Медицинская микробиология

Таксономические царства микробов и их характеристика. Условные классы вирусов и их характеристики. Понятие о роде, виде, варианте, штамме и клоне. Показатели и виды дисбактериоза. Принципы рациональной химиотерапии. Виды мутационной изменчивости.

Рубрика Медицина
Вид шпаргалка
Язык русский
Дата добавления 15.12.2019
Размер файла 433,0 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Антропонозы (антропонозные инфекции) - группа инфекционных и паразитарных заболеваний, возбудители которых способны паразитировать в естественных условиях только в организме человека.

Источником возбудителей инфекции при антропонозах являются только люди -- больные или носители возбудителей инфекции (или инвазии); при некоторых антропонозах (например, при кори, ветряной оспе) источником возбудителей инфекции является только больной человек.

Зоонозы (зоонозные инфекции) -- группа инфекционных и паразитарных заболеваний, возбудители которых паразитируют в организме определенных видов животных, и для которых животные являются естественным резервуаром.

Источником возбудителей инфекции (или инвазии) для человека является больное животное или животное -- носитель возбудителей.

Для возникновения и развития инфекционного заболевания большое значение имеют:

* инфицирующая доза -- минимальное количество микробных клеток, способных вызвать инфекционное заболевание;

* входные ворота инфекции -- ткани организма, через которые микроорганизм проникает в макроорганизм.

Входные ворота инфекции часто определяют локализацию возбудителя в организме человека, а также патогенетические и клинические особенности инфекционного заболевания.

Для одних микроорганизмов существуют строго определенные входные ворота.

Вирус кори, гриппа - верхние дыхательные пути, энтеробактерии -В желудочно-кишечный тракт.

Для других микроорганизмов входные ворота могут быть различны, и они вызывают разные по своим клиническим проявлениям заболевания.

Стафилококки, стрептококки, протеи при попадании на слизистую верхних дыхательных путей вызывают бронхиты, пневмонии, а при попадании на слизистую оболочку уретры - гнойные уретриты.

С понятием "входные ворота инфекции" очень тесно связано понятие о путях передачи возбудителей инфекционных болезней.

Входные ворота инфекции могут определять клиническую форму заболевания -- один и тот же микроорганизм-возбудитель, попадая в макроорганизм различными путями, вызывает разные клинические формы заболевания, как это имеет место при сибирской язве:

* кожная форма -- вызывается при проникновении микроорганизмов в организм через кожу;

* легочная -- через слизистые оболочки верхних дыхательных путей;

* кишечная -- желудочно-кишечного тракта.

С другой стороны, от пути передачи зависит, какую именно нозологическую форму заболевания может вызвать микроорганизм-возбудитель:

* при попадании воздушно-капельным путем стрептококки вызывают ангину;

* контактно-бытовым -- стрептодермию (гнойно-воспалительное заболевание кожных покровов).

Пути передачи: Воздушно-капельный механизм передачи инфекции -- механизм передачи инфекции, при котором возбудители локализуются в слизистой оболочке дыхательных путей, откуда поступают в воздушную среду (при кашле, чихании и т. п.), пребывают в ней в форме аэрозоля и внедряются в организмчеловека при вдыхании зараженного воздуха.

Контактный механизм передачи инфекции -- механизм передачи инфекции, при котором возбудители локализуются на коже и ее придатках, на слизистой оболочке глаз, полости рта, половых органов, на поверхности ран, поступают с них на поверхность различных предметов и при контакте с ними восприимчивого человека (иногда при непосредственном контакте с источником инфекции) внедряются в его организм.

Трансмиссивный механизм передачи инфекции -- механизм передачи инфекции, при котором возбудитель инфекции находится в кровеносной системе илимфе, передается при укусах специфических и неспецифических переносчиков: укусе кровососущего членистоногого (насекомого или клеща).

Фекально-оральный механизм передачи инфекции -- механизм передачи инфекции, при котором локализация возбудителя инфекции преимущественно вкишечнике определяет его выведение из зараженного организма с испражнениями (фекалиями, мочой) или рвотными массами. Проникновение в восприимчивый организм происходит через рот, главным образом при заглатывании загрязненной воды или пищи, после чего он вновь локализуется в пищеварительном тракте нового организма.[2]

Трансплацентарный путь передачи инфекции -- при котором возбудитель инфекции передается от матери к плоду во время беременности (частный вариант контактного механизма).[2]

Гемоконтактный механизм передачи инфекции -- механизм передачи инфекции обусловленный медицинскими манипуляциями, инъекциями наркотиков, половым сношением (частный вариант контактного механизма).

Патогенность - потенциальная способность микроба вызвать инфекционное заболевание. Передается генетически.

Вирулентность - степень патогенности. Критериям, определяющим вирулентность микроорганизмов, относят:

Инфекционность -- собственно способность заражать макроорганизм.

Способность к колонизации -- свойство заселять очаги первичного инфицирования.

Инвазивность -- способность проникать в ткани, лежащие за пределами входных ворот инфекции, и размножаться в них.

Токсигенность -- способность образовывать ядовитые вещества, вызывающие болезнетворное действие.

Способность к персистированию -- свойство длительно циркулировать либо сохраняться в определённом очаге, что обусловлено способностью долгое время противодействовать влиянию защитных факторов макроорганизма.

Измеряется в условных единицах:

За единицу измерения вирулентности принята летальная доза (DL. от лат. dosis letalis) наименьшее количество патогенных микроорганизмов или токсина, способное вызвать гибель определённого количества лабораторных животных. На практике примет ют несколько производных от величин DL.

DLM - наименьшее количество микробов, вызывающее в определенный срок гибел 80% лабораторных животных.

DCL (dosis certe letalis) --абсолютная летальная доза - количество микробов или токсина, вызывающее гибель 100% лабораторных животных.

LD50 -- количество патогенных микроорганизмов, способное вызывать гибель 50% экспериментально заражённых лабораторных животных. Применяют также величины LD?0, LD75, LD90 и т.д.

Инфицирующая доза (ID [от англ. infectious dose]) -- минимальное количество патогенны микроорганизмов, способное вызвать развитие заболевания у определённого количества лабораторных животных. По аналогии с летальным эффектом определяют ID100, ID50 и т.д.

Патогенетические факторы микробов. Патогенетическая роль капсулообразования у бактерий, адгезивные свойства и значение их в вирулентности бактерий. Стадии патогенеза инфекционного заболевания. Способы распространения микробов в организме человека. Периоды инфекционного процесса: инкубационный, продромальный, клинических проявлений, реконвалесценции

К основным факторам патогенности (вирулентности) относят способность микроорганизма к колонизации, их устойчивость к разным микробицидным факторам организма, свойства инвазивности и токсигенности, а также способность к длительному персистированию.

Размножению бактерий в первичном очаге инфицирования предшествует адгезия [от лат. ad-haesio, прикрепляться к чему-либо], то есть закрепление бактерий на поверхности клетки, что, собственно, и служит началом инфекционного процесса. Прикрепление к поверхности клеток (например, к эпителию слизистых оболочек) обеспечивают адгезины, или факторы колонизации -- различные микробные продукты -- молекулы адгезии (белки, ЛПС, липотейхоевые кислоты). Молекулы адгезии могут располагаться непосредственно на поверхности бактериальной клетки либо входить в состав микроворсинок или капсул. Взаимодействие инфекционного агента с эпителиальными клетками происходит в результате нескольких типов связей, различных по природе и специфичности. Выделяют связи, основанные на взаимодействии электростатических сил, обусловленные гидрофобными свойствами поверхности, лиганд-рецепторные взаимодействия.

Заряд. Бактериальные и эукариотические клетки заряжены отрицательно, но поверхностные микроворсинки грамотрицательных бактерий снижают заряд бактерий и уменьшают электростатические силы отталкивания.

Гидрофобность. Бескапсульные бактерии обладают высокой гидрофобностью, усиливающей адгезивность; гидрофобные участки обладают сродством к лигандам на поверхности эукариотических клеток, что и приводит к прочности связи.

Специфические взаимодействия. На поверхности бактерий имеются молекулы, способные к стереоспецифичному связыванию с комплементарными молекулами на мембранах эукариотических клеток (например, гемагглютинины или тейхоевые кислоты).

Другие механизмы колонизации. Некоторые бактерии способны «заранее подготавливать» место для дальнейшего размножения; например, нейраминидаза облегчает проникновение холерного вибриона через слой слизи и контакт с сиалосодержащими рецепторами эпителия кишечника. Микроорганизмы также способны сорбироваться на бактериях, уже колонизировавших поверхность слизистых оболочек, либо связывать белки (например, фибронектин), рецепторы к которому имеются на многих клетках макроорганизма. У капсулированных бактерий в прикреплении активно участвуют полисахариды капсулы.

Для успешной колонизации очага первичного инфицирования бактерии должны выдержать I действие многочисленных и разнообразных микробицидных факторов хозяина. Для защиты от них микроорганизмы активно используют ряд структур (например, капсулы) и синтезируемых I веществ (например, ферменты).

Капсула (или её менее выраженный аналог -- слизистый слой) ингибирует начальные этапы защитных реакций -- распознавание и поглощение.

Капсулы «экранируют» бактериальные структуры, активирующие систему комплемента, а также структуры, распознаваемые иммунокомпетентными клетками. Например, слой капсульного вещества защищает тейхоевые кислоты стафилококков от связывания опсонинами.

Гидрофильность капсул затрудняет их поглощение фагоцитами, а само капсульное вещество защищает бактерию от действия лизосомальных ферментов и токсичных оксидантов, выделяемых фагоцитирующими клетками.

Большое значение имеет лёгкая отделяемость капсул или слизистого слоя от поверхности бактерий. В частности, при поглощении капсулированных бактерий (например, синегнойной палочки), последние легко «снимают с себя» капсулы и избегают прямого контакта с фагоцитом.

Инфекционный процесс -- это одна из наиболее динамичных форм взаимодействия между микробами и макроорганизмом, сложившаяся в ходе эволюции. Процесс протекает с постоянной сменой причинно-следственных взаимоотношений. Условно его можно разделить на несколько стадий.

Первая стадия -- проникновение микробов в макроорганизм. Пусковым моментом инфекционного процесса является внедрение и адаптация микробов (от позднелат. adaptatio-- приспособление) в месте входных ворот инфекции -- заражение (инфицирование), а также адгезия (прилипание) микробов к клеткам макроорганизма. Входные ворота -- это ткани и органы, через которые микробы попадают в организм. В большинстве случаев микробы проникают в макроорганизм через поврежденные кожные покровы и проницаемые для микробов неповрежденные слизистые оболочки.

Второй стадией является колонизация (от лат. поселение) -- горизонтальное заселение кожных покровов и слизистых оболочек в месте входных ворот инфекции. При инфекционном процессе распространение микробов происходит не только горизонтально, по поверхности клеток, но и в глубину клеток и тканей макроорганизма. Способность микробов проникать внутрь клеток макроорганизма называется пенетрацией. При этом происходит размножение микробов и образование новых поколений возбудителя при наличии благоприятных условий, а также высвобождение продуктов метаболизма микробов, их ферментов и токсинов и, кроме того, образование токсических продуктов распада клеток макроорганизма, которые оказывают местное или отдаленное повреждающее воздействие на ткани и органы.

Третья стадия -- диссеминация (от лат. disseminare -- рассеивать, распространять), т. е. распространение микробов за пределы первичного очага внедрения и колонизации микробов лимфо-гематогенным путем, бронхогенно или периневрально, по ходу нервных стволов, что ведет к генерализации инфекционного процесса (генерализация -- это переход от общего к частному, распространение по всему макроорганизму).

Четвертая стадия -- мобилизация защитных факторов макроорганизма. В ответ на проникновение микробов и их болезнетворное воздействие макроорганизм мобилизует все присущие ему первоначально неспецифические, а затем специфические факторы защиты, действие которых направлено на нейтрализацию как самих микробов, так и их токсинов и на восстановление нарушенного гомеостаза в макроорганизме.

Пятая стадия -- окончание и исходы инфекционного процесса. В большинстве случаев наступает санация макроорганизма (от англ. sanative-- целебный, оздоровляющий), т.е. полное освобождение макроорганизма от микроба и приобретение им нового качества -- формирование иммунитета. В ряде случаев инфекционный процесс заканчивается летальным исходом. В тех случаях, когда между микробом и макроорганизмом устанавливается равновесие, происходит формирование микробоносительства.

Периоды инфекционного процесса

Инкубационный период [от лат. incubatio, лежать, спать где-либо]. Обычно между проникновением инфекционного агента в организм и проявлением клинических признаков существует определённый для каждой болезни промежуток времени -- инкубационный период, характерный только для экзогенных инфекций. В этот период возбудитель размножается, происходит накопление как возбудителя, так и выделяемых им токсинов до определённой пороговой величины, за которой организм начинает отвечать клинически выраженными реакциями. Продолжительность инкубационного периода может варьировать от часов и суток до нескольких лет.

Продромальный период [от греч. prodromes, бегущий впереди, предшествующий). Как правило, первоначальные клинические проявления не несут каких-либо патогномоничных [от греч. pathos, болезнь, + gnomon, показатель, знак] для конкретной инфекции признаков. Обычны слабость, головная боль, чувство разбитости. Этот этап инфекционной болезни называется продромальный период, или «стадия предвестников». Его продолжительность не превышает 24-48 ч.

Период развития болезни. На этой фазе и проявляются черты индивидуальности болезни либо общие для многих инфекционных процессов признаки -- лихорадка, воспалительные изменения и др. В клинически выраженной фазе можно выделить стадии нарастания симптомов (stadium incrementum), расцвета болезни (stadium acme) и угасания проявлений (stadium decrementum).

Реконвалесценция [от лат. re-, повторность действия, + convalescentia, выздоровление]. Период выздоровления, или реконвалесценции как конечный период инфекционной болезни может быть быстрым (кризис) или медленным (лизис), а также характеризоваться переходом в хроническое состояние. В благоприятных случаях клинические проявления обычно исчезают быстрее, чем наступает нормализация морфологических нарушений органов и тканей и полное удаление возбудителя из организма. Выздоровление может быть полным либо сопровождаться развитием осложнений (например, со стороны ЦНС, костно-мышечного аппарата или сердечно-сосудистой системы). Период окончательного удаления инфекционного агента может затягиваться и для некоторых инфекций (например, брюшного тифа) может исчисляться неделями.

Понятие о внутрибольничных инфекциях. Основные возбудители внутрибольничных инфекций и пути их распространения в стационаре

Внутрибольничная (госпитальная, нозокомиальная) инфекция - это инфекция, заражение которой происходит в больничных учреждениях; наслаиваясь на основное заболевание, она утяжеляет клиническое течение болезни, затрудняет диагностику и лечение, ухудшает прогноз и исход заболевания, нередко приводят к смерти больного.

ВБИ могут вызываться более чем сотней видов УПМ. Чаще всего в их этиологии играют роль представители следующих родов: Staphylococcus, Streptococcus, Peptostreptococcus, Escherichia, Enterobacter, Klebsiella, Citrobacter, Serratia, Proteus, Hafnia, Providencia, Pseudomonas, Haemophilus, Branhamella, Acinetobacter, Moraxella, Alcaligenes, Flavobacterium, Vibrio, Propionibacterium, Bacteroides, Fusobacterium, Bacillus, Mycobacterium, Eikenella, Mycoplasma, Actinomyces, Candida, Cryptococcus, Pneumocysta.

Для возникновения ВБИ необходимо наличие следующих звеньев инфекционного процесса:

источник инфекции (хозяин, пациент, медработник);

возбудитель (микроорганизм);

факторы передачи

восприимчивый организм

Источниками в большинстве случаев служат:

медицинский персонал;

носители скрытыми формами инфекции;

больные с острой, стёртой или хронической формой инфекционных заболеваний, включая раневую инфекцию;

Посетители стационаров очень редко бывают источниками ВБИ.

Факторами передачи чаще всего выступают пыль, вода, продукты питания, оборудование и медицинские инструменты.

Ведущими путями заражения в условиях ЛПУ являются контактно-бытовой, воздушно-капельный и воздушно-пылевой. Также возможен парентеральный путь (характерно для гепатитов В, С, D и др.)

Механизмы передачи инфекции: аэрозольный, фекально-оральный, контактный, гемоконтактный.

Патогенетические факторы микробов. Виды и характеристика токсинов

Кроме ферментов агрессии и защиты микроорганизмы, размножаясь, могут вырабатывать биологически активные вещества, повреждающие клетки и ткани макроорганизма. -- токсины. Некоторые токсины (дифтерийный, столбнячный, ботулиниче-цкнп) являются ведущими факторами развития соответствующих заболеваний. Действие других (гемолизины стафилококка, лейкоцидины) более ограничено.

Силу токсинов, как и вирулентность самих возбудителей, измеряют DLM или LD50.

По своим свойствам токсины делятся на 2 группы:

* эндотоксины -- липополисахариды; термостабильны, продуцируются, как правило, грамотрицательными бактериями, обладают общетоксическим действием, являются слабыми антигенами, не переходят в анатоксин;

* экзотоксины -- белки; термолабильны, продуцируются, как правило, грамположительными бактериями, обладают специфичностью действия, сильные антигены, при специальной обработке переходят в анатоксины.

Наиболее значимыми для медицинской практики продуцентами экзотоксинов являются возбудители:

* среди грамположительных бактерий -- дифтерии, ботулизма, столбняка, газовой гангрены, некоторые виды стафилококков и стрептококков;

* среди грамотрицательных -- холерный вибрион, некоторые виды псевдомонад, шигелл.

Экзотоксины в зависимости от прочности их соединения с микробной клеткой подразделяются:

* на полностью секретируемые (собственно экзотоксины) в окружающую среду;

* частично секретируемые;

* несекретируемые.

Последние освобождаются только в процессе разрушения бактериальных клеток, что делает их сходными по этому свойству с эндотоксинами.

2. По механизму действия на клетки макроорганизма бактериальные токсины делятся на несколько типов, хотя это деление достаточно условно и некоторые токсины могут быть отнесены сразу к нескольким типам:

* 1-й тип -- мембранотоксины (гемолизины, лейкоцидины);

* 2-й тип -- функциональные блокаторы, или нейротоксины (тетаноспазмин, ботулинический токсин), -- блокируют передачу нервных импульсов в синапсах (в клетках спинного и головного мозга);

* 3-й тип -- термостабильные и термолабильные энтеротоксины -- активизируют клеточную аденилатциклазу, что приводит к нарушению энтеросорбции и развитию диарейного синдрома. Такие токсины продуцируют холерный вибрион (холероген), энтеротоксигенные кишечные палочки;

* 4-й тип -- цитотоксины -- токсины, блокирующие синтез белка на субклеточном уровне (энтеротоксин золотистых стафилококков, дерматонекротоксины стафилококков, палочек сибирской язвы, сине-зеленого гноя и возбудителя коклюша); сюда же относят антиэлонгаторы -- препятствующие элонгации (наращиванию) или транслокации, т. е. передвижению и-РНК вдоль рибосомы, и тем самым блокирующие синтез белка (дифтерийный гистотоксин, токсин синегнойной палочки);

* 5-й тип -- эксфолиатины, образуемые некоторыми штаммами золотистого стафилококка, и эритрогенины, продуцируемые пиогенным стрептококком группы А. Они влияют на процесс взаимодействия клеток между собой и с межклеточными веществами и полностью определяют клиническую картину инфекции (в первом случае возникает пузырчатка новорожденных, во втором -- скарлатина).

Многие бактерии образуют не один, а несколько белковых токсинов, которые обладают разным действием -- нейротоксическим, цитотоксическим, гемолитическим: стафилококк, стрептококк.

В то же время некоторые бактерии могут одновременно образовывать как белковые экзотоксины, так и эндотоксины: кишечная палочка, холерный вибрион.

Патогенетические факторы микробов. Виды и характеристика бактериальных ферментов агрессии

Для осуществления колонизаиии и инвазии многие бактерии выделяют ферменты агрессии и защиты:

* нуклеазы;

* протеазы, действие которых в первую очередь направлено на разрушение антител;

* лецитиназа - разрушает клеточные мембраны;

* плазмокоагулаза -- способствует образованию фибриновых барьеров;

* антифагин -- липополисахарид, оказывающий токсическое действие на фагоциты;

* фибринолизин -- протеолитический фермент, который растворяет сгустки фибрина;

* гиалуронидаза -- фермент, гидролизующий гиалуроновую кислоту -- основной компонент соединительной ткани;

* нейраминидаза -- отщепляет от различных гликопротеидов, гликолипидов, полисахаридов сиаловую (нейраминовую) кислоту, повышая проницаемость различных тканей.

Три последних фермента облегчают распространение микроорганизмов в тканях организма.

Учение об антигенах. Определение и сущность понятий "антиген", "антигенная детерминанта", "гаптен". Основные свойства антигенных молекул. Обозначение и локализация отдельных антигенов бактерий и вирусов. Видовая и типовая специфичность микробов

Аг -- вещества различного происхождения, несущие признаки генетической чужеродности и вызывающие развитие иммунных реакций (гуморальных, клеточных, состояние иммунной толерантности, индуцирование иммунной памяти). Свойства Аг определяются комплексом признаков: иммуногенность, антигенность, специфичность, чужеродность.

Иммуногенность -- способность индуцировать иммунный ответ.

Антигенность -- способность Аг избирательно реагировать со специфичными к нему AT или Аг-распознающими рецепторами лимфоцитов.

С понятием «антигенность» связан другой термин «чужеродность»: без чужеродности нет антигенности применительно к конкретному организму. Например, альбумины мыши не проявляют антигенные свойства по отношению к другим мышам, но являются Аг для морской свинки.

Специфичность -- структурные особенности, отличающие один Аг от другого.

Способностью вызывать развитие иммунного ответа и определять его специфичность облада- ttфрагмент молекулы Аг -- антигенная детерминанта (эпитоп), избирательно реагирующая с Аг распознающими рецепторами и AT. Антигенные детерминанты располагаются в областях Аг, обращенных к его микроокружению. Эпитоп -- наименьшая распознаваемая единица Аг, молекула Аг может иметь несколько эпитопов, то есть быть поливалентной. Чем сложнее молекула Аг и чем больше у неё эпитопов, тем больше вероятность развития иммунного ответа. Структура многих антигенных детерминант известна. Например, в полипептидной последовательности эпитопом может быть фрагмент из 7-8 аминокислотных остатков; свойства антигенности и специфичности определяются также пространственной конфигурацией фрагмента.

Моноклональные AT специфически распознают только одну Аг-детерминанту и связываются с ней. Поликлональные AT, как правило, распознают несколько антигенных детерминант в составе Аг.

Валентность Аг. Белки содержат несколько Аг-детерминант. Количество молекул AT, связывающих все эпитопы, определяет валентность Аг (возрастает пропорционально увеличению молекулярной массы белковой молекулы).

Классификация Аг

Аг разделяют на иммуногёны, гаптёны и толерогёны.

Иммуногены

Большая часть Аг способна запускать иммунные реакции, выступая в последующем в качестве мишени, в отношении которой эти реакции реализуются. Иначе иммуногены известны как полные Аг. Часть Аг имеют малые размеры и простое строение, тогда как другие представляют крупные и сложные молекулы, содержат множество эпитопов, каждый из которых распознают различные рецепторы лимфоцитов и/или AT.

Гаптены

Гаптены [от греч. hapto, прикрепляться] обладают антигенностью (то есть взаимодействуют со специфическими AT), но не иммуногенны- (то есть не способны запускать иммунные реакции). Иначе гаптены известны как неполные Аг. Как правило, они имеют небольшую молекулярную массу и не распознаются иммунокомпетентными клетками. Гаптены могут быть простыми и сложными: простые гаптены взаимодействуют с AT в организме, но не способны реагировать с ними in vitro сложные гаптены взаимодействуют с AT in vivo и in vitro. Гаптены могут стать иммуногенными при связывании с высокомолекулярным носителем, обладающим собственной иммуногенностью. Например, хром и никель, связываясь с белками кожи, способны вызвать аллергический контактный дерматит, развивающийся при повторных соприкосновениях кожи с хромированными или никелированными предметами. При этом антигенные детерминанты гаптена полностью маскируют аналогичные структуры носителя. Непреципитирующие гаптены взаимодействуют с AT, блокируют их, но не образуют видимых преципитатов. AT, связавшиеся с такими гаптенами, не реагируют с полными Аг, вызывающими образование AT. Преципитирующие гаптены образуют видимые преципитаты при взаимодействии со специфическими AT. Свойствами преципитирующих гаптенов обладают полисахариды энтеробакте- рий и пневмококков.

Полугаптены -- неорганические вещества (например, йод или хром), присоединение которых к молекуле белка меняет его иммуногенные свойства. Образующиеся AT специфичны к йоду или хрому, то есть к детерминантам на поверхности полного Аг, но не к белку-носителю.

Проантигены -- гаптены, способные присоединяться к белкам организма и сенсибилизировать его как аутоантигены. Например, метаболиты грибов пенициллов или продукты распада пенициллинов могут связывать белки и вызывать развитие к ним иммунных реакций.

Адъюванты

Адъюванты [от лат. adjuvans, помогать] -- вещества, введение которых одновременно с Аг (или гаптеном) усиливает иммунный ответ. Другими словами, адъювант -- носитель, повышающий иммуногенность различных Аг и гаптенов. Распространённые адъюванты -- суспензии неорганических веществ, на которых адсорбируется Аг. Классический пример -- коллоидная суспензия из убитых туберкулёзных палочек, вазелина, ланолина, известная также как полный адъювант Фройнда.

Толерогены

Особую группу составляют Аг, способные подавлять иммунные реакции с развитием специфической неспособности отвечать на них. Это состояние известно как иммунная толерантность. Благодаря генетическому разнообразию индивидуумов, вещество-иммуноген для одного из них может быть толерогеном для другого. Действуя как иммуноген при парентеральном введении (например, внутримышечно), то же вещество может быть толерогеном при введении другим путём (например, пероральным).

Антигены бактерий

В структуре бактериальной клетки различают жгутиковые, соматические, капсульные и некоторые другие антигены.

Жгутиковые, или Н-антигены, локализуются в локомоторном аппарате бактерий -- их жгутиках. Они представляют собой эпитопы сократительного белка флагеллина. При нагревании флагеллин денатурирует, и Н-антиген теряет свою специфичность. Фенол не действует на этот антиген.

Соматический, или О-антиген, связан с клеточной стенкой бактерий. Его основу составляют ЛПС. О-антиген проявляет термостабильные свойства -- он не разрушается при длительном кипячении. Однако соматический антиген подвержен действию альдегидов (например, формалина) и спиртов, которые нарушают его структуру.

Если проиммунизировать животное живыми бактериями, имеющими жгутики, то будут вырабатываться антитела, направленные одновременно против О- и Н-антигенов. Введение животному прокипяченной культуры стимулирует биосинтез антител к соматическому антигену. Культура бактерий, бработанная фенолом, вызовет образование антител к жгутиковым антигенам.

Капсульные, или К-антигены, располагаются на поверхности клеточной стенки. Встречаются у бактерий, образующих капсулу. Как правило, К-антигены состоят из кислых полисахаридов (уроновые кислоты). В то же время у бациллы сибирской язвы этот антиген построен из полипептидных цепей. По чувствительности к нагреванию различают три типа К-антигена: А, В, и L. Наибольшая термостабильность характерна для типа А, он не денатурирует даже при длительном кипячении. Тип В выдерживает непродолжительное нагревание (около 1 часа) до 60 °С. Тип L быстро разрушается при этой температуре. Поэтому частичное удаление К-антигена возможно путем длительного кипячения бактериальной культуры.

На поверхности возбудителя брюшного тифа и других энтеробактерий, которые обладают высокой вирулентностью, можно обнаружить особый вариант капсульного антигена. Он получил название антигена вирулентности, или Vi-антигена. Обнаружение этого антигена или специфичных к нему антител имеет большое диагностическое значение.

Антигенными свойствами обладают также бактериальные белковые токсины, ферменты и некоторые другие белки, которые секретируются бактериями в окружающую среду (например, туберкулин). При взаимодействии со специфическими антителами токсины, ферменты и другие биологически активные молекулы бактериального происхождения теряют свою активность. Столбнячный, дифтерийный и ботулинический токсины относятся к числу сильных полноценных антигенов, поэтому их используют для получения анатоксинов для вакцинации людей.

В антигенном составе некоторых бактерий выделяется группа антигенов с сильно выраженной иммуногенностью, чья биологическая активность играет ключевую роль в формировании патогенности возбудителя. Связывание таких антигенов специфическими антителами практически полностью инактивирует вирулентные свойства микроорганизма и обеспечивает иммунитет к нему. Описываемые антигены получили название протективных. Впервые протективный антиген был обнаружен в гнойном отделяемом карбункула, вызванного бациллой сибирской язвы. Это вещество является субъединицей белкового токсина, которая ответственна за активацию других, собственно вирулентных субъединиц -- так называемого отечного и летального факторов.

Антигены вирусов

В структуре вирусной частицы различают несколько групп антигенов: ядерные (или коровые), капсидные (или оболочечные) и суперкапсидные. На поверхности некоторых вирусных частиц встречаются особые V-антигены -- гемагглютинин и фермент нейраминидаза. Антигены вирусов различаются по происхождению. Часть из них -- вирусоспецифические. Информация об их строении картирована в нуклеиновой кислоте вируса. Другие антигены вирусов являются компонентами клетки хозяина (углеводы, липиды),] они захватываются во внешнюю оболочку вируса при его рождении путем почкования.

Антигенный состав вириона зависит от строения самой вирусной частицы. Антигенная специфичность простоорганизованных вирусов связана с рибо- и дезоксирибонуклеопротеинами. Эти вещества хорошо растворяются I в воде и поэтому обозначаются как S-антигены (от лат. solutio -- раствор). У сложноорга- низованных вирусов часть антигена связана с нуклеокапсидом, а другая -- локализуется во внешней оболочке -- суперкапсиде.

Антигены многих вирусов отличаются высокой степенью изменчивости. Это связано с постоянным мутационным процессом, который претерпевает генетический аппарат вирусной частицы. Примером могут служить вирус гриппа, вирусы иммунодефицитов человека.

Учение об иммунитете. Определение и сущность понятия "иммунитет". Основные формы иммунного ответа

Иммунитет - это способ защиты организма от генетически чужеродных веществ - антигенов экзогенного и эндогенного происхождения, направленный на поддержание и сохранение гомеостаза, структурной и функциональной целостности организма, биологической (антигенной) индивидуальности каждого организма и вида в целом.

Виды иммунного ответа

Иммунный ответ представляет собой реакцию организма на внедрение в него микробов или различных ядов. В целом, любое вещество, чья структура отличается от структуры тканей человека способно вызвать иммунный ответ. Исходя из механизмов, задействованных в его реализации, иммунный ответ может быть различным.

Во-первых, различаем специфический и неспецифический иммунный ответ.

Неспецифический иммунный ответ - это первый этап борьбы с инфекцией он запускается сразу же после попадания микроба в наш организм. В его реализации задействованы система комплимента, лизоцим, тканевые макрофаги. Неспецифический иммунный ответ практически одинаков для всех типов микробов и подразумевает первичное разрушение микроба и формирование очага воспаления. Воспалительная реакция это универсальный защитный процесс, который направлен на предотвращение распространения микроба. Неспецифический иммунитет определяет общую сопротивляемость организма. Люди с ослабленным иммунитетом чаще болеют различными заболеваниями.

Специфический иммунитет это вторая фаза защитной реакции организма. Основной характеристикой специфического иммунного ответа является распознавание микроба и выработка факторов защиты направленных специально против него. Процессы неспецифического и специфического иммунного ответа пересекаются и во многом дополняют друг друга. Во время неспецифического иммунного ответа часть микробов разрушается, а их части выставляются на поверхности клеток (например, макрофагов). Во второй фазе иммунного ответа клетки иммунной системы (лимфоциты) распознают части микробов, выставленные на мембране других клеток, и запускают специфический иммунный ответ как таковой.

Специфический иммунный ответ может быть двух типов: клеточный и гуморальный.

Клеточный иммунный ответ подразумевает формирование клона лимфоцитов (К-лимфоциты, цитотоксические лимфоциты), способных разрушать клетки мишени, мембраны которых содержат чужеродные материалы (например, вирусные белки).

Гуморальный иммунный ответ опосредован В-лимфоцитами, которые после распознания микроба начинают активно синтезировать антитела по принципу один тип антигена - один тип антитела. На поверхности одного микроба может быть множество различных антигенов, поэтому обычно вырабатывается целая серия антител, каждое из которых при этом направлено на определенный антиген. Антитела (иммуноглобулины, Ig) - это молекулы белков, способные прилипать к определенной структуре микроорганизма, вызывая его разрушение или скорейшее выведение из организма. Теоретически возможно формирование антител против любого химического вещества, имеющего достаточно большую молекулярную массу. Существует несколько типов иммуноглобулинов, каждый из которых выполняет специфическую функцию. Иммуноглобулины типа А (IgA) синтезируются клетками иммунной системы и выводятся на поверхность кожи и слизистых оболочек. В больших количествах IgA содержатся во всех физиологических жидкостях (слюна, молоко, моча). Иммуноглобулины типа А обеспечивают местный иммунитет, препятствуя проникновению микробов через покровы тела и слизистые оболочки.

Факторы неспецифической антимикробной устойчивости макроорганизма

1. Одним из определяющих факторов, участвующих в развитии инфекции и соответственно инфекционных заболеваний, является восприимчивый макроорганизм. Совокупность механизмов, определяющих невосприимчивость (устойчивость) организма к действию любого микробного агента, обозначается термином "противомикробная (антимикробная) резистентность". Это одно из проявлений общей физиологической реактивности макроорганизма, его реакции на своеобразный раздражитель -- микробный агент.

Противомикробная резистентность сугубо индивидуальна, ее уровень определяется генотипом организма, возрастом, условиями жизни и труда и т. д.

Повышению широкого комплекса факторов неспецифической защиты, в частности, способствуют ранее прикладывание к груди и грудное вскармливание.

По специфичности механизмы противомикробной зашиты делятся:

-на неспецифические -- первый уровень защиты от микробных агентов;

-специфические -- второй уровень защиты, обеспечиваемый иммунной системой. Реализуется следующим образом:

-через антитела -- гуморальный иммунитет; .

- через функцию клеток-эффекторов (Т-киллеров и макрофагов) -- клеточный иммунитет.

Первый и второй уровни защиты тесно связаны между собой через макрофаги.

Неспецифические и специфические механизмы противомикробной защиты могут быть тканевыми (связанными с клетками) и гуморальными.

2.Неспецифическая микробная резистентность -- это врожденное свойство макриорганизма, обеспечивается передаваемыми по наследству достаточно многочисленными механизмами, которые делятся на следующие типы:

- тканевые;

- гуморальные;

- выделительные (функциональные).

К тканевым механизмам неспецифической естественной противомикробной защиты относятся:

* барьерная функция кожи и слизистых оболочек;

* колонизационная резистентность, обеспечиваемая нормальной микрофлорой;

* воспаление и фагоцитоз (может также участвовать в специфической защите);

* барьерфиксирующая функция лимфоузлов;

* ареактивность клеток;

* функция естественных киллеров.

Первым барьером на пути проникновения микробов во внутреннюю среду организма являются кожа и слизистые оболочки. Здоровая неповрежденная кожа и слизистые для большинства микроорганизмов непроницаемы. Однако некоторые виды возбудителей инфекционных заболеваний способны проходить и через них. Такие возбудители получили название особо опасных, к ним относят возбудителей чумы, туляремии, сибирской язвы, некоторых микозов и вирусных инфекций. Работа с ними проводится в специальных защитных костюмах и только в специально оборудованных лабораториях.

Помимо чисто механической функции, кожа и слизистые оболочки обладают антимикробным действием -- нанесенные на кожу бактерии (например, кишечная палочка) довольно быстро погибают. Бактерииидность кожи и слизистых оболочек обеспечивают:

* ее нормальная микрофлора (функция колонизационной рези-стентности);

* секреты потовых (молочная кислота) и сальных (жирные кислоты) желез;

* лизоцим слюны, слезной жидкости и др.

Если возбудитель преодолевает кожно-слизистый барьер, то он попадает в подкожную клетчатку/подслизистый слой, где реализуется один из основных неспецифических тканевых механизмов защиты -- воспаление. В результате развития воспаления происходит:

* отграничение очага размножения возбудителя от окружающих тканей;

* его задержка в месте внедрения;

* замедление размножения;

* в конечном счете -- его гибель и удаление из организма.

3. В ходе развития воспаления реализуется еще один универсальный тканевой механизм неспецифической защиты -- фагоцитоз.

Явление фагоцитоза было открыто и изучено великим русским ученым И. И. Мечниковым.

Итогом этих многолетних работ стала фагоцитарная теория иммунитета, за создание которой Мечников был удостоен Нобелевской премии.

Фагоцитарный механизм защиты слагается из нескольких последовательных фаз:

* узнавание;

* таксис;

* аттракция;

* поглощение;

* киллинг;

* внутриклеточное переваривание.

Фагоцитоз со всеми стадиями называется завершенным. Если фазы киллинга и внутриклеточного переваривания не наступают, то фагоцитоз становится незавершенным. При незавершенном фагоцитозе микроорганизмы сохраняются внутри лейкоцитов и вместе с ними разносятся по организму. Таким образом, незавершенный фагоцитоз вместо механизма защиты превращается в его противоположность, помогая микроорганизмам защищаться от воздействия макроорганизма и распространяться в нем.

Тканевые и гуморальные механизмы неспецифической резистентности

1. Барьерная функция лимфатических узлов

2. Прочие тканевые механизмы противомикробной защиты

3. Гуморальные механизмы неспецифической резистентности

1. Если микроорганизмы прорывают воспалительный барьер, т. е. воспаление как механизм неспецифической защиты не срабатывает, то возбудители попадают в лимфатические сосуды, а оттуда в региональные лимфатические узлы. Барьерфиксирующая функция лимфатических узлов реализуется следующим образом:

* с одной стороны, региональные лимфатические узлы задерживают микроорганизмы чисто механически;

* с другой -- в них обеспечивается усиленный фагоцитоз.

2. К тканевым механизмам неспецифической противомикробной защиты относятся также ареактивность клеток и тканей и активность естественных киллеров (NK-клеток), которые проявляют свои свойства, если возбудитель, прорвав лимфатический барьер, попадает в кровь.

В норме кровь стерильна, так как обладает выраженным бактерицидным действием, которое обеспечивается фагоцитарной активностью нейтрофилов, макрофагов, эндотелия сосудов. Существенный вклад в бактерицидные свойства крови вносят естественные клетки-киллеры, которые составляют от 2 до 12% лимфоцитов и представляют собой большие гранулосодержащие лимфоциты, обладающие неспецифической противомикробнои, противоопухолевой, противовирусной и противопаразитарной активностью.

3. К гуморальным механизмам естественной неспецифической противомикробной защиты относятся содержащиеся в крови и других жидкостях организма ферментные системы:

* система комплемента (может также участвовать в специфической защите). Комплемент -- это неспецифическая ферментная система крови, включающая 9 различных протеиновых фракций, адсорбирующихся в процессе каскадного присоединения на комплексе антиген -- антитело, и оказывающая лизирующее действие на связанные антителами клеточные антигены. Комплемент нестабилен, он разрушается при нагревании, хранении, под действием солнечного света;

* лизоцим -- белок, содержащийся в крови, в слюне, слезной и тканевой жидкости. Он активен в отношении грамположи-тельных бактерий, так как нарушает синтез муреина в клеточной стенке бактерий;

* бета-лизины -- более активны в отношении грамотрицательных бактерий;

* лейкины -- протеолитические ферменты, освобождающиеся при разрушении лейкоцитов. Они нарушают целостность поверхностных белков микробных клеток;

* интерферон -- продукт клеток, обладающий противовирусной и регуляторной активностью;

* система пропердина -- комплекс белков, обладающих противовирусной, антибактериальной активностью в присутствии солей магния;

* эритрин.

К выделительным (функциональным) механизмам неспецифической естественной противомикробнои защиты относятся:

* кашель;

* чихание;

* выделительная функция почек и кишечника;

* лихорадка.

Защита от микроорганизмов -- не основная функция этих механизмов, но их вклад в освобождение организма от них достаточно высок.

Все многочисленные вышеперечисленные механизмы естественной неспецифической противомикробнои защиты активны всегда и в отношении любых микробных агентов: активность этих механизмов не становится более выраженной при повторном или неоднократном контакте с микроорганизмами. Этим механизмы неспецифической противомикробнои защиты отличаются от механизмов специфической противомикробнои резистентности, входящих в иммунитет.

Перечень и особенности функционирования центральных и периферических органов иммунной системы

К центральным органам иммунной системы относят:

* красный костный мозг;

* тимус (вилочковую железу);

* лимфоидный аппарат кишечника (у млекопитающих -- функциональный аналог сумки (бурсы) Фабрициуса у птиц).

В этих органах происходит первичная дифференцировка иммунокомпетентных клеток -- Т- и В-лимфоцитов (лимфопоэз).

Тимус достигает своего максимального развития к 10--12 годам, после 30 лет начинается обратное развитие железы. Соответственно при врожденных дефектах развития тимуса, его оперативном удалении или при старении наблюдается снижение функциональной активности иммунной системы и продукции тимусом соответствующих гормоноподобных веществ (тимозин, тимопоэтин и другие лимфоцитокины), способствующих созреванию Т-лимфоцитов.

В красном костном мозге содержатся стволовые клетки, являющиеся родоначальниками как Т- и В-лимфоцитов, так и макрофагов и других форменных элементов крови.

К периферическим органам иммунной системы относятся:

* селезенка;

* лимфатические узлы;

* лимфатические фолликулы, расположенные под слизистыми оболочками желудочно-кишечного, дыхательного и мочеполового тракта;

* лимфатические и кровеносные сосуды.

В периферических органах иммунной системы под влиянием антигенов происходят пролиферация и вторичная дифференцировка лимфоцитов (иммунопоэз).

Т- и В- системы лимфоцитов, их функциональные различия, этапы дифференцировки, субпопуляции

Иммунокомпетентные клетки (лимфоциты, макрофаги и дендритные клетки) по функциям подразделяют на эффекторные и регуляторные. Взаимодействие иммунокомпетентных клеток с другими регулируют цитокины, известные также как медиаторы иммунного ответа. Лимфоциты выполняют основную функцию иммунной системы -- высокоспецифичное распознавание чужеродных и изменённых собственных Аг. В организме лимфоциты постоянно рециркулируют между зонами скопления лимфоидной ткани. Распределение лимфоцитов в лимфоидных органах и их миграция по кровеносному и лимфатическому руслам упорядочены и отражают функции конкретных клеток. При изучении в световом микроскопе лимфоциты имеют одинаковую морфологию, но их функции, поверхностно-клеточные маркёры. индивидуальное (клональное) развитие и судьба различны. Все лимфоциты происходят из единой стволовой клетки костного мозга, но популяции лимфоцитов и других клеток крови развиваются под влиянием различных дифференцирующих факторов. По наличию специфических поверхностных маркёров лимфоциты разделяют на функционально различные популяции и субпопуляции. У млекопитающих основные популяции: Т-лимфоциты, созревающие в вилочковой железе [лат. thymus], В-лимфоциты, созревающие в аналоге сумки [лат. bursa] Фабрициуса у птиц (у человека -- костный мозг или лимфоидная ткань кишечника).

Т-лимфоциты

Т-лимфоциты - это сложная по составу группа клеток,которая происходит от полипотентной стволовой клетки костного мозга, а созреваеи и диффренцируется в тимусе из предшественников(пре-Т-лимфоцитов). На долю этих клеток приходится около 75% всей лимфоидной популяции. Т-лимфоциты имеют гладкую поверхность, их общим маркером является CD3. Профессионально Т-лимфоциты также разделяют на две субпопуляции: иммунорегуляторы и эффекторы. Задачу регуляции иммунного ответа( в основном активирующую) выполняют Т-хелрперы. Предполагалось существование Т-супрессоров, которым приписывали функцию торможения развития иммунной реакции. Однако клетка морфологически не идентифицирована, хотя сам прессорный механизм присутствует.

В организме Т-лимфоциты обеспечивают клеточнын формф иммунного ответа(ГЗТ, трансплантационный иммунитет, противоопухолевый иммуннитет), определяют силу и продолжительность иммунной реакции. Их созреванием, дифференцировкой и активностью управляют цитокины.

Т хелперы - субпопуляция Т-лимфоцитов,которые выпоняют ругцляторную функцию. На долю этих клеток приходится около 75% всей популяции Т-лимфоцитов. На наружной поверхности их цитоплазматической мембраны определяются молекулы CD4. При помощи специфического рецептора Т-хелпер анализирует информацию, передаваемую ему АПК. Продуктивная рецепция стимулирует Т-хелпер к продукции широкого спектра иммунноцитокинов,при помощи которых он управляет биологической активностью множества клеток, вовлеченных в иммунный ответ. Установлена гетерогенность популяций: Т1- и Т2-хелпер.

Т1-хелпер образуте ИЛ-2,-3,ФНО и др.,необходимые для развития клеточного иммунного ответа,ГЗТ, иммунного воспаления.

Т2-хелпер продуцирует ИЛ-4,5,6,9,10,13 и др., которые поддерживают гуморальный иммунитет, а также ГНТ.

В организме поддердивается их баланс. Клетки находятся в конкурентных взаимоотношениях, они позитивно тормозят клональное развитие друг друга.

Цитотоксические Т-лимфоциты (ЦТЛ), или Т-киллеры [от англ. to kill, убивать] лизируют клетки-мишени, несущие чужеродные или видоизменённые аутоантигены (например, клетки опухолей, трансплантатов, инфицированные вирусами, клетки, несущие поверхностные вирусные Аг). В большинстве случаев функция ЦТЛ также МНС-рестригирована -- ЦТЛ распознаёт чужеродный вирусный, опухолевый или трансплантационный Аг в комплексе с молекулой МНС I на мембране клетки-мишени. Индукция цитотоксических свойств клетки-предшественницы Т-киллера происходит под действием двух сигналов. Первый сигнал включает взаимодействие между двумя комплексами: поверхностной молекулой CD8 лимфоцита и комплексом эпитоп-молекула МНС I на клетке-мишени. Второй сигнал -- ИЛ, секретируемые близлежащими макрофагами и Т-клетками. Т-хелпер утраняет клетки мишени путем антителнезависимой клеточно-опосредованной цитотоксичности,для чего синтезирует ряд токсический субстанции: перфорин, гранищмы и гранулизин. Перфорин обладает неспецифическим действием. Накапоивается в цитоплазме в гранулах вблизи Т-клеточного антигенного рецептора. Содержимое гранул высвобждается в узкую щель, образованную тесным контактом цитотоксического лимфоцита и клетки-мишени. За счет гидрофобных участков перфорин встаривается в ЦПМ клетки-мишени,где в присутствии ионов кальция полимеризуется в трансмембранную пору. Образовавшийся дефект может вызвать осмотический лизис клетки-мишени или обеспечит проникновение в нее гранизмоа гранулолизина. Т-клетки памяти образуются при первичном иммунном ответе. Специфически распознают Аг и участвуют в иммунном ответе при вторичном попадании Аг. Большинство клеток памяти обладает функциями Т-клеток, экспрессируют CD4 и рестригированы по молекулам МНС II, то есть узнают Аг только на Аг-представляющих клетках в связи с молекулой МНС II.

в-лимфоциты

Известны субпопуляции В-клеток: предшественники антителообразующих (плазматических) клеток и В-клетки памяти (эффекторы вторичных иммунных реакций). Доминирующую субпопуляцию составляют предшественники антителообразующих клеток, дифференцирующиеся после антигенной стимуляции в плазматические клетки (плазмоциты), синтезирующие Ig.

Созревание В-лимфоцитов

Из костного мозга пре-В-клетки мигрируют в тимуснезависимые зоны лимфоидных органов. Так, в физиологических условиях в селезёнке В-лимфоциты располагаются в краевой зоне белой пульпы, в лимфатических узлах -- в наружной зоне кортикального слоя, где они формируют зародышевые центры фолликулов. Сигналы, определяющие судьбу и дифференцировку этих иммунокомпетентных клеток, поступают из красного костного мозга, стромальных клеток и других клеток иммунной системы. На периферии (вне костного мозга) В-лимфоциты приобретают характерные для них поверхностно-клеточные маркёры. Продолжительность жизни В-лимфоцитов различна -- от многих лет (В-клетки памяти) до нескольких недель (клони плазматических клеток).

После антигенной стимуляции В-лимфоциты дифференцируются в плазматические клетки (интенсивно синтезирующие и секретирующие AT) и В-клетки памяти. Плазматические клетки синтезируют Ig того же класса, что и мембранный Ig В-лимфоцита-предшественника.

Маркёры В-клеток. Основные маркёры В-лимфоцитов -- мембранные Ig, при этом клетки одного клона (быстро формирующегося в результате серии последовательных делений потомства одной В-клетки) экспрессируют молекулы Ig, специфически связывающие только один эпитоп Аг. Такие клетки синтезируют моноклональные AT, способные распознавать и связывать только один Аг. Аг-связывающий участок мембранного Ig В-лимфоцита играет ром клеточного Аг-распознающего рецептора. Помимо мембранных Ig, В-лимфоцит несёт другие маркёры: рецепторы Fc-фрагмента Ig, CD10 (на незрелых В-клетках), CD19, CD20, CD21, CD22, CD23 (вероятно, участвуют в клеточной активации), рецепторы к СЗЬ и C3d, молекулы МНС классов I и II.

...

Подобные документы

  • Принципы рациональной химиотерапии, а также основные факторы, влияющие на выбор лекарственных средств: антибиотиков, сульфаниламидные и антибактериальные средства разного химического строения, противосифилитические. Биосинтетические пенициллины.

    презентация [934,1 K], добавлен 25.10.2014

  • Основные принципы рациональной антибиотикотерапии. Методы обеззараживания: асептика и антисептика. Комплекс мероприятий, направленных на уничтожение микробов на коже, в ране. Предупреждение попадания микробов в операционную рану.

    реферат [15,2 K], добавлен 05.10.2006

  • Лечение и профилактика болезней желудочно-кишечного тракта с помощью лекарственного растительного сырья. Фармакологические эффекты, применение, препараты. Виды дисбактериоза и принципы его лечения. Растения, обладающие антибактериальной активностью.

    курсовая работа [1,3 M], добавлен 21.11.2012

  • Функции крови, их сущность, особенности и характеристика. Лейкоциты и их роль в защите организма от микробов и вирусов. Иммунитет как сопротивляемость организма инфекциям и инвазиям чужеродных организмов, его виды. Функции антител в организме человека.

    презентация [3,5 M], добавлен 27.05.2012

  • Характеристика основных способов борьбы с вирусными заболеваниями. Ознакомление с действием химиотерапевтических средств на инфекционные заболевания. Причины возникновения аллергических реакций, побочных токсических эффектов и развития дисбактериоза.

    презентация [185,4 K], добавлен 06.12.2011

  • Характеристика вирусов – неклеточных форм жизни, изучаемых с помощью микроскопа. Основные свойства вирусов: поражение вирусами лимфоцитов, особенность образовывать включения Оспа, бешенство, корь. Виды вирусных болезней: продуктивные, персистирующие.

    презентация [186,2 K], добавлен 12.12.2011

  • Общее понятие о дисбактериозе, факторы риска и основные причины возникновения у детей. Диагностика и клинические признаки дисбактериоза кишечника. Бактериальные препараты, оказывающие положительное влияние на функцию кишечника, лечение дисбактериоза.

    контрольная работа [23,3 K], добавлен 04.08.2011

  • Теории происхождения, история изучения и открытия вирусов. Их жизненный цикл, роль в заболеваниях человека, биосфере и эволюции. Морфологические типы капсидов. Формирование липидной оболочки вируса. Виды вирусных инфекций человека, растений, бактерий.

    курсовая работа [2,3 M], добавлен 18.05.2016

  • История открытия антибиотиков. Фармакологическое описание антибактериальных средств избирательного и неизбирательного действия как форм лекарственных препаратов. Принципы рациональной химиотерапии и свойства противомикробных химиотерапевтических средств.

    презентация [10,7 M], добавлен 28.04.2015

  • Дисбактериоз кишечника, появление значительного количества микробов в тонкой кишке и изменение микробного состава толстой кишки. Обнаружение проявлений дисбактериоза, клинические особенности, методы диагностики, антибактериальные препараты при лечении.

    реферат [20,2 K], добавлен 24.06.2010

  • Рост и размножение бактерий. Структура вирусов и принципы их классификации. Роль грибов в патологии человека. Возбудители различныз инфекционных заболеваний, лечение, иммунитет. Осложнения антибиотикотерапии, их предупреждение. Химические вакцины.

    шпаргалка [152,0 K], добавлен 13.01.2011

  • Исследования кишечной микрофлоры у детей. Формирование микрофлоры кишечника. Частота дисбактериоза кишечника. Микроорганизмы, в норме заселяющие толстую кишку. Основные причинные факторы дисбактериоза кишечника. Коррекция дисбактериоза кишечника.

    презентация [164,6 K], добавлен 14.06.2015

  • Цели и виды рациональной фармакотерапии. Основные принципы назначения лекарственных средств. Обоснованность и эффективность медицинской лекарственной терапии. Характеристика побочного действия терапевтических препаратов в комплексе мероприятий лечения.

    презентация [129,3 K], добавлен 15.11.2015

  • Этиология и патогенез дисбактериоза кишечника, микроэкологических нарушений в желудочно-кишечном тракте. Роль лактобактерий в поддержании нормального биоценоза кишечника. Обзор основных причин развития дисбактериоза. Методы его диагностики и лечения.

    презентация [1,6 M], добавлен 07.04.2015

  • Значение первой медицинской помощи и правила ее оказания. Классификация ран и их осложнения. Понятие о переломах и травматическом шоке. Виды кровотечений и их характеристика. Правила оказания первой помощи при различных повреждениях органов человека.

    реферат [27,5 K], добавлен 10.12.2010

  • Виды отравлений, классификация ядов и токсичных веществ. Экстренная медицинская помощь при острых отравлениях. Клиническая картина отравления и принципы оказания помощи больным при отравлении. Пищевые отравления от употребления загрязненных продуктов.

    реферат [78,4 K], добавлен 09.03.2012

  • Общая характеристика и классификация ДНК-геномных вирусов как вирусов, геном которых представлен дезоксирибонуклеиновой кислотой. Характеристика, виды, онкогенность, репликация и лабораторная диагностика вируса папилломы и вируса полиомы человека.

    реферат [295,0 K], добавлен 10.12.2010

  • Свойства вирусов и плазмид, по которым они отличаются от остального живого мира. Морфология вирусов. Исходы взаимодействия вирусов с клеткой хозяина. Методы культивирования вирусов. Вирусы бактерий (бактериофаги). Этапы взаимодействия фагов и бактерий.

    реферат [25,6 K], добавлен 21.01.2010

  • История возникновения вирусов, простые и сложные вирусы. Содержание теории регрессивного происхождения вирусов. Основания для выдвижения эндогенного происхождения вирусов. Основные недостатки теории происхождения вирусов из доклеточных форм жизни.

    презентация [5,7 M], добавлен 10.10.2019

  • Биологический смысл спорообразования у бактерий, особенности химического состава и методы выявления. Методы выделения чистых культур. Экзотоксины бактерий: классификация, механизм действия. Частная микробиология и вирусология, экология микроорганизмов.

    контрольная работа [41,2 K], добавлен 25.09.2009

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.