Сущность нормальной физиологии

Рефлекторный принцип деятельности центральной нервной системы. Основная роль спинного мозга в регуляции двигательных функций. Характеристика пищеварения в полости рта. Анализ обмена веществ и энергии в организме. Особенность мотивации и эмоций человека.

Рубрика Биология и естествознание
Вид курс лекций
Язык русский
Дата добавления 07.09.2014
Размер файла 1,7 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

ЛЕКЦИЯ 1. ВВЕДЕНИЕ В КУРС ФИЗИОЛОГИИ. ВОЗБУДИМЫЕ ТКАНИ

1.1 Предмет и задачи физиологии

Физиология (от греч. физис - природа и логос - учение) - наука о природе, о существе жизненных процессов. Физиология человека изучает жизнедеятельность организма и отдельных его частей: клеток, тканей, органов, систем.

Предметом изучения физиологии являются функции живого организма, их связь между собой, регуляция и приспособление к внешней среде, происхождение и становление в процессе эволюции и индивидуального развития особи.

Физиологическая функция - проявления жизнедеятельности организма и его частей, имеющие приспособительное значение и направленные на достижение полезного результата. В основе функции лежит обмен веществ, энергии и информации.

Нормальной физиология - учебная дисциплина в системе высшего медицинского образования. Ее задачи:

1. Обучение будущих врачей пониманию механизма функционирования каждого органа. Познание будущими врачами функции органов является непременным условием, основой понимания патогенеза нарушений и путей их коррекции. Вылечить - это, в конечном счете, восстановить нарушенную функцию.

2. Методическая подготовка будущего врача - т.е. знание принципов получения достоверной информации о деятельности органов и систем и грамотной ее интерпретации.

3. Оценка здоровья и путей его адаптации как к меняющейся экологической ситуации, так и к характеру деятельности.

1.2 Методы физиологических исследований

Выделяют следующие основные методы физиологии:

1. Наблюдение. Метод наиболее ранний, его использовали еще во времена античности (Гиппократ - теория темперамента), но недостаточно точный. Однако этот метод, начиная с работ XIX века, дополнен различными видами регистрации.

2. Эксперимент острый (Клавдий Гален, Уильям Гарвей) и хронический (И.П.Павлов).

3. Моделирование.

Эти методы лежат в основе конкретных методик:

1. Экстирпация.

2. Трансплантация.

3. Денервация.

4. Регистрация биопотенциалов.

5. Электростимуляция.

6. Визуализация (ЯМР-томография и ПЭТ).

1.3 Основные этапы развития физиологии

Официальной датой возникновения физиологии человека и животных как науки принят 1628 г. - год выхода в свет трактата В. Гарвея «Анатомическое исследование о движении сердца и крови у животных». Это произведение послужило стимулом к изучению деятельности организма в экспериментах на животных как основного объективного источника знаний.

Д.С. Воронцов,- основатель отечественной электрофизиологии. П.Г. Костюк - директор ИФ. Крымская школа физиологии берет начало от этих ученых и их учеников (Б.М. Волынский).

1.4 Возбудимость

Основным свойством живых клеток является раздражимость, т. е. их способность реагировать изменением обмена веществ в ответ на действие раздражителей. Возбудимость - свойство клеток отвечать на раздражение возбуждением. К возбудимым относят нервные, мышечные и некоторые секреторные клетки. Возбуждение - ответ ткани на ее раздражение, проявляющийся в специфической для нее функции (проведение возбуждения нервной тканью, сокращение мышцы, секреция железы) и неспецифических реакциях (метаболические изменения).

Одним из важных свойств живых клеток является их электрическая возбудимость, т.е. способность возбуждаться в ответ на действие электрического тока. Высокая чувствительность возбудимых тканей к действию слабого электрического тока впервые была продемонстрирована Гальвани в опытах на нервно-мышечном препарате задних лапок лягушки.

В конце XIX века стало очевидно, что электрические явления, которые возникают в возбудимых тканях, обусловлены электрическими свойствами клеточных мембран. Согласно современным представлениям, биологические мембраны образуют наружную оболочку всех животных клеток и формируют многочисленные внутриклеточные органеллы. Наиболее характерным структурным признаком является то, что мембраны всегда образуют замкнутые пространства, и такая микроструктурная организация мембран позволяет им выполнять важнейшие функции:

1. Барьерная функция выражается в том, что мембрана при помощи соответствующих механизмов участвует в создании концентрационных градиентов, препятствуя свободной диффузии.

2. Регуляторная функция клеточной мембраны заключается в регуляции внутриклеточных реакций за счет рецепции внеклеточных биологически активных веществ, что приводит к изменению активности ферментных систем мембраны и запуску механизмов вторичных «месенджеров» («посредников»).

3. Преобразование внешних стимулов неэлектрической природы в электрические сигналы (в рецепторах).

4. Высвобождение нейромедиаторов в синаптических окончаниях.

Современными методами электронной микроскопии была определена толщина клеточных мембран (6-12 нм). Химический анализ показал, что мембраны в основном состоят из липидов и белков, количество которых неодинаково у разных типов клеток. В настоящее время можно говорить о нескольких видах моделей клеточной мембраны, среди которых наибольшее распространение получила жидкостно-мозаичная модель.

Согласно этой модели, мембрана представлена бислоем фосфолипидных молекул, ориентированных таким образом, что гидрофобные концы молекул находятся внутри бислоя, а гидрофильные направлены в водную фазу. Такая структура идеально подходит для образования раздела двух фаз: вне- и внутриклеточной.В фосфолипидном бислое интегрированы глобулярные белки, полярные участки которых образуют гидрофильную поверхность в водной фазе. Эти интегрированные белки выполняют различные функции, в том числе рецепторную, ферментативную, образуют ионные каналы, являются мембранными насосами и переносчиками ионов и молекул.

Строение и функции ионных каналов. Ионы Na+, К+, Са2+, Сl- проникают внутрь клетки и выходят наружу через специальные, заполненные жидкостью каналы. Размер каналов довольно мал (диаметр 0,5-0,7 нм). Одни из них весьма специфичны, вторые, кроме основного иона, могут пропускать и другие ионы. Расчеты показывают, что суммарная площадь каналов занимает незначительную часть поверхности клеточной мембраны.

Функцию ионных каналов изучают различными способами. Наиболее распространенным является метод фиксации напряжения. Совместное использование метода фиксации потенциала и специфических блокаторов ионных каналов привело к открытию различных типов ионных каналов в клеточной мембране. Изучение функции отдельных каналов возможно методом локальной фиксации потенциала «раth-сlаmр». Стеклянный микроэлектрод (микропипетка) заполняют солевым раствором, прижимают к поверхности мембраны и создают небольшое разрежение. При этом часть мембраны подсасывается к микроэлектроду. Если в зоне присасывания оказывается ионный канал, то регистрируют активность одиночного канала. Система раздражения и регистрации активности канала мало отличается от системы фиксации напряжения.

Именно ионные каналы обеспечивают два важных свойства мембраны: селективность и проводимость. Селективность, или избирательность, канала обеспечивается его особой белковой структурой. Большинство каналов являются электроуправляемыми, т. е. их способность проводить ионы зависит от величины мембранного потенциала. Канал неоднороден по своим функциональным характеристикам, особенно это касается белковых структур, находящихся у входа в канал и у его выхода (так называемые воротные механизмы).

Рассмотрим принцип работы ионных каналов на примере натриевого канала. Полагают, что в состоянии покоя натриевый канал закрыт. При деполяризации клеточной мембраны до определенного уровня происходит открытие m-активационных ворот (активация) и усиление поступления ионов Na+ внутрь клетки. Через несколько миллисекунд после открытия т-ворот происходит закрытие h-ворот, расположенных у выхода натриевых каналов (инактивация). Инактивация развивается в клеточной мембране очень быстро и степень инактивации зависит от величины и времени действия деполяризующего стимула. Работа натриевых каналов определяется величиной мембранного потенциала в соответствии с определенными законами вероятности.

Кроме натриевых, в клеточных мембранах установлены другие виды каналов, избирательно проницаемых для отдельных ионов: К+, Са2+, причем существуют разновидности каналов для этих ионов. Для калиевых каналов процесс инактивации, как для нариевых каналов, не существует. Имеются особые калиевые каналы, активирующиеся при повышении внутриклеточной концентрации кальция и деполяризации клеточной мембраны. Активация калий-кальцийзависимых каналов ускоряет реполяризацию, тем самым восстанавливая исходное значение потенциала покоя.

Особый интерес представляют кальциевые каналы. Входящий кальциевый ток, как правило, недостаточно велик, чтобы нормально деполяризовать клеточную мембрану. Чаще всего поступающий в клетку кальций выступает в роли «мессенджера», или вторичного посредника. Активация кальциевых каналов обеспечивается деполяризацией клеточной мембраны, например входящим натриевым током.

1.5 Мембранный потенциал покоя

Электрические явления, которые возникают в возбудимых тканях, обусловлены электрическими свойствами клеточных мембран. Их изучают с помощью микроэлектродов. Детальный анализ процессов, протекающих в мембранах возбудимых клеток, был проведен Ходжкиным, Хаксли и Катцем в опытах на гигантском аксоне кальмара и привел к созданию современной теории происхождения потенциала покоя и потенциала действия.

Исследуемый биообъект (клетка, кусочек ткани) помещен в камеру, содержащую солевой раствор и электрод сравнения. Если измерительный электрод также находится в растворе, то разность потенциалов между ним и электродом сравнения стремится к нулю. В момент проникновения микроэлектрода внутрь клетки регистрируют отрицательный потенциал относительно внешней среды. Эта постоянная разность потенциалов называется мембранным потенциалом покоя (МПП). При этом потенциал внеклеточной среды принимается равным нулю. Величина потенциала покоя неодинакова у различных типов клеток и колеблется обычно от -70 до -95 мВ.

Согласно концепции Ходжкина и Хаксли, величина потенциала покоя зависит от ряда факторов, в частности от селективной (избирательной) проницаемости клеточной мембраны для различных ионов; различной концентрации ионов цитоплазмы клетки и ионов окружающей среды (ионной асимметрии); работы механизмов активного транспорта ионов.

Известно, что в невозбужденном состоянии клеточная мембрана высокопроницаема для ионов калия и малопроницаема для ионов натрия, непроницаема для отрицательно заряженных ионов белка (т.е. полупроницаема). Установлено, что имеется разность концентраций ионов калия вне и внутри клетки, причем внутри клетки ионов калия примерно в 20-50 раз больше, чем вне клетки. Разность концентраций ионов калия вне и внутри клетки и высокая проницаемость клеточной мембраны для ионов калия обеспечивают диффузионный ток этих ионов из клетки наружу. Диффузионный ток ионов калия существует до тех пор, пока стремление их двигаться по концентрационному градиенту не уравновесится разностью потенциалов на мембране. Эта разность потенциалов называется калиевым равновесным потенциалом.

Трансмембранная диффузионная разность потенциалов рассчитывается по формуле Нернста:

где Ек - равновесный потенциал, R - газовая постоянная, Т - абсолютная температура, Z - валентность нона, F - постоянная Фарадея, Ко и Кi - концентрации ионов К+ вне и внутри клетки соответственно.

Для аксона кальмара расчетная величина МПП исходя из реальных значений концентрации ионов К+ вне- и внутри клетки (примерно1:40) при температуре +20 °С должна составит примерно -75 мВ (поскольку концентрация ионов К- вне клетки меньше, чем внутри, Ек будет отрицательным). Но на практике эта величина только -60 мВ, т.к. некоторую роль в поддержании мембранного потенциала играют и другие ионы.

Поскольку мембраны живых клеток в той или иной степени проницаемы для всех ионов, совершенно очевидно, что без специальных механизмов невозможно поддерживать постоянную разность концентрации ионов (ионную асимметрию). В клеточных мембранах существуют специальные системы активного транспорта, работающие с затратой энергии и перемещающие ионы против градиента концентраций. Экспериментальным доказательством существования механизмов активного транспорта служат результаты опытов, в которых активность АТФазы подавляли различными способами, например сердечным гликозидами (оуабаин, дигиталис, препараты горицвета и т.д.). При этом происходило выравнивание концентраций ионов К- вне и внутри клетки и мембранный потенциал уменьшался до нуля. Важнейшим механизмом, поддерживающим низкую внутриклеточную концентрацию ионов Nа+ и высокую концентрацию ионов К+, является натрий-калиевый насос. Известно, что в клеточной мембране имеется система переносчиков, каждый из которых связывается с 3 находящимися внутри клетки ионами Nа+ и выводит их наружу. С наружной стороны переносчик связывается с 2 находящимися вне клетки ионами К+, которые переносятся в цитоплазму. Энергообеспечение работы систем переносчиков обеспечивается АТФ. Таким образом мембранный потенциал обеспечивается двумя явлениями: ассиметричным распределением ионов за счет полупроницаемости мембраны и активным транспортом ионов.

Основное значение МПП - накопление потенциальной энергии в клетке.

1.6 Потенциал действия

Энергия МПП может освобождаться в виде специфических электрических сигналов - потенциалов действия (ПД), характерных для возбудимых тканей: нервной, мышечной, некоторых рецепторных и секреторных клеток. Под потенциалом действия понимают быстрое колебание потенциала покоя, сопровождающееся, как правило, перезарядкой мембраны.

Для правильного понимания процессов, происходящих при генерации потенциала действия, используем следующую схему опыта. Если через стимулирующий внутриклеточный электрод подавать короткие толчки гиперполяризующего тока, то можно зарегистрировать увеличение мембранного потенциала, пропорциональное амплитуде подаваемого тока. Ситуация будет изменяться, если через стимулирующий электрод подавать короткие толчки деполяризующего тока. При небольшой (подпороговой) величине деполяризующего тока мембрана ответит пассивной деполяризацией. Подпороговое пассивное поведение клеточной мембраны называется электротоническим, или электротоном. Увеличение деполяризующего тока приведет к появлению активной реакции клеточной мембраны в форме повышения натриевой проводимости. При этом проводимость клеточной мембраны не будет подчиняться закону Ома, а будет больше ожидаемой. Активные подпороговые изменения мембранного потенциала называются локальным ответом. Смещение мембранного потенциала до критического уровня деполяризации приводит к генерации потенциала действия. При этом во время генерации потенциала действия мембранный потенциал уменьшается не просто до нуля, но изменяет свой знак на противоположный.

Анализ ионной природы потенциала действия, проведенный Ходжкиным, Хаксли и Катцем, позволил установить, что фронт нарастания потенциала действия и перезарядка мембраны (овершут) обусловлены движением ионов натрия внутрь клетки. Натриевые каналы оказались электроуправляемыми. Деполяризующий толчок тока приводит к активации натриевых каналов и увеличению натриевого тока. Это обеспечивает локальный ответ. Смещение мембранного потенциала до критического уровня приводит к стремительной деполяризации клеточной мембраны и обеспечивает фронт нарастания потенциала действия. На высоте овершута потенциал действия приближается к равновесному натриевому потенциалу, поэтому происходит изменение знака заряда на мембране.

Экспериментально было показано, что амплитуда потенциала действия практически не зависит от силы стимула, если он превышает пороговую величину. Поэтому принято говорить, что потенциал действия подчиняется закону "все или ничего".

Если удалить ионы Na+ из внешней среды, то потенциал действия не возникает. Аналогичный эффект удавалось получить при добавлении в перфузи-онный раствор ТТХ (тетродотоксин) - специфического блокатора натриевых каналов, который используется как наиболее мощное анестезирующее средство.

На пике потенциала действия проводимость мембраны для ионов натрия начинает быстро снижаться. Этот процесс называется инактивацией. После достижения пика потенциала действия происходит реполяризациа, т. е. мембранный потенциал возвращается к контрольному значению в покое. Развитие потенциала действия и перезарядка мембраны приводят к тому, что внутриклеточный потенциал становится еще более положительным, чем равновесный калиевый потенциал, и, следовательно, электрические силы, перемещающие ионы калия через мембрану, увеличиваются. Максимума эти силы достигают во время пика потенциала действия. Был обнаружен задержанный выходящий ток, который переносился ионами К. Этот ток достигает максимума спустя 5-8 мс от начала генерации потенциала действия. Введение тетраэтиламмония (ТЭА) - блокатора калиевых каналов - замедляет процесс реполяризации. В обычных условиях задержанный выходящий калиевый ток существует некоторое время после генерации потенциала действия и это обеспечивает гиперполяризацию клеточной мембраны, т. е. положительный следовой потенциал.

Инактивация натриевой системы в процессе генерации потенциала действия приводит к тому, что клетка в этот период не может быть повторно возбуждена, т. е. наблюдается состояние абсолютной рефрактерности. Постепенное восстановление потенциала покоя в процессе реполяризации дает возможность вызвать повторный потенциал действия, но для этого требуется сверхпороговый стимул, так как клетка находится в состоянии относительной рефрактерности.

Исследование возбудимости клетки во время локального ответа или во время отрицательного следового потенциала показало, что генерация потенциала действия возможна при действии стимула ниже порогового значения. Это состояние супернормальности, или экзальтации.

Продолжительность периода абсолютной рефрактерности ограничивает максимальную частоту генерации потенциалов действия данным типом клеток. Например, при продолжительности периода абсолютной рефрактерности 4 мс максимальная частота равна 250 Гц. Н. Е. Введенский ввел понятие лабильности, или функциональной подвижности, возбудимых тканей. Мерой лабильности является количество потенциалов действия, которое способна генерировать возбудимая ткань в единицу времени. Очевидно, что лабильность возбудимой ткани в первую очередь определяется продолжительностью периода рефрактерности. Наиболее лабильными являются волокна слухового нерва, в которых частота генерации потенциалов действия достигает 1000 Гц.

Таким образом, генерация потенциала действия в возбудимых мембранах возникает под влиянием различных факторов и сопровождается повышением проводимости клеточной мембраны для ионов натрия, входом их внутрь клетки, что приводит к деполяризации клеточной мембраны и появлению локального ответа. Этот процесс может достигнуть критического уровня деполяризации, после чего проводимость мембраны для натрия увеличивается до максимума, мембранный потенциал при этом приближается к натриевому равновесному потенциалу. Через несколько миллисекунд происходит инактивация натриевых каналов, активация калиевых каналов, увеличение выходящего калиевого тока, что приводит к реполяризации и восстановлению исходного потенциала покоя.

1.7 Действие электрического тока на возбудимые ткани

Электрический ток широко используется в экспериментальной физиологии при изучении характеристик возбудимых тканей, в клинической практике для диагностики и лечебного воздействия, поэтому необходимо рассмотреть механизмы воздействия электрического тока на возбудимые ткани. Реакция возбудимой ткани зависит от продолжительности действия тока, крутизны нарастания (изменения) амплитуды тока, от формы тока.

1. Постоянный ток. При кратковременном пропускании подпорогового постоянного электрического тока изменяется возбудимость ткани под стимулирующими электродами. Микроэлектродные исследования показали, что под катодом (-) происходит деполяризация клеточной мембраны, под анодом (+) -гиперполяризация. В первом случае будет уменьшаться разность между критическим потенциалом и мембранным потенциалом, т. е. возбудимость ткани под катодом увеличивается. Под анодом происходят противоположные явления, т. е. возбудимость уменьшается.

При сравнительно большой продолжительности действия подпорогового тока изменяется не только мембранный потенциал, но и значение критического потенциала. При этом под катодом происходит смещение уровня критического потенциала вверх, что свидетельствует об инактивации натриевых каналов. Таким образом, возбудимость под катодом уменьшается при длительном воздействии подпорогового тока. Это явление уменьшения возбудимости при длительном действии подпорогового раздражителя называется аккомодацией. При этом в исследуемых клетках возникают аномально низкоамплитудные потенциалы действия.

Очевидно, что увеличение значения тока до пороговой величины приведет к тому, что возбуждение будет возникать под катодом при замыкании цепи. Изменение возбудимости и возникновение возбуждения под катодом, но не анодом при замыкании носит название закона полярного действия тока. Экспериментальное подтверждение этой зависимости впервые было получено Пфлюгером.

Существует определенное соотношение между временем действия раздражителя и его амплитудой. Эта зависимость в графическом выражении получила название кривой «сила-длительность». На этой кривой видно, что уменьшение значения тока ниже определенной критической величины не приводит к возбуждению ткани независимо от продолжительности времени, в течение которого действует этот раздражитель, а минимальная величина тока, вызывающая возбуждение, получила название порога раздражения, или реобазы.

В связи с тем, что величина реобазы может изменяться, особенно в естественных условиях, и это может привести к значительной погрешности в определении порога времени, введено понятие хронаксии для характеристики временных свойств клеточных мембран. Хронаксия - время, в течение которого должен действовать раздражитель удвоенной реобазы, чтобы вызвать возбуждение. Хронаксиметрия используется при оценке функционального состояния нервно-мышечной системы у человека. При ее органических поражениях величина хронаксии и реобазы нервов и мышц значительно возрастает.

2. Переменный ток. Эффективность действия переменного тока определяется не только амплитудой, продолжительностью воздействия, но и частотой. При этом низкочастотный переменный ток, например частотой 50 Гц (сетевой), представляет наибольшую опасность при прохождении через область сердца. В первую очередь это обусловлено тем, что при низких частотах возможно попадание очередного стимула в фазу повышенной уязвимости миокарда и возникновение фибрилляции желудочков сердца. Действие тока частотой выше 10 кГц представляет меньшую опасность, поскольку длительность полупериода составляет 0,05 мс. При такой длительности импульса мембрана клеток вследствие своих емкостных свойств не успевает деполяризоваться до критического уровня. Токи большей частоты вызывают, как правило, тепловой эффект.

ЛЕКЦИЯ 2. НЕРВ, СИНАПС, МЫШЦА

2.1 Нервные волокна и их классификация. Механизмы проведения возбуждения по нерву

Импульсы (потенциалы действия), возникающие в нейроне проводятся по аксонам. Аксоны могут быть покрыты миелиновой оболочкой (миелиновые волокна) или лишены ее (безмиелиновые волокна). Миелиновые волокна чаще встречаются в двигательных нервах, безмиелиновые преобладают в автономной (вегетативной) нервной системе.

Рис. 1 - Строение нейрона и миелинового нервного волокна

В миелиновом волокне оболочка многослойная, образована шванновскими клетками, состоит на 80% из липидов, обладающих высоким омическим сопротивлением и на 20% из белка, которые покрывают т.н. осевой цилиндр. Оболочка не сплошная покровом осевой цилиндр, а прерывается, оставляя открытые участки осевого цилиндра (перехваты Ранвье) (рис. 1).

Слева нейромоторная единица; 1 - узловой перехват (перехват Ранвье); 2 - синапс; Справа - участок нервного волокна с узловым перехватом. Стрелками указано направление распространения возбуждения.

В миелиновых волокнах возбуждение охватывает только участки перехватов, т. е. минует зоны, покрытые миелином. Такое проведение возбуждения называется сальтаторным (скачкообразным). В перехватах количество натриевых каналов достигает 12 000 на 1 мкм, что значительно больше, чем в любом другом участке волокна. В результате узловые перехваты являются наиболее возбудимыми и обеспечивают большую скорость проведения возбуждения.

В безмиелиновых волокнах возбуждение постепенно охватывает соседние участки мембраны осевого цилиндра и так распространяется до конца аксона. Скорость распространения возбуждения по волокну определяется его диаметром. У беспозвоночных диаметр волокна может достигать 1 мм, что обеспечивает скорость проведения до 20 м/с.

Проведение возбуждения по нервному волокну не нарушается в течение длительного (многочасового) времени. Это свидетельствует о малой утомляемости нервного волокна. Считают, что нервное волокно относительно неутомляемо вследствие того, что процессы ресинтеза энергии в нем идут с достаточно большой скоростью и успевают восстановить траты энергии, происходящие при прохождении возбуждения.

В зависимости от скорости проведения возбуждения нервные волокна делят на три типа: А, В, С. В свою очередь волокна типа А подразделяют на четыре группы: Аб, Ав, Аг, Ад. Наибольшей скоростью проведения (до 120 м/с) обладают волокна группы Аб, которую составляют волокна диаметром 12-22 мкм. Другие волокна имеют меньший диаметр и, соответственно, проведение возбуждения по ним происходит с меньшей скоростью (по волокнам типа С - болевым - сигнал идет со скоростью 0,5 - 02 м/с). Различная скорость проведения возбуждения по волокнам смешанного нерва выявляется при использовании внеклеточного электрода. Потенциалы волокон, проводящих возбуждение с неодинаковой скоростью, регистрируются раздельно и создают характерный рисунок из ряда последовательных волн.

Проведение возбуждения по нерву подчиняется определенным законам.

1. Изолированное проведения возбуждения. Нервный ствол образован большим числом волокон, однако возбуждение, идущее по каждому из них, не передается на соседние. Так обеспечивается изолированность сокращения каждой нейромоторной единицы.

2. Физиологическая целостность. В любом металлическом проводнике электрический ток будет течь до тех пор, пока проводник сохраняет физическую непрерывность. Для нервного «проводника» этого условия недостаточно: нервное волокно должно сохранять также физиологическую целостность. Если нарушить свойства мембраны волокна (перевязка, блокада новокаином, тетродотоксином и др.), проведение возбуждения по волокну прекращается.

3. Способность к двустороннему проведению. Нанесение раздражения между двумя отводящими электродами на поверхности волокна вызовет электрические потенциалы под каждым из них за счет орто- и антидромного проведения возбуждения.

2.2 Аксонный транспорт и его виды

Помимо проведения потенциалов действия аксон также является проводником для транспорта веществ. Биологически активные вещества, синтезированные в теле нейрона, а также органеллы клетки (митохондрии) продвигаются по аксону к нервной терминали. Выделяют следующие виды аксонного транспорта.

1. Быстрый аксонный транспорт (скорость около 20 мм/час). Этим транспортом к периферии переносятся различные вещества с помощью специального механизма переноса. Транспорт основан на движении отрезков нейрофибрилл (нитей) из белка актина по микротрубочкам из белка миозина, которые тянутся по всей длине аксона. К актиновым нитям прикрепляются переносимые молекулы. При этом используется энергия АТФ.

2. Медленный аксонный транспорт перемещает крупные молекулы белка и митохондрии. Они то движутся быстро, то останавливаются на неопределенный срок.

3. Ретроградный транспорт переносит вещества в обратном направлении - от терминали к телу нейрона (скорость около 10 мм/час). Некоторые вещества являются «сигнальными» - регулируют синтез белка в соме клетки. Этот вид транспорта может играть драматическую роль в жизни человека. Пользуясь им, вирусы полиомиелита и герпеса транспортируются в тело клетки. Аналогичным образом столбнячный токсин, который вырабатывают бактерии, поступившие в кожную рану, попадает путем ретроградного транспорта в ЦНС, где становится причиной мышечных судорог, которые могут привести к смерти.

Нарушения аксонного транспорта могут причиной синдромов при бери-бери и алкогольном полиневрите.

2.3 Функции синапсов. Механизм передачи возбуждения в химическом синапсе

Синапсами называются контакты, которые устанавливают нейроны. Синапс состоит из пресинаптической части (окончание аксона, передающее сигнал), синаптической щели и постсинаптической части (структура воспринимающей клетки). Синапсы классифицируют:

1. По местоположению. Выделяют нервно-мышечные синапсы и нейро-нейрональные, последние в свою очередь делятся на аксо-соматические, аксоаксональные, аксо-дендритические, дендро-соматические.

2. По характеру действия на воспринимающую структур. Синапсы могут быть возбуждающими и тормозящими.

3. По способу передачи сигнала. Синапсы делят на электрические, и химические.

Электрические синапсы представляют собой слияние, или сближение, участков мембран. В последнем случае синаптическая щель не сплошная, а прерывается мостиками от одной клетки к другой. Функции электрических синапсов заключаются прежде всего в обеспечении срочных реакций организма. Этим, видимо, объясняется расположение их у животных в структурах, обеспечивающих реакцию бегства (ракообразные). Электрический синапс проводит сигналы быстро и стереотипно, но надежен лишь тогда, когда клетка, посылающая сигнал, крупнее, чем клетка-получатель сигнала.

Химические синапсы структурно представлены пресинаптической частью, синаптической щелью и постсинаптической частью. Пресинаптическая часть химического синапса образуется расширением аксона по его ходу или окончания (рис. 2.19). В пресинаптической части имеются пузырьки. Каждый пузырек содержит квант медиатора. Эти синапсы могут быть возбуждающими и тормозящими. В возбуждающем синапсе под действием медиатора на специальный рецептор повышается проницаемость постсинаптической мембраны для ионов Nа+. Возникновение потока ионов Nа+ из синаптической щели через постсинаптическую мембрану ведет к ее деполяризации и вызывает генерацию возбуждающего постсинаптического потенциала (ВПСП). Величина ВПСП зависит от количества выделившегося медиатора и может составлять 0,12-5,0 мВ. Под влиянием ВПСП деполяризуются соседние с синапсом участки мембраны, затем деполяризация достигает аксонного холмика нейрона, где возникает возбуждение, распространяющееся на аксон. ВПСП возникает в нейронах при действии в синапсах ацетилхолина (АЦХ), норадреналина, дофамина, серотонина, глутаминовой кислоты и т.д.

В тормозящих синапсах обычно повышается проницаемость для ионов Cl- и К+ постсинаптическая мембрана гиперполяризуется, развивается тормозной постсинаптический потенциал (ТПСП), препятствующий возбуждению клетки. ТПСП возникает при действии в синапсах глицина, гамма-амино-масляной кислоты (ГАМК). ТПСП может развиваться и под действием медиаторов, обычно вызывающих ВПСП, если медиатор действует на другую разновидность рецептора.

Каждый нейрон вырабатывает лишь один вид медиатора (иногда с сомедиаторами), что позволяет делить нервные клетки на группы с соответствующим названием, напр. - дофаминергические, АЦХ-эргические и т.п. Для синапсов с химическим способом передачи возбуждения характерна синaптическая задержка проведения возбуждения, длящаяся около 0,5 мс. Переход медиатора в синаптическую щель осуществляется путем экзоцитоза. В покое медиатор попадает в синаптическую щель постоянно, но в малом количестве. Под влиянием пришедшего возбуждения количество медиатора резко возрастает. Затем медиатор перемещается к постсинаптической мембране, действует на специфические для него рецепторы и образует на мембране комплекс медиатор-рецептор. Неиспользованный медиатор и его фрагменты всасываются обратно в пресинаптическую часть синапса.

Нервно-мышечные синапсы обеспечивают проведение возбуждения с нервного волокна на мышечное благодаря медиатору ацетилхолину, который при возбуждении нервного окончания переходит в синаптическую щель и действует на концевую пластинку (постсинаптическую часть) мышечного волокна. При возбуждении электрическим импульсом, идущим по аксону, пресинаптической части синапса ее мембрана становится проницаемой для АЦХ. Эта проницаемость возможна благодаря тому, что в результате деполяризации пресинаптической мембраны открываются ее кальциевые каналы. Ион Са2+ входит в пресинаптическую часть синапса из синаптической щели. Ацетилхолин высвобождается и проникает в синаптическую щель. Здесь он взаимодействует со своими рецепторами постсинаптической мембраны. Рецепторы, возбуждаясь, открывают белковый канал, встроенный в липидный слой мембраны. Через открытый канал внутрь мышечной клетки проникают ионы Nа+, что приводит к деполяризации мембраны мышечной клетки, в результате развивается так называемый потенциал концевой пластинки (ПКП). Он вызывает генерацию потенциала действия мышечного волокна.

Синаптическая передача возбуждения имеет рад свойств:

1. высокая эффективность и надежность, даже маленький нейрон способен эффективно воздействовать на крупную клетку-мишень;

2. односторонность проведения возбуждения;

3. относительная медиаторная специфичность синапса, т. е. каждый синапс имеет свой доминирующий медиатор;

4. возможность действия специфических модулирующих синаптическую передачу. Так, синаптические медиаторы имеют специфические инактиваторы. Например, ацетилхолин инактивируется ацетилхолинэстеразой, норадреналин - моноаминоксидазой, катехолометилтрансферазой;

5. зависимость увеличения эффективности синаптической передачи от частоты использования синапса («эффект тренировки»). При этом происходит соответствующая регуляция выделения медиатора и чувствительности рецептора;

6. утомляемость синапса, развивающаяся в результате длительного высокочастотного его стимулирования. В этом случае утомление может быть обусловлено истощением и несвоевременным синтезом медиатора в пресинаптической части синапса или глубокой, стойкой деполяризацией постсинаптической мембраны (пессимальное торможение).

В нервно-мышечном синапсе в норме ацетилхолин действует на синаптическую мембрану короткое время (1-2 мс), так как сразу же начинает разрушаться ацетилхолинэстеразой. В случаях, когда этого не происходит и ацетилхолин не разрушается на протяжении сотни миллисекунд, его действие на мембрану прекращается и мембрана не деполяризуется, а гиперполяризуется и возбуждение через этот синапс блокируется.

Блокада нервно-мышечной передачи может быть вызвана следующими способами:

действие местноанестезирующих веществ, которые блокируют возбуждение в пресинаптической части;

блокада высвобождения медиатора в пресинаптической части (например, ботулинический токсин);

блокада рецепторов ацетилхолина, например при действии бунгаротоксина;

вытеснение ацетилхолина из рецепторов, например действие кураре;

угнетение холинэстеразы, что приводит к длительному сохранению ацетилхолина и вызывает глубокую деполяризацию и инактивацию рецепторов синапсов. Такой эффект наблюдается при действии фосфорорганических соединений.

Специально для снижения тонуса мышц, особенно при операциях, используют блокаду нервно-мышечной передачи миорелаксантами; деполяризующие мышечные релаксанты действуют на рецепторы субсинаптической мембраны (сукцинилхолин и др.), недеполяризующие мышечные релаксанты, устраняют действие ацетилхолина на мембрану по конкуренции (препараты группы кураре).

2.4 Структурно-функциональная организация мышечной ткани. Классификация мышц и их свойства

Перемещение тела в пространстве, поддержание определенной позы, работа сердца и сосудов и пищеварительного тракта у человека и позвоночных животных осуществляются мышцами двух основных типов: поперечнополосатыми (скелетной, сердечной) и гладкими, которые отличаются друг от друга клеточной и тканевой организацией, иннервацией и в определенной степени механизмами функционирования. В то же время в молекулярных механизмах мышечного сокращения между этими типами мышц есть много общего.

Скелетные мышцы состоят из мышечных волокон нескольких типов, отличающихся друг от друга структурно-функциональными характеристиками. В настоящее время выделяют четыре основных типа мышечных волокон.

Медленные фазические волокна окислительного типа. Волокна этого типа характеризуются большим содержанием белка миоглобина, который способен связывать О2 (близок по своим свойствам к гемоглобину). Мышцы, которые преимущественно состоят из волокон этого типа, за их темно-красный цвет называют красными. Они выполняют очень важную функцию поддержания позы человека и животных. Предельное утомление у волокон данного типа и, следовательно, мышц наступает очень медленно, что обусловлено наличием миоглобина и большого числа митохондрий.

Быстрые фазические волокна окислительного типа. Мышцы, которые преимущественно состоят из волокон этого типа, выполняют быстрые сокращения без заметного утомления, что объясняется большим количеством митохондрий в этих волокнах и способностью образовывать АТФ путем окислительного фосфорилирования. Основное назначение мышечных волокон данного типа заключается в выполнении быстрых, энергичных движении.

Быстрые фазические волокна с гликолитическим типом окисления. Волокна данного типа характеризуются тем, что АТФ в них образуется за счет анаэробного гликолиза. Волокна этой группы содержат митохондрий меньше, чем волокна предыдущей группы. Мышцы, содержащие эти волокна, развивают быстрое и сильное сокращение, но сравнительно быстро утомляются. Миоглобин в данной группе мышечных волокон отсутствует, вследствие чего мышцы, состоящие из волокон этого типа, называют белыми.

Для мышечных волокон всех перечисленных групп характерно наличие одной, в крайнем случае, нескольких концевых пластинок, образованных одним двигательным аксоном.

Тонические волокна. В отличие от предыдущих мышечных волокон в тонических волокнах двигательный аксон образует множество синаптических контактов с мембраной мышечного волокна. Развитие сокращения происходит медленно. Эти мышечные волокна не генерируют потенциал действия. Одиночный пресинаптический импульс вызывает незначительное сокращение. Серия импульсов вызовет суммацию постсинаптического потенциала и плавно воз растающую деполяризацию мышечного волокна. У человека мышечные волокна этого типа входят в состав наружных мышц глаза.

Большинство скелетных мышц человека состоит из мышечных волокон различных типов с преобладанием одного из типов в зависимости от функций, которые выполняет та или иная мышцы.

Функциональной единицей скелетной мускулатуры является двигательная единица, которая включает мотонейрон и группу мышечных волокон, иннервируемых разветвлениями аксона этого мотонейрона, расположенного в ЦНС. В мышцах, обеспечивающих наиболее точные и быстрые движения, двигательная единица состоит из нескольких мышечных волокон (мышцы глаз), в то время как в мышцах, участвующих в поддержании позы, двигательные единицы включают несколько сотен и даже тысяч мышечных волокон.

Величина потенциала покоя мышечных волокон составляет примерно - 90 мВ, потенциала действия - 120-130 мВ. Длительность потенциала действия 1-3 мс.

Скелетная мышца обладает следующими важнейшими свойствами:

возбудимостью - способностью отвечать на действие раздражителя (АЦХ) изменением ионной проводимости и мембранного потенциала. В естественных условиях этим раздражителем является медиатор ацетилхолин, который выделяется в пресинаптических окончаниях аксонов мотонейронов.

проводимостью - способностью проводить потенциал действия вдоль и в глубь мышечного волокна по Т-системе;

сократимостью - способностью укорачиваться или развивать напряжение при возбуждении;

эластичностью - способностью развивать напряжение при
растягивании.

2.5 Механизм сокращения скелетной мышцы

Мышечное волокно является многоядерной структурой, окруженной мембраной и содержащей специализированный сократительный аппарат - ми-офибриллы. Кроме этого, важнейшими компонентами мышечного волокна являются системы продольных трубочек - саркоплазматическая сеть (ретикулум) и система поперечных трубочек - Т-система. Функциональной единицей сократительного аппарата мышечной клетки является саркомер (рис. 2.20,А); из саркомеров состоит миофибрилла. Саркомеры отделяются друг от друга Z-пластинками.

Изучение структуры мышечных волокон в световом микроскопе позволило выявить их поперечную исчерченность. Электронно-микроскопические исследования показали, что поперечная исчерченность обусловлена особой организацией сократительных белков миофибрилл - актина и миозина. Актиновые нити одним концом прикреплены к Z-пластинке. В продольных бороздках актиновой спирали располагаются нитевидные молекулы белка тропомиозина. К молекуле тропомиозина прикреплена молекула другого белка - тропонина. В середине саркомера между нитями актина располагаются толстые нити миозина. В поляризационном микроскопе эта область видна в виде полоски темного цвета (вследствие двойного лучепреломления) - анизотропный А-диск. В центре его видна более светлая полоска Н. В ней в состоянии покоя нет актиновых нитей. По обе стороны А-диска видны светлые изотропные полоски - I-диски, образованные нитями актина. В состоянии покоя нити актина и миозина незначительно перекрывают друг друга таким образом, что общая длина саркомера составляет около 2,5 мкм. На поперечном срезе мышечного волокна можно увидеть гексагональную организацию миофиламента: каждая нить миозина окружена шестью нитями актина (рис. 2.20, Б).

При электронной микроскопии видно, что на боковых сторонах миозиновой нити обнаруживаются выступы, получившие название поперечных мостиков. Согласно современным представлениям, поперечный мостик состоит из головки и шейки. Шейка обладает эластическими свойствами и представляет собой шарнирное соединение, поэтому головка поперечного мостика может поворачиваться вокруг своей оси.

Для объяснения механизма мышечного сокращения была предложена теория скользящих нитей для объяснения. Согласно этой теории, при сокращении происходит уменьшение размера саркомера вследствие активного перемещения тонких актиновых нитей относительно толстых миозиновых. В процессе сокращения мышечного волокна в нем происходят следующие преобразования:

Электрохимическое преобразование:

Генерация ПД под влиянием АЦХ.

Распространение ПД по Т-системе.

Электрическая стимуляция зоны контакта Т-системы и саркоплазматического ретикулума, активация ферментов, образование инозитолтрифосфата, повышение внутриклеточной концентрации ионов Са2+.

Хемомеханическое преобразование:

Взаимодействие ионов Са2+ с тропонином, освобождение активных центров на актиновых филаментах в результате изменения конформации тропонин-тропомиозинового комплекса.

Взаимодействие миозиновой головки с актином, вращение головки и развитие эластической тяги.

Скольжение нитей актина и миозина относительно друг друга, уменьшение размера саркомера, развитие напряжения или укорочение мышечного волокна.

Электрическую активность мышц регистрируют в виде электромиограммы (ЭМГ).

2.6 Типы сокращений мышц

Раздражение мышечного волокна одиночным стимулом приводит к возникновению одиночного сокращения, которое состоит из нескольких периодов (рис. 2.23).

Первый - латентный период представляет собой сумму временных задержек.

Второй - период укорочения, или развития напряжения. В случае свободного укорочения мышечного волокна говорят об изотоническом режиме сокращения, при котором напряжение практически не изменяется, а меняется только длина мышечного волокна. Если мышечное волокно закреплено с двух сторон и не может свободно укорачиваться, то говорят об изометрическом режиме сокращения. В организме человека в изолированном виде изотонического или изометрического сокращения не происходит. Как правило, развитие напряжения сопровождается укорочением длины мышцы.

Третий - период расслабления, когда уменьшается концентрация ионов Са2+ и отсоединяются головки миозина от актиновых филаментов.

Если вслед за первым нанести второй стимул в период рефрактерности мышечного волокна, то он не вызовет повторного мышечного сокращения (рис. 2.25, А). Если же второй стимул действует на мышцу после окончания периода расслабления, то вновь возникает одиночное мышечное сокращение (рис. 2.25, Б). При нанесении второго стимула в период укорочения или развития мышечного напряжения происходит суммация двух следующих друг за другом сокращений и результирующий ответ по амплитуде становится значительно выше, чем при одиночном стимуле; если мышечное волокно или мышцу стимулировать с такой частотой, что повторные стимулы будут приходиться на период укорочения, или развития напряжения, то происходит полная суммация единичных сокращений и развивается гладкий тетанус (рис. 2.25, В). Тетанус - сильное и длительное сокращение мышцы. Полагают, что в основе этого явления лежит повышение концентрации кальция внутри клетки. При уменьшении частоты стимуляции возможен вариант, будет наблюдаться неполная суммация, или зубчатый тетанус.

В естественных условиях сила сокращения может увеличиваться как за счет изменения числа двигательных единиц, участвующих в сокращении, так и за счет изменения частоты импульсации мотонейронов. В случае увеличения частоты импульсации будет наблюдаться суммация сокращений отдельных двигательных единиц.

2.7 Энергетика мышечного сокращения

В динамическом режиме работоспособность мышцы определяется скоростью расщепления и ресинтеза АТФ. При этом скорость расщепления АТФ может увеличиваться в 100 раз и более. Ресинтез АТФ может обеспечиваться за счет окислительного расщепления глюкозы. Действительно, при умеренных нагрузках ресинтез АТФ обеспечивается повышенным потреблением мышцами глюкозы и кислорода. Это сопровождается увеличением кровотока через мышцы примерно в 20 раз, увеличением минутного объема сердца и дыхания в 2-3 раза.

При максимальной физической нагрузке происходит дополнительное расщепление глюкозы путем анаэробного гликолиза. Во время этих процессов ресинтез АТФ осуществляется в несколько раз быстрее и механическая работа, производимая мышцами также больше, чем при аэробном окислении. Предельное время для такого рода работы составляет около 30 с, после чего возникает накопление молочной кислоты, т. е. метаболический ацидоз, и развивается утомление.

Анаэробный гликолиз имеет место и в начале длительной физической работы, пока не увеличится скорость окислительного фосфорилирования таким образом, чтобы ресинтез АТФ вновь сравнялся с его распадом. После метаболической перестройки спортсмен обретает как бы второе дыхание.

Скелетная мышца превращает химическую энергию в механическую работу с выделением тепла при к.п.д. около 20-30%, тепло не рассеивается бесполезно, а согревает наш организм.

2.8 Гладкие мышцы

Гладкие мышцы находятся в стенке внутренних органов, кровеносных и лимфатических сосудов и морфологически отличаются от скелетной и сердечной мышц отсутствием видимой поперечной исчерченности.

В гладких мышцах двигательные нервные окончания имеются на небольшом количестве гладких мышечных клеток. Несмотря на это, возбуждение с нервных окончаний передается на все гладкие мышечные клетки пучка благодаря плотным контактам между соседними миоцитами - нексусам. Нексусы позволяют потенциалам действия и медленным волнам деполяризации распространяться с одной мышечной клетки на другую, поэтому висцеральные гладкие мышцы сокращаются одномоментно с приходом нервного импульса. Гладкие мышечные клетки содержат миофиламенты актина и миозина, которые располагаются здесь менее упорядочение, чем в волокнах скелетной мышцы.

Гладкая мышца имеет двойную иннервацию - симпатическую и парасимпатическую, функция которой заключается в изменении деятельности гладкой мышцы. Раздражение одного из вегетативных нервов обычно увеличивает активность гладкой мышцы, стимуляция другого - уменьшает. В некоторых органах, например кишечнике, стимуляция адренергических нервов уменьшает, а холинергических - увеличивает мышечную активность; в других, например, сосудах, норадреналин усиливает, а АЦХ снижает мышечный тонус. В гладкой мышце нет концевых пластинок и отдельных нервных окончаний. По всей длине разветвлений адренергических и холинергических нейронов имеются утолщения, варикозы. Они содержат гранулы с медиатором, который выделяется из каждой варикозы нервных волокон. Таким образом, по ходу следования нервного волокна могут возбуждаться или тормозиться многие гладкие мышечные клетки. Клетки, лишенные непосредственных контактов с варикозами, активируются потенциалами действия, распространяющимися через нексусы на соседние клетки. Скорость проведения возбуждения в гладкой мышце невелика и составляет несколько сантиметров в секунду.

Возбуждающее влияние адренергических или холинергических нервов электрически проявляется в виде отдельных волн деполяризации. При повторной стимуляции эти потенциалы суммируются и по достижении пороговой величины возникает ПД. Тормозящее влияние адренергических или холинергических нервов проявляется в виде отдельных волн ТПСП.

Гладкие мышцы характеризуются нестабильным мембранным потенциалом. Колебания мембранного потенциала независимо от нервных влияний вызывают ауторитмические (пейсмекерные ) ПД и сокращения, которые поддерживают мышцу в состоянии постоянного частичного сокращения - тонуса. Тонус гладких мышц отчетливо выражен в сфинктерах полых органов, а также в гладких мышцах мелких артерий и артериол.

Уникальной особенностью висцеральной гладкой мышцы является ее реакция на растяжение. В ответ на растяжение гладкая мышца сокращается. Это вызвано тем, что растяжение уменьшает мембранный потенциал клеток, увеличивает частоту ПД и в конечном итоге - тонус гладкой мускулатуры. В организме человека это свойство гладкой мускулатуры служит одним из способов регуляции двигательной деятельности внутренних органов. В кровеносных сосудах растяжение, создаваемое колебаниями кровяного давления, является основным фактором миогенной саморегуляции тонуса сосудов.

...

Подобные документы

  • Функции нервной системы в организме человека. Клеточное строение нервной системы. Виды нервных клеток (функциональная классификация). Рефлекторный принцип работы нервной системы. Отделы центральной нервной системы. Учение о высшей нервной деятельности.

    реферат [1,6 M], добавлен 15.02.2011

  • Ознакомление с принципами организации деятельности двигательных систем мозга. Исследование роли спинного мозга, мозжечка, таламуса, базальных ганглий и коры больших полушарий в регуляции фазной (динамической) и позной (статической) активности мышц.

    реферат [29,7 K], добавлен 10.07.2011

  • Основные анатомические закономерности в деятельности центральной нервной системы. Распространение нервных импульсов. Анатомия спинного и головного мозгов. Характеристика проводящих путей спинного мозга. Клеточные элементы нервной ткани, типы нейронов.

    презентация [7,6 M], добавлен 17.12.2015

  • Анализ этапов развития нервной системы в онтогенезе. Клеточные элементы нервной ткани. Описание схемы строения рефлекторной дуги. Изучение особенностей образования серого и белого веществ нервной системы. Характеристика проводящих путей спинного мозга.

    контрольная работа [41,4 K], добавлен 10.11.2013

  • Роль Павлова в создании учения о высшей нервной деятельности, объяснении высших функций мозга животных и человека. Основные периоды научной деятельности ученого: исследования в областях кровообращения, пищеварения, физиологии высшей нервной деятельности.

    реферат [25,7 K], добавлен 21.04.2010

  • Изучение рефлекторной теории и её принципов: материалистического детерминизма, структурности, анализа и синтеза. Характеристика понятия рефлекса, его значения и роли в организме. Рефлекторный принцип построения нервной системы. Принцип обратной связи.

    реферат [16,0 K], добавлен 19.02.2011

  • Анатомические характеристики ствола мозга, который является продолжением спинного мозга в полости черепа и в своем строении сохраняет ряд характерных для него особенностей. Черепно-мозговые ядра моста. Строение стволовых двигательных проводящих путей.

    реферат [6,1 M], добавлен 27.10.2010

  • Строение и структура головного мозга. Мозговой мост и мозжечок. Промежуточный мозг как основа сенсорных, двигательных и вегетативных реакций. Функции головного мозга. Отличительные черты и задачи спинного мозга как части центральной нервной системы.

    реферат [27,1 K], добавлен 05.07.2013

  • Общее понятие и особенности функций высшей нервной деятельности человека. История открытия механизмов условных рефлексов и изучение их физиологии И.П. Павловым. Исследование высших функций мозга в трудах философов античности Гиппократа и Декарта.

    реферат [20,1 K], добавлен 17.04.2011

  • Строение нервной системы человека, роль головного и спинного мозга в восприятии сенсорной информации и рефлекторной деятельности. Структура серого и белого вещества, представляющего собой скопление тел нейронов и их отростков - дендритов и аксонов.

    реферат [565,6 K], добавлен 03.02.2016

  • Общая характеристика нервной системы. Рефлекторная регуляция деятельности органов, систем и организма. Физиологические роли частных образований центральной нервной системы. Деятельность периферического соматического и вегетативного отдела нервной системы.

    курсовая работа [1,6 M], добавлен 26.08.2009

  • Нейробиологические концепции нервной системы. Составляющие нервной системы, характеристика их функций. Рефлекс - основная форма нервной деятельности. Понятие рефлекторной дуги. Особенности процессов возбуждения и торможения в центральной нервной системе.

    реферат [55,5 K], добавлен 13.07.2013

  • Характеристика эмбриогенеза нервной системы. Спинной мозг - расположение в позвоночном канале, внутреннее строение (серое и белое вещество), проводящие пути, топография сегментов. Строение и назначение твердой, паутинной и мягкой оболочки спинного мозга.

    презентация [1,0 M], добавлен 30.04.2015

  • Значение нервной системы в приспособлении организма к окружающей среде. Общая характеристика нервной ткани. Строение нейрона и их классификация по количеству отростков и по функциям. Черепно-мозговые нервы. Особенности внутреннего строения спинного мозга.

    шпаргалка [87,9 K], добавлен 23.11.2010

  • Особенности исследования мозга, его строение. Сущность стресса и механизмы центральной нервной системы. Понятие психики и ее значение. Общая характеристика психических свойств (темперамент, способности, мотивации и характер), сферы их проявления.

    контрольная работа [30,6 K], добавлен 14.03.2011

  • Нейроны как основа нервной системы, их основные функции: восприятие, хранение информации. Анализ деятельности нервной системы. Структура опорно-двигательного аппарата, характеристика функций легких. Значение ферментов в пищеварительной системе человека.

    контрольная работа [400,1 K], добавлен 06.06.2012

  • Паратирин как основной гормон паращитовидных желез, анализ эффектов. Характеристика механизмов регуляции обмена кальция в организме. Знакомство с гормонами поджелудочной железы: инсулин, глюкагон, соматостатин. Рассмотрение схемы головного мозга человека.

    презентация [1,2 M], добавлен 08.01.2014

  • Обмен веществ и энергии как основная функция организма, его основные фазы и протекающие процессы - ассимиляции и диссимиляции. Роль белков в организме, механизм их обмена. Обмен воды, витаминов, жиров, углеводов. Регуляция теплообразования и теплоотдачи.

    реферат [27,2 K], добавлен 08.08.2009

  • Общая физиология центральной нервной системы. Нервная система позвоночных. Рефлекторный тонус нервных центров. Значение процесса торможения. Принципы координации в деятельности центральной нервной системы. Физиологические принципы исследования почек.

    контрольная работа [26,4 K], добавлен 21.02.2009

  • Иерархический принцип управления функциями организма. Характеристика общего строения головного мозга человека. Особенности функций среднего мозга, его структура, роль в регуляции мышечного тонуса, осуществлении установочных и выпрямительных рефлексов.

    контрольная работа [16,8 K], добавлен 13.03.2009

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.