Волновая и электромагнитная физика
Распространение волн в упругой среде, принцип Гюйгенса. Эффект Доплера в акустике. Источники и приемники ультразвуковых волн. Электромагнитные колебания. Основные законы геометрической оптики. Электромагнитная теория света. Законы релятивистской динамики.
Рубрика | Физика и энергетика |
Вид | курс лекций |
Язык | русский |
Дата добавления | 02.04.2013 |
Размер файла | 1,3 M |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
где = 1 - 2 = const.
Если частоты колебаний в обеих волнах одинаковы а разность фаз возбуждаемых колебаний остается постоянной во времени, то такие волны называются когерентными. Для электромагнитных волн существует дополнительное ограничение - не дают интерференционной картины когерентные волны ортогональной поляризации.
При наложении когерентных волн они дают устойчивое колебание с неизменной амплитудой А = соnst, определяемой выражением (1) и в зависимости от разности фаз колебаний лежащей в пределах
|а1 -А2 а1 +А2.
Т.о., когерентные волны при интерференции друг с другом дают устойчивое колебание с амплитудой не больше суммы амплитуд интерферирующих волн.
Если = , тогда соs = -1, и А1 = А2, то амплитуда суммарного колебания равна нулю, и интерферирующие волны полностью гасят друг друга.
В случае некогерентных волн непрерывно изменяется, принимая с равной вероятностью любые значения, вследствие чего среднее по времени значение cоst = 0. Поэтому слагаемое 2А1А2соs в уравнении (1) равно нулю и
<А2 = <А12 + <А22,
откуда интенсивность, наблюдаемая при наложении некогерентных волн, равна сумме интенсивностей, создаваемых каждой из волн в отдельности:
I = I1 + I2 .
В случае когерентных волн, соs имеет постоянное во времени значение (но свое для каждой точки пространства), так что
I = I1 + I2 + 2 I1 I2 cos . (2)
В тех точках пространства, для которых соs > 0, I I1 +I2; в точках, для которых соs < 0, II1+I2. При наложении когерентных световых волн происходит перераспределение энергии светового потока в пространстве (при глобальном выполнении закона сохранения энергии), в результате чего в одних местах возникают максимумы, а в других - минимумы интенсивности (интерференционная картина). Это явление называется интерференцией волн. Особенно отчетливо проявляется интерференция в том случае, когда интенсивности обеих интерферирующих волн одинаковы: I1=I2. Тогда согласно (2) в максимумах I = 4I1, в минимумах же I = 0. Для некогерентных волн при том же условии получается всюду одинаковая интенсивность I = 2I1.
Если имеются отклонения от сформулированных условий когерентности, например, частоты двух складываемых монохроматических волн несколько отличаются, то интерференционная картина может становиться неустойчивой, возникает эффект плывущей картины. Если же частоты складываемых волн совпадают, но разность фаз между ними изменяется со временем, то интерференционная картина, как правило, остается стационарной, но ее контрастность (соотношение интенсивностей соседних максимумов и минимумов) уменьшается.
Все естественные источники света (Солнце, лампочки накаливания и т.д.) не излучают электромагнитных волн одной определенной и строго постоянной частоты, поэтому световые волны, излучаемые любыми независимыми естественными источниками света, всегда некогерентны и, используя два таких источника, невозможно получить интерференцию света.
Некогерентность естественных источников света обусловлена тем, что излучение светящегося тела слагается из волн, испускаемых многими атомами. Отдельные атомы излучают цуги волн длительностью порядка 10-8с и протяженностью около 3 м. Фаза нового цуга никак не связана с фазой предыдущего цуга. В испускаемой телом световой волне излучение одной группы атомов через время порядка 10-8с сменяется излучением другой группы, причем фаза результирующей волны претерпевает случайные изменения. Когерентность существует только в пределах одного цуга. Средняя продолжительность одного цуга ф называется временем когерентности. Если волна распространяется в однородной среде, то фаза колебаний в какой-либо определенной точке пространства остается постоянной только в течение времени когерентности. За это время волна распространяется на расстояние lког = Vф, называемое длиной когерентности (или длиной цуга). Колебания в точках, удаленных друг от друга на расстояниях больших длины когерентности вдоль направления распространения волны, будут некогерентными.
Лазерное излучение характеризуется высокой степенью монохроматичности, т.е излучение происходит на одной определенной и строго постоянной частоте, поэтому можно наблюдать интерференцию световых пучков, излучаемых двумя разными лазерами.
А как можно, пользуясь обычными некогерентными излучателями света, создать взаимно когерентные источники?
Когерентные световые волны можно получить, разделив (с помощью отражений или преломлений) волну, излучаемую одним источником света, на две части. Если заставить эти две волны пройти разные оптические пути, а потом наложить их друга на друга, то наблюдается интерференция. Разность оптических длин путей, проходимых интерферирующими волнами, не должна быть очень большой, так как складывающиеся колебания должны принадлежать одному и тому же результирующему цугу волн. Если эта разность 1м, то будет наблюдаться наложение колебаний, соответствующих разным цугам, разность фаз между которыми будет непрерывно изменяться хаотическим образом, и интерференция не наблюдается.
Пусть разделение на две когерентные волны происходит в точке О (рис.2).
n1 S1
О
n2 S2 V
Рис.2.
До точки Р первая волна проходит в среде показателем преломления n1 путь S1, вторая волна проходит в среде с показателем преломления n2 путь S2. Если в точке О фаза колебания равна t, то первая волна возбудит в точке Р колебание А1соs(t - S1/V1), а вторая волна -колебание А2соs(t - S2/V2), где V1 и V2 - фазовые скорости волны в первой и второй средах соответственно. Следовательно, разность фаз колебаний, возбуждаемых волнами в точке Р, будет равна
(S2/V2 - S1/V1) = (c)(n2S2 - n1S1).
Заменим /с через 2/с = 2/о, тогда
= (2/о), (3)
где = n2S2 - n1S1 = L2 - L1 - величина, равная разности оптических длин, проходимых волнами путей, и называется оптической разностью хода.
Из (3) видно, что если оптическая разность хода равна целому числу длин волн в вакууме:
= ±mо (m = 0,1,2,…. ), (4)
то разность фаз оказывается кратной 2 и колебания, возбуждаемые в точке Р обеими волнами, будут происходить с одинаковой фазой. Таким образом, (4) есть условие интерференционного максимума.
Если оптическая разность хода равна полуцелому числу длин волн в вакууме:
= ± (m + 1/2)о (m =0, 1,2, ...), (5)
то = ± (2m + 1), то есть колебания в точке Р находятся в противофазе. Следовательно, (5) есть условие интерференционного минимума.
Принцип получения когерентных световых волн разделением волны на две части, проходящие различные пути, может быть практически осуществлен различными способами - с помощью экранов и щелей, зеркал и преломляющих тел.
3. Методы наблюдения интерференции света: опыт Юнга, метод зеркал Френеля, бипризма Френеля
Впервые интерференционную картину от двух источников света наблюдал в 1802 году английский ученый Юнг. В опыте Юнга (рис.3) источником света служит ярко освещенная щель S, от которой световая волна падает на две равноудаленные щели А1 и А2, являющиеся двумя когерентными источниками света (две цилиндрические волны). Интерференционная картина наблюдается на экране Е, расположенном на некотором расстоянии l параллельно А1А2. Начало отсчета выбрано в точке 0, симметричной относительно щелей.
P
A1 S1
Плоская св. S O
волна
A2 S2 l
Е
Рис.3.
Усиление и ослабление света в произвольной точке Р экрана зависит от оптической разности хода лучей =nS2 - n S1 = L2 - L1. Для получения различимой интерференционной картины расстояние между источниками А1А2 = d должно быть значительно меньше расстояния l от источников до экрана. Расстояние х на экране, в пределах которого образуются интерференционные полосы, значительно меньше l. При этих условиях можно положить, что S2 + S1 2l. Из рис.3 по теореме Пифагора имеем
S22 = l2 + (x +d/2)2; S12 = l2 + (x - d/2)2,
откуда S22 - S12 = 2xd, а
S2 - S1 xd/l.
Умножив это выражение справа и слева на показатель преломления среды n, получим
= nxd/l. (6)
Подставив (6) в (4) получим, что максимумы интенсивности будут наблюдаться при значениях х, равных
хmax = ml/d, (m = 0, 1,2,.,,.). (7)
Здесь = 0/n - длина волны в среде, заполняющей пространство между источниками и экраном.
Координаты минимумов интенсивности будут:
хmin = ±(m +1/2)l/d, (m = 0,1,2,...). (8)
Расстояние между двумя соседними максимумами интенсивности называется расстоянием между интерференционными полосами, а расстояние между соседними минимумами - шириной интерференционной полосы. Из (7) и (8) следует, что расстояние между полосами и ширина полосы не зависят от порядка интерференции (величины m), являются постоянными для данных условий эксперимента l,,d и имеют одинаковое значение, равное
х = l/d. (9)
Измеряя параметры, входящие в (9), можно экспериментально определить длину волны оптического излучения . Согласно (9) х пропорционально l/d, поэтому чтобы интерференционная картина была четко различима, необходимо соблюдение упоминавшегося выше условия: d l. Главный максимум, соответствующий m = 0, проходит через точку 0. Вверх и вниз от него на равных расстояниях друг от друга располагаются максимумы и минимумы интенсивности первого (m =1), второго (m = 2) порядков и т.д., которые представляют собой чередующиеся светлые и темные полосы, параллельные друг другу.
Такая картина справедлива при освещении экрана монохроматическим светом (0 = const). При освещении белым светом интерференционные максимумы и минимумы для каждой длины волны будут, согласно формуле (9), смещены друг относительно друга и иметь вид радужных полос. Только для главного максимума максимумы для всех длин волн совпадают, и в середине экрана будет наблюдаться светлая полоса, по обе стороны от которой симметрично расположатся спектрально окрашенные полосы максимумов первого, второго порядков и т д. Ближе к центральной светлой полосе будут находиться зоны фиолетового цвета, а дальше - зоны красного цвета.
Интенсивность интерференционных полос не остается постоянной, а изменяется вдоль экрана по закону квадрата косинуса.
Наблюдать интерференционную картину можно также с помощью зеркала Френеля, рис 4. (рис. 4.3 из Ландсберга, стр.71). Бизеркало Френеля состоит из двух плоских зеркал, расположенных под углом, близким 1800.
Свет от источника S падает расходящимся пучком на бизеркало, отражается зеркалами 1 и 2 и представляет собой две системы когерентных волн, как бы исходящих из источников S1 и S2 , являющихся мнимыми изображениями источника S в зеркалах 1 и 2. Мнимые источники S1 и S2 взаимно когерентны, и исходящие из них световые волны приходят в различные точки экрана Е с некоторой разностью фаз, определяемой различием в длине пути от источников S1 и S2 до соответствующей точки экрана, и интерферируют. Освещенность экрана в разных точках будет различной. Интерференционная картина будет тем шире, чем меньше угол между зеркалами, а экран должен быть расположен достаточно далеко от зеркала. Прямые лучи от источника света S не доходят до экрана, так как их задерживает заслонка Z.
Бипризма Френеля (рис.5 -рис.247 из Трофимовой, стр.323) состоит из двух одинаковых, сложенных основаниями призм с малыми преломляющими углами.
Свет от источника S преломляется в обеих призмах, в результате за призмой распространяются световые волны исходящие как бы из двух мнимых источников света S1 и S2, являющихся когерентными. На достаточно удаленном от призмы экране Е происходит наложение и интерференция когерентных световых волн.
Наблюдать интерференционную картину можно также с помощью зеркала Лойда, билинзы Бийе и других оптических устройств, а также при отражении света от тонких прозрачных пленок.
ИНТЕРФЕРЕНЦИЯ СВЕТА ПРИ ОТРАЖЕНИИ ОТ ТОНКИХ ПЛАСТИНОК. ПОЛОСЫ РАВНОЙ ТОЛЩИНЫ И РАВНОГО НАКЛОНА
Вопросы:
1. Полосы равного наклона.
2. Полосы равной толщины.
1. Полосы равного наклона
Все наблюдали чрезвычайно красивые цвета тонких пленок масел и нефти на поверхности воды, мыльных пузырей, оксидных пленок металла, возникающих при закалке полированных стальных изделий при освещении их солнечным светом. Рассмотрим физику этих явлений, так как интерференция в тонких пластинках и пленках представляет практический интерес для понимания более сложных процессов, происходящих в интерференционных фильтрах, интерферометрах и других оптических устройствах.
Пусть на тонкую плоскопараллельную пластину толщиной b, изготовленную из прозрачного вещества с показателем преломления n, из воздуха (nвозд 1) падает плоская монохроматическая световая волна, которую можно рассматривать как параллельный пучок лучей 1 и 2 (рис.4), под углом Q1 к перпендикуляру.
Рис.4.
На поверхности пластины в точке А луч разделится на два параллельных луча света, из которых один образуется за счет отражения от верхней поверхности пластинки, а второй - от нижней поверхности. Луч 1 выбран так, чтобы он попал в точку С, через которую луч 2, пройдя расстояние АОС в прозрачной пластинке, выйдет из нее как луч 2?, параллельно отраженному лучу 1?. Разность хода, приобретаемая лучами 1? и 2? до того, как они сойдутся в точке С, равна
= nS2 - S1 0/2,
где S1 - длина отрезка СВ, S2 - суммарная длина отрезков АО и ОС, а член 0/2 обусловлен потерей полуволны при отражении луча 1? от границы раздела двух сред с различными показателями преломления (n >nв -точка С) .
Из геометрического рассмотрения получается формула для оптической разности хода лучей 1? и 2?:
' = 2b(n2 - sin2Q1) = 2bn соsQ2,
а с учетом потери полуволны для оптической разности хода получим
= 2b(n2 - sin2Q1) 0/2 = 2bn соsQ2 0/2. (10)
Вследствие ограничений, накладываемых временной и пространственной когерентностью, интерференция при освещении пластинки, например, солнечным светом наблюдается только в том случае, если удвоенная толщина пластинки не превышает длины когерентности падающей волны, т.е. нескольких сотых миллиметра. При освещении светом с большей степенью когерентности (например, лазером) интерференция, наблюдается и при отражении от более толстых пластинок или пленок.
Лучи, отразившиеся от верхней и нижней плоскостей пластинки, параллельны друг другу, так как пластинка плоскопараллельна, поэтому они «пересекаются» в бесконечности. В соответствии с этим явление интерференции будет наблюдаться только на достаточно большом расстоянии от пластинки, теоретически - в бесконечности.
Практически интерференцию от плоскопараллельной пластинки наблюдают, поставив на пути отраженных пучков линзу, которая собирает лучи в одной из точек экрана, расположенного в фокальной плоскости линзы (рис.5). Освещенность в произвольной точке Р экрана зависит от значения величины , определенной по формуле (10). При = mо получаются максимумы, при = (m + 1/2)о - минимумы интенсивности (m - целое число).
Пусть тонкая плоскопараллельная пластинка толщиной b, изготовленная из прозрачного вещества с показателем преломления n, освещается рассеянным монохроматическим светом (рис.5). Расположим параллельно пластинке линзу, в фокальной плоскости которой поместим экран. В рассеянном свете имеются лучи самых разнообразных направлений. Лучи, параллельные плоскости рисунка и падающие на пластинку под углом Q'1, после отражения от обеих поверхностей пластинки соберутся линзой в точке Р и создадут в этой точке освещенность, определяемую значением оптической разности хода.
Лучи, идущие в других плоскостях, но падающие на пластинку под тем же углом Q1 соберутся линзой в других точках, отстоящих от центра экрана О на такое же расстояние, как и точка Р. Освещенность во всех этих точках
E
Рис.5.
будет одинакова. Таким образом лучи, падающие на пластинку под одинаковым углом Q1, создадут на экране совокупность одинаково освещенных точек, расположенных по окружности с центром в точке О. Аналогично, лучи, падающие под другим углом Q"1, соберутся в фокальной плоскости линзы и создадут на экране совокупность одинаково (но иначе, поскольку Д иная) освещенных точек, расположенных по окружности другого радиуса.
В результате на экране возникнет интерференционная картина - система чередующихся светлых и темных круговых полос с общим центром в точке O. Каждая полоса образована лучами, падающими на пластинку под одинаковым углом Q1. Поэтому получающиеся в описанных условиях интерференционные полосы носят название полос равного наклона. При ином расположении линзы относительно пластинки (экран во всех случаях должен совпадать с фокальной плоскостью линзы) форма полос равного наклона будет другой. Полосы равного наклона можно наблюдать глазом, аккомодированным на бесконечность. В этом случае роль линзы может играть хрусталик глаза, а экрана - сетчатка глаза.
Согласно (10) положение максимумов интенсивности зависит от длины волны света о. Поэтому при освещении тонкой пластинки белым светом получается совокупность смещенных друг относительно друга полос, образованных лучами разных цветов, и интерференционная картина приобретает радужную окраску.
3. Полосы равной толщины
Интерференционная картина от тонкого прозрачного клина переменной толщины была изучена еще Ньютоном. Пусть на такой клин с малым углом ц при вершине, изготовленный из вещества с показателем преломления n, падает почти нормально параллельный пучок лучей от протяженного источника света, (рис.6). Для наглядности рисунка угол падения увеличен в десятки раз, по сравнению с его действительным значением.
Теперь лучи, отразившиеся от верхней и нижней поверхностей клина, во всем пространстве над клином не будут строго параллельными. Но и в этом случае отраженные волны от мест клина, для которых толщина удовлетворяет условию (10) будут когерентными, и при любом расстоянии экрана Е от клина на нем будет наблюдаться интерференционная картина в виде полос, параллельных вершине клина 0.
Рис.6. ц<< !!!
Каждая из таких полос возникает в результате отражения от участков клина с одинаковой толщиной, вследствие чего их называют полосами равной толщины. Практически полосы равной толщины наблюдают, поместив вблизи клина линзу и за ней экран. Роль линзы может играть хрусталик, а роль экрана - сетчатка глаза. При наблюдении в белом свете полосы будут окрашенными, так что поверхность пластинки или пленки представляется имеющей радужную окраску. Отчетливость интерференционной картины уменьшается при перемещении от вершины клина к его основанию. При почти нормальном падении света на клин интерференционная картинка локализуется на верхней поверхности клина.
В реальных условиях при наблюдении радужных цветов на масляной или мыльной пленках изменяется как угол падения лучей, так и толщина пленки. Поэтому в этих случаях наблюдаются полосы смешанного типа.
Заметим, что интерференция от тонких пленок может наблюдаться не только в отраженном, но и в проходящем свете.
КОЛЬЦА НЬЮТОНА. ПРИМЕНЕНИЯ ЯВЛЕНИЯ ИНТЕРФЕРЕНЦИИ
Вопросы:
1. Кольца Ньютона.
2. Применения явления интерференции. Просветление оптики.
1.Кольца Ньютона
Классическим примером полос равной толщины являются кольца Ньютона. Они наблюдаются при отражении света от соприкасающихся друг с другом плоскопараллельной толстой стеклянной пластинки и плоско-выпуклой линзы с большим радиусом кривизны.
Рис.7. стр.463 кн. Наркевич
Наблюдаются кольца Ньютона и с системой соприкасающихся плосковогнутой и плосковыпуклой линз с большим радиусом кривизны, причем радиус кривизны плосковогнутой линзы должен быть больше радиуса кривизны плосковыпуклой линзы.
Роль тонкого клина, от поверхности которого отражаются когерентные волны, играет воздушный зазор между стеклянной пластинкой и линзой (рис.7). Вследствие большой толщины пластинки и линзы за счет отражений от других поверхностей интерференционные полосы не возникают. Луч света падает нормально на плоскую поверхность линзы и частично отражается от верхней и нижней поверхностей воздушного зазора. Отраженные лучи когерентны и при их наложении возникают полосы равной толщины. При нормальном падении света полосы равной толщины имеют вид концентрических окружностей, при наклонном падении - эллипсов. Определим оптическую разность хода отраженных лучей и найдем радиусы колец Ньютона при нормальном падении света на пластину. В этом случае sinQ1 = О и равна удвоенной толщине зазора (предполагается n0 = 1). Из рис. 7 следует, что
R2 = (R - b)2 + r2 R2 - 2Rb + r2, (12)
где R - радиус кривизны линзы, r - радиус окружности, всем точкам которой соответствует одинаковый зазор толщиной b. Считаем b2 2Rb, тогда из (12) получим, что b = г2/2R. Чтобы учесть возникающее при отражении от стеклянной пластинки изменение фазы на , нужно к = 2b = r2/R прибавить о/2. Тогда оптическая разность хода лучей окончательно запишется так
= r2/R + о/2. (13)
В точках, для которых
= m'о = 2m'(о/2),
возникают максимумы, в точках, для которых
= (m' + 1/2)о = (2m'+ 1)(о/2),
- минимумы интенсивности.
Оба условия можно объединить в одно:
= mо/2, m = 1, 2, 3, … (13а)
причем четным значениям m будут соответствовать максимумы, а нечетным -минимумы интенсивности. Приравняв(13) и (13а) и разрешив получившееся уравнение относительно r, найдем радиусы светлых и темных колец Ньютона:
rm = Rо(m- 1)/2, (m =1,2,3,...). (14)
Четным значениям m соответствуют радиусы светлых колец, нечетным m - радиусы темных колей. Значению m =1 соответствует точка касания пластинки и линзы (г = 0).
В этой точке наблюдается минимум интенсивности, обусловленный изменением фазы волны на при отражении световой волны от стеклянной пластинки.
Измеряя расстояния между полосами интерференционной картины для тонких пластин или радиусы колец Ньютона, можно определить длины волн световых лучей и, наоборот, при известной длине волны о найти радиус кривизны линзы R.
Интерференцию можно наблюдать и в проходящем свете, причем в данном случае не наблюдается потери полуволны, появляющейся при отражении света от стеклянной пластины. Следовательно, оптическая разность хода для проходящего и отраженного света отличается на 0/2, т.е. максимумам интерференции в отраженном свете соответствуют минимумы в проходящем, и наоборот.
При освещении оптической системы не монохроматическим, а белым светом наблюдается совокупность смещенных друг относительно друга интерференционных полос (колец), образованных лучами разных длин волн, и интерференционная картина приобретает радужную окраску.
2.Применения явления интерференции. Просветление оптики. Интерферометры
Наблюдение полос равной толщины используется в различных задачах техники, в частности, при определении качества полировки оптических поверхностей. Исследуемую оптическую пластинку накладывают на контрольную так, чтобы между ними образовался тонкий воздушный клин. Сверху пластинки освещают монохроматическим светом и наблюдают интерференционные полосы в отраженном свете. Если поверхности обеих пластин идеально плоские, то наблюдаются совершенно прямые полосы равной толщины, параллельные ребру клина. Имеющиеся на поверхности дефекты приводят к искривлению полос, по виду которых легко отличить «впадину» от «бугра». По величине искривлений можно определить наличие отклонений от плоскости меньшие 0,1 длины волны л интерферирующего света.
Исследования полос равной толщины используют для точного измерения малых углов между оптическими поверхностями и для решения других метрологических задач.
При создании оптических систем с большим числом отражающих поверхностей даже при относительно малом коэффициенте отражения каждой из них в системе теряется на отражение значительная часть светового потока. Значительное отражение света от поверхности линз оптических приборов приводит к возникновению бликов, что, например, в военной технике демаскирует местоположение прибора. Явление интерференции используют для уменьшения коэффициента отражения на каждой поверхности (просветление оптики). Для этого на поверхности линзы наносят тонкие пленки с показателем преломления n, меньшим показателя преломления стекла линзы nc. рис. 8. Световые волны, отраженные от внешней и внутренней поверхностей пленки когерентны, лучи 1? и 2?. Толщину пленки b и показатели преломления стекла nс и пленки n можно подобрать таким образом, чтобы световые волны, отраженные от обеих поверхностей пленки, находились в противофазе и гасили друг друга. В этом случае при нормальном падении света на поверхность линзы оптическая разность хода равна
Д = 2nb = (m + 1/2) л0 ,
так как изменение фазы волны на р (потеря полуволны) происходит на обеих поверхностях. Обычно делают пленку такой толщины, что m = 0, тогда оптическая толщина пленки nb = л0 /4. Наибольшее ослабление отраженного света происходит при равенстве амплитуд отраженных волн, что выполняется при условии
n = vnc.
Поскольку при интерференции энергия световой волны не изменяется, а только перераспределяется в пространстве, то при нанесении такой тонкой пленки на поверхность линз оптическая система «просветляется», т.е. больше света проходит через оптическую систему. Показатели преломления n и nc зависят от длины волны, поэтому это соотношение выполняется только для некоторого интервала длин волн. Обычно просветление оптики делается для наиболее восприимчивой глазом длины волны л0 ? 550 нм.
В последнее время разработаны способы многослойного покрытия, обеспечивающего наиболее эффективное просветление в приборах с большим числом преломляющих поверхностей и позволяющего избежать заметного изменения спектрального состава проходящего через оптическую систему излучения.
При нанесении на оптическую поверхность пленки c оптической толщиной nb = л0 /4 и показателем преломления n > nc будет наблюдаться увеличение коэффициента отражения, так как в этом случае потеря полуволны происходит только на передней поверхности пленки, а оптическая разность пути равна Д = (2? л /4 + л /2) = л, и обе волны будут усиливать друг друга. Добиться еще больших коэффициентов отражения можно, если вместо двухлучевой интерференции использовать многолучевую интерференцию, возникающую при наложении большого числа когерентных световых волн. В этом случае интерференционные максимумы интенсивности окажутся тем более узкими, чем больше N - число интерферирующих пучков, а их интенсивность увеличится в N2 раз.
Многолучевую интерференцию можно осуществить в многослойной системе чередующихся тонких пленок с одинаковой оптической толщиной nibi = л /4, но разными показателями преломления, нанесенными на отражающую поверхность, рис. 9. Между двумя слоями с большим показателем преломления помещают слой с малым показателем преломления. В этом случае возникает большое число отраженных когерентных волн, которые синфазны и будут взаимно усиливаться, т.е. коэффициент отражения на определенной длине волны увеличивается.
Подобные интерференционные зеркала применяются в лазерной технике, используются при изготовлении интерференционных светофильтров (узкополосных оптических фильтров) и многослойных интерференционных поляризаторов.
Практическим применением интерференции являются прецизионные измерения малых линейных размеров и показателей преломления прозрачных сред. Для этого служат приборы, называемые интерферометрами
Интерферометры также позволяют определять незначительные изменения показателя преломления прозрачных тел (газов, жидкостей и твердых тел) в зависимости от давления, температуры, примесей и т.п. Имеется много разновидностей интерференционных приборов, называемых интерферометрами. Принцип действия их одинаков, и различаются они лишь конструктивно. Рассмотрим упрощенную оптическую схемы интерферометра Майкельсона, рис. 10.
Пучок монохроматического света от источника S падает под углом 450 на полупрозрачную плоскопараллельную пластинку Р1, покрытую тонким слоем серебра (заштрихованная сторона пластинки), которая разделяет луч на две части равной интенсивности: отраженный от посеребренного слоя луч 1 и прошедший через пластинку луч 2. Световой луч 1 отражается от зеркала М1 и возвращается к Р1, где делится на два равных по интенсивности луча. Один из них проходит сквозь пластинку (луч 1?), второй отражается в сторону источника света S и нас больше интересовать не будет. Луч 2 распространяется в сторону зеркала М2, отражается от него, вновь возвращается к пластинке Р1, где делится на две части: отразившийся луч 2? и прошедший сквозь нее луч, который также нас не интересует. Поскольку лучи 1? и 2? получены от одного источника света, то они когерентны и будут интерферировать. Результат интерференции зависит от оптической разности хода лучей от пластинки Р1 до зеркал М1 и М2 и обратно. Так как луч 1? проходит сквозь пластинку Р1 дважды, то для компенсации возникшей за счет этого оптической разности хода на пути луча 2? нужно поставить точно такую же, как Р1, пластинку Р2, но не покрытую серебром. Таким способом уравниваются пути лучей 1 и 2 в стекле. Интерференционная картина наблюдается с помощью зрительной трубы Т.
При перемещении любого из зеркал с помощью микрометрического винта на расстояние л0 /4 разность хода обоих лучей изменится на л0 /2 и произойдет смена освещенности зрительного поля трубы. Так, по незначительному смещению интерференционной картины можно определить перемещение зеркал и таким образом использовать интерферометр Майкельсона для точного (порядка 10-7 м) измерения длин тел, длины волны света и т.д.
Используя интерферометр, Майкельсон в 1890 - 1895 гг. впервые произвел сравнение длины волны красной линии кадмия с международным эталоном метра. С помощью интерферометра Майкельсона исследовалось распространение света в движущихся средах, что привело к фундаментальным изменениям представлений о пространстве и времени. В 1920 г. Майкельсон построил звездный интерферометр, позволивший измерять малые угловые расстояния между двойными звездами и угловые размеры звезд.
Интерферометры можно использовать для измерения показателя преломления прозрачного вещества nx. Такие интерферометры называются интерференционными рефрактометрами. В них на пути одного из лучей нужно поставить кювету длиной l с исследуемым веществом, а на пути другого луча - такую же кювету с эталонным веществом, показатель преломления которого n0 известен. Возникающая между интерферирующими лучами оптическая разность пути Д = l(nx - n0) приводит к сдвигу интерференционных полос, по которому можно вычислить изменение nx - n0, а значит и nx. Такой интерферометр позволяет производить измерения nx с относительной точностью порядка 10-6.
Российский физик В.П. Линник на основе комбинации интерферометра Майкельсона и микроскопа создал микроинтерферометр, предназначенный для контроля чистоты обработки металлических поверхностей высокого класса точности. В микроинтерферометре наблюдают интерференционную картину полос равной толщины, искривления которых зависят от микрорельефа исследуемой поверхности.
В.П. Линник построил интерферометр позволяющий контролировать прямолинейность поверхностей большого размера длиной до 5м с точностью до 1 мкм.
Интерференционный дилатометр Физо-Аббе используется для точных измерений коэффициента расширения различных веществ.
ДИФРАКЦИЯ СВЕТА
Вопросы:
1. Явление дифракции света. Виды дифракции.
2. Принцип Гюйгенса-Френеля. Зоны Френеля.
3. Дифракция Френеля на круглом экране и круглом отверстии.
4. Дифракция Фраунгофера на одной щели.
1. Явление дифракции света. Виды дифракции
Дифракцией называется совокупность явлений, которые обусловлены волновой природой света и наблюдаются при распространении его в среде с резкими неоднородностями и связанных с отклонениями от законов геометрической оптики. Дифракция, в частности, приводит к огибанию световыми волнами препятствий и проникновению света в область геометрической тени. Огибание препятствий звуковыми волнами (т.е. дифракция звуковых волн) наблюдается постоянно в обыденной жизни. Например, звук хорошо слышен за углом дома, т.к. звуковая волна его огибает. Для наблюдения дифракции световых волн необходимо создание специальных условий. Это обусловлено малостью длин световых волн. В пределе при 0 законы волновой оптики переходят в законы геометрической оптики.
Между явлениями интерференции и дифракции нет существенных различий. При обоих явлениях происходит перераспределение энергии световых волн в результате их суперпозиции. Исторически так сложилось, что перераспределение интенсивности, возникающее в результате суперпозиции волн, возбуждаемых конечным числом дискретных когерентных источников, принято называть интерференцией волн, а вследствие суперпозиции волн, возбуждаемых когерентными источниками, расположенными непрерывно, принято называть дифракцией.
Для наблюдения дифракции на пути световой волны, распространяющейся от некоторого источника, помещается непрозрачная преграда, закрывающая часть волновой поверхности. За преградой помещается экран, на котором наблюдается дифракционная картина.
Различают два вида дифракции. Если источник света S и точка наблюдения М расположены от препятствия настолько далеко, что лучи, падающие на препятствие, и лучи, идущие в точку М, образуют практически параллельные пучки, то говорят о дифракции в параллельных лучах или о дифракции Фраунгофера. Дифракцию Фраунгофера можно наблюдать также по схеме, представленной на рис.1а, причем точки S и М должны находиться в фокальной плоскости соответствующей линзы. Дифракцию Френеля можно наблюдать, если свет от точечного источника S падает на отверстие или непрозрачный диск, которые расположены достаточно близко от источника света, рис. 1б.
2. Принцип Гюйгенса-Френеля. Зоны Френеля
Проникновение световых волн в область геометрической тени можно объяснить с помощью принципа Гюйгенса, согласно которому каждая точка, до которой доходит волна, служит центром вторичных волн, а огибающая этих волн задает положение волнового фронта в следующий момент времени. Однако этот принцип не позволяет вычислить амплитуду (интенсивность) волн, распространяющихся в различных направлениях. Френель дополнил принцип Гюйгенса представлением об интерференции вторичных волн. Учет амплитуд и фаз вторичных волн позволяет найти амплитуду результирующей волны в любой точке пространства. Развитый таким образом принцип Гюйгенса получил название принципа Гюйгенса - Френеля: все источники вторичных волн, расположенные на поверхности фронта волны, когерентны между собой; световая волна в любой точке пространства является результатом интерференции волн, излучаемых вторичными источниками и достигших этой точки. При этом предполагается, что вторичные волны излучаются только вперед, а возможность возникновения обратных вторичных волн исключается. Поскольку точек фронта, являющихся когерентными источниками новых волн, бесчисленное множество, то расчет интерференции сводится к довольно громоздкому интегрированию. Для упрощения решения этого вопроса Френелем был предложен метод разделения фронта волны на зоны таким образом, что волны от соседних зон приходят в точку наблюдения в противоположной фазе и ослабляют друг друга. С методом зон Френеля ознакомимся на примере дифракции сферической световой волны на непрозрачной преграде.
Пусть S - точечный источник монохроматического света, распространяющегося в однородной среде. По принципу Гюйгенса от него распространяется во все стороны сферическая волна. В некоторый момент времени фронт этой волны занимает положение Ф, рис.2. Рассмотрим произвольную точку М перед фронтом волны и соединим её прямой линией с источником света S . Волновые поверхности будут симметричны относительно прямой SМ.
Рис.2.
Если бы свет распространялся прямолинейно вдоль луча SРМ, то достаточно было бы поставить на его пути сколь угодно малый экран 1 , чтобы в точке наблюдения М была полная темнота. Благодаря волновой природе света в точку М приходят волны не только от точки Р, но и от всех остальных точек фронта Ф, правда в различных фазах.
Для расчета результатов интерференции Френель предложил провести ряд сфер с центрами в точке М и радиусами, соответственно равными
МN1 = МP +/2,
MN2 = МN1 +/2 = МP + 2/2,
MN3 = МN2 +/2 = МP + 3/2, и т.д.
Тем самым фронт волны Ф разобьется на ряд кольцевых зон, заштрихованных на рис.2 через одну. Волны, приходящие в точку М от точек каждой последующей зоны, сдвинуты по отношению к волнам, приходящим от соответствующих точек предыдущей зоны, на л/2, т.е. находятся в противоположных фазах, и их амплитуды при интерференции вычитаются. Из геометрического рассмотрения можно получить выражение для радиуса внешней границы m - ной зоны:
rm=vabmл/(a + b), m = 1, 2, 3, … (1)
Если, например, а = b = 1 м и л = 0,5 мкм, то радиус первой зоны r1 = 0,5 мм. Занумеруем величины суммарных амплитуд волн, приходящих в точку М от каждой последующей зоны: А1, А2, а3, А4, А5, А6, ....
Благодаря различию в расстояниях зон до точки наблюдения и в углах, под которыми видны эти площадки из точки М, величины этих амплитуд монотонно убывают:
А1 А2 а3 А4 А5 А6, ....
В качестве допустимого приближения можно принять, что амплитуда колебания от некоторой k - той зоны Френеля Аk равна среднему арифметическому от амплитуд примыкающих к ней зон:
Аk = (Аk+1 + Аk-1)/2. (2)
Амлитуда результирующего светового колебания в точке М, равна сумме амплитуд, создаваемых каждой отдельной зоной. При этом амплитуды от всех четных зон надо складывать с одинаковым знаком (например, положительными), а амплитуда волн от всех нечетных зон - с обратным знаком:
А = А1 - А2 +А3 - А4 + А5 -.... (3)
Используя (2), можно это выражение представить в виде
А = А1/2 + (А1/2 - А2 +А3/2) + (А3/2 -А4 + А5 /2) + ... А1/2, (4)
так как оставшаяся часть от амплитуды последней зоны ± Аk/2 мала.
Таким образом при большом числе открытых зон Френеля амплитуда от воздействия всего фронта Ф в точке наблюдения М равная А = А1/2 эквивалентна половине воздействия центральной зоны Френеля, т.е. распространение света от источника S в точку наблюдения М происходит так, будто свет распространяется прямолинейно вдоль направления SМ. Значит, волновое описание процесса распространения света не противоречит закону прямолинейного распространения света в однородной среде, используемого в геометрической оптике.
3. Дифракция света на круглом экране и круглом отверстии
Если на пути света от точечного источника S поставить не слишком большой круглый экран 2 так, чтобы перпендикуляр, опущенный на него из источника света, проходил через его центр, то в точке наблюдения М по-прежнему будет свет, хотя и меньшей интенсивности, рис.2.
Проведя через край экрана 2 линию МN0, произведем деление фронта световой волны Ф, начиная от точки N0, на такие же зоны Френеля, как и ранее. Повторяя все рассуждения, получим, что для идеального круглого экрана 2, закрывающего (m - 1) первых зон Френеля, результирующая амплитуда колебаний в точке М будет А' = Аm/2, где Аm - амплитуда первой открытой зоны, отсчитываемой от N0. По мере увеличения экрана 2 величина А' будет убывать, но точка М остается освещенной всегда практически до тех пор, пока экран не закроет достаточно большого числа зон Френеля. Лишь в этом последнем случае станет справедливым положение геометрической оптики о прямолинейном распространении света: препятствие, перекрывающее луч SМ, даст в точке наблюдения геометрическую тень. Вблизи границ тени будет наблюдаться слабая дифракционная картина.
Более того, если сделать "зонный экран" 3, состоящий из ряда непрозрачных колец, закрывающих все нечетные (или все четные) зоны Френеля, то результирующая амплитуда
А= А2 + А4 + А6 .... (5)
оказывается даже большей, чем при отсутствии всякого экрана. Т.е. такой экран действует подобно собирательной линзе. Еще большего эффекта можно достичь, не перекрывая четные (или нечетные) зоны, а изменяя фазу их колебаний на . Это можно осуществить с помощью прозрачной пластинки, толщина которой в местах, соответствующих четным или нечетным зонам, отличается на определенную величину. Такая пластинка называется фазовой зонной пластинкой. По сравнению с перекрывающей зоны амплитудной зонной пластинкой применение фазовой пластинки даст дополнительное увеличение амплитуда в два раза, а интенсивности света - в 4 раза.
Деление фронта волны Ф на зоны Френеля является относительным и зависит от расстояния до точки наблюдения М,
Пренебрегать дифракционными явлениями и рассматривать свет распространяющимся прямолинейно вдоль лучей, исходящих от источника, допустимо лишь, если размеры экрана велики по сравнению с размерами зон Френеля. Чем короче , тем меньше размеры этих зон и тем точнее можно пользоваться приближенными понятиями лучевой (геометрической) оптики. Т.к. для видимого света = 0,4 - 0,8 мкм, то при наблюдении макроскопических тел этими приближениями можно пользоваться с достаточной точностью. Однако при уменьшении размеров тел начинают проявляться дифракционные явления.
Поставим на пути сферической световой волны распространяющейся от источника света S непрозрачный экран с вырезанным в нем круглым отверстием радиуса r. Расположим экран так, чтобы перпендикуляр, опущенный из источника света S, попадал в центр отверстия. На продолжении этого перпендикуляра возьмем точку Р, в которую поместим экран, параллельный плоскости отверстия, рис.3.
Если расстояния а и b удовлетворяют соотношению (1), где m - целое число, то отверстие оставит открытым ровно m первых зон Френеля, построенных для точки Р. Из (1) число открытых зон Френеля определяется выражением
m = rm2(1/а+1/b)/. (6)
В соответствии с (3) амплитуда результирующего колебания в точке Р будет равна
А = А1 -А2 +А3 -А4 +....±Аm (7)
Перед Аm берется знак «+», если m нечетное, и минус, если m - четное. Представив (7) в виде, аналогичном (4), и положив выражения в скобках равными нулю, получим
А = А1/2 + Аm /2 (m - нечетное), (8)
А=А1/2 +Аm-1/2 - Аm (m - четное).
Амплитуды от двух соседних зон практически одинаковы. Поэтому (Аm-1/2) - Аm можно заменить через - Аm/2. В результате получится:
А = А1/2 ± Аm/2, (9)
где знак «+» берется для нечетных значений m и минус - для четных.
Для малых m амплитуда Аm мало отличается от А1. Следовательно, при нечетных m амплитуда в точке Р будет приблизительно равна а1, при четных m - нулю, см. рис.3.
А какая будет освещенность в других точках экрана? Вследствие симметричного расположения отверстия относительно прямой SР освещенность в разных точках экрана будет зависеть только от расстояния х от точки Р. Если смещаться по экрану в точку Р и далее, то дифракционная картина будет иметь вид чередующихся светлых и темных концентрических колец. Изменение освещенности экрана в зависимости от расстояния от точки Р показано на рис.3. Если отверстие открывает лишь часть центральной зоны Френеля, на экране получается размытое светлое пятно; чередования светлых и темных колец в этом случае не возникает, рис.Х.
Аналогичная картина на экране получается и в рассмотренном выше случае, когда между источником света и экраном помещается непрозрачный круглый диск. Дифракционная картина на экране будет иметь вид чередующихся светлых и темных концентрических колец. В центре картины наблюдается светлое пятно.
Подобным образом можно рассматривать дифракцию Френеля от прямолинейного края полуплоскости и дифракцию от бесконечной щели.
4. Дифракция Фраунгофера на одной щели
Пусть на бесконечно длинную щель (длина щели во много раз больше, чем ее ширина) шириной а падает нормально к щели плоская монохроматическая световая волна, рис.4.
Рис.4.
Поместим за щелью собирательную линзу, а в фокальной плоскости линзы - экран. Волновая поверхность падающей волны, плоскость щели и экран параллельны друг другу. Поскольку щель бесконечна, интерференционная картина, наблюдаемая в плоскости любого сечения, перпендикулярного к щели, будет одинакова. Поэтому достаточно исследовать интерференционную картину в плоскости одного такого сечения.
Когда фронт волны дойдет до щели и займет положение MN, то все его точки являются новыми источниками волн, распространяющихся во все стороны вперед от щели. Рассмотрим волны, распространяющиеся от точек плоскости MN в направлении, составляющем некоторый угол с первоначальным направлением распространения света. Эти волны, проходя через линзу, сойдутся в некоторой точке B на экране, расположенном в фокальной плоскости линзы. Лучи, распространяющиеся от щели под различными углами, будут собираться в различных точках экрана и при наложении в результате интерференции дадут на экране дифракционную картину.
Опустим из точки M перпендикуляр MF на направление выделенного пучка лучей. Тогда от плоскости MF и далее до фокальной плоскости Е параллельные лучи не меняют своей разности хода. Разность хода, определяющая условия интерференции, возникает лишь на пути от исходного фронта MN до плоскости MF и различна для разных лучей.
Для расчета интерференции всех этих лучей применим метод зон Френеля. Для этого мысленно разделим линию NF на ряд отрезков длиной /2. На расстоянии NF = аsin уложится
Z = (аsin)/(/2) (10)
таких отрезков. Проводя из концов этих отрезков линии, параллельные MF, до встречи их с MN, разобьём фронт волны в щели на ряд полосок одинаковой ширины - зон Френеля. Число зон Френеля Z, укладывающихся на ширине щели, как следует из выражения (10), зависит от угла . Волны, идущие от каждых двух соседних зон Френеля, приходят в точку B в противоположной фазе и гасят друг друга. Если число зон четное (Z = 2m, где m - целое число, неравное нулю), то каждая пара соседних зон взаимно погасит друг друга, так что при данном угле на экране будет наблюдаться минимум освещенности. Углы , соответствующие этим минимумам освещенности, находятся из условия:
аsinmin = 2m/2, m = 0, 1, 2, 3, .... (11)
В промежутках между минимумами на экране наблюдаются максимумы освещенности при углах , определяемых из условия
аsinmax = (2m + 1)/2, m = 0, 1, 2, 3, .... (12)
Для этих углов фронт MN разбивается на нечетное число зон Френеля Z = 2m +1 и одна из зон остается нескомпенсированной. Амплитуда колебания в этом случае будет составлять долю ~ 1/(2m+1), а интенсивность ~ 1/(2m+1)2 от суммарной амплитуды, создаваемой всеми зонами фронта MN.
Для точки экрана O, лежащей против центра линзы, угол = 0, а щель действует как одна зона Френеля и в этом направлении свет от щели распространяется в одной фазе и в точке О будет наблюдаться наибольшая интенсивность - центральный максимум. По обе стороны от него интенсивность будет спадать до первого минимума, а затем увеличиваться до следующего максимума, рис.4. На экране Е будут наблюдаться перемежающиеся светлые и темные полосы с постепенными переходами между ними. Центральная полоса будет наиболее яркой, а освещенность боковых максимумов будет убывать от центра к переферии.
...Подобные документы
Распространение волн в упругой среде. Уравнение плоской и сферической волны. Принцип суперпозиции, разложение Фурье и эффект Доплера. Наложение встречных плоских волн с одинаковой амплитудой. Зависимость длины волны от относительной скорости движения.
презентация [2,5 M], добавлен 14.03.2016Понятие оптического излучения и светового луча. Оптический диапазон длин волн. Расчет и конструирование оптических приборов. Основные законы геометрической оптики. Проявление прямолинейного распространения света. Закон независимости световых пучков.
презентация [12,0 M], добавлен 02.03.2016Волновая теория света и принцип Гюйгенса. Явление интерференции света как пространственного перераспределения энергии света при наложении световых волн. Когерентность и монохроматичных световых потоков. Волновые свойства света и понятие цуга волн.
презентация [9,4 M], добавлен 25.07.2015Огибание волнами препятствий, встречающихся на пути. Отклонения законов распространения волн от законов геометрической оптики. Принцип Гюйгенса. Амплитуда распространяющихся лучей. Суперпозиция когерентных волн, излучаемых фиктивными источниками.
реферат [428,8 K], добавлен 21.03.2014Исторические факты и законы геометрической оптики. Представления о природе света. Действие вогнутых зеркал. Значение принципа Ферма для геометрической оптики. Развитие волновой теории света. Геометрическая оптика как предельный случай волновой оптики.
реферат [231,0 K], добавлен 19.05.2010Изучение явлений интерференции и дифракции. Экспериментальные факты, свидетельствующие о поперечности световых волн. Вывод о существовании электромагнитных волн, электромагнитная теория света. Пространственная структура эллиптически-поляризованной волны.
презентация [485,0 K], добавлен 11.12.2009Дифракция механических волн. Связь явлений интерференции света на примере опыта Юнга. Принцип Гюйгенса-Френеля, который является основным постулатом волновой теории, позволившим объяснить дифракционные явления. Границы применимости геометрической оптики.
презентация [227,5 K], добавлен 18.11.2014Определение оптики. Квантовые свойства света и связанные с ними дифракционные явления. Законы распространения световой энергии. Классические законы излучения, распространения и взаимодействия световых волн с веществом. Явления преломления и поглощения.
презентация [1,3 M], добавлен 02.10.2014Типы волн и их отличительные особенности. Понятие и исследование параметров упругих волн: уравнения плоской и сферической волн, эффект Доплера. Сущность и характеристика стоячих волн. Явление и условия наложения волн. Описание звуковых и стоячих волн.
презентация [362,6 K], добавлен 24.09.2013Физика – фундаментальная отрасль естествознания. Механистическая картина мира - законы динамики. Электромагнитная картина мира - физика полей. Современная научная картина мира - теория относительности. Закон всемирного тяготения и принцип относительности.
презентация [8,5 M], добавлен 12.10.2012Предсказание Максвелла Дж.К. - английского физика, создателя классической электродинамики о существовании электромагнитных волн. Их экспериментальное получение немецким ученым Г. Герцем. Изобретение радио А.С. Поповым, основные принципы его действия.
реферат [13,5 K], добавлен 30.03.2011Изучение процессов распространения электромагнитных волн радиодиапазона в атмосфере, космическом пространстве и толще Земли. Рефракция радиоволн, космическая, подземная и подводная радиосвязь. Особенности распространения гектометровых (средних) волн.
презентация [218,0 K], добавлен 15.12.2011Особенности физики света и волновых явлений. Анализ некоторых наблюдений человека за свойствами света. Сущность законов геометрической оптики (прямолинейное распространение света, законы отражения и преломления света), основные светотехнические величины.
курсовая работа [2,1 M], добавлен 13.10.2012Оптический диапазон длин волн. Скорость распространения волн в однородной нейтральной непроводящей среде. Показатель преломления. Интерференция световых волн. Амплитуда результирующего колебания. Получение интерференционной картины от источников света.
презентация [131,6 K], добавлен 18.04.2013Характеристика диапазонов радиоволн. Электродинамические свойства земной поверхности и атмосферы Земли. Отличие распространения длинных, средних и коротких волн. Распространение радиоволн в пределах прямой видимости над шероховатой поверхностью Земли.
контрольная работа [1,1 M], добавлен 02.10.2013Взаимодействие электромагнитных волн с веществом. Отражение и преломление света диэлектриками. Принцип Гюйгенса - Френеля. Рефракция света. Графическое сложение амплитуд вторичных волн. Дифракция плоской световой волны и сферической световой волны.
реферат [168,2 K], добавлен 25.11.2008Экспериментальное получение электромагнитных волн. Плоская электромагнитная волна. Волновое уравнение для электромагнитного поля. Получение модуля вектора плотности потока энергии. Вычисление давления электромагнитных волн и уяснение его происхождения.
реферат [28,2 K], добавлен 08.04.2013Основные принципы геометрической оптики. Изучение законов распространения световой энергии в прозрачных средах на основе представления о световом луче. Астрономические и лабораторные методы измерения скорости света, рассмотрение законов его преломления.
презентация [1,5 M], добавлен 07.05.2012Основные методы описания распространения электромагнитных волн в периодических средах с использованием волновых уравнений. Теории связанных волн, вывод уравнений. Выбор метода для описания генерации второй гармоники в периодически поляризованной среде.
дипломная работа [1,1 M], добавлен 17.03.2014Понятие электромагнитных волн, их сущность и особенности, история открытия и исследования, значение в жизни человека. Виды электромагнитных волн, их отличительные черты. Сферы применения электромагнитных волн в быту, их воздействие на организм человека.
реферат [776,4 K], добавлен 25.02.2009