Совершенствование экспрессных методов индикации микобактерий туберкулеза

Анализ эпидемиологической обстановки по туберкулезу и современного состояния диагностики его возбудителя. Конструирование магнитоуправляемых иммуносорбентов для экспресс-диагностики микобактерий туберкулеза и обоснование ценности данной разработки.

Рубрика Медицина
Вид диссертация
Язык русский
Дата добавления 15.01.2015
Размер файла 1,9 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Открытие генетических механизмов развития лекарственной устойчивости к противотуберкулёзным препаратам позволило разработать и внедрить в практику методы ПЦР, позволяющие определять вид мутаций, которые обуславливают снижение чувствительности к противотуберкулёзным препаратам (Рекомендации для национальных программ ВОЗ, 1978; Севастьянова Э.В., Ларионова Е.Е., 1999; Черноусова Л.Н., Ларионова Е.Е., Денисова Т.С. с соавт., 2000; Ларионова Е.Е., Кузьмин А.В., 2001; Тунгусова О.С., Марьяндышев А.О., 2003; Small P., van Embden J.D.A., 1994;WHO Geneva, 1998).

Использование ПЦР позволяет быстро (за 8-27 часов) выявить МТБ как при туберкулёзе органов дыхания, так и при внелёгочных формах (туберкулёзный менингит, туберкулёз кожи, кишечника и др.), в том числе у больных СПИДом. При высокой чувствительности метода (10-1000 клеток в пробе) имеется возможность выявлять штаммы M. tuberculosis с множественной лекарственной устойчивостью. Методом ПЦР можно также контролировать эффективность лечения больных туберкулёзом. При использовании нескольких образцов исследуемого материала от каждого пациента специфичность ПЦР достигает - 99,8-100 % при высокой чувствительности (Воробьёв А. А., Кривошеин Ю.С., Широбоков В.П., 2003). Быстрота выполнения, возможность прямой детекции атипичных и некультивируемых форм микробов, высокая чувствительность метода указывают на перспективность ПЦР для детекции различных микроорганизмов (Куличенко А. Н. с соавт., 1996; Гинзбург А.Л., 1998; Вишневская Е.Б. с соавт., 2001; Самсонова С.А. с соавт. 2002; Ruiz-Bravo A., Jimemez- Valera M., , 1996; Burt F.J. et al, 1998; Eremenko E.I. et al., 1999; Tcherneva E. et al., 2000; Bricker B.J. et al., 2000). Генетические методы позволили повысить оперативность и информативность исследова-ний (Бударина Н.А. с соавт., 2002; Drosten C., Gottig S., Schilling S. et al. 2002). W.Tan, N.Xia, Y. Cong (1998) для выявления низкой концентрации патогена разработали гнездовую ПЦР в одной пробирке, тем самым, исключая контаминацию исследуемой пробы.

И. В. Раковская с соавт. (2002) использовали оригинальную схему ПЦР-анализа, которая даёт возможность обнаружить персистирующие микоплазмозы, не выявляемые рутинными методами, что весьма актуально для эффективной диагностики хронических форм инфекции.

Чувствительность ПЦР составляет величину порядка 100-1000 м.к./мл. (Куличенко А.Н., Попов Ю.А., Наумов А.В., 1995) и имеет преимущества над другими реакциями (Кулаков Ю. К. с соавт, 1992), но стоимость этого анализа пробы на порядок выше, чем при применении серологических методов, что существенно при проведении массовых анализов, в том числе мониторинговых. Недостатками ПЦР, кроме дорогостоящего оборудования и реагентов, являются ложноположительные результаты, выявляемые при обнаружении некоторых микобактерий из-за содержащихся в пробах веществ, ингибирующих реакции и обуславливающих ложные результаты (Ford E.G., Snead S.J., Todd J., 1993; Butler W.R., O'Connor S.P., Yakrus M.A. et al., 1994; Somoskоvi A., Hotaling J.E., Fitzgerrald M., 2000). Хотя определение последовательности ДНК микроорганизмов- один из самых точных молекулярных методов, но он очень трудоёмок для клинических лабораторий.

Применение магноиммуносорбентов на предварительном этапе подготовки проб к проведению ПЦР позволило осуществить концентрирование антигена в пробах с низкой концентрацией микробов, очистить пробы от посторонней микрофлоры и других агентов, мешающих постановке ПЦР, использовать метод кипячения для выделения ДНК, исключив метод лизиса бактерий гуанидинтиоцианатом с нуклеосорбцией, одновременно достигая стерилизации исследуемого материала, что упрощает анализ и сокращает время обнаружения возбудителя (Жилченко Е.Б., ЕфременкоВ.И., 2002).

Изучение возможности создания оптимального алгоритма для диагностики туберкулёза по методу вегетативного резонансного теста (ВРТ) "ИМЕДИС-ТЕСТ" с использованием аппарата "МИНИ-ЭКСПЕРТ-ПК" и специально разработанных кассет для тестирования в экспериментальной работе, в клинической и практической медицине представлено в работе П.Ф. Шешукова, Ю.В. Готовского (2002). Метод основан на записи нозодов в потенциях D3-D200 лиофилизированных штаммов микобактерий туберкулёза и 12 основных антибактериальных препаратов, применяемых в фтизиатрии. Из 107 обследованных методом ВРТ у 90 были выявлены типичные и у 17 пациентов атипичные микобактерии, а также проведено определение поражённых органов, стадии процесса, устойчивости МБТ к антибактериальным препаратам. В работе П.Ф. Шешукова, Ю.В. Готовского (2002) представлена сравнительная характеристика различных методов диагностики туберкулёза по чувствительности, специфичности, времени детекции и установлено, что ВРТ превосходит остальные методы по всем показателям.

Для обнаружения возбудителей различных инфекционных заболеваний широко применяются методы с использованием антител (антигенов), меченных ферментами - иммуноферментный анализ (ИФА), принципы и особенности которого описаны во многих работах: (Нго Т. Т., Ленхофф Г. М, 1988; Яковлев А.Т., 1992; Подоляко М.П. с соавт., 1995; Engvall E., Perlmann P., 1971; Van Weemen B.K., Schuurs A.N., 1972; Guesdon J.L., Avrameas S., 1981; Sting R., Ortmann G., 2000 и т.д.).

Метод ИФА заключается в том, что на нерастворимую основу иммобилизуют антитела (антигены), вносят испытуемый материал, и образовавшийся комплекс антиген-антитело выявляют с помощью конъюгата антител (антигена) с ферментом, активность которого регистрируют по изменению цвета субстрата фотометрически (Гаврилова Е.М., Дзантиев Б.В., Егоров А.М., 1980; Ficapal A. et al., 1995).

Ферментами - маркерами, используемыми в ИФА, могут быть щелочная фосфатаза, галактозидаза, глюкооксидаза, глюкоамилаза, пенициллиназа, но чаще применяют пероксидазу (Harding N., 1982).

Для приготовления иммуноферментных коньюгатов обычно используют перйодатный, глутаральдегидный методы (Умнова Н.С. с соавт., 1986; Nakane P.K., Kawaoi A., 1974; O'Sullivan M.J., Marks V., 1981), иногда применяют малеимидный метод (Kato K. et al., 1975; Weston P.D., Devries G.A., Wriggleworth R., 1980), но наиболее перспективным считается перйодатный метод конъюгации иммуноглобулина с ферментом (Anaokar S., Garry P.J., Standefer J.C., 1979).

Чувствительность и специфичность ИФА обусловлена не только степенью чистоты и активности используемых ингредиентов, но и свойствами твёрдой фазы, которая должна сохранять иммунохимические свойства и стабильность фиксированных веществ, обладать минимальной способностью неспецифически связывать компоненты анализируемой системы и быть удобной при разделении фаз (Щедрин В.И., Сбойчинов В.Б., Волков В.И, 1994; Дмитриев Г.А., Киселёва Т.А., 1997). В качестве твердой фазы используется поливинил, дакрил и другие синтетические полимеры, из которых изготавливают пробирки (Bushway R.J. et al., 1992) и микропланшеты из оптически прозрачного полистирола (Voller A. еt al., 1976). Микропланшеты обладают не одинаковыми сорбционными свойствами, что существенно влияет на достоверность и воспроизводимость полученных результатов (Сухоруков А.М., Пономарёва А.М., 1987; Шаханина К.Л., Соколенко А.А., Павлова И. П., 1987). Количество антител (антигенов), используемое для образования иммунного комплекса, ограничено возможностями твёрдой фазы (Ометов В. К. с соавт., 1997). Недостаточная концентрация антител (антигенов) ограничивает чувствительность ИФА. Качество адсорбции фиксируемых на твёрдой фазе веществ зависит от температуры, рН, ионной силы, времени инкубации. Процесс сорбции обратим и, следовательно, сенсибилизированные планшеты, полученные сорбционным путём, не подлежат длительному хранению (срок хранения 20 дней на холоде при герметизации) (Калинина О. А., Емельянова И.В., Локтионова М.А., 1997).

Е. В. Гучетль, Л. П. Пономарёва (2002) представили опыт определения противотуберкулёзных антител у больных урогинекологического отделения в иммуноферментном анализе и показали, что применение указанного теста в комплексе с клинико-лабораторным обследованием больных позволяет с высокой степенью достоверности диагностировать туберкулёз гениталий у женщин (88,5 %).

Известно применение магнитных частиц (Ефременко В.И., Климова И.М., Трофимов Е.Н., 1989; Тюменцева И.С., 1996), магнитных бус (Camargo Z., Guesdon J.L., Drouhet E., 1984.) в качестве твёрдой фазы при постановке различных иммунобиологических реакций.

В ряде работ (Климова И.М. с соавт., 1986; Ефременко В.И., Тюменцева И.С., 1995; Ефременко В.И. с соавт., 1996; Жарникова И.В., 2005) представлены данные об использовании магнитных сорбентов (МС) в тест-системе ИФА. Установлены оптимальные параметры анализа: зависимость адсорбирующей способности МС от его содержания в пробе, динамика адсорбции антигена при инкубации его с твёрдофазным носителем. Результаты исследований показали, что чувствительность метода в случае обнаружения бактериальных клеток составляла 10 -10 м.к./мл.

Известны работы О.В. Борисенко с соавт. (2001) по разработке и применению магнитоуправляемых диагностикумов в иммуноферментном анализе при выявлении возбудителя туберкулёза. Данные разработки актуальны, но имеют недостатки, связанные с использованием в качестве лигандов неадсорбированных сывороток, что приводит к неспецифической реакции.

Таким образом, ИФА является экспрессным, чувствительным, перспективным методом для диагностики возбудителей инфекционных заболеваний. Учитывая недостатки ИФА, необходимо вести поиск новых методов сохранения активности сорбированных лигандов и инертных носителей, на поверхности которых протекают все процессы реакции ИФА.

Анализ достоинств и недостатков методов экспресс-диагностики позволил приступить к разработке эффективных диагностических препаратов, выявляющих возбудителя туберкулёза у больных и в объектах внешней среды, обладающих надёжностью, информативностью при высокой их специфической активности.

1.3 НОСИТЕЛИ ИММОБИЛИЗОВАННЫХ СИСТЕМ ТВЕРДОФАЗНОГО ИММУНОАНАЛИЗА

Развитие и использование твёрдофазных методов анализа предъявляет высокие требования к качеству иммуносорбентов. Согласно гипотезе В. Б. Алесковского (1976), любое твердое тело имеет остов и облегающие его атомы и группы атомов. С химической точки зрения, остов- ненасыщенное высокомолекулярное образование, представляющее собой макрорадикал, вокруг которого расположены функциональные группы высокомолекулярного соединения. Именно наличие этих групп определяет возможность использования поверхностных реакций для синтеза новых твердых веществ. Иммобилизация на твёрдых носителях различных биомолекул приводит к значительному повышению их термической устойчивости и стабильности (Абелян В. А., Африкян Э.Г., 1992; Масько А. А. c шавт., 1992).

В качестве сорбентов широко используются агарозные матрицы, активированные BrCN (Lowe C.R., Dean D.G., 1974.). Однако, наряду со всеми положительными сторонами данной матрицы, следует отметить недостаточную стабильность связи между лигандом и BrCN- активированной агарозой (Turkova J., 1978), низкую механическую стабильность сорбентов, что ограничивает возможности их практического использования.

В качестве природных твёрдофазных носителей используют целлюлозу, крахмал, агарозу (Аленкина Т.В., Данилина И.В., 2002) и т.д. Известны исследования по использованию в качестве матрицы сорбентов полисахарида

- хитина (Бендекене В.Г. с соавт., 1981); биосорбентов, состоящих из фрак-ции молочных белков - казеина, который обладает термостабильностью, способностью связывать воду, коагулировать, желировать; микрокристаллической целлюлозы, являющейся неионогенным, гидрофильным полисахаридом (Кунижев С.М. c шавт., 2002); полиакриламидного геля, обладающего химической стабильностью и инертностью, прозрачностью, лабильностью структуры, устойчивостью к изменениям рН и температуры, нерастворимостью в большинстве растворителей (Гавенский С. Д. с соавт., 1990, 1991; Гавенский С.Д., Пушкарь В.Г., 1995; Подзолкова Г.Г. с соавт., 1988). Но данные препараты имеют недостатки, связанные с длительностью, многостадийностью их получения и использованием дорогостоящих импортных реактивов (Тюменцева И.С., 1996). В настоящее время широко применяются сорбенты на основе кремнезёма (Киселёв А.В., Кустова Т.Л., 1976; Хохлова Т.Д., Гаркавенко Л.Г., Никитин Ю.С., 1991; Брыкалов А.В., 1991; Темишевская Л.Я., 1995; Taylor D., 1972; Marshall K., Ridgewee N., Simpson J.,1974; Snyder L.R., Kirkland J.J., 1979). Это связано с тем, что их матрица по своей геометрической структуре и химическим свойствам хорошо подходит для адсорбции биополимеров.

В настоящее время созданы различные иммобилизованные структуры: биоаффинные адсорбенты (Гайда А.В., Староверов С.М., 1989; Лисичкин Г.В., 1989; Гонтарь И.П. с соавт., 1996); иммобилизованные ферменты (Брыкалов А.В. с соавт, 1982; Брыкалов А.В.,1993; Коваленко Г.А. с соавт., 2002); иммобилизованные лекарственные средства (Брыкалов А.В., Кобанкова А.Н., 2002; Герстунбергер М.Р. с соавт, 2002; Кунижев С.М., Аполохова С.Ф., 2002). В практической деятельности человека находят применение иммоби-лизованные клетки и антитела (Кузовлева А.А., Шаханина К.Л., 1982; Гавенский С. Д. с соавт., 1991; Ефременко В.И., 1997; Лавриненко И.А., Костров-ский В.Г., 1997; Кислицын Ю.В., Мешандин А.Г., 2001; Lea T. et al., 1985; Cunliffe D. et al., 2000). При постановке иммуноанализов (Kriz K., Gerhrke J.,

Kriz D., 1998; Yu H., 1998; Tanaka T., Matsunaga T., 2001; Richardson J. et al., 2001); культивировании микроорганизмов (Владимцева И.В., 2002; Hornung M., Ludwic M, Schmauder H.P., 2002) в ряде случаев также применяют различные иммобилизованные системы.

В качестве твёрдофазных носителей широкое распространение получили кремнезёмы. Реакционную способность их можно существенно повысить, обрабатывая поверхность различными неорганическими и металлоорганиче-скими соединениями (Рогожина С.В., Варламов В.П., Вальковский Д.Г., 1975; Алесковский В.В., Юффа А.Я., 1989; Ходж Ф., 1989; Ходж Ф., 1989; Березин В.Б., Лахтин В.М., Ямсков И.А., 1995; Chim C., Wold F., 1974; Weetall H.H., Detor C.C., 1975), путём молекулярного наслаивания (Алесковский В.В., Юффа А.Я., 1989), либо подвергая механическому воздействию (растирание, дробление в среде модификатора) или облучению (у и УФ). Метод химического модифицирования кремнезёмов с целью получения функциональных органокремнезёмов хорошо изучен и позволяет получать сорбенты с требуемыми свойствами. Им присущи гидрофильность, жесткость остова, химическая (Постнова А.М., Пак В.Н., Кольцов С.И., 1981) и микро-биологическая устойчивость, каталитическая активность (Кольцов С.И., Але-сковский В. Б., 1973), ненабухаемость в растворах, значительная адсорбционная емкость, отсутствие токсичности. Поверхность кремнеземных сорбентов содержит большое число силанольных (SiOH) и силоксановых групп (Si-O-Si) (Черкасов А.Н., Пасечник В.А., 1991).

Носители, обладающие магнитными свойствами и предназначенные для фиксации на них биополимеров, имеют значительные преимущества по сравнению с немагнитными. При их использовании не требуется предварительного концентрирования исследуемых проб с отделением выявляемых микроорганизмов от контаминирующей микрофлоры и других примесей, возможность проведения индикации на качественно более высоком уровне. В результате использования магносорбентов, способных осуществлять на себе селективное концентрирование микроорганизмов, появляется возможность исследования проб с высокой степенью загрязненности, неограниченных объемов, с низкой концентрацией микроорганизмов при высокой чувствительности и специфичности метода исследования (Ефременко В.И., 1997; Weimer B.C. et al., 2001).

В качестве магнитных материалов в МС обычно используются окислы металлов Fe, Ni, Co (Пушкарь В.Г. с соавт., 1984), порошки этих окислов заключаются в микросферы, плёнки полимеров, гранулы. А.М. Тишин, Ю.И. Спичкин (2004) предлагают использовать магнитный сорбент, состоящий из гидрофобного полимерного связывающего компонента, состоящего из моче-вино-формальдегидной смеси с порофором и отвердителем, алюмосиликат-ного магнитного наполнителя и минерального масла. Г. Д. Елистратов, М. И. Волчанова, И.В. Малыгин с соавт. (2004) предлагают способ получения сорбента из измельчённого углеродсодержащего сырья, представляющего собой древесные частицы или отходы переработки однолетних растений.

Специалисты Литовского института химии и химической технологии установили возможность иммобилизации трипсина на магнитном хитине. Сравнительное изучение свойств нативного и магнитного производных хитина показало, что "намагничивание" матрицы способствовало уменьшению набухаемости, сохранению адсорбционных свойств и упрощению процесса выделения и регенерации иммобилизованных препаратов трипсина в результате применения внешнего магнитного поля (Бендикене В. Г. с соавт., 1995).

В связи с этим, МИС находят все большее применение в диагностике и обнаружении возбудителей различных заболеваний (Тюменцева И.С., Ефременко В.И., Афанасьев Е.Н. с соавт., 1995; Ефременко В.И., 1997; Жарникова И.В., 2004), а также при конструировании специфических сорбентов, используемых при лечении некоторых заболеваний (Гонтарь И.П. с соавт., 1998; Базиков И.А., 2000).

Расширение областей применения магнитных носителей, с одной стороны, способствует более детальному их изучению, с другой - предопределяет увеличение числа всевозможных методов их получения и конструирование на их основе новых диагностических препаратов для детекции возбудителей инфекционных заболеваний, обладающих высокой специфичностью и чувствительностью.

Способность отдельных фосфолипидов формировать в водной среде при встряхивании «пузырьки жира», представляющие собой жидкокристаллическую мембрану, в полости которой и снаружи находится водная фаза, впервые была описана в 1965 году А.Бенхемом с соавторами. Эти «пузырьки», напоминающие под электронным микроскопом клетки, получили в дальнейшем название липосомы (бислойные липидные везикулы).

К настоящему времени разработаны несколько десятков методов получения липосом с включением в их внутренний объем или структуру мембраны различных по природе и физико-химическим параметрам веществ, обеспечивающих при необходимости высокий процент их иммобилизации, а также эффективные способы отделения липосом от несвязавшихся компонентов, методы их стерилизации и стабилизации, позволяющие сохранять целостность мембран липидных везикул относительно длительное время в различных реакционных средах и биологических системах. При этом, гидрофильные вещества фиксируются во внутренний объем липидных везикул, а гидрофобные - в их мембрану.

Возрастающий интерес к липосомам обусловлен совокупностью их физико-химических и биологических свойств. Их химическая инертность, универсальность, отсутствие токсичных, антигенных свойств, доступность сырья, простота включения лигандов и т.д. открывают возможности получения диагностических препаратов нового поколения с сохранением физико-химических и иммунологических свойств включаемых в липосомы веществ.

В качестве маркера, включаемого во внутренний объём бислойных липидных везикул, используют красители, флуорохромы, ферменты, радиоактивные вещества, углеводы и т.д., которые регистрируют соответствующим методом по мере появления их в анализируемой смеси после выхода из липосом (Власова Г.С., Салов В.Ф., Торчилин В.П. с соавт., 1982; Закревский В.И., Подзолков В.В., Мельников В.А., 1983; Закревский В.И., 1985; Остро М. Д., 1987; Сюнамото Дзюдзо, Акиёси Кадзунари, Сато Тосинори, 1989; Владимцева И.В., Плеханова Н.Г., Смирнова В.И. с соавт., 1990; Ревенко Л. Г., Ротов К.А., Васильев В.П. с соавт., 1990; Ротов К.А., Климова И.М., Васильев В.П. с соавт., 1992; Литчфилд У.Д., Фрейтаг Д.У., 1998; Ефременко В.И.,1999; McDougall I.R., Dunnick J.K., McNamee M.G. et al., 1974; Leserman L.D.et al., 1984; Sunamato J. et al., 1987; Flechtner M.D. et al., 1990).

Иммобилизованный в липосомы материал оказывается защищённым липидной мембранной от действия неблагоприятных факторов внешней среды, благодаря чему увеличивается срок его годности арголис Л.Б., Бергельсон Л.Д., 1986; Mарголис Л.Б., 1987; Liposomes, 1980; Liposomes, 1988).

При этом в липосомы возможно включение маркёров, которые в своей молекуле не содержат функциональные группы, необходимые для ковалентного присоединения к различным биополимерам, что зачастую является обязательным при использовании других диагностических методов исследования. Благодаря этому чрезвычайно расширяется круг используемых маркёров, включаемых в липосомальные диагностические препараты. Высокая же чувствительность липосомальных диагностических систем достигается тем, что в липидные везикулы удаётся фиксировать значительное количество маркёра.

Способность липосом с иммобилизованным на их поверхности одним из фрагментов реакции «антиген-антитело» специфически фиксировать недостающий компонент и в присутствии сывороточного комплемента, подобно некоторым клеткам микроорганизма, нарушать целостность своей мембраны с высвобождением заключённого во внутренний объём везикул маркёра используется при разработке высокочувствительных диагностических методов комплемент-зависимого иммунного лизиса липосом. Данная реакция позволяет обнаруживать в исследуемых объектах специфические гаптены, антигены, антитела или комплемент.

Реакция на основе иммуноанализа липосом (LILA-liposome immune lysis assay), получившая название липосомальный анализ (ЛИА), может осуществляться как в прямом, так и в конкурентном вариантах. По простоте регистрации и возможности автоматизации она не уступает традиционным методам, а по чувствительности и быстроте ответа превосходит обычные радиоиммунный и иммуноферментный анализы (Ясуда Такудзи, 1986; Литчфилд У.Д., Фрейтаг Д.У., 1998; Сюнамото Дзюдзо, Акиёси Кадзунари, Сато Тоси-нори, 1989; Ефременко В.И.,1999; Vistnes A.I., 1984; Connor J. et al., 1985; Monrroe D., 1986 a; 1986 б; Jou Yi-Her et al., 1990).

В ряде случаев маркёры иммобилизируют на поверхности мембраны липосом. Иммобилизация ингредиентов иммунологической реакции (антигенов и антител) с липидной мембранной липосом представляет определённую трудность в связи с её гидрофобной природой. Описаны различные методы ковалентного связывания белковых молекул с наружной поверхностью липосомальной мембраны: посредством глутарового альдегида, перйодата натрия, галактозидазы (Chua M.M. et al., 1987; Yu B.S. et al., 1987). Образующиеся альдегидные группы связывали с поверхностью липосом посредством предварительно введённых гидразидных групп. Такой способ позволяет связывать до 60 % добавленного в реакцию модифицированного белка (Владимцева И.В., 2002).

Иммобилизация рецепторных молекул гидрофобной природы, например, ганглиозидов, не представляется методически трудной, поскольку включение осуществляется путём совместного озвучивания в процессе приготовления липосом (Moss J., Fishman P.H.,Richards R.L. et al.,1976 Masserini M., Sonnino S., Giuliani A., Tettamanti G. et al., 1984; Umeda M., Kanda S., Nojina S. et al., 1984).

В качестве твёрдой фазы при проведении липосомального иммуноанализа используют наносимые на твёрдую поверхность мазки из зева, содержащие Р-гемолитический стрептококк группы А (Gerber M.A. et al., 1990), а также пластиковые пробирки, полимерные микроплаты, диски нитроцеллюлозной бумаги, стеклянные бусы, покрытые различными специфическими иммуноглобулинами.

Дополнительные преимущества данный метод приобретает при использовании твёрдофазных магнитных сорбентов, позволяющих легко сепарировать компоненты реакционной системы в магнитном поле и эффективно регистрировать анализируемые вещества. С помощью данного метода выявляют различные микроорганизмы и их антигены. В этом случае на магнитные сорбенты вначале фиксируют исследуемый материал за счёт специфической реакции «антиген-антитело», а затем липосомы. Освобождение маркёра, включённого в бислойные липидные везикулы, с последующей его количественной регистрацией осуществляют в присутствии органических растворителей, поверхностно-активных и других веществ, воздействием повышенной температуры, приводящих к лизису липидных мембран, после того, как не-связавшиеся с твёрдой фазой компоненты реакции удаляются, а липосомы за счёт специфических реакций остаются фиксированными на твёрдой поверхности (Ефременко В.И., 1999).

К. А. Ротовым с соавт. (1992) продемонстрирован метод обнаружения чумного микроба с использованием магнитных полиакриламидных гранул и радиоактивной метки, включённой в липосомы, на поверхности которых фиксировали иммуноглобулины. Метод позволил выявлять возбудитель чумы в концентрации 10 м.к./мл и 10 пг/мл фракции I чумного микроба.

И. В. Владимцевой (2002) разработаны биотехнологические аспекты конструирования диагностических тест-систем на основе МИС и люминесцируюших липосом, позволяющих выявлять 0,6+0,014 мкг чумных иммуноглобулинов и 15 нг/мл холерного энтеротоксина.

Из проведённого анализа литературных данных следует, что в настоящее время используется небольшое количество экспресс-методов, позволяющих выявлять микобактерии туберкулёза. Для достоверной диагностики туберкулёза рекомендовано проводить комплексное обследование больных с использованием нескольких методов, так как ни один из существующих анализов не может подтвердить диагноз во всех случаях болезни. Многие реакции громоздкие и сложные, а методы их постановки малорезультативны. В связи с этим продолжается поиск универсальных методов выявления туберкулезных антигенов и антител, замена существующих рутинных тестов на современные, высокоэффективные способы.

ГЛАВА 2. МАТЕРИАЛЫ И МЕТОДЫ

2.1 ШТАММЫ МИКРООРГАНИЗМОВ, ВЗЯТЫЕ В РАБОТУ

В работе использованы штаммы микроорганизмов, характеристики которых представлены в таблице 1.

2.2 ПИТАТЕЛЬНЫЕ СРЕДЫ, УСЛОВИЯ КУЛЬТИВИРОВАНИЯ МИКРООРГАНИЗМОВ

Выращивание туберкулёзных и близкородственных микобактерий M. tuberculosis humanus, M. eovis, M. аушгп, M. Kansasii, М. intracellulare проводили при температуре в течение 30 дней на яичной среде Лёвенштайна-Йенсена. Выращивание гетерологичных культур Nocardia brasiliensis проводили при температуре 37 0С в течение 3 дней на мясопептонном агаре; Brucella melitensis, Brucella abortus и Brucella suis - при температуре в течение 3 дней на печёночном агаре, Salmonella typhi - при температуре 37 0С в течение 2 дней на среде Эндо; Streptococcus, Staphylococcus - на кровяном агаре при температуре 37 0С в течение 2 дней; Listeria monocytogenes - при температуре 37 0С в течение 3 дней на глюко-глицериновой среде.

Штаммы микобактерий туберкулёза, полученные из ГИСК им. Л. А. Тарасевича, засевали на среду Лёвенштайна-Йенсена и выращивали при температуре 37 0С в течение 1 месяца, контролируя посевы каждые 10 дней (визуальный контроль и микроскопия c окраской по методу Циля-Нильсена и флуорохромом - аурамином). Из биохимических тестов применяли ниациновую пробу Конно (по методике, описанной в работе Воробьёва А.А., Кривошеина Ю.С., Широбокова В.П., (2003), основанную на способности МТБ в отличие от других микобактерий индуцировать ниацин). Для посева в широкие пробирки использовали культуру, смытую 0,9 % раствором хлорида натрия, которую инкубировали в течение 1 месяца при температуре смывали 0,9 % раствором натрия хлорида и обеззараживали холодным (минус 20 0 С) ацетоном. У МТБ отсутствует наружная мембрана, как у Грам «+» бактерий.

Основными структурными компонентами клеточной стенки туберкулёзных микобактерий являются пептидогликан, полимер N-ацетилглюкозамин и N -ацетилмурамовая кислота. ЛПС представлены арабиногалактаном. Миколовая кислота играет важную роль в кислотоустойчивости бактерий, определяя первую линию защиты от неблагоприятных условий (Heifets L.B, Jenkins P.A. 1998).

2.3 ОБЪЕКТЫ ИССЛЕДОВАНИЯ

Для работы использовался материал (моча и мокрота) от больных туберкулёзом лёгких, почек, мужских половых органов, глаз, предоставленный сотрудниками Краевого клинического противотуберкулёзного диспансера (ККПТД).

2.4 ПОЛУЧЕНИЕ АНТИГЕННЫХ КОМПЛЕКСОВ МИКРООРГАНИЗМОВ

Водорастворимые антигены изолировали комплексным методом: водно-солевой экстракцией и дезинтеграцией микроорганизмов (Афанасьев Е.Н., Таран И.Ф., Тюменцева И.С., 1986; Василенко Н.Ф. с соавт., 1988). Экстракцию проводили 2,5 % раствором NaCl. Дезинтегрирование осуществляли разрушением под высоким давлением в Х-прессе (Швеция) и ультразвуковым методом на аппарате УЗДН - 2Т (Россия) при частоте колебаний 22 и 44 кГц в течение 20 мин при температуре 0-4 0С. О степени разрушения микробных клеток судили по изменению оптической плотности, которую регистрировали фотоэлектро-колориметрически (ФЭК-4, зеленый светофильтр) по количеству белка в надо-садочных жидкостях, полученных центрифугированием при 20000 g в течение 30 мин, и микроскопически.

2.5 ЛАБОРАТОРНЫЕ ЖИВОТНЫЕ, ИСПОЛЬЗОВАННЫЕ В ЭКСПЕРИМЕНТАХ

В опытах были использованы:

1. 34 кролика обоего пола породы «Шиншилла», массой 3-3,5 кг;

2. 30 беспородных белых мышей, массой 18-20 г;

3. 15 морских свинок, массой 250-300 г;

Кроликов, мышей получали из питомника Ставропольского научно-исследовательского противочумного института и после карантинизации использовали в опытах. В процессе содержания животных поддерживали рекомендуемый режим питания согласно приказу МЗ РФ № 1179 (М.,1983).

Все процедуры на экспериментальных животных проводили согласно рекомендациям В.В. Карпенко, В.И. Сачков (1985).

2.6 МЕТОДЫ ИММУНИЗАЦИИ ЖИВОТНЫХ

Иммунизацию проводили по схеме, разработанной И.С.Тюменцевой (1994) и Е. Н. Афанасьева (2000). В качестве иммуномодуляторов использовали ферак-рил, тималин, циклофосфан.

2.7 МЕТОДЫ КОНТРОЛЯ АНТИГЕНОВ И СЫВОРОТОК

Постановку реакции радиальной иммунодиффузии проводили по О.Оух-терлони (1949) на предметных стёклах или в чашках Петри в 1% агаровом геле.

Анализ антигенного состава туберкулёзного микроба проводили согласно методикам, описанным в книге Г. Фримеля (1987).

Контроль титра специфических антител в сыворотках определяли в НРИФ по T.H.Weller, A.H.Coons (1954). Микроскопию препаратов осуществляли в падающем отраженном свете в люминесцентном микроскопе серии "Люмам", используя соответствующие фильтры согласно инструкции по эксплуатации прибора. За положительный результат принимали яркую (4+,3+) флуоресценцию периферии микробных клеток.

2.8 ВЫДЕЛЕНИЕ ИММУНОГЛОБУЛИНОВ

Для осаждения иммуноглобулинов применяли сульфатный метод (Русанов В.М., Скобелев Л.И., 1980), метод фракционирования белковых смесей с использованием высоко-молекулярного, незаряженного, линейного полимера -полиэтиленгликоля (ПЭГ-6000) по A.Polson и др. (1964), а также каприловой кислоты (Steibuch G., Andran R., 1969).

2.9 ПОЛУЧЕНИЕ И КОНТРОЛЬ ИММУНОФЛУОРЕСЦИРУЮЩИХ КОНЪЮГАТОВ

Конъюгацию иммуноглобулинов, фракционированных каприловой кислотой (Steibuch G., Andran R., 1969), с ФИТЦ (C2iH„NO5S) фирмы «Sigma» проводили по Х.Шторц (Stortz, 1987). Прямой метод окраски препаратов осуществляли по A.H.Coons, M.H. Kaplan (1950).

2.10 ПОЛУЧЕНИЕ И КОНТРОЛЬ ЛИПОСОМ

Фосфолипиды, из которых конструировали липосомы, выделяли из мозга к.р.с. и свиней путём экстракции смесью хлороформ-этанол в соотношении 2:1. После фильтрации раствора фосфолипиды осаждали добавлением 1,5-2,0 объёмов ацетона. Состав липидов определяли по методике, описанной в книге М. Кейтс (1975) с помощью тонкослойной хроматографии на пластинах «Силу-фол». Формирование липосом и определение их размеров контролировали на электронном микроскопе Hol (Япония) JEM - 100SX.

2.11 ПОЛУЧЕНИЕ И КОНТРОЛЬ ИММУНОФЕРМЕНТНЫХ КОНЪЮГАТОВ

Иммунопероксидазные конъюгаты получали методом перйодатного окисления по F.KNakane, А.^'^^и (1974) в модификации Е.А.Ткаченко с соавт. (1982).

Рабочий титр и специфическую активность конъюгатов определяли по методике M.Clark и A. Adams (1977) в "сэндвич"-варианте ИФА.

2.12 ФИЗИКО-ХИМИЧЕСКИЕ МЕТОДЫ

Количественное определение белка проводили по методу O.Warburg и W.Christian (1941) сравнением спектра поглощения белков при длине волн 280 и 260 нм на спектрофотометре СФ-46 (Практическая химия белка, 1989).

Спектр поглощения микробных антигенов определяли на спектрофото-метре «Specord» (ГДР) при длине волн X 210-300 нм.

Очистку конъюгатов от непрореагировавшего флуорохрома осуществляли методом восходящей хроматографии на бумаге (Носков Ф.С., 1985).

Определение растворимости, цветности, прозрачности проводили визуально в соответствии с методикой, описанной в ГФ СССР, Х! изд.,т.1,стр.194,195 и МУК 4.4/1.2.588-96,с.118.

Контроль потери в массе при высушивании проводили в соответствии с методикой, описанной в МУК 4.1/4.2.588-96, с.116.

Микроструктуру поверхности магносорбентов (МС) определяли по методу, описанному в работе Д.Фрайфелдера (1980). Удельная поверхность МС определялась по методу А.А.Клячко-Гурвича (1961), основанному на низкотемпературной адсорбции азота. Суммарный объем и радиус пор МС определен по методу Н. В. Кельцева (1984).

2.13 ИММУНОХИМИЧЕСКИЕ МЕТОДЫ АНАЛИЗА

Анализ антигенного состава микроорганизмов и качества полученных иммунных сывороток проводили в реакции иммунодиффузии в 1 % агаровом геле (Difco, USA) по O. Ouchterlony (1949).

Очистку иммунопероксидазных конъюгатов от несвязавшихся иммуноглобулинов и фермента проводили на хроматографической колонке фирмы LKB, используя сефадекс G-100.

Для иммуноэлектрофореза использовали 1 % агар Дифко на веронал-мединаловом буфере, рН 8,6, ионная сила 0,05. Для проведения электрофореза использовали комплектную систему для горизонтального электрофореза «Мультифор» LKB. Электрофорез проводили в течение 100-120 мин и напряженности электрического поля 6 вт/см2.

2.14 ЛИОФИЛИЗАЦИЯ БИОЛОГИЧЕСКОГО МАТЕРИАЛА

Лиофилизацию препаратов проводили в камере LZ-9c (Чехословакия). Готовые препараты разливали в ампулы, замораживали в низкотемпературном столе LZ-28О/75 при температуре минус (45 ± 5) 0С не менее 18 ч и высушивали в сушильной камере под вакуумом.

2.15 ХАРАКТЕРИСТИКА РЕАГЕНТОВ, ИСПОЛЬЗУЕМЫХ ДЛЯ ПОЛУЧЕНИЯ МАГНОИММУНОСОРБЕНТОВ

В качестве основной матрицы при конструировании МС использовали алюмосиликат (ТУ 6-09-01-356-76), представляющий собой тонкодисперсный продукт, содержащий в своем составе двуокись кремния, алюминия (насыпная плотность - 320 кг/м ; влажность при температуре 110 С (массовая доля) - 3,5 %; содержание SiO2 - 85-90 %; содержание Cl в пересчёте на NaQ- 0,2 %, со-держание SO3 -0,6 %).

Модификаторами сорбентов являлись декстран (полиглюкин)-полисахарид, состоящий из остатков глюкозы, соединенных 1,6-гликозид-гликозными связями. Молекулярная масса декстрана 0,5х10 9. В работе использован препарат декстрана, выпускаемый комбинатом медпрепаратов "Красноярск"; магнитный порошок-III окись железа ГОСТ 4173-77 ч.д.а. с содержанием основного вещества 98,7 %; натрий перхлорат- ТУ 6-09-3582-74 с содержанием основного вещества 98,0 %, вторичный алкилсульфат натрия - ТУ 38-10719-77.

2.16. МЕТОДЫ МАТЕМАТИЧЕСКОЙ И СТАТИСТИЧЕСКОЙ ОБРАБОТКИ МАТЕРИАЛОВ

Для подтверждения воспроизводимости и достоверности результатов, полученных при исследовании, применяли статистические методы (Тамбовцев Е.П., Ахметкалиев С.Г., Пятницкий Н.П., 1969; Скуч Д., Уэст Д., 1979).

Математическую обработку результатов экспериментов проводили на компьютере (программа EXCEL). Расчет значения средней квадратичной ошибки отдельного измерения (S), выборочной дисперсии (S ), вероятного квадратичного среднеарифметического отклонения (Е 0,95), проводили по формулам:

ГЛАВА 3. ПОЛУЧЕНИЕ ВЫСОКОАКТИВНОГО СПЕЦИФИЧЕСКОГО БИОЛОГИЧЕСКОГО СЫРЬЯ (АНТИГЕНОВ И АНТИТЕЛ) ДЛЯ КОНСТРУИРОВАНИЯ ДИАГНОСТИЧЕСКИХ ПРЕПАРАТОВ

3.1 ПОЛУЧЕНИЕ АНТИГЕННЫХ КОМПЛЕКСОВ МИКОБАКТЕРИЙ ТУБЕРКУЛЁЗА

Для получения качественных иммунных сывороток, применяемых при производстве туберкулёзных диагностических препаратов, необходимы ак-тивные антигенные комплексы, используемые при иммунизации. Характер-ным для МТБ является наличие большого количества липидов в цитоплазме. Липиды микобактерий подразделяются на свободные и гликолипиды. Проч-но связанные липиды обуславливают кислотоустойчивость микобактерий, при удалении их из клетки микобактерии теряют возможность вызывать ги-перчувствительность замедленного типа и резистентность к туберкулёзу (Ги-затулина Н.М., 1996). Миколовые кислоты микобактерий характеризуются содержанием значительно большего числа атомов углерода в цепи (С6о-9о), чем у нокардий (С32-60), и при пиролизе освобождают жирные кислоты с числом атомов С22-26. Установлено, что вирулентные виды микобактерий содержат значительное количество фтиеновых кислот и воска фтиоцеролдимико-церозата, что не характерно для нокардоподобных бактерий. Только у мико-бактерий обнаружен необычный тип липополисахарида, состоящий из Д-глюкозы, 6-о- метилглюкозы и 3-о-метилглюкозы. На содержание и структуру тех или иных химических компонентов в клетках могут оказывать влияние состав питательной среды, на которой выращивается микроорганизм, и температура его культивирования. Известны данные о том, что содержание фосфолипидов зависит от возраста и условий культивирования МТБ, от ме-тодов, используемых для их обнаружения (Андреев Л.В., 1997).

Нами проведены исследования по подбору эффективных способов извлечения специфических антигенов из бактериальных масс МТБ, обладающих необходимыми физико-химическими и иммунологическими свойствами. Для этого использовали штаммы, представленные в таблице 1.

Водорастворимые туберкулёзные антигены изолировали комплексным методом: последовательно водно-солевой экстракцией, механической и ультразвуковой дезинтеграцией. О степени разрушения микробных клеток судили по изменению оптической плотности, которую регистрировали фотоэлектроколориметрически и по количеству белка в надосадочных жидкостях, полученных центрифугированием при 20000 g в течение 30 мин, а также микроскопически с помощью биологического микроскопа.

Кроме водно-солевой экстракции нами использован дополнительно ме-тод дезинтеграции в связи с тем, что в основе широко используемых физиче-ских методов дезинтеграции лежит механизм высокоградиентных течений жидкости. Под воздействием ультразвуковых волн наступает разрушение клеток микробов, а изменения в структуре химических веществ, находящихся в них, происходят гораздо медленнее, что обеспечивает возможность получения различных активных комплексов, близких к нативным. Технология получения водорастворимых антигенов:

I стадия. Экстрагирование раствором хлорида натрия и фракционирование сернокислым аммонием.

Бакмассы микобактерий, обеззараженные и высушенные ацетоном, экстрагировали в 5-10 объёмах 2,5 % раствора хлорида натрия. После цен-трифугирования при 20 000 g в течение 30 мин супернатант отделяли от осадка. Для фракционирования антигенов в супернатант добавляли сульфат аммония до 80 % насыщения и перемешивали на магнитной мешалке в тече-ние 30 мин. Полученный раствор оставляли на 16-18 часов при 4 0С для формирования осадка, после чего смесь центрифугировали при 20 000 g в течение 30 мин, супернатант удаляли, а осадок растворяли в 0,9 % растворе хлорида натрия рН 7,2 в соотношении 1:1 и проводили диализ против водо-проводной, а затем дистиллированной воды до отсутствия ионов NH2+, опре-деляемых реактивом Несслера. II стадия. Механическая дезинтеграция

Осадок, полученный после центрифугирования бактериальной массы и взвешенный в 0,9 % растворе хлорида натрия рН 7,2 в соотношении 1:1, в объеме 30 мл помещали в камеру Х-пресс дезинтегратора, предварительно охлажденного в течение 2 часов при температуре минус 40 0C. Микробные клетки в дезинтеграторе замораживали при той же температуре в течение 8 часов. После этого проводили разрушение клеток на гидравлическом прессе, четырехкратно продавливая бакмассу через калиброванное отверстие па-трона дезинтегратора. Далее биомассу размораживали и центрифугировали при 20 000 g в течение 30 минут.

III стадия. Ультразвуковая дезинтеграция Осадок, полученный после предыдущей стадии, суспендировали в 0,9 % растворе хлорида натрия рН 7,2 в соотношении 1:1, добавляли детергент твин-80 до конечной концентрации 0,1 % для улучшения солюбилиза-ции белковых компонентов структур рибосом и мембран клеточных элементов. Твин-80 снижает поверхностное натяжение бактериальной стенки, ограничивает её способность противостоять внутриклеточному давлению, что облегчает разрыв стенки с выходом клеточного содержимого в раствор. Полученную суспензию микробных клеток в объеме 30 мл помещали в дезинтегратор УЗДН-2Т. Используя ультразвуковые колебания различной частоты (22 и 44 кГц), интенсивности и варьируя длительностью воздействия на микобактерии (от 5 до 30 мин) при температуре 0-4 0С, мы получили разный эффект: от слабо выраженных изменений до полного разрушения микробных клеток. Следует учитывать, что при жёстких режимах ультразвукового воздействия в ультраозвученной водной среде вследствие возникновения в кавитационных областях электрического напряжения образуются продукты расщепления ионизированных молекул воды- свободные гидроксильные ра-дикалы и атомарный кислород. Эти продукты инициируют деградацию неко-торых биологически активных веществ. В результате было установлено, что наиболее эффективными параметрами являются: время воздействия 20 мин при частоте 22 кГц.

На заключительном этапе приготовления антигенного комплекса все полученные антигенные фракции микобактерий туберкулёза смешивали (рисунок 1).

Выход отдельных антигенов туберкулёзного микроба из 100 мг бак-массы и их специфическая активность представлены в таблице 2. Качество полученных антигенов контролировали измерением концентрации белка на спектрофотометре СФ-26 при длинах волн 260 и 280 нм, в реакции преципитации в геле по О. Оухтерлони с туберкулёзной сывороткой, полученной нами (СтавНИПЧИ).

Как видно из таблицы 2, полученные из МТБ различными методами препараты содержали антигены, выявляемые в РИД.

Использование данного метода позволяет получать наиболее полный антигенный комплекс из бакмасс микобактерий туберкулёза с сохранением активности, снизить потери на стадиях выделения. Активность полученных антигенов в РИД с туберкулёзной иммунной сывороткой составляла 1:321:64 (рисунок 2).

В дальнейшем водорастворимый туберкулёзный антиген использовали для иммунизации животных и в качестве положительного контроля при конструировании диагностических тест-систем.

Таким образом, нами подобран эффективный комплекс последовательных манипуляций, позволяющий изолировать в достаточном количестве полноценные антигенные фракции МТБ при сохранении их нативности.

Известные из данных литературы другие методы получения из МТБ антигенного материала путём ацетоновой и спиртовой экстракции не позволяют получить высокоактивный антигенный комплекс (Драбкина Р. Д. 1963).

3.2 ПОЛУЧЕНИЕ СПЕЦИФИЧЕСКОЙ ТУБЕРКУЛЁЗНОЙ СЫВОРОТКИ

Для получения туберкулёзных иммунных сывороток нами апробированы различные схемы иммунизации, которые отличались количеством и способом, кратностью вводимого антигена, а также адъювантами и иммуно-корректорами (полный адъювант Фрейнда, феракрил, тималин, циклофос-фан).

Общими недостатками схем иммунизации с применением адъювантов являются трудность создания стойкой эмульсии «вода в масле», длительность цикла иммунизации, травматичность для животных, связанная с возникновением у них адъювантной болезни.

Как показали результаты опытов, для получения гипериммунных туберкулёзных сывороток, наиболее приемлемой оказалась схема И.С.Тюменцевой (1994) с использованием феракрила в сочетании с комплексом антиген-антитело (Аг-Ат), который инъецировали животным на определённом этапе: грундиммунизация включала пять последовательных парентеральных введений смеси туберкулёзного антигена с 3 % водно-спиртовым раствором феракрила с интервалами в 3-7 дней. Через 30 суток после последней инъекции антигена у животных брали из краевой вены уха кровь и получали не менее 4 мл иммунной сыворотки, в которую добавляли антиген с целью получения комплекса Аг-Ат. Основной цикл иммунизации состоял из четырёх внутривенных инъекций комплекса Аг-Ат через каждые 3-4 дня тому же животному, от которого была получена иммунная сыворотка. Специфические титры антител в этих сыворотках достигали в РИД - 1:32 - 1:64, что вполне удовлетворяло требованиям оценки сырья для дальнейшего получения различных диагностических препаратов.

При получении туберкулёзных агглютинирующих сывороток оптимальной оказалась схема Е.Н. Афанасьева (2000), в которой использованы вещества с иммунотропной активностью (тималин и циклофосфан). Анти-генный материал пятикратно вводили внутривенно, одновременно внутримышечно инъецировали тималин, в третью инъекцию дополнительно вводили внутримышечно циклофосфан. Агглютинирующие сыворотки, полученные таким способом, с успехом были использованы при конструировании МИБП.

Из литературных данных следует, что возбудитель туберкулёза даёт перекрёстные серологические реакции с Nocardia, Brucella, Listeria и некоторыми нетуберкулёзными микобактериями. В связи с этим, идентификация МТБ и дифференциация с нетуберкулёзными микобактериями крайне важна для практического здравоохранения и проведения подходящей антибактериальной терапии. Для этого необходимо получить специфические туберкулёзные диагностические препараты, качество которых зависит от специфичности антител. Как правило, сыворотки, полученные иммунизацией животных, недостаточно специфичны, поэтому необходима сорбция антител, дающих перекрестные реакции с гетерологичными антигенами. Для этих целей наилучшим способом является использование аффинного сорбента, который представляет собой гетерологичные антигены, закреплённые на твёрдой матрице. Очистка сыворотки происходит за счёт биоспецифического взаимодействия между антигенами, закрепленными на матрице, и антителами, подлежащими удалению.

Известны методы сорбции сывороток путём внесения в неё корпускулярных гетерологичных антигенов (Карпов С.П. с соавт, 1976; Смирнов В.В. с соавт, 1980) и использование полиакриламидного антигенного аффинного сорбента (Лопаткин О.Н., Кронгауз И.В., 1983). В первом случае сорбция корпускулярными антигенами существенно понижает специфические титры антител, зачастую приводя к полной непригодности сырья из-за появления в нём экстрагируемого из бактериальных клеток материала. Во втором же случае, при приготовлении полиакриламидных сорбентов, используются высокотоксичные импортные реактивы, а специфическая ёмкость сорбента оказывается невысокой. В связи с этим мы поставили перед собой задачу получить и испытать аффинный сорбент из экологически чистых компонентов, упростить и ускорить все этапы сорбции при максимальной очистке сыворотки от гетерологичных антител.

Проведен контроль специфичности туберкулёзных сывороток на штаммах особо опасных инфекций, нетуберкулёзных микобактерий и но-кардий. Так, например, на долю Mycobacterium intracellulare приходится около 90% микобактериозов лёгких (заболевания, сходные по клинической картине с туберкулёзом). Лечение при микобактериозах и туберкулёзе различается, что объясняется природной устойчивостью условно-патогенных мико-бактерий к основным средствам противотуберкулёзной терапии. Данные виды являются близкородственными по отношению к M.tuberculosis. Nocardia brasiliensis - патогенный представитель рода Nocardia, семейства Nocardi-aceae, порядка Actinomycetales, общего с M.tuberculosis. В литературе встре-чаются данные о наличии у него общих антигенных детерминант с МТБ. Известно серологическое сходство полисахаридов Brucella и возбудителя туберкулёза, хотя по соотношению и набору моносахаридов и физико-химическим свойствам эти полисахариды весьма различны (Домарадский И.В., 1994).

При контроле специфичности в НРИФ установлено, что наблюдаются перекрёстные реакции с Brucella abortus, M. Kansasii Yoss, Nocardia brasiliensis, M. intracellulare. Из данных культур получали бакмассы, выделяли водорастворимые антигены по описанной схеме и использовали в качестве лиган-дов при получении аффинных сорбентов.

При конструировании аффинного сорбента мы исходили из того, что необходимо выбрать матрицу, обладающую химической и микробиологической устойчивостью, жёсткостью, высокой специфической адсорбционной способностью, найти способ щадящего и вместе с тем надёжного (ковалентного) закрепления на ней соответствующих лигандов.

Для этих целей нами применен аффинный сорбент с магнитными свойствами, где в качестве твердой фазы выступает кремнезем-алюмосиликат, который является мелкодисперсным наполнителем, представляющим собой комплексные анионы алюминия и кремния с избыточным отрицательным зарядом, компенсированным щелочноземельными металлами. Носитель обладает повышенными адгезионными свойствами по сравнению с полиакрила-мидом и силохромами. Кроме того, алюминирование кремнезёма существенно увеличивает адсорбционную активность в отношении белков (Хохлова Т.Д., Гаркавенко Л.Г., Никитин Ю.С., 1991).

Процесс получения сорбента заключался в следующем: к 1 г алюмоси-ликатного наполнителя добавляли 40 мл 3 % водного раствора полиглю-кина и магнитный порошок (Fe2O3) от 1 до 5 г, перемешивали и проводили гелеобразование при температуре (22±4) оС от 1 до 24 ч. Полученный сорбент высушивали при 100-110 0С в течение 30 мин, измельчали и методом рассева выделяли фракции с размером частиц 80- 120 мкм.

Процесс получения сорбента состоял из следующих стадий: образование золя, переход его в гидрогель и обезвоживание, приводящее к получению ксерогеля. В золе мицеллы вещества свободно двигаются по законам броуновского движения. Сольватные оболочки мицелл, а так же поверхностный заряд препятствуют их слиянию, образованию прочных связей при столкновении и обеспечивают устойчивость золя. При повышении температуры происходит потеря гидратной оболочки мицелл, они связываются между собой силами сцепления в жёсткий каркас. Частицы укрупняются, контакты срастаются, что приводит к упрочнению скелета геля и уменьшению дисперсности частиц, в результате чего образуется ксерогель.

Удельную поверхность МС определяли по методу А.А.Клячко-Гурвича (1961), а суммарный объем и радиус пор - по методу Н.В.Кельцева (1984).

Для оптимизации структурных характеристик магносорбентов проведены исследования по варьированию состава компонентов синтеза (декстран, Fe2O3, алюмосиликат), а также изучение влияния времени гелеобразования и рН среды на величину удельной поверхности сорбентов, объем и размер пор. Увеличение продолжительности времени гелеобразования при синтезе МС приводит к увеличению значений удельной поверхности и уменьшению размера пор. Стабилизирующий эффект действия декстрана объясняется образованием вокруг частиц геля сольватных оболочек в связи с возникновением комплексов между электронодонорными атомами кислорода молекул органического вещества и силанольными группами кремнеземных корпускул.

...

Подобные документы

  • Источники возбудителя и классификация микобактерий туберкулеза. Антигенная структура микобактерий. Патогенность и вирулентность различных видов микобактерий. Влияние химических факторов на микобактерии Иммунизирующее свойства микобактерий. Диагностика.

    курсовая работа [67,7 K], добавлен 30.03.2008

  • Анализ особенностей современной эпидемической ситуации по туберкулезу в РФ. Общая характеристика и оценка эффективности основных методов диагностики туберкулеза. Основы проведения организационных работ по осуществлению противотуберкулезных мероприятий.

    реферат [46,9 K], добавлен 07.11.2010

  • Классификация культивируемых микобактерий. Микробиологическая диагностика туберкулеза. Окраска микобактерий туберкулеза по Цилю-Нильсену, посев культуры на среде Левенштейна-Йенсена. Эпидемиологическая ситуация и динамика заболеваемости туберкулезом.

    презентация [2,9 M], добавлен 23.02.2014

  • Особенности строения и функционирования возбудителя туберкулеза. Туберкулез как инфекционное заболевание. Возможные исходы заражения. Методы выявления и подтверждения диагноза туберкулеза. Методы исследования лекарственной чувствительности микобактерий.

    дипломная работа [3,0 M], добавлен 22.06.2012

  • Методы диагностики туберкулеза легких. Роль метода полимеразно-цепной реакции в дифференциальной диагностике различных заболеваний органов дыхания. Молекулярно-генетическое исследование для идентификации видов микобактерий из культурального материала.

    дипломная работа [532,6 K], добавлен 28.05.2013

  • Группа заболеваний, обусловленных внедрением в кожу микобактерий туберкулеза, предрасполагающие факторы риска их развития. Пути проникновения возбудителя в организм. Основные формы и проявления кожного туберкулеза; диагностика, лечение и профилактика.

    презентация [1,7 M], добавлен 01.11.2014

  • Характеристика туберкулеза как инфекционного заболевания, вызываемого микобактерией туберкулеза. Этапы и методики диагностики его развития. Разновидности компьютерной томографии легких. Лабораторные и иммунологические методы диагностики туберкулеза.

    презентация [1,1 M], добавлен 11.05.2014

  • Рассмотрение многообразия клинических проявлений и форм туберкулеза. Этапы диагностики туберкулеза, правила сбора мокроты, рентгенологические проявления туберкулеза органов дыхания. Культуральные и молекулярно-генетические методы выявления возбудителя.

    презентация [933,0 K], добавлен 13.04.2015

  • Эпидемиология и этиология туберкулеза кожи. Факторы, способствующие возникновению туберкулеза кожи. Пути проникновения микобактерий в кожу. Клинические формы туберкулезной волчанки. Дифференциальный диагноз данного заболевания и принципы его лечения.

    презентация [591,5 K], добавлен 20.04.2016

  • Современная диагностика туберкулеза. Принцип работы автоматизированной системы Bactec Mgit 960 для выявления микобактерий туберкулеза и постановки тестов на лекарственную чувствительность к противотуберкулезным препаратам. Материалы и методы исследования.

    дипломная работа [118,6 K], добавлен 19.05.2013

  • Осуществление рутинных методик полимеразно-цепной реакции (ПЦР). ПЦР диагностика туберкулеза легких. Молекулярно-генетическое исследование для идентификации видов микобактерий из культурального материала. ПЦР диагностика внелегочных форм туберкулеза.

    курсовая работа [1,2 M], добавлен 20.05.2013

  • Выявление новых случаев туберкулеза. Методы микробиологической и рентгенологической диагностики туберкулеза. Значение микробиологического метода исследования. Массовые флюорографические осмотры населения. Туберкулинодиагностика - внутрикожная проба Манту.

    презентация [706,1 K], добавлен 17.03.2015

  • Этапы диагностики туберкулеза. Правила сбора мокроты. Рентгенологические методы обследования: рентгеноскопия, рентгенография, флюорография, томография. Проба манту: понятие, отрицательный и сомнительный результат. Ускоренные методы выявления возбудителя.

    презентация [983,7 K], добавлен 23.05.2013

  • Диагностика туберкулеза органов дыхания по протоколу: жалобы, анамнез, физикальное обследование. Основные задачи лабораторной диагностики заболевания. Техника проведения пробы Манту. Схема выявления микобактерий классическими микробиологическими методами.

    презентация [7,4 M], добавлен 09.05.2017

  • Таксономия и пути передачи микобактерий туберкулеза; особенности их распространения в городах. Место и роль организма-разносчика в городских экосистемах. Характеристика основных стадий развития заболевания, описание способов его профилактики и лечения.

    курсовая работа [558,2 K], добавлен 14.11.2011

  • Распространение лекарственно-устойчивых штаммов возбудителя туберкулеза, нарастание полирезистентности. Пути заражения и классификация туберкулеза, клиническая картина и особенности диагностики. Работа медицинской сестры в фтизиатрическом отделении.

    курсовая работа [1,5 M], добавлен 07.03.2013

  • Источники заражения и пути передачи инфекции туберкулеза. Анализ эпидемиологической обстановки в мире и Беларуси. Общая характеристика классификации больных или лиц, подозрительных на туберкулез и находящихся в контакте с больными туберкулезом по ВОЗ.

    реферат [28,0 K], добавлен 15.11.2010

  • Симптомы и предрасполагающие факторы появления туберкулеза. Возбудитель заболевания, клиническая картина течения туберкулеза. Методы диагностики и подготовка к ним. Профилатика и медикаменты, применяемые в ходе лечения болезни. Осложнения туберкулеза.

    курсовая работа [1,0 M], добавлен 21.11.2012

  • Возможности современных методов лучевой диагностики в распознании туберкулеза легких. Трудности в дифференциальной диагностике ТБ, хронических неспецифических заболеваний легких (ХНЗЛ), новообразований, туберкулезных и карциноматозных плевритов.

    реферат [64,3 K], добавлен 04.12.2016

  • Статистика заболеваемости туберкулезом в мире. Характеристика возбудителя заболевания. Отличительные свойства микобактерии туберкулеза, пути заражения. Факторы, способствующие распространению болезни. Основные симптомы туберкулеза, его профилактика.

    презентация [1,6 M], добавлен 15.04.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.