются в порошке.

В этой связи при разработке методов получения нанопорошков продолжаются поиски мер для исключения или уменьшения степени образования объединений наночастиц. Так, в методах получения нанопорошков путем конденсации из паровой фазы оказалось целесообразным точное регулирование температуры образования наночастиц. В химических методах оказывается эффективным исключение воды из некоторых стадий синтеза для уменьшения степени агломерирования. Используются также методы уменьшения контакта между частицами путем их покрытия (капсулирования), которое затем, перед компактированием, удаляется.

Тем не менее агрегирование и агломерирование наночастиц осложняет получение компактных материалов. Требуются большие механические усилия или повышение температуры (при спекании), чтобы преодолеть силы агломерирования.

2.6 Объемные наноструктурные материалы

В настоящее время существуют три направления получения объемных наноструктурных материалов: контролируемая кристаллизация аморфных материалов, компактирование ультрадисперсных порошков и интенсивная пластическая деформация материалов с обычным размером зерна.

В первом варианте переход материала из аморфного в микро- и на- нокристаллическое состояние происходит в процессах спекания аморфных порошков, а также при горячем или теплом прессовании или экструзии. Размер кристаллов, возникающих внутри аморфного материала, Регулируется температурой процесса. Метод перспективен для материалов самого различного назначения (магнитных, жаропрочных, износостойких, коррозионностойких и т. д.) и на самых разных основах (железо, никель, кобальт, алюминий). Недостаток метода состоит в том, что получение нанокристаллического состояния здесь менее вероятно, чем микрокристаллического. Второе направление, связанное с компактированием ультадисперсных порошков, развивается по нескольким вариантам. В первом случае используется метод испарения и конденсации атомов для образования нанокластеров - частиц, осаждаемых на холодную поверхность вращающегося цилиндра в атмосфере разреженного инертного газа, обычно гелия (рис. 2.4). При испарении и конденсации металлы с более высокой температурой плавления образуют обычно частицы меньшего размера. Осажденный конденсат специальным скребком снимается с поверхности цилиндра и собирается в коллектор. После откачки инертного газа в вакууме проводится предварительное (под давлением примерно 1 ГПа) и окончательное (под давлением до 10 ГПа) прессование нанопорошка. В результате получают образцы диаметром 5...15 мм и толщиной 0,2...0,3 мм с плотностью 70...95 % от теоретической плотности соответствующего материала (до 95 % для нанометаллов и до 85 % для нанокерамики. Полученные этим способом компактные наноматериалы, в зависимости от условий испарения и конденсации, состоят из кристаллов (зерен) со средним размером от единиц до десятков нанометров.

Следует подчеркнуть, что создание из порошков плотных, близких к 100 % теоретической плотности наноматериалов -- проблема весьма сложная и до сих пор не решенная, поскольку нанокристаллические порошки плохо прессуются и традиционные методы статического прессования не дают результатов.

Другой способ связан с компактированием порошков, полученных способами механического измельчения и механического легирования. Однако здесь также имеются проблемы компактирования получаемых нанопорошков и изготовления объемных наноструктурных образцов и заготовок с высокой плотностью.

Для получения компактных материалов с малой пористостью применяют метод горячего прессования, когда прессование происходит одновременно со спеканием. В данном случае давление прессования снижается в десятки раз по сравнению с холодным прессованием. Температура горячего прессования в зависимости от природы спекаемого материала находится в пределах 50...90 % от температуры плавления основного компонента. Однако повышение температуры компактирования приводит к быстрому росту зерен и выходу из наноструктурного состояния, а консолидация нанопорошков при низких температурах, даже в условиях высоких приложенных давлений, ведет к остаточной пористости. Более того, проблемами остаются загрязнения образцов при подготовке порошков и особенно увеличение их геометрических размеров.

В этой связи большой интерес вызывает получение наноструктурных материалов методами интенсивной пластической деформации (ИПД), т. е. большими деформациями в условиях высоких приложенных давлений. В основе методов ИПД лежит сильное измельчение микроструктуры в металлах и сплавах до наноразмеров за счет больших деформаций. При разработке этих методов существует несколько требований для получения объемных наноматериалов. Во-первых, важность формирования ультрамелкозернистых (УМЗ) структур, имеющих большеугловые границы зерен, поскольку именно в этом случае качественно изменяются свойства материалов. Во- вторых, формирование наноструктур, однородных по всему объему образца, что необходимо для обеспечения стабильности свойств полученных материалов. В-третьих, образцы не должны иметь механических повреждений или разрушений, несмотря на их интенсивное деформирование.

Первые работы, демонстрирующие возможность получения объемных наноструктурных металлов и сплавов, были выполнены в конце 80-х - начале 90-х годов Р. 3. Валиевым с сотрудниками, использовавшими два метода ИПД - кручение под высоким давлением и равноканальное угловое прессование (РКУП).

Конструкция установки деформации кручением под высоким давлением основана на принципе наковален Бриджмена, где образец помещается между бойками и сжимается под приложенным давлением (Р) в несколько гигапаскалей, затем прилагается деформация с очень большими степенями (10 и более). Нижний боек вращается, и силы поверхностного трения заставляют образец деформироваться сдвигом. Геометрическая форма образцов такова, что основной объем материала деформируется в условиях гидростатического сжатия, в результате чего образцы не разрушаются. Полученные таким образом образцы имеют форму дисков диаметром 10...20 мм и толщиной 0,2...0,5 мм. Хотя их структура измельчается уже после деформации на пол-оборота, но для формирования однородной ультрамелкозернистой структуры необходима деформация в несколько оборотов. При этом средний размер зерен в полученных образцах, как правило, составляет 100...200мкм. Однако конечный размер зерен в структуре зависит от условий интенсивной деформации - величины приложенного давления, температуры, скорости деформации, а также вида исследуемого материала.

Для получения массивных наноструктурных материалов используется другой метод, основанный также на деформации сдвигом, -- равноканальное угловое прессование. При реализации РКУП заготовка неоднократно продавливается в специальной оснастке через два пересекающихся канала с одинаковыми поперечными сечениями при комнатной или повышенной температурах, в зависимости от деформируемости материала. При наиболее часто используемых углах Ф = 90°, каждый проход соответствует истинной степени деформации, примерно равной 1. Для формирования наноструктур весьма важными являются не только число проходов, но и направления прохода через каналы, в зависимости от которых различают несколько маршрутов РКУП. Важным фактором для данного метода является также сохранение целостности получаемых образцов даже для малопластичных материалов. Реализация данного метода может обеспечить формирование УМЗ структуры средним размером зерен от 200 нм до 500 нм.

В последние годы равноканальное угловое прессование явилось объектом многочисленных исследований в связи с возможностями практического использования объемных наноструктурных металлов и сплавов. Последние разработки направлены на увеличение геометрических размеров образцов и заготовок диаметром до 60 мм и длиной до 200 мм, получение длинномерных заготовок, формирование наноструктур в труднодеформируемых и малопластичных металлах и сплавах. Большое внимание уделяется также развитию других методов интенсивной пластической деформации - всесторонней ковке, специальной прокатке и др., с целью повышения эффективности процесса.

2.7 Особенности модели наноструктур

Наноструктурные материалы, вследствие очень малого размера зерен, содержат в структуре большое количество границ зерен, которые играют определяющую роль в формировании их необычных физических и механических свойств. Вследствие этого в проводимых экспериментальных исследованиях и разрабатываемых структурных моделях наномате-риалов границы зерен занимают центральное место.

Уже в первых работах, выполненных X. Гляйтером с сотрудниками, был установлен ряд особенностей структуры нанокристаллических материалов, полученных газовой конденсацией атомных кластеров с последующим их компактированием. Это, прежде всего, пониженная плотность полученных нанокристаллов и присутствие специфической «зернограничной фазы», обнаруженное с появлением дополнительных пиков при мессбауэровских исследованиях. На основании проведенных экспериментов, включая компьютерное моделирование, была предложена структурная модель нанокристаллического материала, состоящего из атомов одного сорта. В соответствии с этой моделью такой нанокристалл состоит из двух структурных компонент: кристаллитов-зерен и зернограничных областей. Атомная структура всех кристаллитов совершенна и определяется только их кристаллографической ориентацией. В то же время зернограничные области, где соединяются соседние кристаллиты, характеризуются пониженной атомной плотностью и измененными межатомными расстояниями.

Модель Гляйтера дала мощный толчок исследованиям структуры нанокристаллов и поиску их необычных свойств. Вместе с тем, в последующих исследованиях были выявлены и ее важные недостатки. Во-первых, в согласии с высокоразрешающей электронной микроскопией границы зерен являются значительно более узкими, чем это предсказывается моделью и их ширина обычно не превышает 1-2 межатомных расстояния. Во-вторых, атомно-кристаллическая решетка в нанокристаллах не является совершенной и обычно, упруго искажена. Более того, в настоящее время становится очевидным, что метод получения наноструктурных материалов играет весьма важную роль в формировании их структуры и свойств.

Экспериментальные исследования, проведенные с использованием различных, часто взаимно дополняющих методов, каковыми являются просвечивающая, включая высокоразрешающую, электронная микроскопия рентгеноструктурный анализ, мессбауэровская спектроскопия, дифференциальная сканирующая калориметрия, свидетельствуют, что в наноструктурных металлах и сплавах границы зерен носят неравновесный характер, обусловленный присутствием зернограничных дефектов с высокой плотностью.

Представления о неравновесных границах были введены в научную литературу в 1980-х годах, базируясь на исследованиях взаимодействия решеточных дислокации и границ зерен. Образование неравновесного состояния границ зерен характеризуется двумя основными особенностями -- избыточной энергией границ зерен (при заданных кристаллографических параметрах границ) и наличием дальнодействуюших упругих напряжений. Полагая, что границы зерен имеют кристаллографически упорядоченное строение, в качестве источников упругих полей рассматривают дискретные нарушения этого строения - зернограничные дислокации и их комплексы.

Недавние прямые наблюдения границ зерен, выполненные методом просвечивающей электронной микроскопии, дали прямые доказательства их специфичной неравновесной структуры в наноструктурных материалах, вследствие присутствия атомных ступенек и фасеток, а также зернограничных дислокаций. В свою очередь, вследствие неравновесных границ зерен, возникают высокие напряжения и искажения кристаллической решетки, которые ведут к дилатациям решетки, проявляющимся в изменении межатомных расстояний, появлении значительных статических и динамических атомных смещений, экспериментально обнаруженным при рентгеновских и мессбауэровских исследованиях.

Разработанные на основе концепции неравновесных границ зерен модельные представления позволили не только качественно, но и количественно оценить изменения фундаментальных, обычно структурно-нечувствительных параметров, которые наблюдали во многих наноструктурных материалах.

В случае многофазных сплавов и интерметаллидов получаемые в результате интенсивной пластической деформации наноструктуры весьма специфичны и характеризуются не только очень малым размером зерен в несколько десятков нанометров, но и сильно метастабильным фазовым составом, связанным с формированием пересыщенных твердых растворов, разупорядочением и в отдельных случаях даже с аморфизацией.

Например, структура интерметаллида бинарного стехиометрического состава Ni3А1, подвергнутого интенсивной пластической деформации кручением, состояла из очень мелких равноосных зерен с признаками высокого уровня внутренних напряжений, о чем свидетельствовал сложный дифракционный контраст на электронно- микроскопических фотографиях и трудно различимые границы зерен, выглядящие диффузными и искривленными. Средний размер зерен, определенный по темнопольным изображениям, оказался равным примерно 20... 30 нм.

Таблица 2.1. Некоторые фундаментальные свойства металлов в наноструктурном (НС) и крупнокристаллическом (КК) состояниях

Свойства

Материал

Значение

НС

КК

Температура Кюри, К

Намагниченность насыщения, А.м2 /кг

Температура Дебая, К

Коэффициент диффузии, м2/с

Предел растворимости при 293 К, %

Модуль Юнга, ГПа

Никель

Никель

Железо

Медь в никеле

Углерод в а-железе

Медь

595

38,1

240*

1 * 10-14

1.2

115

631

56,2

467

1 *10-20

0,06

128

Состояние после интенсивной пластической деформации в Ni3А1 также характеризуется повышенным уровнем остаточного электросопротивления, значительными внутренними напряжениями и высокой микротвердостью. Кроме того, данные рентгеноструктурного анализа свидетельствуют о полном отсутствии дальнего порядка в данном состоянии.

Микроструктура при отжиге сплава претерпевает последовательность структурных превращений, подобную для чистых интенсивно пластически деформированных металлов. Однако характерным для наноструктурного Ni3А1 явилось то, что дальний порядок начинает восстанавливаться в узком температурном интервале вблизи 530 К, т. е. на стадии возврата. Это упорядочение не является полным, но дальнейшее увеличение параметра дальнего порядка происходит только при более высоких температурах, близких к 1300 К. Когда зерна вырастают до относительно больших размеров. Хотя физическая природа разупорядочения интерметаллидов при интенсивной пластической деформации и последующее их переупорядочение при нагреве требуют дальнейших исследований, важно отметить, что, следуя полученным результатам, становится ясным, что переупорядочение в Ni3А1 обусловлено, в первую очередь, Не рекристаллизационными процессами, а процессами возврата, связанными с перестройками дислокационной структуры на границах и в теле зерен.

Используя дифференциальную сканирующую калориметрию, было исследовано тепловыделение в процессе нагрева этого материала. Пик тепловыделения наблюдается при температуре значительно ниже начала интенсивного роста зерен. Природа этого тепловыделения связана с процессами возврата, а также началом переупорядочения. Следует отметить высокую термостабильность наноструктурного состояния этого интерметаллида, позволившую реализовать его уникальное сверхпластическое течение.

2.8 Свойства и применение наноматериалов

Специфические микроструктуры в объемных наноматериалах определяют их необычные свойства, многие из которых уникальны и весьма привлекательны для практического использования. Эти специфические качества связаны с изменением некоторых фундаментальных свойств материала при уменьшении размера частиц или зерна, а также с изменением соотношения некоторых объемных и поверхностных свойств.

К уникальным особенностям наноматериалов относятся отличия их температур плавления и размеров кристаллических решеток от соответствующих величин в материалах с обычной структурой. В связи с этим возникает вопрос о справедливости использования термина «постоянные решетки», применительно к размерам решетки.

С уменьшением размера частиц растет их поверхностная энергия. В результате изменяется (снижается) температура плавления частицы. Выражение для температуры плавления (Тпл) твердой наночастицы радиусом г имеет вид:

где Тпл и Тпл(r) -- температуры плавления массивного материала и наночастицы этого материала радиусом r, ж, т - плотности жидкой и твердой частиц; т, ж - поверхностное натяжение твердой и жидкой частиц.

Установлено также уменьшение параметра решетки для металлов и некоторых соединений при уменьшении размера частиц. Так, при уменьшении диаметра частиц алюминия от 20 до 6 нм период решетки уменьшается примерно на 1,5%. Размер, ниже которого наблюдается уменьшение параметра решетки, различен для разных металлов и соединений.

Наноструктурные металлы и сплавы могут обладать высокой коррозионной стойкостью. В частности, эксперименты демонстрируют возможность получения обычных углеродистых сталей в наноструктурном состоянии с более высокими коррозионными свойствами, чем у специальных нержавеющих сталей. Результаты недавних исследований показывают возможность значительного повышения физических свойств исследуемых материалов; наноструктурный нитинол демонстрирует исключительную сверхупругость и эффект памяти формы; в нанокомпозите Сu-А12О3 наблюдается сочетание высокой термостабильности и электропроводимости; наноструктурные магнитотвердые сплавы (систем Fe-Nb-В, Со-Рt и др.) демонстрируют рекордные магнитные гистерезисные свойства, а магнитомягкие наноматериалы проявляют очень низкую магнитную проницаемость. Обнаружены и изучаются также аномальные оптические свойства наноструктурных металлов и полупроводников.

Однако особый интерес представляют механические свойства объемных наноструктурных материалов. Как свидетельствуют теоретические оценки, с точки зрения механического поведения формирование наноструктур в различных металлах и сплавах может привести к высокопрочному состоянию в соответствии с соотношением Холла-Петча, а также к появлению низкотемпературной и/или высокоскоростной сверхпластичности. Реализация этих возможностей имеет непосредственное значение для разработки новых высокопрочных и износостойких материалов, перспективных сверхпластичных сплавов, металлов с высокой усталостной прочностью. Все это вызвало большой интерес среди исследователей прочности и пластичности материалов к получению больших объемных образцов с наноструктурой, для последующих механических испытаний.

Вместе с тем, как отмечалось выше, существуют нерешенные проблемы в получении таких наноматериалов специальными методами порошковой металлургии -- газовой конденсацией или шаровым размолом, в связи с сохранением в них при компактировании некоторой остаточной пористости и наличием дополнительных трудностей при приготовлении массивных образцов. Как результат, до недавнего времени были выполнены лишь единичные работы по исследованию механических свойств наноструктурных металлов и сплавов, имеющих размер зерен около 100 нм и менее. Большинство проведенных исследований связано с измерениями микротвердости, и полученные данные весьма противоречивы. Например, в некоторых исследованиях обнаружено разупрочнение при уменьшении зерен до нанометрических размеров, в то же время в ряде других работ наблюдали в этом случае упрочнение, хотя наклон кривых был меньше, по сравнению с соотношением Холла-Петча. При растяжении эти НСМ оказались очень хрупкими, несмотря на высокую твердость.

Многие из этих проблем удалось преодолеть при создании наноструктур в крупнокристаллических материалах, за счет использования методов интенсивной пластической деформации. Полученные образцы позволили начать систематические исследования механических свойств на растяжение и сжатие во многих металлических материалах, включая промышленные сплавы. Было продемонстрировано, что в полученных наноструктурных образцах могут наблюдаться очень высокие прочностные свойства. Более того, полученные материалы часто проявляют сверхпластичность при относительно низких температурах и могут демонстрировать высокоскоростную сверхпластичность. Недавние исследования показали также новые возможности повышения механических свойств в наноструктурных сплавах с метастабильной структурой и фазовым составом. Формирование метастабильных состояний позволяет получить особо прочные материалы после последующих отжигов, что связано не только с наличием очень мелкого зерна, но также со специфической дефектной структурой границ зерен, морфологией вторых фаз, повышенным уровнем внутренних напряжений, кристаллографической текстурой и т. д. В связи с этим становится актуальной задача комплексного исследования влияния структурных особенностей наноматериалов на их механическое поведение.

Например, наноструктурная Сu, полученная РКУ прессованием, в сравнении с хорошо отожженным крупнозернистым состоянием, проявляет два наиболее существенных различия: во-первых, в несколько раз более высокое значение предела текучести, превышающее 400 МПа, и, во-вторых, значительно менее выраженное деформационное упрочнение на стадии пластического течения. Короткий отжиг не приводит к заметному росту зерен, однако ведет к возврату дефектной структуры их границ, выраженному в резком уменьшении внутренних напряжений. Несмотря на аналогичный размер зерен, имеется весьма существенная разница деформационного поведения в этих двух состояниях. После кратковременного отжига вид кривой «истинное напряжение -- деформация» становится похожим на вид кривой, соответствующей крупнокристаллической Сu. Этот результат очень важен и показывает, что на прочностные свойства наноструктурных материалов может влиять не только средний размер зерна, но и дефектная структура границ зерен.

Развитием этих работ явилось обнаружение нового эффекта, заключающегося в одновременном увеличении прочности и росте пластичности в металлах после интенсивных пластических деформаций. Известно, что при обычных обработках, чем больше величина деформации, тем прочнее металл, но тем меньше ресурс его пластичности. Физическая природа нового явления, названного «парадоксом прочности и пластичности в интенсивно пластически деформированных материалах», связана с формированием наноструктур и изменением микромеханизмов деформации.

В проведенных исследованиях чистую Сu (99,996 %) подвергали РКУ прессованию, а чистый Тi (99,98 %) и интерметаллид Ni3А1 - кручению под высоким давлением. Интенсивная пластическая деформация осуществлялась при комнатной температуре. Исходная крупнозернистая Сu с размером зерен около 30 мкм проявляет типичное поведение, связанное с низким пределом упругости, незначительным деформационным упрочнением и высокой пластичностью. После холодной прокатки наблюдается существенное повышение прочности Сu, но значительно снижается пластичность. При этом, чем больше величина деформации при прокатке, тем выше прочность, но ниже пластичность. Эта тенденция сохраняется для Сu, подвергнутой двум проходам РКУ прессования. Однако ситуация принципиально меняется для Сu, подвергнутой интенсивной деформации с числом проходов РКУ прессования равным

Здесь заметен не только дальнейший рост прочности, достигающей рекордных значений для Сu, но и значительное увеличение пластичности.

Аналогичная закономерность была обнаружена в Ti, подвергнутом интенсивной пластической деформации кручением. После деформации кручением в один оборот, когда истинная логарифмическая деформация близка к единице, и затем деформирования растяжением при 250 °С, наблюдается упрочнение.

Однако при этом пластичность падает по сравнению с исходным крупнокристаллическим состоянием со средним размером зерен 20 мкм. Дальнейшее увеличение степени интенсивной деформации (до 5 поворотов) обеспечивает достижение рекордной прочности для Тi с пределом прочности около 1000 ГПа, сравнимым со значением, характерным для наиболее прочных Тi сплавов. При этом происходит и рост пластичности, когда удлинение до разрыва превышает даже максимальное удлинение для исходного отожженного образца.

Интерметаллид Ni3А1 в рекристаллизованном состоянии, полученном горячей экструзией (размер зерна 6 мкм), проявляет ограниченную пластичность, в том числе при растяжении при 650 °С, что типично для данного материала.

Интенсивная деформация кручением в один оборот увеличивает прочность, но пластичность остается незначительной. Однако дальнейшая интенсивная деформация (до 5 поворотов) качественно изменяет ситуацию, когда данный материал демонстрирует очень высокую прочность, одновременно с рекордной пластичностью с удлинением до разрушения более 300%.

Таким образом, испытания всех 3-х материалов показали, что под воздействием интенсивной пластической деформации, как кручением под высоким давлением, так и РКУ прессованием, их поведение качественно меняется, и они демонстрируют не только очень высокую прочность, но и пластичность. Такое поведение материалов принципиально отличается от поведения металлов и сплавов после большой пластической деформации, например, прокаткой или вытяжкой, где увеличение прочности обычно коррелирует с уменьшением пластичности.

Для понимания природы данного эффекта важно, что в условиях интенсивной пластической деформации происходит формирование наноструктур, имеющих очень малый размер зерен (около 100 нм). Наноструктуры, формирующиеся в результате интенсивной пластической деформации, качественно отличаются от ячеистых или фрагментированных микроструктур, образующихся после обычных больших деформаций. Очевидно, вследствие формирования наноструктур может происходить изменение механизмов деформации в условиях растяжения образцов, когда наряду с движением решеточных дислокации активное участие начинают принимать процессы на границах сформировавшихся при интенсивной пластической деформации нанозерен, в частности, зернограничное проскальзывание.

Как известно, сочетание прочности и пластичности является необходимым условием для разработки перспективных материалов. В этой связи достижение очень высокой прочности и пластичности в металлах и сплавах, подвергнутых интенсивной пластической деформации, открывает пути создания принципиально новых конструкционных материалов, микроструктуры которых являются наноразмерными.

Такие наноструктурные материалы могут обладать более высокими значениями прочности, ударной вязкости, усталости, в сравнении с используемыми в настоящее время промышленными материалами. Например, наноструктурный титан ВТ 1-0 после ИПД проявляет очень высокие значения предела прочности ?В= 1010... 1040 МПа и выносливости ?-1 = 591 МПа, что превышает аналогичные параметры высоколегированного Тi сплава ВТ-6 (?В = 990...1000 МПа и ?-1 = 567 МПа). Это открыло путь для создания нового класса конструкционных материалов медицинского назначения с высокими усталостными характеристиками и ударной вязкостью - имплантантов, используемых в травматологии и ортопедии для несущих конструкций и устройствах травматологических аппаратов.

При этом в отличие от титановых сплавов, широко используемых в медицине, чистый титан обладает полной биологической совместимостью с живой тканью человека.

Высокопрочное состояние с пределом прочности более 800 МПа было реализовано в наноструктурных алюминиевых сплавах, демонстрируя возможность достижения в них прочности выше, чем у сталей.

Еще один пример - рекордные значения сверхпластичности, значительно превышающие аналогичные, характерные для микрозернистого состояния. Измельчение структуры в А1- и Тi-сплавах, используя интенсивную пластическую деформацию, позволило существенно сместить скоростной интервал проявления сверхпластической деформации в область более высоких скоростей, при этом одновременно снизить температуру деформации. Такие уникальные свойства наноструктурных сплавов позволяют значительно расширить возможности практического применения высокоскоростной и низкотемпературной сверхпластичности для эффективной формовки различных деталей и изделий сложной формы. Более того, сверхпластичные наноструктурные материалы могут использоваться в качестве соединительных слоев для сварки различных материалов в твердом состоянии и разного химического состава.

В объемных наноматериалах изменяются не только механические свойства. В ферромагнитных материалах, в которых размеры зерен становятся соизмеримыми с размерами доменов, существенно (в 10 раз) возрастает коэрцитивная сила, а доменная структура по своему характеру отличается от структуры в обычных материалах. В объемных наноструктурных кремнии и германии изменяются оптические свойства.

Весьма существенно могут изменяться магнитные свойства наночастиц по сравнению с массивным материалом. Это видно из сопоставления свойств массивного материала и наночастиц из этого материала на примере ряда металлов:

Массив

Наночастицы

Na, K, Rh, Pd

парамагнетик

ферромагнетик

Fe, Co, Ni, Gd, Tb

ферромагнетик

суперпарамагнетик

Cr

антиферромагнетик

нарушенный парамагнетик

3. ФУЛЛЕРЕНЫ И ФУЛЛЕРЕНОПОДОБНЫЕ МАТЕРИАЛЫ

До недавнего времени были известны три модификации углерода: алмаз, имеющий сетчатое строение; графит, имеющий слоистую структуру, и карбин, имеющий линейчатое строение. Фуллерены являются четвертой модификацией углерода. Открытие фуллеренов связывают с публикацией в 1973 г. Д. А. Бочвара и Е.Н. Гальперн, в которой была показана на основании кванто - химических расчетов возможность существования гипотетической молекулы, состоящей из 60 атомов углерода. Десять лет спустя астрофизики обнаружили в спектрах некоторых звезд полосы, указывающие на существование углеродных молекул различного размера.

В 1983 г. Г. Хаффман с сотрудниками испарили графитовый стержень в электрической дуге в атмосфере гелия при давлении, в 7 раз меньшем атмосферного и обнаружили сильное поглощение излучения полученным продуктом в дальней ультрафиолетовой области, обусловленное присутствием молекул C60. Крупные агрегаты из углеродных атомов C60 и C70 были обнаружены в 1985 г. Г. Крото и Р. Смолли при изучении масс- спектров паров графита, полученных при лазерном воздействии.

Название «фуллерен» дано в честь американского архитектора Бакминстера Фуллера, предложившего строить ажурные куполообразные конструкции сочетанием пяти- и шестиугольников. В научной литературе фуллерен C60 иногда называют бакминстерфуллереном, футболеном или бакиболлом. Модификации углерода в виде фуллеренов отличаются тем, что молекулы имеют замкнутую форму.

Новое вещество в большом количестве впервые было получено в 1990 г, когда В. Кретчмер и К. Фостирополус смешали несколько капель бензола со специально приготовленной сажей и получили раствор красного цвета. При его испарении на дне сосуда остались мельчайшие кристаллы, свойства которых совпали с теми, что предсказывали для фуллерена C60. Итак, в отличие от известных ранее трех форм углерода фуллерены растворимы в органических растворителях (бензол, гексан, сероуглерод).

3.1 Геометрия молекул фуллеренов

Основная структурная особенность фуллерена заключается в том, что его молекула имеет внутреннюю полость, диаметр которой 0,5 нм, а ее внешний диаметр около 0,71 нм. Установлено, что все кластеры с четным числом атомов углерода более 32 очень устойчивы и имеют форму геодезического купола. Р.Ф. Керли и Р.Э. Смолли обнаружили фуллерены, содержащие от 32 до 100 атомов углерода среди которых наиболее стабильны молекулы C60 и C70.

Фуллерены, имеющие разное количество атомов углерода, отличаются только количеством шестиугольников. Число атомов в молекуле фуллерена n и количество поверхностных шестиугольников m связаны простым соотношением:

n=20+2m.

По своей структуре молекула C60 - усеченный икосаэдр (рис. 3.1а). Атомы углерода располагаются на сферической поверхности в вершинах 20 правильных шестиугольников и 12 правильных пятиугольников. Каждый шестиугольник граничит с тремя шестиугольниками и пятью пятиугольниками, а пятиугольник граничит только с шестиугольниками. Атом углерода в молекуле C60 находится в вершине двух шестиугольников и одного пятиугольника. В структуре молекулы C70 содержится 30 шестиугольников (рис 3.1,б).

...

Подобные документы

  • Алюминий и его сплавы. Характеристика и классификация алюминиевых сплавов. Деформируемые, литейные и специальные алюминиевые сплавы. Литые композиционные материалы на основе алюминиевого сплава для машиностроения. Состав промышленных дюралюминов.

    курсовая работа [2,8 M], добавлен 15.01.2014

  • Эксплуатационные свойства металлов. Классификация металлических материалов. Черные и цветные металлы, их сплавы. Стали для режущих и измерительных инструментов. Стали и сплавы со специальными свойствами. Сплавы алюминия и меди. Сплавы с "эффектом памяти".

    курсовая работа [1,6 M], добавлен 19.03.2013

  • Твердые сплавы и сверхтвердые композиционные материалы: инструментальные, конструкционные, жаростойкие; их свойства и применение. Совершенствование технологии сплавов, современные разработки получения безвольфрамовых минералокерамических соединений.

    реферат [964,1 K], добавлен 01.02.2011

  • Основные виды неметаллических конструкционных материалов. Древесные материалы, их общая характеристика и классификация. Антифрикционные сплавы на основе цветных металлов, их назначение, маркировка, основные области применения и условия эксплуатации.

    контрольная работа [80,7 K], добавлен 20.07.2012

  • Общие положения, классификация и области применения сплавов на основе интерметаллидов. Материалы с эффектом памяти формы. Сплавы на основе алюминидов титана. Сплавы на основе алюминидов никеля. Области использования сплавов на основе интерметаллидов.

    курсовая работа [1,1 M], добавлен 02.06.2014

  • Классификация цветных металлов, особенности применения и обработки. Эффективные методы защиты цветного металла от атмосферной коррозии. Алюминий и алюминиевые сплавы. Металлические проводниковые и полупроводниковые материалы, магнитные материалы.

    курсовая работа [491,9 K], добавлен 09.02.2011

  • Двухкарбидные твердые сплавы. Основные свойства и классификация твердых сплавов. Метод порошковой металлургии. Спекание изделий в печах. Защита поверхности изделия от окисления. Сплавы на основе высокотвердых и тугоплавких карбидов вольфрама и титана.

    контрольная работа [17,9 K], добавлен 28.01.2011

  • Формирование структуры и методы исследования свойств металлов; диаграмма состояния "железо-цементит". Железоуглеродистые сплавы; термическая обработка металлов и сплавов. Сплавы, применяемые в промышленности; выбор сплава на основе цветного металла.

    контрольная работа [780,1 K], добавлен 13.01.2010

  • Железоуглеродистые сплавы, физические и химические свойства, строение, полиморфные превращения; производство чугуна и доменный процесс. Термическая обработка стали: отжиг, отпуск, закалка. Медь и её сплавы, область применения, оксиды и гидрооксиды.

    курсовая работа [1,6 M], добавлен 17.10.2009

  • Цветная металлургия как наиболее конкурентоспособная отрасль промышленности России, инвестиционная политика. Цветные металлы и сплавы: медь, алюминий, цинк, магний; их технологические и механические свойства, применение в промышленности и строительстве.

    реферат [28,2 K], добавлен 05.12.2010

  • Сравнительный анализ методов поверхностного модифицирования. Физические основы процесса имплантации газов в металлы и сплавы. Определение ядерного и электронного торможения иона в материал подложки. Расчет пробегов ионов и концентрационных напряжений.

    дипломная работа [6,0 M], добавлен 02.09.2010

  • Материалы для электропечестроения. Огнеупорные растворы, бетоны, набивные массы и обмазки. Пористые огнеупоры. Теплоизоляционные и жароупорные материалы. Дешевизна и недефицитность. Материалы для нагревательных элементов электрических печей сопротивления.

    реферат [66,1 K], добавлен 04.01.2009

  • Сущность пластической деформации металлов и влияние на неё химического состава, структуры, температуры нагрева, скорости и степени деформации. Определение легированных сталей, их состав. Литейные сплавы на основе алюминия: их маркировка и свойства.

    контрольная работа [38,4 K], добавлен 19.11.2010

  • Достоинства алюминия и его сплавов. Малый удельный вес как основное свойство алюминия. Сплавы, упрочняемые термической обработкой. Сплавы для ковки и штамповки. Литейные алюминиевые сплавы. Получение алюминия. Физико-химические основы процесса Байера.

    курсовая работа [2,7 M], добавлен 05.03.2015

  • Основные методы и виды гальванических покрытий на алюминий и его сплавы. Анализ схемы предварительной подготовки алюминия, а также его сплавов. Цинкатный и станнатный растворы. Непосредственное нанесение гальванических покрытий на алюминий и сплавы.

    реферат [26,8 K], добавлен 14.08.2011

  • Требования к конструкционным материалам. Экономические требования к материалу определяются. Марки углеродистой стали обыкновенного качества. Углеродистые качественные стали. Цветные металлы и сплавы. Виды термической и химико-термической обработки стали.

    реферат [1,2 M], добавлен 17.01.2009

  • Железоуглеродистые сплавы – стали и чугуны – важнейшие металлические сплавы современной техники. Диаграмма состояния Fe–Fe3C. Компоненты и фазы железоуглеродистых сплавов, процессы при их структурообразовании. Состав и компоненты структуры стали и чугуна.

    презентация [6,3 M], добавлен 14.10.2013

  • Общие сведения о композиционных материалах. Свойства композиционных материалов типа сибунита. Ассортимент пористых углеродных материалов. Экранирующие и радиопоглощающие материалы. Фосфатно-кальциевая керамика – биополимер для регенерации костных тканей.

    реферат [1,6 M], добавлен 13.05.2011

  • Классификация композиционных материалов, их геометрические признаки и свойства. Использование металлов и их сплавов, полимеров, керамических материалов в качестве матриц. Особенности порошковой металлургии, свойства и применение магнитодиэлектриков.

    презентация [29,9 K], добавлен 14.10.2013

  • Состав и свойства пластмасс. Композиционные материалы с неметаллической матрицей. Резиновые материалы: общая характеристика, свойства и назначение. Клеящиеся материалы и герметики. Сущность и виды каучуков. Понятие, виды и физические свойства древесины.

    реферат [27,1 K], добавлен 18.05.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.