Физиология профессиональных заболеваний водолазов

Специфика травм водолазов. Характеристика декомпрессионной болезни, баротравмы легких, уха и придаточных пазух носа. Диагностика азотного наркоза, кислородного голодания и отравления углекислым газом. Влияние экстремальных температур на организм.

Рубрика Медицина
Вид дипломная работа
Язык русский
Дата добавления 03.08.2013
Размер файла 871,8 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

«Барометрическое давление» и два десятка лет после открытия инертных газов) ни у кого из учен не возникало подозрений, что какие-то еще составные части воздуха, кроме кислорода и углекисл проявлять физиологическое действие. Теоретическое представление о том, что все остальные воздуха - азот, водород и инертные газы - являются биологически индифферентными, оправ вступали в организме ни в какие химические реакции.

Между тем, в биологии накапливались факты и формулировались обобщения, которые вопиющем, но долгое время незамеченном противоречии с только что указанными представлениями.

Эти факты были получены при попытке сформулировать единую теорию наркотически различных веществ.

Выяснилось, что наркотическими свойствами обладает большое количество разнообразия структуре которых не удается найти общих черт, которые позволили бы дать объяснение явной одн действия. К 90-м годам XIX века начали появляться работы, указывающие на тот факт, что закономерная связь между физико-химическими свойствами наркотиков и силой их действия. Перв физико-химической «весны» в учении о наркозе стало так называемое правило Рише: оказалось, действуют тем сильнее, чем меньше они растворимы в воде. Затем в 1899-1901 годах появ. сообщения Ханса Хорста Мейера и Чарльза Е. Овертона, в которых ими независимо друг от исчерпывающе сформулирована «липоидная теория наркоза». Краеугольным камнем новой утверждение, что всякое химически индифферентное (или, во всяком случае, лишь медленно изме организме) вещество, растворимое в липоидах, должно быть наркотиком и притом тем более сил больше его коэффициент распределения между липоидами и водой.

С этого времени химическая индифферентность азота и инертных газов в организме пере надежным обоснованием их физиологической индифферентности. Однако открытие осталось нез Противоречие между липоидной теорией наркоза и верой в существование абсолютно инди физиологически газов усилили эксперименты Вернона (1907), доказавшего высокую липоидную рас азота, заставляющую ставить его по наркотической силе рядом с этиловым эфиром (воздух при этом не наркотического действия), но и эти эксперименты не получили осмысления широким кругом ученых. И лет спустя сын Х.Х. МеЙера Курт Мейер вместе с Генрихом Гопфом (1923) сделали смелый, но необ. логический вывод, предположив, что азот - тоже наркотик, и доказали это экспериментально (табл. 2.11).

Этиопатогенез. Азот, как известно, относится к числу метаболически индифферентных газов, так как он не вступает в организме в химические реакции. При нормальном атмосферном давлении он является нейтральным газом для организма. При повышенном парциальном давлении азот вызывает ряд биологических ответных реакций организма, которые могут быть компенсаторными (приспособительными) и патологическими, а по своему характеру сходными с действием на организм алкоголя. На основании сходства проявления биологического действия азота с влиянием на организм человека наркотиков действие азота квалифицируется как наркотическое. С физиологической точки зрения хирургический наркоз (общая анестезия) -- это искусственно вызванная реакция биологической системы, которая характеризуется общим обратимым угнетением функций, основным субстратом которых является ЦНС. С другой стороны, известно, что индифферентные газы, в том числе азот, при большом напряжении в тканях организма вызывают морфологические изменения, которые рассматриваются как результат его токсического действия. Поэтому нередко действие азота характеризуют не как наркотическое, а как токсическое.

В результате исследований высшей нервной деятельности человека при действии на организм повышенного парциального давления азота было установлено, что азот является наркотиком I типа, вызывающим в первую очередь качественные нарушения высших, самых сложных реакций, а также снижение показателей динамики более примитивных реакций.

Наркотическое действие азота, как и большинства наркотических веществ, проявляется в двух фазах: вначале наступает возбуждение, которое затем сменяется угнетением функций центральной нервной системы. В зависимости от величины парциального давления азота и индивидуальной чувствительности к его воздействию азотный наркоз у человека условно можно разделить на три стадии: начальную, или скрытую, стадию неполного наркоза и стадию общего наркоза. Каждая стадия характеризуется определенным функциональным состоянием центральной нервной системы и соответствующими внешними проявлениями.

Г.Л. Зальцман (1968) свел общие реакции организма к функциональному состоянию центров нервной системы в последовательные стадии развития наркотической реакции, что представлено в таблице

Таблица. Общие реакции организма и состояние ЦНС в последовательные стадии гипербарического наркоза

Стадии гипербарического наркоза

Общие реакции организма

Функциональное состояние ЦНС

Соответствующие стадии клинического наркоза

I, начальная (компенсаторная)

У человека: Словесные реакции -- выраженные количественные и начальные качественные сдвиги.Сложные двигательные реакции -- умеренные количественные и начальные качественные изменения. Простые двигательные реакции, вегетативные реакции - сохранение нормальной регуляции. У животных: Двигательное возбуждение, начальное растормаживание высших специализированных реакций.

Подавление исходной активности, общий сдвиг в сторону быстрых частот с последующим доминированием бета-ритмов. Диссоциация активности в разных отделах мозга. Формирование одиночных, временных очагов гиперсинхронной медленной активности в разных структурах.

I

II, стадия неполного наркоза

У человека: Словесные реакции -- прогрессирующие срывы и нарушения. Сложные двигательные реакции -- нарастающие срывы и нарушения. Простые двигательные реакции, вегетативные реакции -- начальные нарушения. У животных: Дискоординация, генерализованные гиперкинезы.

На фоне увеличенной быстрой активности формирование стойких и множественных очагов гиперсинхронной медленной активности преимущественно в мезодиэнцефальных отделах, тенденция к генерализованной медленной активности.

11

III, стадия общего наркоза

У человека: Потеря сознания, наркотический сон. У животных: Генерализованная депрессия, боковое положение.

Во всех отделах мозга -- генерализованная медленная активность на основе местной и дистантной синхронизации биопотенциалов.

III, -Ш4

Общий характер наступающих в организме сдвигов при наркотическом действии азота проявляется в понижении тонуса коры головного мозга и растормаживании подчиненных функциональных систем. Начальные сдвиги выявляются при исследовании словесных реакций сложной умственной деятельности, сенсорных и двигательных реакций. В стадии частичного наркоза начинается функциональная декомпенсация регуляторных механизмов высших функций. При этом происходит генерализация наркотического торможения на корковые процессы. Основной чертой третьей стадии наркотической реакции азота является общая генерализация наркотического торможения во всех отделах центральной нервной системы с потерей сознания.

Для объяснения наркотического влияния азота на организм человека существует несколько точек зрения. По мнению одних авторов, наркотическое действие азота является следствием нарушения проницаемости мембран нервных клеток за счет адсорбции на их поверхности молекул азота, что в конечном итоге приводит к снижению интенсивности обмена веществ в клетках. Другие считают, что азот под большим давлением оказывает тормозящее действие на передачу импульсов по всем синапсам нервной системы. Специальными электроэнцефалографическими исследованиями было показано, что наркотики I типа, к которым относится и азот, подавляют в первую очередь активность ретикулярной формации без нарушения классических афферентных путей, вследствие чего ослабляется функция коры головного мозга. Наркотическое действие азота может усиливаться при воздействии на организм высокой или низкой температуры воды, приводящей соответственно к перегреванию или переохлаждению организма, при выполнении тяжелой физической работы под водой, а также при наличии во вдыхаемом воздухе примеси углекислого газа, окиси углерода или окислов азота более допустимых величин.

Клиника. Первые клинические проявления азотного наркоза обнаруживаются при давлении воздуха около 4 кгс/см2 (на глубине спуска 40 м) и выражаются в появлении у человека состояния, сходного с легким алкогольным опьянением (приподнятое настроение, беспричинная веселость, излишняя болтливость, неуверенность в движениях и т.д.). При психологических исследованиях уже при 2 кгс/см2 несколько уменьшается скрытый период реакции на световой и звуковой сигналы, а при 4 кгс/см2 незначительно уменьшается время простой сенсомоторной реакции. До 2 кгс/см2 электроэнцефалограмма не изменяется, а до 4 кгс/см2 изменяется незначительно. На электромиограмме при 4 кгс/см2 отмечается увеличение амплитуды мышечных потенциалов и длительности реакций.

При окружающем давлении воздуха 6 кгс/см2 эти явления становятся более отчетливыми, но большинство водолазов еще продолжают сохранять общее хорошее самочувствие и почти нормальную работоспособность.

При давлениях воздуха порядка 8 кгс/см2 чувство опьянения становится весьма сильным: появляется отчетливое нарушение координации движений (движения становятся неточными, неуверенными). Нарушается общая ориентировка, снижаются сообразительность и сознательный контроль за своими действиями. Некоторые водолазы при этом давлении воздуха под водой становятся практически неработоспособными -- неточно выполняют задания, а иногда и вовсе не осознают, что делают. В ряде случаев водолаз перестает правильно выполнять действия по использованию водолазного снаряжения, в результате чего с ним может произойти авария (запутывание, выбрасывание на поверхность и т.п.).

При давлении воздуха 10 кгс/см2 наркотическое действие азота становится настолько сильным, что большинство водолазов не в состоянии выполнять целенаправленную работу под водой. Как правило, у нетренированных к воздействию повышенного давления азота людей на глубине 100 м развивается глубокое расстройство координации движений, полностью нарушается ориентировка по месту и времени, утрачивается сообразительность, появляются зрительные и слуховые галлюцинации.

При давлении воздуха более 10 кгс/см2 азотный наркоз проявляется в потере сознания и глубоком сне.

По мере повышения давления воздуха от 6 до 10 кгс/см2 отмечается прогрессивное ухудшение показателей кратковременной, оперативной и долговременной памяти, умственной работоспособности и координации движений. На ЭЭГ при увеличении давления от 4 до 8 кгс/см2 отмечается снижение индекса и амплитуды альфа-волн с постепенным замещением их бета-колебаниями, а при давлении 10 кгс/см2 наступают депрессия основного ритма ЭЭГ и замещение его низкоамплитудными медленными колебаниями.

При декомпрессии явления наркотического действия азота быстро уменьшаются и полностью проходят без остаточных явлений при отсутствии каких-либо лечебных мероприятий.

Оказание помощи. Наркотическое действие азота, как правило, не требует специального лечения, так как при спусках на глубины до 60--80 м оно не представляет опасности для здоровья человека ни в период его проявления, ни в более отдаленные сроки. Опасность для водолаза представляют аварийные действия, которые он может совершать, находясь в наркотическом состоянии. Поэтому при появлении у водолаза признаков наркотического действия азота (неадекватное поведение, беспричинный смех, нарушение правил использования снаряжения, необоснованный отказ от выполнения указаний руководителя спуска и др.) необходимо прекратить дальнейшее пребывание водолаза на грунте и начать подъем его на поверхность с соблюдением режима декомпрессии.

Профилактика. Предупреждение азотного наркоза в водолазной практике достигается путем ограничения максимальной глубины спуска, которая для большинства водолазов при использовании для дыхания сжатого воздуха составляет 60 м, а для наиболее опытных водолазов при необходимости проведения спусков в аварийной ситуации -- 80 м.

При допуске к спускам водолазный врач должен также учитывать индивидуальную чувствительность каждого водолаза к наркотическому действию азота.

Водолазы, имеющие повышенную чувствительность, могут допускаться к спускам под воду при дыхании сжатым воздухом на глубины не более 45 м. Поскольку у водолазов при проведении систематических спусков под воду с использованием для дыхания сжатого воздуха наступает адаптация к наркотическому действию азота, водолазы в межспусковой период должны проходить тренировочные спуски в барокамере под давлением до 80 м вод.ст. Водолазные врачи (фельдшера), а также водолазные специалисты и водолазы, допущенные к медицинскому обеспечению водолазных спусков, должны проходить тренировки под давлением 100 м вод.ст. 1-2 раза в месяц для поддержания готовности к оказанию заболевшему водолазу медицинской помощи в условиях повышенного давления.

При работе водолазов под водой в вентилируемом снаряжении особое внимание должно обращаться на расход воздуха для вентиляции скафандра (не менее 80--120 л/мин сжатого газа), поскольку при недостаточной вентиляции в скафандре может накапливаться высокая концентрация углекислого газа, которая усиливает наркотическое действие азота.

Отравление кислородом

Отравление кислородом представляет собой патологическое состояние организма, развивающееся в результате воздействия на него повышенного парциального давления кислорода и проявляющееся в нарушении функций центральной нервной системы, эндокринной, дыхательной и сердечно-сосудистой систем.

Отравление кислородом может проявляться в судорожной, легочной или сосудистой форме.

Историческая справка. Первые сообщения о некоторых сторонах отрицательного действия повышенного парциального давления кислорода на организм были сделаны еще во времена А. Лавуазье. К. Дюма (1793) и А. Фуркруа (1797) ежедневно в течение 12 ч держали собак в атмосфере чистого кислорода, что приводило к возникновению у них пневмонии. В 1873 г. И.Р. Тарханов установил различие в действии высоких парциальных давлений кислорода на целостный организм и на изолированные его ткани, что способствовало формированию представлений о механизме отравления кислородом. Через 100 лет после первых сообщений о токсическом действии кислорода на легкие Лоррэн Смит (1897--1898) подробно исследовал воздействие относительно небольших (досудорожных) величин парциального давления кислорода на легочную ткань. Он проводил опыты на мышах и наблюдал кровоизлияния, гиперемию и отек легких после пребывания животных в сжатом кислороде в течение нескольких часов и установил, что срок появления изменений в легких и гибель животных зависят от величины парциального давления кислорода. Эта форма отравления кислородом получила название «эффекта Л. Смита».

Наиболее обстоятельно и всесторонне токсическое действие кислорода на живые организмы было изучено Полем Бером (1873, 1878). В результате многочисленных опытов П. Беру удалось показать, что клинические проявления и продолжительность жизни животных при кислородной интоксикации зависят от величины парциального давления кислорода и времени его действия на организм. Он доказал, что при повышенном давлении кислород является ядом хроноконцентрационного действия. Так, например, им экспериментально было показано, что теплокровные животные в среде чистого кислорода при давлении 1--3 абс. кгс/см2 погибают через несколько десятков часов. При давлении кислорода свыше 3 абс. кгс/см2 у собак, кроликов и воробьев через короткое время (измеряемое единицами и десятками минут) развиваются судороги, которые в зависимости от величины давления и длительности воздействия могут закончиться гибелью животных. Открытую П.Бером судорожную форму отравления кислородом называют «эффектом П.Бера».

В дальнейшем проводилось подробное изучение действия на организм животных и человека повышенного парциального давления кислорода как в нашей стране, так и за рубежом. В нашей стране эти исследования были сосредоточены в Военно-морской медицинской академии и Военно-медицинской академии ( Сапов И.А., Жиронкин А.Г., Панин А.Ф., Сорокин П.А., Фокин А.П., Мясников А.П., Лотовин А.П. и др.) и в 40-м ГосНИИ МО (Александров И.А., Смолин В.В., Зальцман Г.Л., Тюрин В.И. и др.).

В результате проведенных экспериментальных исследований было установлено, что токсическое действие повышенного парциального давления кислорода проявляется как на уровне всего организма в целом, так и на системном, клеточном, субклеточном и молекулярном уровнях. В целом организме повышенное парциальное давление кислорода вызывает развитие общего адаптационного синдрома, на что указывает активация симпатоадреналовой системы (Жиронкин А.Г. и соавт., 1956; Граменицкий П.М., Сорокин П.А., 1964; Bean J., 1965). Системные физиологические реакции организма на повышение парциального давления кислорода развиваются главным образом со стороны нервной системы, системы дыхания и сердечно-сосудистой системы (Kety S., Schmidt С, 1948; Сапов И.А., 1952, 1953; Lambertsen С, 1965; Жиронкин А.Г., 1972; Селивра А.И., 1974; Петровский Б.В., Ефуни С.Н., 1976).

Этиопатогенез. В водолазной практике отравление кислородом может наступить при продолжительных спусках под воду в любом водолазном снаряжении или в барокамере при дыхании сжатым воздухом, искусственной ДГС или кислородом, когда парциальное давление кислорода будет превышать 0,5 кгс/см2. Однако наиболее часто отравление кислородом в водолазной практике встречается при использовании для спусков под воду кислородного снаряжения.

Дыхание чистым кислородом или газовыми смесями с повышенным парциальным давлением кислорода (в частности, 40 % КАС) приводит к увеличению его напряжения в артериальной крови за счет полного насыщения гемоглобина кислородом и избыточного растворения в плазме. При дыхании кислородом на каждую атмосферу избыточного давления происходит увеличение физически растворенного кислорода на 2,14 см3 в 100 мл крови. Увеличение напряжения кислорода в тканях и в клетках организма при одновременном уменьшении концентрации восстановленного гемоглобина приводит в конечном счете к повышению концентрации водородных ионов и к развитию ацидоза.

Патоморфологические реакции на токсическое действие кислорода могут проявиться в трех формах: судорожной, легочной и сосудистой.

В каждой форме отравления кислородом можно выделить 3 стадии:

* дотоксическую стадию, при которой проявляются преимущественно компенсаторные реакции, направленные на уменьшение чрезмерного поступления кислорода через легкие в кровь и с кровью к тканям;

· предтоксическую стадию, когда наряду с частичной компенсацией отчетливо проявляются декомпенсаторные реакции;

токсическую стадию, при которой наступают полный срыв компенсаторных реакций, функциональные и морфологические нарушения отдельных структур организма, что может привести к гибели.

При дотоксических величинах парциального давления кислорода организм реагирует на гипероксию сдвигами функций различных органов и систем, что рассматривается как физиологическое действие кислорода. Наибольшие функциональные изменения наступают в центральной нервной системе, газообмене, системе крови, кровообращении и дыхании. Эти изменения являются приспособительными реакциями, направленными на ограничение поступления кислорода в организм. Влияние гипероксии на нервную систему носит двухфазный характер. В первой фазе ощущается улучшение самочувствия и памяти, улучшаются психофизиологические возможности скорости восприятия и переработки информации, отсутствуют нарушения сложных форм умственной деятельности и тонкой координации движений.

Предтоксическая стадия может наступить после часовой экспозиции в газовой среде с повышенным парциальным давлением кислорода. Она начинается с наступления фазы торможения корковых функций, при которой отмечаются ухудшение тонкой координации движений и внимания, увеличение количества профессиональных ошибок. Указанные изменения функций центральной нервной системы являются следствием неспецифического активирования подкорковых образований головного мозга (стволового, рострального, гипоталамического и стриарного отделов) и рассматриваются как показатели усиления процессов внутреннего торможения с повышением тонуса коры больших полушарий в первой фазе и последующим подавлением ее активации во второй фазе.

Токсическая стадия проявляется клинической картиной судорожной, легочной или сосудистой формы отравления кислородом.

При кратковременных экспозициях в условиях гипероксии снижается газообмен, уменьшаются частота дыхания и объем легочной вентиляции. При длительном дыхании кислородом происходит учащение ритма дыхания, увеличение легочной вентиляции и снижение жизненной емкости легких. В условиях гипероксии отмечаются уменьшение содержания гемоглобина, количества эритроцитов, увеличение количества лейкоцитов и лимфоцитов Т, аТ и В. При длительной гипероксии происходит угнетение гемопоэза и свертывающей системы при активации противо-свертывающей системы крови. Со стороны сердечно-сосудистой системы отмечаются урежение частоты пульса, удлинение интервала Р--Q, укорочение времени Q--Т, увеличение волны Т электрокардиограммы. Указанные изменения связаны с повышением тонуса блуждающего нерва. Систолическое давление, как правило, не изменяется или незначительно повышается, а диастолическое обычно повышается.

Под влиянием гипероксии происходит сужение кровеносных сосудов сетчатки глаза, головного мозга, почек и кожных покровов тела. Уменьшение центрального, коронарного и почечного кровотока рассматривается как защитная реакция организма на повышение напряжения кислорода в крови. При длительном пребывании в условиях повышенного парциального давления кислорода урежение пульса сменяется учащением, что свидетельствует о начавшемся отравлении кислородом.

Судорожная форма отравления кислородом наступает в случаях, когда водолаз в снаряжении дышит чистым кислородом на глубине 20 м и более или газовой смесью, в которой парциальное давление кислорода составляет 2,5--3,0 кгс/см2 и выше. В условиях барокамеры судорожная форма отравления кислородом может возникать у водолазов в процессе кислородной декомпрессии под давлением 20-10 м вод.ст. Отравление кислородом возможно также при спуске в водолазном снаряжении с полузамкнутой схемой на глубины более 20 м в случае попадания воды в негерметичный регенеративный патрон, заряженный регенеративным веществом, что приводит к бурному выделению кислорода.

Судорожная форма отравления кислородом усиливается при наличии в дыхательной газовой смеси или кислороде углекислого газа, при выполнении тяжелой физической работы, а также при переохлаждении и перегревании. Отчетливое неблагоприятное влияние на характер и течение кислородных судорог оказывает повышенное парциальное давление водорода, азота, гелия и аргона. Степень усиления токсичности кислорода в присутствии индифферентных газов находится в прямой зависимости от плотности (молекулярной массы) последних. При больших величинах парциального давления азота судороги обычно кратковременны и носят тонический характер.

Вопросы патогенеза судорожной формы отравления кислородом изучаются у нас и за рубежом около 100 лет. Однако механизмы возникновения и развития кислородной эпилепсии до сих пор недостаточно выяснены. П. Бер (1878) причиной кислородных судорог считал накопление ядовитых веществ в организме вследствие нарушения обменных процессов. Эти токсины, по его мнению, действуют на нервную систему, в частности на спинной мозг, и вызывают судороги, сходные с судорогами при столбняке, эпилепсии, а также при отравлении стрихнином или карболовой кислотой.

По мнению Р. Гезелла (1923), судороги и другие признаки отравления кислородом обусловлены накоплением углекислоты в тканях организма вследствие того, что в условиях гипероксии весь гемоглобин в артериальной и венозной крови циркулирует в виде оксигемоглобина, который не участвует в транспорте углекислоты от тканей к легким. Тканевое дыхание в этом случае осуществляется только за счет растворенного в плазме кислорода. В настоящее время гипотеза Р.Гезелла признана несостоятельной, так как существенного увеличения углекислоты в крови и тканях животных в условиях гипероксии не происходит.

С.И. Прикладовицкий (1940) экспериментально установил, что переливание крови от животных (кроликов, собак), у которых под давлением кислорода 8 кгс/см2 развиваются судороги, животным-реципиентам судорог у них не вызывает. На этом основании он счел неверной гипотезу П.Бера об образовании токсических продуктов в крови и тканях при гипероксии и обосновал положение о непосредственном гуморальном механизме действия кислорода на клетки коры головного мозга. Напряжение кислорода в тканях головного мозга, при котором возникают судороги у животного, С.И.Прикладовицкий называл пороговым. Однако специальными исследованиями было установлено, что судороги у животного могут возникать не только в период наличия высокого парциального давления кислорода, но и через некоторое время после его действия (например, под влиянием яркого света, сильного звука), когда парциальное давление кислорода в клетках мозга значительно ниже порогового.

В последние годы накоплен большой экспериментальный материал, свидетельствующий о нарушении при кислородном отравлении важнейших дыхательных ферментных систем, принимающих участие в аэробной и анаэробной фазах окислительных процессов в организме. При действии повышенных парциальных давлений кислорода на организм снижается активность ангидразы, сукциндегидразной системы, нарушается цитохромная система, меняется активность угольной ангидразы в мозгу и крови, инактивируются ферменты, содержащие сульфгидрильную группу (-SH). Эти изменения вызывают значительные нарушения со стороны углеводного, белкового и жирового обмена.

По данным исследований И.А. Сапова (1952), причиной кислородных судорог является возникновение разлитого торможения в коре головного мозга и выход из-под ее контроля подкорковых образований, сопровождающийся «взрывом» возбуждения подкорковых отделов центральной нервной системы. Многие авторы (Жиронкин А.Г., 1940; Алексеев В.А., 1950; Сапов И.А., 1952; Зилов Г.И., 1953, и др.) главное место в развитии кислородных судорог отводили не непосредственному, а рефлекторному механизму действия кислорода на центры головного мозга через рецепторы сердечно-сосудистой и дыхательной систем.

С целью изучения механизма развития судорожной формы токсического действия кислорода рядом авторов (Зальцман Г.Л., 1961; Зальцман Г.Л. и соавт., 1968, 1979; Савич А.А., 1968; и др.) были проведены специальные биоэлектрические исследования на животных, позволившие сопоставить поведенческие реакции животного и биоэлектрическую активность различных отделов головного мозга в последовательных стадиях развития кислородной эпилепсии. Исследования проводились на белых мышах, кроликах и собаках, находящихся в барокамерах в полуфиксированном состоянии с предварительно вживленными электродами в моторную, сенсорную и затылочную области коры головного мозга, в миндалины, гиппокамп, головку хвостатого ядра, скорлупу, бледный шар, ядра таламуса, вентролатерального и медиального гипоталамуса, ретикулярную формацию, отделы моста и покрышки среднего мозга. Полученные данные позволили авторам установить соотношение общей реакции организма и функционального состояния центров головного мозга в гипербарической кислородной среде в различные стадии кислородной эпилепсии.

Общая реакция организма и состояние ЦНС в последовательные стадии кислородной эпилепсии (по Зальцману ГЛ., 1979)

Стадии кислородной эпилепсии

Общая реакция организма

Функциональное состояние центров нервной системы

Начальная и компенсаторная стадии

Сохранение нормальной регуляции вегетативных и соматических функций, накопление скрытых сдвигов в различных системах, развитие приспособительных реакций

Общее неспецифическое активирование отделов мозга, их функциональное разобщение. Формирование одиночных нестойких очагов гиперсинхронной судорожной активности

Предсудоро-жная

Нарушение регулирования вегетативных и соматических функций. Появление начальных клинических симптомов действия повышенного давления кислорода

Появление стойких множественных очагов судорожной активности в мезодиэнцефальных отделах, одномоментная или постепенная генерализация судорожной активности в другие отделы мозга

Судорожная

Приступы генерализованных клонико-тонических гиперкинезов по типу большого судорожного припадка

Глобальная генерализация судорожной активности на основе местной синхронизации биопотенциалов

Патологическая реакция организма, формирующаяся в гипербарической кислородной среде, рассматривается указанными авторами как проявление процесса развития общего центрального патологического возбуждения, вызванного действием на мозг растворенного кислорода. Для него характерны ослабление связей между отделами мозга и их функциональная разобщенность. В итоге формируются очаги гиперсинхронной судорожной активности -- показателя «местной» синхронизации активности возбужденных нейронов, их функционального выключения из целостной деятельности мозга. В дальнейшем наступает генерализация судорожной активности по всем отделам мозга, в силу чего мозг начинает работать в едином регулярном синхронном ритме как недифференцированная «слитная» система, интегрированная на низком уровне организации. О патологии указанного состояния мозга свидетельствует не само наличие на ЭЭГ гиперсинхронной спайковой активности, которая может встречаться и при нормальной деятельности мозга, а всеобщая глобальная синхронизация низкочастотной активности, не свойственная нормальной деятельности мозга. Глобальная синхронизация потенциалов биоэлектрической активности приводит к нарушению избирательной центральной регуляции подчиненных соматических и вегетативных функций, что проявляется в форме генерализованной депрессии. При такой форме реакции нарушается нормальное уравновешивание организма со средой.

Организация глобальной синхронизации потенциалов биоэлектрической активности всех отделов мозга осуществляется структурами мезодиэнцефального уровня, которая наступает вследствие «высвобождения» из-под контроля вышестоящих центров. Изучение функционального состояния различных типов нейронов в разных отделах мозга в последовательные стадии развития кислородной эпилепсии показало, что при токсическом действии кислорода развивается деполяризация нейронов, причем в начальной стадии действия кислорода нейрональные элементы, как и в норме, находятся в состоянии деполяризации, образуя ограниченные участки нейронов с одноименным уровнем возбуждения. В завершающей стадии генерализованных судорог нейрональные элементы мозга находятся только в состоянии деполяризации, охватывая практически весь мозг.

А.И. Селивра (1978) привел новые данные, подтверждающие представления Л.А. Орбели (1961) и А.В. Войно-Ясенецкого (1958) об эволюционной обусловленности эпилептического симптомокомплекса при гипероксии. Им было установлено, что нейрофизиологический механизм нарушения системных приспособительных реакций в условиях гипероксии заключается в появлении эволюционно более ранних форм реагирования, проявляющихся в синдроме судорожной готовности. Основными компонентами этого синдрома являются усиление местной и дистантной синхронизации биопотенциалов мозга, торможение внешнего дыхания, брадикардия и увеличение кровенаполнения мозга.

Установлено, что прекращение судорожного припадка происходит в результате мобилизации активных механизмов торможения, а не энергетического истощения (Иванова Т.И., Рубель Л.Н., 1969;СеливраА.И., 1974).

Относительно механизма действия повышенного давления кислорода на внутриклеточные процессы единого мнения не достигнуто. Наиболее вероятные пути воздействия кислорода, приводящие к деполяризации нейрональных мембран, сводятся к повреждению или нарушению функций мембраны, снижению энергетического обеспечении ионного насоса, повышению продукции медиаторов. Повреждение или нарушение функции нейрональных мембран является следствием непосредственного химического действия кислорода как на их липидные, так и на белковые компоненты. Считается, что кислород вызывает окисление ненасыщенных жирных кислот и образование липидных перекисей и свободных радикалов в условиях гипербарической кислородной среды. Воздействие кислорода на белковые компоненты мембраны связывают с окислением сульфгидрильных групп. Изменения мембран могут привести к видимым изменениям ультраструктуры нейронов, что подтверждается данными о дегенерации нейрональных митохондрий у животных, подвергнутых действию повышенных давлений кислорода. В литературе имеется множество сообщений о том, что связанные с мембраной активные транспортные системы имеют тенденцию к инактивации под влиянием кислорода. Инактивация транспортной системы мембраны клеток головного мозга может привести к внеклеточному накоплению калия и солей глутаминовой кислоты. Оба эти эффекта могут усилить возбудимость нейронов и в конечном счете ускорить развитие судорог, так как калий является деполяризующим агентом, а соль глутаминовой кислоты усиливает проведение возбуждения по нервному волокну. На основании анализа данных современной литературы можно представить схему последовательности метаболических изменений в организме под воздействием гипероксии.

Вначале под влиянием увеличенного напряжения кислорода в клетках происходит усиление образования переокисленных анионов (свободных радикалов), перекиси водорода и, возможно, других активных веществ, таких как атомарный кислород и гидроксильный радикал, формирующих систему тканевых оксидантов. Указанные оксиданты могут повреждать мембраны клеток и внутриклеточные ферменты посредством окисления тканевых белков и липидов. В ответ на повреждающее действие оксидантов в клетках увеличивается концентрация биологических антиокислительных ферментов и повышается их активность. Быстрота, с которой гипероксия вызывает выраженные токсические проявления в любой ткани или органе, определяется взаимодействием между образовавшимися токсическими веществами и способностью антиокислительной защиты. Основным направлением механизма этой защиты является прекращение цепной реакции взаимодействия свободных радикалов с липидными компонентами клетки, которая приводит к прогрессирующему переокислению липидов и повреждению мембран. Указанная цепная реакция нарушается и прекращается под влиянием биологических антиокислителей, таких как витамины А, С и Е, а также восстановленного глутатиона. Витамин Е действует как антиокислитель путем принятия электрона для формирования стабильного радикала ос-токоферола, который, в свою очередь, восстанавливается при взаимодействии с витамином С. Восстановленный глутатион способен принять электроны для формирования стабильных сульфидных связей. Репарация поврежденных тканей может происходить в результате восстановления их окисленных компонентов за счет глутатиона, который превращается в окисленный глутатион. Восстановление окисленного глутатиона происходит под действием пентозного шунта метаболического превращения глюкозы.

Легочная форма отравления кислородом может возникнуть при продолжительном пребывании человека под водой или в барокамере под повышенным давлением воздуха, например, при проведении лечебной рекомпрессии. Следует иметь в виду, что токсическое действие кислорода усиливается в присутствии примеси СО2 и при повышенном парциальном давлении азота. Развитию легочной формы отравления кислородом способствуют низкая и высокая температуры, высокая (более 90 %) и низкая (менее 20 %) относительная влажность, а также тяжелая физическая работа.

Гипероксия может вызвать две формы токсического поражения легких: острую, развивающуюся при дыхании кислородом с парциальным давлением свыше 0,8 кгс/см2 и первично-хроническую, возникающую при парциальном давлении кислорода 0,4-0,8 кгс/см2 (Kistler G. и соавт., 19б7; Жиронкин А.Г, 1972; Broussole В., 1977).

Острая форма токсического поражения легких может сочетаться с развитием судорожной формы отравления. Отчетливые проявления легочной формы отравления кислородом у человека при дыхании газовыми смесями с парциальным давлением в них кислорода 0,4; 1,0 и 2,5 кгс/см2 развиваются через 1,5--2,5 месяца, 8-16 и 3--6 ч соответственно.

По вопросу о механизме возникновения и развития патологии легких при токсическом действии кислорода существует несколько точек зрения.

Первое представление о механизме возникновения и развития легочной формы отравления кислородом было сформулировано Л.Смитом (1899). Оно сводилось к тому, что легочная патология при гипероксии возникает вследствие непосредственного поражающего действия кислорода на клетки дыхательных путей и легочных альвеол.

В более поздних исследованиях было показано, что прямое действие кислорода на изолированном участке легочной ткани в значительной степени отличается от действия в условиях целостного организма. В связи с этим были предприняты специальные исследования, направленные на решение вопроса о соотношении прямого действия кислородной среды на легочную ткань и действия, опосредованного нейрогуморальным звеном. Прямое действие кислорода было продемонстрировано в опытах K. Penrod (1958) при заполнении одного легкого кислородом, а другого индифферентным газом. Поражение легких отмечалось на оксигенируемом легком. Роль нервных и гуморальных механизмов в происхождении кислородной «пневмонии» показана многими исследователями (Сапов И.А., 1954,1972; Bean J., 1966 и др.). Установлено, что двусторонняя блокада или перерезка блуждающих нервов усиливает поражение легких при действии кислорода, тогда как перерезка задних корешков С6 7 -- D4 5 или денервация синокаротидной и аортальной зон значительно ослабляет или предотвращает развитие патологического процесса в легких. Атропинизация животных также уменьшает патологические изменения в легочной ткани. Предварительное удаление гипофиза у животных, подвергшихся повторному действию кислорода, сопровождается менее выраженным поражением легких по сравнению с контрольными животными. Введение гипофизэктомированным животным адренокортикотропного гормона устраняет этот положительный эффект. У собак с предварительно изолированными от кровообращения надпочечниками обнаруживаются менее выраженные патологические изменения в легких при высоком парциальном давлении кислорода по сравнению с контрольными животными. Большое значение придается изменениям сурфактанта -- поверхностно-активного вещества легких (KistlerG. и соавт., 1967; Shields Т., 1977), ослаблению антиоксидантных систем, в частности, активности дисмутазы, глутатион-пероксидазной системы и др. (Crapo J., Tierney D., 1974).

К. Ламберетсен (1966) считает, что в основе кислородного повреждения легких лежит такое же угнетение ферментных систем, как и при других формах кислородной интоксикации, переполнение кровью легочных капилляров, иногда с кровоизлияниями и проникновением в альвеолы и просвет бронхов геморрагического экссудата.

Экссудат обычно содержит большое количество лейкоцитов и слу-щенных эпителиальных клеток. В межальвеолярных перегородках и в стенках бронхов отмечается инфильтрация со скоплением лейкоцитов, по преимуществу эозинофилов. Наблюдается перерождение альвеолярного эпителия и альвеолярных мембран.

При длительном воздействии кислорода геморрагический альвеолит принимает разлитой характер и патологическим процессом охватывается все легкое, развивается уплотнение и опеченение легочной ткани. Могут возникать обширные ателектазы центральных частей и эмфизематозные поражения краевых участков.

Кратковременное воздействие кислорода при относительно высоком парциальном давлении (около 3 абс. кгс/см2) приводит к поражению легочной ткани очагового характера.

В целом процесс в легких определяется как прогрессивная дегенерация, протекающая в две фазы: полностью обратимую экссудатавную и частично обратимую пролиферативную. В экссудативной фазе развиваются отек альвеол и геморрагии, идет выпотевание фибринозного экссудата, образование гиалиновых мембран и параллельно происходит деструкция эпителия и альвеолярных эпителиальных клеток. В пролиферативную фазу развиваются интерстициальный фибриноз, фибробластическая пролиферация и гиперплазия эпителиальных альвеолярных клеток. Процесс может закончиться рубцеванием легочной ткани. На субклеточном уровне определяются потеря плотности и вакуолизация матрикса, разбухание и разрыв митохондрий клеток альвеолярного эпителия. Отмечаются также увеличение свободных рибосом и расширение цистерн эндоплазматического ретикулума. Одновременно с поражением легких развивается застойное полнокровие во всех внутренних органах (головном мозге, печени, почках, железах внутренней секреции, кишечнике и др.), которое приводит к возникновению деструктивных изменений в клетках.

Сосудистая форма отравления кислородом встречается при воздействии высоких парциальных давлений кислорода, хотя отдельные случаи возникают и при его относительно небольшом парциальном давлении.

При действии на организм высокого парциального давления кислорода возникает резкое сужение, а затем расширение кровеносных сосудов головного мозга, почек, сердца, кожных покровов, сетчатки глаз, что сопровождается резким ослаблением сердечной деятельности и развитием клинической картины, напоминающей коллапс, который может закончиться потерей сознания и смертью. Эти реакции можно рассматривать как защитные реакции организма на повышение напряжения кислорода в крови, которые могут парадоксально иметь неблагоприятные последствия.

Такая необычная реакция на гипероксию, по-видимому, отражает повышенную индивидуальную чувствительность организма к высокому содержанию кислорода.

Клиника. Судорожная форма отравления кислородом протекает в трех последовательных стадиях:

· стадия предвестников (предсудорожная);

стадия судорог;

стадия терминального состояния.

Стадия предвестников является наименее стабильным периодом в развитии судорожной формы отравления кислородом. Симптоматология этой стадии у человека обстоятельно описана различными исследователями (Дональд К., 1947; Зальцман ГЛ., 1961; Жиронкин А.Г. и соавт., 1965; Зиновьева И.Д., 1968). Характерным для предсудорожной стадии является понижение чувствительности и онемение кончиков пальцев рук и ног, а иногда верхней губы и других участков тела. Отмечается подергивание мышц губ, век и шеи. По мере усиления токсического действия кислорода появляются звон в ушах, тяжесть в голове. Определяются сужение полей зрения («туннель зрения»), учащение пульса и дыхания, повышение артериального давления. Непосредственно перед судорожным приступом можно заметить бледность лица, наличие холодного пота и непроизвольных сокращений отдельных мышц мимической мускулатуры. Стадия предвестников продолжается от нескольких минут до получаса и более. Длительность этого периода зависит от величины давления кислорода, индивидуальной чувствительности человека к гипероксии и его функционального состояния. Чем больше давление кислорода, тем короче эта стадия. На ЭЭГ отмечаются увеличение доли периодических составляющих, усиление изоритмичности, сужение спектра частот и повышение интенсивности низких частот (Зальцман Г.Л. и соавт., 1973; Селивра А.И., 1974).

Судорожная стадия характеризуется потерей сознания и внезапным наступлением судорог по типу классической эпилепсии. Судорожный припадок происходит на фоне синдрома судорожной готовности предыдущей стадии и сопровождается тахикардией, гипервентиляцией и другими признаками расстройств вегетативных систем организма. Судорожные подергивания обычно начинаются с активно функционирующих мышечных групп. Первый приступ судорог носит клонический характер и продолжается 1--2 мин. Затем наступает пауза, после которой появляется новый приступ судорог. При продолжающемся действии кислорода приступы судорог становятся более продолжительными, а промежутки покоя -- более короткими. Клонические судороги переходят в тонические, и наступает опистотонус. Прекращение очередного судорожного припадка происходит так же внезапно, как и его начало. В межсудорожные периоды могут появиться частое и глубокое дыхание, обильное слюноотделение, рвотные движения и рвота, выпячивание глазных яблок, расширение или сужение зрачков, брадикардия, усиленная перистальтика кишечника, непроизвольные дефекация и мочеиспускание. Повторные судорожные припадки могут возникать как во время дыхания кислородом, так и в период декомпрессии, а иногда в течение первых часов или даже суток после перехода на дыхание воздухом под атмосферным давлением (Жиронкин А.Г., 1972). Электрофизиологически судорожная стадия характеризуется глобальной генерализацией судорожной активности (пики, комплексы пик-волны и др.), охватывающей все отделы мозга. В основе этой генерализации лежит явление местной и дистанционной синхронизации биопотенциалов мозга (Зальцман Г.Л. и соавт., 1979).

Для третьей (терминальной) стадии судорожной формы кислородного отравления характерно ослабление судорожной реакции и появление расстройств дыхания в виде прогрессирующего замедления и удлинения вдоха вследствие спазма мускулатуры бронхов, после чего наступает остановка дыхания. Если в стадии кислородных судорог пострадавшего водолаза переключить на дыхание вместо кислорода воздухом или газовой смесью с низким парциальным давлением кислорода, то у него может быть еще 1 -2 приступа судорог, после чего он погружается в глубокий сон, который продолжается от 40 до 90 мин.

Отдельные исследователи (Гусинский З.С., Юнкин И.П., 1980; Лотовин А.П., Сапов И.А., 1986) выделяют еще одну, начальную (компенсаторную), стадию, которая предшествует стадии предвестников. Для начальной стадии характерно развитие многочисленных, главным образом приспособительных, реакций на кислород на всех уровнях. Вследствие этого в рамках начальной стадии поддерживается гомеостаз основных физиологических функций и сохраняется работоспособность организма. Электрофизиологические исследования в этот период (Селивра А.И., 1974) показали волнообразный характер изменений биоэлектрической активности всех отделов мозга: периодическое уменьшение интенсивности низкочастотных и повышение высокочастотных составляющих, расширение частотного спектра и снижение связи между биопотенциалами различных структур мозга.

Иногда водолаз, поднятый на поверхность вследствие отравления кислородом, находится в состоянии обморока или сильного нервного возбуждения. Он не может спокойно лежать или сидеть, стремится вырваться из рук людей, оказывающих ему помощь, вступает с ними в драку, а затем постепенно успокаивается и засыпает.

Следует заметить, что наличие в дыхательной газовой смеси повышенного содержания углекислого газа, а также тяжелая работа, переохлаждение и перегревание приводят к сокращению сроков наступления судорожной формы отравления кислородом.

При легочной форме отравления кислородом начальные признаки характеризуются ощущением загрудинных болей, усиливающихся при глубоком дыхании, и появлением сухого кашля. Наряду с этим отмечаются спазм периферических сосудов и онемение кончиков пальцев рук и ног, носа. В дальнейшем постепенно развивается воспалительный процесс в легких. Он сопровождается явлениями гипоксии, которые возникают в результате отека легких и выключения их в той или иной степени из участия в нормальном цикле газообмена. Появляются также инфекционные осложнения первичного «асептического» поражения легких. При выраженном отеке легких переход пострадавшего в среду с нормальным парциальным давлением кислорода может привести к развитию острого кислородного голодания.

Взаимосвязь возникновения различных субъективных проявлений при легочной форме отравления кислородом и изменения жизненной емкости легких представлена на рисунке.

Основной причиной гибели является развитие острой дыхательной недостаточности, которая обусловлена тяжелым отеком легких, приводящим к существенному снижению в них газообмена.

Острая форма поражения легких характеризуется последовательным развитием экссудативных, пролиферативных и фибринозных изменений. При первично-хронической форме патологический процесс с самого начала носит пролиферативный характер: легочные капилляры переполняются кровью, альвеолы и просвет бронхов заполняет геморрагический экссудат, определяется перерождение альвеолярного эпителия и альвеолярных мембран, отмечаются гипертрофия и гиперплазия легочного эпителия, утолщение и гиалинизация стенок кровеносных сосудов.

При длительном воздействии гипероксии наряду с экссудативными и пролиферативными изменениями могут развиться уплотнение и опеченение легочной ткани, а также инфекционное осложнение первичного асептического поражения участков легочной ткани -- пневмония.

Для сосудистой формы отравления кислородом характерно то, что при парциальном давлении кислорода 1,0--2,5 кгс/см2 симптомы развиваются постепенно и проявляются в основном понижением кожной чувствительности и онемением кончиков пальцев. При давлении более 2,5 кгс/см2 могут появиться мелькание в глазах, снижение остроты зрения и сужение полей зрения, головная боль, головокружение, звон в ушах, мелькание в глазах, затрудненное дыхание, общая слабость и резкое падение артериального давления, в результате чего может наступить потеря сознания. При объективном обследовании можно отметить побледнение или, напротив, гиперемию кожных покровов, кровоизлияния в кожу и слизистые. Возможны кровоизлияния во внутренние органы. При указанных величинах парциального давления кислорода и экспозиции 2,5--3 ч возможно также сочетание легочной и сосудистой форм отравления, проявляющихся в разной степени.

При парциальном давлении 5 кгс/см2 и более развивается молниеносное отравление, при котором без предвестников наступают внезапная потеря сознания и смерть.

Оказание помощи и лечение. При появлении первых признаков отравления кислородом в период выполнения работы под водой водолазу дается команда немедленно прекратить работу и приступить к подъему на поверхность. Если водолаз не может самостоятельно подняться на поверхность (потеря сознания), то его следует немедленно поднимать за сигнальный конец (в необходимых случаях с участием страхующего водолаза), переключить на дыхание атмосферным воздухом и освободить от снаряжения. Дальнейшие лечебные мероприятия проводятся в зависимости от состояния пострадавшего.

...

Подобные документы

  • Характеристика особенностей придаточных пазух носа. Описания синусита, воспаления пазух носа, возникающего как осложнение при инфекционных заболеваниях. Классификация синуситов по форме и течению. Переход воспалительного процесса на костные стенки пазухи.

    презентация [242,3 K], добавлен 11.10.2013

  • Боли в области носа. Распространение отека и гиперемии на щеку и нижнее веко. Конусовидный инфильтрат, покрытый гиперемированной кожей. Проведение рентгенографии придаточных пазух носа. Эндомикроскопия носа и околоносовых пазух. Лечение фурункула носа.

    история болезни [14,1 K], добавлен 08.04.2013

  • Изучение анатомии и физиологии ЛОР-органов как дистантных анализаторов. Анатомия уха, носа, глотки, гортани. Физиология носа и придаточных пазух, слухового и вестибулярного анализатора. Дыхательная, защитная и голосообразовательная функции гортани.

    реферат [28,1 K], добавлен 29.01.2010

  • Характеристика наиболее распространенных видов травм наружного носа. Травмы кожного покрова носа: ушибы, кровоподтеки, ссадины, ранения. Диагностика и неотложная помощь при травмах носа. Лечение перелома костей носа и травм носового хряща (перегородки).

    реферат [18,8 K], добавлен 13.05.2013

  • Общая слабость и ухудшение самочувствия. Обильные слизисто-гнойные выделения из носа и заложенность носа. Дополнительные методы обследования при остром гнойном полисинусите. Промывание придаточных пазух носа. Применение антибактериальных средств.

    история болезни [27,6 K], добавлен 07.11.2013

  • Анатомия и физиология полости носа и околоносовых пазух. Классификация синуситов в зависимости от локализации воспалительного процесса. Применение компьютерной томографии контрастной синусографии с целью диагностики болезни. Показания к госпитализации.

    презентация [5,0 M], добавлен 24.01.2016

  • Эпидемиология новообразований носа и околоносовых пазух. Анатомия полости носа, придаточные пазухи носа и их связи. Классификация новообразований по типу опухоли и гистологическому строению. Определение ювенальной назофарингеальной ангифибромы.

    презентация [16,4 M], добавлен 26.04.2023

  • Гайморит как воспаление придаточных пазух носа. Этиология и клиническая картина заболевания. Основные симптомы при осмотре больного. Диагностика гайморита, информация на рентгенограмме. Описание различных видов гайморита. Лечение и методы профилактики.

    презентация [687,9 K], добавлен 16.03.2016

  • Понятие наркоза, его виды и основные стадии. Основные фармакокинетические и фармакодинамические характеристики средств для ингаляционного наркоза. Механизмы действия анестезии. Способы введения данного вида препаратов, их влияние на организм человека.

    реферат [404,2 K], добавлен 02.12.2012

  • Этиология и патогенез нагноительных заболеваний легких. Клинико-диагностические и дифференциально-диагностические критерии. Бронхоэктатическая болезнь: понятие, фазы, осложнения. Инструментальная и дифференциальная диагностика заболеваний легких.

    презентация [553,2 K], добавлен 22.12.2013

  • Сосуды полости носа. Основные пути симпатической иннервации слизистой оболочки носа. Функции носовой полости. Аномалии развития носа. Рефлекторные неврозы и их лечение. Характеристика основных повреждений носа, лечение. Деформации наружных отделов носа.

    реферат [14,9 K], добавлен 30.05.2010

  • Определение верхней, нижней и боковой границы области носа человека. Изучение строения наружного носа: мышцы, кровоснабжение и венозной лимфоток. Стенки полости носа, система околоносовых пазух. Общее описание процесса иннервации наружной стенки носа.

    презентация [3,3 M], добавлен 24.02.2016

  • Общие сведения о летучих ядах, их характеристика, методы определения и механизмы действия. Помощь при отравлении оксидом углерода (угарным газом). Симптомы отравления, диагностика. Осложнения интоксикации СО. Лечение больных с миоренальным синдромом.

    курсовая работа [42,3 K], добавлен 27.01.2010

  • Разрыв легочной ткани с последующим поступлением альвеолярной газовой смеси в кровеносную систему. Баротравма легких в результате воздействия подводной взрывной волны. Церебральная форма барогипертензии в водолазной практике. Обжатие грудной клетки.

    курсовая работа [73,9 K], добавлен 03.08.2013

  • Порядок и принципы проведения осмотра полости носа, требования к используемому оборудованию и материалам, освещению помещения. Строение полости носа и его основные элементы. Клиническая картина и типы фурункулеза носа, его лечение. Травмы лобных пазух.

    презентация [2,2 M], добавлен 21.12.2015

  • Возрастные особенности строения и топографии носа и околоносовых пазух, глотки, гортани и уха. Развитие возрастных особенностей полости носа и гортани. Кровоснабжение наружного носа. Особенность венозного оттока и строения околоносовых пазух у детей.

    презентация [2,7 M], добавлен 16.04.2015

  • Заболевания наружного носа. Лечение переломов костей, фурункула, фарингита и опухоли. Острый и хронический синусит, риносинусит, атрофический и гипертрофический ринит. Инородные тела околоносовых пазух и глотки. Паратонзиллярный и заглоточный абсцесс.

    презентация [35,9 K], добавлен 08.10.2014

  • Неорганические, металлические, органические, живые инородные тела носа. Краткая характеристика основных симптомов. Воспалительные изменения в придаточных пазухах носа. Особенности диагностики. Неотложная помощь при попадании инородного тела в нос.

    презентация [4,4 M], добавлен 22.03.2017

  • Теории происхождения атрезий. Врожденные Пороки и аномалии развития наружного носа и его полости по классификации Б.В. Шеврыгина. Распространенность и клиническая характеристика дистопии, аномалий околоносовых пазух. Расщелина мягкого и твердого неба.

    презентация [285,4 K], добавлен 03.03.2016

  • Причины декомпрессионной болезни, ее признаки и формы. Сущность и режим лечебной рекомпрессии. Основные мероприятия по предупреждению декомпрессионной болезни при глубоководных погружениях. Основные типы газовых смесей с различным содержанием кислорода.

    презентация [1,0 M], добавлен 16.03.2015

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.