Сущность нормальной физиологии

Рефлекторный принцип деятельности центральной нервной системы. Основная роль спинного мозга в регуляции двигательных функций. Характеристика пищеварения в полости рта. Анализ обмена веществ и энергии в организме. Особенность мотивации и эмоций человека.

Рубрика Биология и естествознание
Вид курс лекций
Язык русский
Дата добавления 07.09.2014
Размер файла 1,7 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Всасывание калия происходит в основном в тонкой кишке с помощью пассивного транспорта по электрохимическому градиенту.

Двузарядные ионы в пищеварительном тракте всасываются очень медленно. Так, в кишечнике человека всасывается только половина поступающего кальция. Процесс совершается с участием переносчиков, активируется витамином D. При недостатке кальция в организме его всасывание увеличивается, в чем большую роль могут играть гормоны щитовидной, паращитовидной желез, гипофиза и надпочечников.

Всасывание органических веществ. Белки всасываются в кишечнике после их гидролиза до аминокислот. Всасывание осуществляется в основном активно с помощью переносчиков. У детей могут всасываться и полипептиды материнского молока, что помогает в становлении иммунитета.

Всасывание углеводов происходит в виде моносахаридов в основном в тонкой кишке путем активного транспорта через апикальные мембраны кишечных эпителиоцитов.

Всасывание различных жиров наиболее активно происходит в двенадцатиперстной кишке и проксимальной части тощей кишки. В результате действия в полости кишки липазы из триглицеридов образуются моноглицериды и жирные кислоты. В кишечных эпителиоцитах происходит ресинтез триглицеридов. Из них, а также из холестерина, фосфолипидов и глобулинов образуются хиломикроны - мельчайшие жировые частицы, заключенные в тончайшую белковую оболочку. Хиломикроны поступают в центральный лимфатический сосуд ворсинки. Основное количество жира всасывается в лимфу, поэтому через 3 - 4 ч после приема пищи лимфатические сосуды наполнены большим количеством лимфы, напоминающей молоко.

Жирорастворимые витамины (A, D, E, K) всасываются вместе с жирами и поступают в лимфу в составе хиломикронов. Витамин С и рибофлавин переносятся путем диффузии, витамин В12 соединяется с внутренним фактором Касла и в таком виде всасывается в кишечнике.

Парасимпатические нервы ускоряют, а симпатические замедляют всасывание органических веществ. Стимулируют их всасывание гормоны коркового вещества надпочечников, щитовидной железы и гипофиза, а также гормоны, вырабатываемые в двенадцатиперстной кишке - секретин и ХЦК.

10.6 Пищеварение в толстом кишечнике, роль микрофлоры. Моторика кишечника и ее регуляция

Из тонкой кишки химус через илеоцекальный клапан (сфинктер) порциями переходит в толстую кишку. Вне пищеварения сфинктер закрыт, но спустя несколько минут после приема пищи химус небольшими порциями поступает в толстую кишку. Раскрытие сфинктера происходит рефлекторно: перистальтическая волна тонкой кишки повышает давление в ней и расслабляет илеоцекальный сфинктер. За сутки у здорового человека из тонкой в толстую кишку переходит 200-500 мл химуса.

Пища почти полностью переваривается и всасывается в тонкой кишке. Небольшое количество веществ пищи, в том числе клетчатка в составе химуса подвергаются гидролизу в толстой кишке. Гидролиз осуществляется ферментами химуса, микроорганизмов и сока толстой кишки.

В соке толстой кишки содержится небольшое количество пептидазы, липазы, амилазы и нуклеазы. С участием этих ферментов в проксимальной части толстой кишки происходит гидролиз питательных веществ. Из химуса интенсивно всасывается вода и он постепенно превращается в каловые массы.

Весь процесс пищеварения у взрослого человека длится 1 - 3 сут, из них наибольшее время приходится на пребывание остатков пищи в толстой кишке. Парасимпатические влияния усиливают моторику, а симпатические - тормозят моторику кишки. Контроль дефекации обеспечивается нисходящими влияниями головного мозга на соответствующий центр в крестцовом отделе спинного мозга.

Пищеварительный тракт человека и животных «заселен» микроорганизмами. В содержимом толстой кишки число бактерий максимальное. Анаэробная микрофлора преобладает над аэробной. Илеоцекальная заслонка предотвращают поступление микроорганизмов из толстой кишки в тонкую.

Нормальная микрофлора - эубиоз - выполняет ряд важнейших для макроорганизма функций. Эубиоз предохраняет макроорганизм от внедрения и размножения в нем патогенных микроорганизмов. Обеспечивает баланс процессов брожения и гниения. Нарушение нормальной микрофлоры при заболевании или в результате длительного введения антибактериальных препаратов влечет за собой осложнения, вызываемые бурным размножением в кишечнике дрожжей, стафилококка и других микроорганизмов.

Кишечная микрофлора синтезирует витамины К и группы В, которые частично покрывают потребность в них. Ферменты бактерий расщепляют не переваренные в тонкой кишке целлюлозу и пектины, образовавшиеся продукты используются макроорганизмом. Количество целлюлозы, гидролизуемое ферментами бактерий составляет в среднем около 40%.

ЛЕКЦИЯ 11. ОБМЕН ВЕЩЕСТВ И ЭНЕРГИИ. ТЕРМОРЕГУЛЯЦИЯ

11.1 Понятие об обмене веществ и энергии. Роль обмена веществ в обеспечении энергетических и пластических потребностей

Обмен веществ и энергии является характерным признаком жизни. В организме уравновешены процессы анаболизма (ассимиляции) - биосинтеза органических веществ, компонентов клеток и тканей, и катаболизма (диссимиляции) - расщепления сложных молекул. Преобладание анаболических процессов обеспечивает рост, накопление массы тела, преобладание же катаболических процессов ведет к частичному разрушению тканевых структур, уменьшению массы тела. При этом происходит превращение энергии и выполняется работа. Для возмещения энергозатрат организма, сохранения массы тела и удовлетворения потребностей роста необходимо поступление из внешней среды белков, липидов, углеводов, витаминов, минеральных солей и воды.

Белки занимают ведущее место среди органических элементов, на их долю приходится более 50 % сухой массы клетки. Пластическое значение белка состоит в восполнении и новообразовании компонентов клетки, энергетическое значение - в обеспечении организма энергией, образующейся при расщеплении белков. Белки не могут быть заменены жирами и углеводами.

Белки обладают различным аминокислотным составом, поэтому их биологическая ценность для организма неодинакова. Так, неполноценными белками являются желатина, зеин (белок кукурузы), глиадин (белок пшеницы) - в них мало незаменимых аминокислот. Наиболее высока биологическая ценность белков мяса, яиц, рыбы, молока. В связи с этим пища человека должна иметь в своем составе не менее 30% белков животного происхождения.

Важным показателем, по которому судить о соотношении количества поступившего и разрушенного в организме белка, является азотистый баланс. Это соотношение количества азота, поступившего в организм с пищей и выделенного из него. У взрослого человека при адекватном питании, как правило, поддерживается состояние азотистого равновесия - количество введенного в организм азота равно количеству азота, выведенного из организма. В случаях, когда поступление азота превышает его выделение, говорят о положительном азотистом балансе. При этом синтез белка преобладает над его распадом. Положительный азотистый баланс наблюдается в период роста, в периоде выздоровления после тяжелых заболеваний, а также при усиленных спортивных тренировках. Когда количество выведенного из организма азота превышает количество поступившего азота, говорят об отрицательном азотистом балансе. Он отмечается при белковом голодании, а также в случаях, когда в организм не поступают отдельные необходимые для синтеза белков аминокислоты. Особенно тяжело переносит белковое голодание растущий организм, у которого в этом случае происходит остановка роста.

Стимуляция синтеза белков осуществляется соматотропным гормоном гипофиза, тироксином и трийодтиронином щитовидной железы. Гормоны коры надпочечников (глюкокортикоиды - гидрокортизон, кортикостерон) усиливают распад белков в мышечной и лимфоидной тканях. В печени же глюкокортикоиды, наоборот, стимулируют синтез белка.

Жиры и другие липиды также важны для пластического и энергетического обмена. Пластическая роль липидов состоит в том, что они входят в состав клеточных мембран. Энергетическая - тем, что их теплотворная способность более чем в два раза превышает таковую углеводов или белков.

Общее количество жира в организме человека колеблется в широких пределах и в среднем составляет 10-20% от массы тела. При обильном углеводном питании и отсутствии жиров в пище синтез жира в организме может происходить из углеводов. Некоторые ненасыщенные жирные кислоты, в организме человека не образуются, т. е. являются незаменимыми. Это обстоятельство, а также то, что с жирами поступают растворимые в них витамины, является причиной патологических нарушений, которые могут наступить при длительном (многомесячном) исключении жиров из пищи.

Процесс образования, отложения и мобилизации из депо жира регулируется нервной и эндокринной системами, а также тканевыми механизмами и тесно связаны с углеводным обменом. Симпатические влияния тормозят синтез триглицеридов и усиливают их распад. Таким же действием обладают адреналин, норадреналин и тироксин, поэтому состояние стресса и гиперфункции щитовидной железы сопровождаются похуданием. Парасимпатические влияния, наоборот, способствуют отложению жира. Аналогично действуют глюко-кортикоиды - гормоны коркового слоя надпочечника, вероятно, вследствие того, что они несколько повышают уровень глюкозы в крови.

Велико также физиологическое значение жироподобных веществ. Фосфатиды входят в состав клеточных мембран, а также ядерного вещества и цитоплазмы, особенно нервной ткани. Стерины, в частности холестерин нужны для построения клеточных мембран, являются источником образования желчных кислот, а также гормонов, витамина О. Вместе с тем холестерину участвует в развитии атеросклероза. Содержание холестерина у взрослых людей выше 270 мг/100 мл расценивается как гиперхолестеринемия, а ниже 150 мг/100 мл - как гипохолестеринемия. Холестерин содержится в продуктах животного происхождения. Нужно отметить, что в растительных продуктах холестерина нет, но даже если питаться в основном ими, то содержание холестерина в крови снизить трудно - он образуется в организме самого человека.

Основная роль углеводов определяется их энергетической функцией. Глюкоза крови является непосредственным источником энергии в организме. В норме уровень глюкозы в крови составляет 80 - 100 мг% (0,8 - 1 г/л). Особенно чувствительной к понижению уровня глюкозы в крови является ЦНС. При снижении уровня глюкозы в крови до 40 - 30 мг% развиваются судороги, бред, потеря сознания. Это состояние получило название «гипогликемическая кома».

Глюкоза, поступающая в кровь из кишечника, транспортируется в печень, где из нее синтезируется гликоген. Гликоген печени представляет собой резервный углевод. Количество его может достигать у взрослого человека 150 - 200 г. По мере убыли глюкозы в крови происходят расщепление гликогена и поступление глюкозы в кровь (мобилизация гликогена). Благодаря этому сохраняется относительное постоянство содержания глюкозы в крови. Изменение содержания глюкозы в крови воспринимается глюкорецепторами, сосредоточенными в основном в печени и сосудах, а также клетками вентромедиального отдела гипоталамуса, который и регулирует концентрацию глюкозы. Показано участие неокортекса в регуляции углеводного обмена - так у студентов во время экзамена развивается гипергликемия

Уменьшение уровня глюкозы в крови возникает при действии инсулина. Увеличение - при действии глюкагона, адреналина, глюкокортикоидов, гормонов щитовидной железы (контринсулярные гормоны).

11.2 Обмен энергии и методы его определения

В процессе обмена веществ постоянно происходит превращение энергии: потенциальная энергия сложных органических соединений, поступивших с пищей, превращается в тепловую, механическую и электрическую. Энергия расходуется на поддержание температуры тела, выполнение работы, обеспечение жизнедеятельности, роста и развития организма.

Теплообразование в организме имеет двухфазный характер. При окислении белков, жиров и углеводов одна часть энергии используется для синтеза АТФ, другая (большая) превращается в теплоту. Теплота, выделяющаяся непосредственно при окислении питательных веществ, получила название первичной теплоты. Так, при окислении углеводов 23% энергии химической связи глюкозы используется на синтез АТФ, а 77% в форме первичной теплоты рассеивается в тканях. Аккумулированная в АТФ энергия используется в дальнейшем для механической работы, химических, транспортных, электрических процессов и, в конечном счете, тоже превращается в теплоту, обозначаемую вторичной теплотой. Поэтому вся энергия, образовавшаяся в организме, может быть выражена в единицах тепла - калориях или джоулях.

Для определения энергообразования в организме используют следующие методы.

1. Прямая калориметрия - основана на учете количества тепла, выделенного организмом. Человека помещают в теплоизолированную от внешней среды камеру. В камере по трубкам циркулирует вода, которую нагревает тепло, выделяемое человеком. По количеству протекающей воды и изменению ее температуры рассчитывают количество выделенного тепла. Однако методы прямой калориметрии очень громоздки и служат лишь для контроля результатов, полученных другими методами.

2. Непрямая колориметрия. Учитывая, что в основе теплообразования в организме лежат окислительные процессы, при которых потребляется О2 и образуется СО2, можно использовать непрямое определение теплообразования в организме по его газообмену. Для длительных исследований газообмена используют специальные респираторные камеры (закрытые способы непрямой калориметрии). Кратковременное определение газообмена проводят более простыми открытыми способами калориметрии.

Наиболее распространен способ Дугласа - Холдейна, при котором в течение 10 - 15 мин собирают выдыхаемый воздух в мешок из воздухонепроницаемой ткани, укрепляемый на спине обследуемого. Он дышит через загубник, взятый в рот. В загубнике имеются клапаны, устроенные так, что обследуемый свободно вдыхает атмосферный воздух, а выдыхает воздух в мешок Дугласа. Когда мешок наполнен, измеряют объем выдохнутого воздуха, в котором определяют количество С2 и СО2.

Кислород, поглощаемый организмом, используется для окисления белков, жиров и углеводов. Окислительный распад 1 г каждого из этих веществ требует неодинакового количества О2 и сопровождается освобождением различного количества тепла. Как видно из табл. 1, при потреблении организмом 1 л О2 освобождается разное количество тепла в зависимости от того, на окисление каких веществ О2 используется.

Таблица 1 - Потребление кислорода и высвобождение тепла при окислении различных веществ в организме

Вещество, окисляющееся в организме

Количество тепла, освобождающееся при окислении 1 г вещества, кДж (ккал)

Количество потребляемого О2, л

Количество освобождающейся при окислении 1 л О2: энергии, кДж (ккал)

Белки

17,17 (4,1)

0,966

19,26 (4,60)

Жиры

38,94 (9,3)

2,019

19,64 (4,69)

Углеводы

17,17 (4,1)

0,830

21,14 (5,05)

Количество тепла, освобождающегося после потребления организмом 1 л О2, носит название калорического эквивалента кислорода. Зная общее количество О2, использованное организмом, можно вычислить энергетические затраты только в том случае, если известно, какие вещества - белки, жиры или углеводы, окислились. Показателем этого может служить дыхательный коэффициент. Дыхательным коэффициентом называется отношение объема выделенного СО2 к объему поглощенного О2. Дыхательный коэффициент различен при окислении белков, жиров и углеводов. Для примера рассмотрим, каков будет дыхательный коэффициент при использовании организмом глюкозы. Общий итог окисления молекулы глюкозы можно выразить формулой:

С6Н12О6 + 6 О2 = 6 СО2 + 6 Н2О.

При окислении глюкозы число молекул образовавшегося СО2 равно числу молекул затраченного О2. Следовательно, дыхательный коэффициент (отношение СО2/О2) при окислении глюкозы и других углеводов равен единице.

При окислении жиров дыхательный коэффициент равен 0,7, а белков -0,8. При смешанной пище у человека дыхательный коэффициент обычно равен 0,85. Достаточно точное определение энергетического обмена у человека в покое можно вычислить, зная количество потребленного кислорода и беря его калорический эквивалент при усредненном дыхательном коэффициенте.

Во время интенсивной мышечной работы дыхательный коэффициент повышается и в большинстве случаев приближается к единице. Это объясняется тем, что главным источником энергии во время напряженной мышечной деятельности является окисление углеводов. После завершения работы в течение нескольких первых минут дыхательный коэффициент даже превышает единицу. Причина: в мышцах во время работы накапливается молочная кислота. Молочная кислота поступает в кровь и вытесняет СО2 из гидрокарбонатов. Благодаря этому количество выделенного СО2 больше количества СО2, образовавшегося в данный момент в тканях. Через некоторое время после работы дыхательный коэффициент резко падает вследствие задержки в крови СО2, поступающей из тканей.

3. Исследование валового обмена

Валовое количество вырабатываемой энергии является суммой внешней работы, потерь тепла и запасенной энергии. Длительное (на протяжении суток) определение газообмена дает возможность не только найти величину валового обмена, но и определить, за счет окисления каких питательных веществ шло теплообразование.

Допустим, что обследуемый человек за сутки использовал 654 л О2 и выделил 574 л СО2. За это же время с мочой выделилось 17 г азота и 9 г углерода. Количество белка, распавшегося в организме, определяем по азоту мочи. Исходя из дыхательного коэффициента, равного для белков 0,8, находим количество О2, затраченного на окисление белков - 109 л. По разности между количеством всего поглощенного О2 и количеством О2, затраченного на окисление белков, находим количество О2, затраченное на окисление углеводов и жиров: 654 л - 109 л = 545 л О2. На основании того, что при окислении 1 г жира потребляется 2 л О2 и образуется 1,4 л СО2, а при окислении 1 г углеводов потребляется 0,8 л О2 и столько же образуется СО2 находим количество углеводов и жиров, окисленных в организме

Итак, освобождение энергии в организме протекало за счет окисления 105 г белков, 99 г жиров и 417 г углеводов. Зная количество тепла, образуемого при окислении 1 г каждого из веществ (см. табл. 1), нетрудно рассчитать общую теплопродукцию организма за сутки:

105*4,1 + 99*9,3 + 417*4,1 = 3061 ккал (12,81 кДж).

В зависимости от физической активности, эмоционального напряжения и ряда других факторов выделяют следующие уровни валового обмена.

1. Основной обмен - энерготраты организма в состоянии спокойного бодрствования, утром, натощак, при внешней температуре «комфорта». Энерготраты при этом связаны с поддержанием минимально необходимого для жизни клеток уровня окислительных процессов и с деятельностью постоянно работающих органов и систем - дыхательной мускулатуры, сердца, почек, печени, мышечного тонуса.

Для мужчины среднего возраста, среднего роста и со средней массой тела основной обмен равен 4,19 кДж (1 ккал) на 1 кг массы тела в час, или в перерасчете для всего организма - 7117 кДж (1700 ккал) в сутки. У женщин той же массы он примерно на 10 % ниже. Интенсивность основного обмена на 1 кг массы тела, у детей значительно выше, чем у взрослых. Если пересчитать интенсивность основного обмена на 1 кг массы тела, то окажется, что у людей с разной массой тела и ростом она различна - согласно правилу поверхности тела, затраты энергии пропорциональны величине поверхности тела, поэтому северные народы обычно имею пикническое телосложение.

2. Рабочий обмен. Затраты энергии тем больше, чем интенсивнее совершаемая организмом мышечная работа. Так, при тяжелом физическом труде они достигают 5-7 ккал в час. При мышечной работе освобождается тепловая и механическая энергия. Отношение механической энергии ко всей энергии, затраченной на работу, выраженное в процентах, называется коэффициентом полезного действия (к.п.д.). При физическом труде человека к.п.д. колеблется от 16 до 25 % и составляет в среднем 20 %, но в отдельных случаях может быть и выше. К.п.д. у нетренированных людей ниже, чем у тренированных, и увеличивается по мере тренировки.

Ключевую роль в регуляции обмена энергии играет гипоталамическая область мозга. Регуляторные влияния реализуются вегетативными нервами или гуморальным звеном Особенно усиливают обмен энергии гормоны щитовидной железы и адреналин.

11.3 Температура тела и терморегуляция

Свойство организма человека и высших животных поддерживать температуру тела на относительно постоянном уровне, несмотря на колебания окружающей среды, называется изотермией. Изотермия свойственна только так называемым гомойотермным, или теплокровным, животным. Изотермия отсутствует у пойкилотермных, или холоднокровных, животных, температура тела которых переменна и мало отличается от температуры окружающей среды.

Изотермия в процессе онтогенеза развивается постепенно. Новорожденному ребенку труднее поддерживать постоянство температуры тела. Вследствие этого легко может наступать охлаждение (гипотермия) или перегревание (гипертермия) организма, а даже небольшая мышечная работа, например, связанная с длительным криком ребенка, может привести к повышению температуры тела.

Температура органов и тканей, как и всего организма в целом, зависит от интенсивности образования тепла и величины теплопотерь. Теплообразование происходит вследствие экзотермических реакций. Потеря тепла органами и тканями зависит от их расположения: поверхностно расположенные органы, например кожа, охлаждаются сильнее, чем внутренние органы. В связи с этим, в теле человека принято различать «ядро», температура которого сохраняется достаточно постоянной, и «оболочку», температура которой существенно колеблется в зависимости от температуры внешней среды.

Из сказанного следует, что понятие «постоянная температура тела» является условным. Лучше всего среднюю температуру организма как целого характеризует температура крови в полостях сердца и в наиболее крупных сосудах. На практике о температуре тела человека судят обычно на основании ее измерения в подмышечной впадине. Здесь температура у здорового человека равна 36,5 - 36,9 С. В клинике часто (особенно у грудных детей) измеряют температуру в прямой кишке, где она выше, чем в подмышечной впадине - в среднем 37,2 - 37,5 °С. Температура тела не остается постоянной, а колеблется в течение суток в пределах 0,5-0,7 °С. Максимальная температура наблюдается в 16 - 18 ч вечера, минимальная - в 3 - 4 ч утра.

Постоянство температуры тела у человека может сохраняться лишь при условии равенства теплообразования и теплопотери всего организма. Это достигается с помощью физиологических механизмов терморегуляции. Терморегуляция проявляется в форме сочетания процессов теплообразования и теплоотдачи и осуществляется двумя путями.

1. Химическая терморегуляция осуществляется усилением или ослаблением интенсивности обмена веществ. У человека усиление теплообразования отмечается, в частности, тогда, когда температура окружающей среды становится ниже оптимальной температуры, или зоны комфорта. Для человека в обычной легкой одежде эта зона находится в пределах 18 -20 °С, а без одежды - 28 °С.

Наиболее интенсивное теплообразование в организме происходит в мышцах. В условиях холода теплообразование в мышцах увеличивается за счет непроизвольных сокращений мышц в виде дрожи. Тоническое напряжение мускулатуры также повышает теплообразование (так выживают люди заваленные снегом). Тяжелая мышечная работа ведет к увеличению теплообразования на 400 - 500%.

Увеличение теплообразования, связанное с произвольной и непроизвольной (дрожь) мышечной активностью, называют сократительным термогенезом. Наряду с этим имеется и «несократительный термогенез» - возрастает уровень теплообразования и в других тканях. Особое место занимает так называемый бурый жир, количество которого значительно у новорожденных. Бурый оттенок жира придается окончаниями симпатических нервных волокон и большим числом митохондрий. За счет высокой скорости окисления жирных кислот в бурой жировой ткани процесс теплообразования идет быстро и почти без синтеза макроэргов.

2. Физическая терморегуляция осуществляется путем изменения интенсивности отдачи тепла, прежде всего, в условиях повышенной температуры окружающей среды. Она осуществляется путем теплоизлучения, конвекции, т. е. движения и перемещения нагреваемого теплом воздуха, теплопроведения, т. е. отдачи тепла веществам, непосредственно соприкасающимся с поверхностью тела, и испарения воды с поверхности кожи и легких.

У человека в обычных условиях потеря тепла путем теплопроведения имеет небольшое значение, так как воздух и одежда являются плохими проводниками тепла. Радиация, испарение и конвекция протекают с различной интенсивностью в зависимости от температуры окружающей среды. У человека в состоянии покоя при температуре воздуха около 20 °С с помощью излучения теряется 66 %, испарения воды - 19 %, конвекции - 15 % от общей потери тепла организмом. При повышении температуры окружающей среды до 35 °С теплоотдача с помощью радиации и конвекции становится невозможной, и температура тела поддерживается на постоянном уровне исключительно с помощью испарения воды с поверхности кожи и альвеол легких. Особенно интенсивно потоотделение происходит при высокой окружающей температуре во время мышечной работы, когда возрастает теплообразование в самом организме (у рабочих горячих цехов - до 12 л за день).

Температура кожи, а, следовательно, интенсивность теплоотдачи могут изменяться в результате перераспределения крови в сосудах и при изменении объема циркулирующей крови. На холоде кровеносные сосуды кожи сужаются: большее количество крови поступает в сосуды брюшной полости. Кроме того, происходит открытие артериовенозных анастомозов, что уменьшает количество крови, поступающей в капилляры, и тем самым препятствует теплоотдаче. При повышении температуры окружающей среды сосуды кожи расширяются. Возрастает также объем циркулирующей крови во всем организме вследствие перехода воды из тканей в сосуды, а также потому, что селезенка и другие кровяные депо выбрасывают в общий кровоток дополнительное количество крови. Увеличение количества крови, циркулирующей через сосуды поверхности тела, способствует теплоотдаче с помощью радиации и конвекции.

11.4 Механизмы регуляции температуры тела. Адаптация к теплу и холоду. Гипо - и гипертермия

Постоянство температуры тела обеспечивается сложными рефлекторными актами, которые возникают в ответ на температурное раздражение терморецепторов. При относительно постоянной температуре окружающей среды от кожный терморецепторов поступают ритмичные импульсы. Частота этих импульсов максимальна для холодовых рецепторов кожи и кожных сосудов при температуре 30 °С, а для кожных тепловых рецепторов - при температуре 43 °С (в условиях теплового комфорта обе группы рецепторов почти молчат). При охлаждении кожи частота импульсации в холодовых рецепторах возрастает, а при согревании урежается. На такие же перепады температуры тепловые рецепторы реагируют противоположно. Тепловые и холодовые рецепторы внутри ЦНС реагируют на изменение температуры крови, притекающей к нервным центрам.

Терморецепторы ЦНС находятся в передней части гипоталамуса - в преоптической зоне, в ретикулярной формации среднего мозга, а также в спинном мозге. В гипоталамусе расположены основные центры терморегуляции. Разрушение гипоталамуса влечет за собой потерю способности регулировать температуру тела и делает животное пойкилотермным. Химическая терморегуляция контролируется каудальной частью гипоталамуса, физическая - его передней частью. В осуществлении гипоталамической регуляции температуры тела участвуют железы внутренней секреции, главным образом щитовидная и надпочечники. Во время пребывания в холоде происходит усиленное выделение гормонов щитовидной железы, повышающего обмен веществ и, следовательно, образование тепла. Адреналин, усиливая окислительные процессы в тканях, повышает теплообразование и суживает кожные сосуды, уменьшая теплоотдачу. Поэтому адреналин способен вызывать повышение температуры тела (фильм «К-2»).

Если человек длительное время находится в условиях значительно повышенной или пониженной температуры окружающей среды, то механизмы физической и химической регуляции тепла, могут оказаться недостаточными и возникают следующие состояния.

1. Гипотермия - явление, при котором температура тела ниже 35 °С. При этом наблюдается состояние, подобное наркозу: исчезновение чувствительности, ослабление рефлекторных реакций, понижение возбудимости нервных центров, понижается артериальное давление (при температуре тела 24 - 25 °С оно может составлять 15 - 20 % от исходного).

В последние годы искусственно создаваемая гипотермия с охлаждением тела до 24-28 °С применяется на практике в хирургических клиниках, осуществляющих операции на сердце и ЦНС. Значение ее в том, что гипотермия значительно снижает обмен веществ головного мозга, а следовательно, потребность этого органа в кислороде. В результате становится переносимым более длительное обескровливание мозга.

При относительно кратковременных и не чрезмерно интенсивных воздействиях холода на организм понижения температуры внутренней среды не происходит. В то же время это способствует развитию простудных заболеваний и обострению хронических воспалительных процессов. В этой связи важную роль приобретает закаливание организма. Закаливание достигается повторными воздействиями низкой температуры возрастающей интенсивности. Эффект закаливания проявляется и в случае водных процедур, и при воздействии холодного воздуха. Закаливание происходит быстрее, если воздействие холода сочетается с активной мышечной деятельностью.

Гипертермия - состояние, при котором температура тела поднимается выше 37 °С. Она возникает при продолжительном действии высокой температуры окружающей среды, особенно при влажном воздухе, и, следовательно, недостаточно эффективном потоотделении. Резкая гипертермия, при которой температура тела достигает 40 - 41 °С, сопровождается тяжелым общим состоянием организма и носит название теплового удара. Люди, живущие в жарких регионах способны адаптироваться к избыточному теплу - у них выделяется много пота с малым содержанием электролитов.

От гипертермии следует отличать такое изменение температуры, когда внешние условия не изменены, но нарушается собственно процесс терморегуляции. Примером такого нарушения может служить инфекционная лихорадка. Одной из причин ее возникновения является высокая чувствительность гипоталамических центров регуляции теплообмена к некоторым химическим соединениям, в частности к бактерийным токсинам. В обоих случаях предельная температура для выживания - 42 - 43 °С.

ЛЕКЦИЯ 12. СИСТЕМА ВЫДЕЛЕНИЯ

12.1 Понятие о системе выделения. Почки - как главный выделительный орган

Процесс выделения обеспечивает освобождение организма от конечных продуктов обмена, чужеродных и токсичных веществ, а также избытка воды, солей и органических соединений. В процессе выделения у человека участвуют следующие органы.

Легкие - выводят из организма СО2, воду, некоторые летучие вещества, например пары эфира и хлороформа при наркозе, пары алкоголя при опьянении.

Железы кожи - с потом выводят воду и соли, некоторые органические вещества (в частности мочевину), а при напряженной мышечной работе - молочная кислоту.

Слюнные, желудочные, кишечные железы и поджелудочная железа - выделяют тяжелые металлы, ряд лекарственных препаратов и чужеродных органических соединений.

Печень - удаляет из крови ряд продуктов азотистого обмена.

Почки - основные органы выделения, их функции:

1) экскреторная функция - выделение из организма конечных продуктов азотистого обмена и чужеродных веществ, избытка органических веществ (глюкоза, аминокислоты и др.);

2) волюморегуляция - участие в регуляции объема крови и внеклеточной жидкости;

3) осморегуляция - регуляция концентрации осмотически активных веществ в крови и других жидкостях тела;

4) ионная регуляция - регуляция ионного состава сыворотки крови и ионного баланса организма;

5) участие в регуляции кислотно-основного состояния (стабилизация рН крови);

6) инкреторная функция - участие в регуляции системы крови, модуляции действия гормонов благодаря выделению в кровь биологически активных веществ;

7) метаболическая функция - участие в обмене белков, липидов и углеводов.

В каждой почке у человека содержится около 1 млн функциональных единиц - нефронов, в которых происходит образование мочи. Каждый нефрон начинается почечным, или мальпигиевым, тельцем - двустенной капсулой клубочка (капсула Боумена), внутри которой находится клубочек капилляров (рис. 10). Внутренняя полость между висцеральным и париетальным листками капсулы переходит в просвет проксимального извитого канальца. Следующий отдел нефрона - тонкая нисходящая часть петли нефрона (петли Генле). Нисходящая часть петли может опускаться глубоко в мозговое вещество, где каналец изгибается на 180°, и поворачивает в сторону коркового вещества почки, образуя восходящую часть петли нефрона. Она может включать тонкую и всегда имеет толстую восходящую часть, которая поднимается до уровня клубочка своего же нефрона, где начинается дистальный извитой каналец. Этот отдел канальца обязательно прикасается к клубочку между приносящей и выносящей артериолами. Конечный отдел нефрона - короткий связующий каналец, впадает в собирательную трубку. Начинаясь в корковом веществе почки, собирательные трубки проходят через мозговое вещество и открываются в полость почечной лоханки. Диаметр капсулы клубочка около 0,2 мм, длина канальцев одного нефрона достигает 50 мм.

Рис. 10. - Строение нефрона

А - юкстамедуллярный нефрон; Б - интракортикальный иефрон; 1 - почечное тельце, включающее капсулу клубочка и клубочек капилляров; 2 - проксимальный извитой каналец; 3 - проксимальный прямой каналец; 4 - нисходящее тонкое колено петли нефрона; 5 - восходящее тонкое колено петли нефрона; 6 - дистальный прямой каналец (толстое восходящее колено петли нефроиа); 7 - плотное пятно дистального канальца; 8 - дистальный извитой каналец; 9 - связующий каналец; 10 - собирательная трубка коркового вещества почки; 11 - собирательная трубка наружного мозгового вещества; 12- собирательная трубка внутреннего мозгового вещества. Прерывистой линией с резким изгибом в корковом веществе обозначена зона мозгового вещества.

В почке обычно выделяют два типа нефронов: интракортикальные и юкста-медуллярные («околомозговые»). Юкстамедуллярные крупнее суперфициальных, их клубочки лежат глубже - у границы коркового и мозгового вещества, они имеют более длинные петли нефрона, спускающиеся во внутреннее мозговое вещество почки.

В корковом веществе почки находятся почечные клубочки, проксимальные и дистальные отделы канальцев, связующие отделы. В наружной полоске наружного мозгового вещества находятся нисходящие и толстые восходящие отделы петель нефронов, собирательные трубки; во внутреннем мозговом веществе располагаются тонкие отделы петель нефронов и собирательные трубки. Расположение каждой из частей нефрона в почке чрезвычайно важно и определяет форму участия тех или иных нефронов в деятельности почки, в частности в осмотическом концентрировании мочи.

Кровоснабжение почки. Через почки проходит около 1/5 крови, поступающей из сердца в аорту. Кровоток по корковому веществу почки - наиболее высокий уровень органного кровотока. Особенность почечного кровотока - в условиях изменения артериального давления в широких пределах (от 90 до 190 мм рт. ст.) он остается постоянным. Это обусловлено специальной системой саморегуляции кровообращения в почке.

Короткие почечные артерии отходят от брюшного отдела аорты, разветвляются в почке на все более мелкие сосуды, и одна приносящая (афферентная) артериола входит в клубочек. Здесь она распадается на капиллярные петли, которые, сливаясь, образуют выносящую (эфферентную) артериолу, по которой кровь оттекает от клубочка. Диаметр эфферентной артериолы уже, чем афферентной. Вскоре после отхождения от клубочка эфферентная артериола вновь распадается на капилляры, образуя густую сеть вокруг проксимальных и дистальных извитых канальцев. Таким образом, большая часть крови в почке дважды проходит через капилляры - вначале в клубочке, затем у канальцев. Отличие кровоснабжения юкстамедуллярного нефрона заключается в том, что эфферентная артериола не распадается на околоканальцевую капиллярную сеть, а образует прямые сосуды, спускающиеся в мозговое вещество почки. Эти сосуды обеспечивают кровоснабжение мозгового вещества почки; кровь из околоканальцевых капилляров и прямых сосудов оттекает в венозную систему и по почечной вене поступает в нижнюю полую вену.

Важную роль играет юкстагломерулярный аппарат - подобие треугольника, две стороны которого представлены подходящими к клубочку афферентной и эфферентной артериолами, а основание - клетками т.н. плотного пятна дистального канальца. Этот аппарат участвует в секреции ренина и других биологически активных веществ.

Методы изучения функций почек. При исследовании функции почек используют метод «очищения» (клиренса): сопоставление концентрации определенных веществ в крови и моче позволяет рассчитать величины основных процессов, лежащих в основе мочеобразования. Кроме того, применяют методы микропункции, микроперфузии, микроэлектродную технику и ультрамикроанализ жидкости, извлеченной микропипеткой, что позволяет изучать механизм транспорта веществ через мембраны клеток канальцев.

12.2 Клубочковая фильтрация. Образование первичной мочи

Образование мочи является результатом трех последовательных процессов.

1. Клубочковая фильтрация жидкости из плазмы крови в капсулу почечного клубочка, в результате чего образуется первичная моча.

2. Канальцевая реабсорбция - процесс обратного всасывания профильтровавшихся веществ и воды.

3. Секреция. Клетки некоторых отделов канальца переносят в просвет канальца ряд веществ из внеклеточной жидкости либо выделяют вещества, синтезированные в клетке канальца.

Клубочковая фильтрация. Через клубочковый фильтр происходит ультрафильтрация воды и низкомолекулярных компонентов из плазмы крови. Этот фильтр почти непроницаем для высокомолекулярных веществ. Процесс ультрафильтрации обусловлен разностью между гидростатическим давлением крови, гидростатическим давлением в капсуле клубочка и онкотическим давлением белков плазмы крови. Общая поверхность капилляров клубочка больше общей поверхности тела человека. Фильтрующая мембрана состоит из трех слоев: эндотелиальных клеток капилляров, базальной мембраны и эпителиальных клеток висцерального (внутреннего) листка капсулы - подоцитов.

Наиболее важны мембраны подоцитов. Они ограничивают фильтрацию веществ, диаметр молекул которых больше 6 нм. Поэтому в просвет нефрона свободно проникает инулин (полимер фруктозы), но только 3 % гемоглобина и меньше 1 % сывороточного альбумина. Ультрафильтрат (первичная моча) подобен плазме по общей концентрации осмотически активных веществ, глюкозы, мочевины и др. В нем - лишь следы белка.

Инулин использую для измерения скорости фильтрации. В норме у мужчин в обеих почках она составляет около 125 мл/мин, у женщин - приблизительно 110 мл /мин. Измеренная с помощью инулина величина фильтрации, называемая также коэффициентом очищения от инулина (или инулиновым клиренсом), показывает, какой объем плазмы крови освобожден от инулина за это время. Для измерения очищения от инулина, необходимо непрерывно вливать в вену его раствор. Очевидно, что это весьма сложно и в клинике не всегда осуществимо, поэтому чаще используют креатинин - естественный компонент плазмы, хотя с его помощью скорость клубочковой фильтрации измеряется менее точно.

У здорового человека вода попадает в просвет нефрона в результате фильтрации в клубочках, реабсорбируется в канальцах, и вследствие этого концентрация инулина растет. Концентрационный показатель инулина (концентрация инулина в моче/концентрация инулина в плазме) указывает, во сколько раз уменьшается объем фильтрата при его прохождении по канальцам. На основе ее можно определить, подвергается ли вещество Х реабсорбции или секретируется клетками канальцев. Если концентрационный показатель данного вещества X меньше, чем показатель для инулина, то это указывает на реабсорбцию вещества X в канальцах, если больше - то это указывает на его секрецию.

12.3 Механизмы канальцевой реабсорбции

В обычных условиях в почке человека за сутки образуется до 180 л фильтрата, а выделяется 1,0 - 1,5 л мочи, остальная жидкость реабсорбируется (всасывается) в канальцах. В проксимальном сегменте нефрона практически полностью реабсорбируются аминокислоты, глюкоза, витамины, белки, микроэлементы, значительное количество ионов Nа+, Сl-, НСО3-. Реабсорбция натрия и хлора представляет собой наиболее значительный по объему и энергетическим тратам процесс. В последующих отделах нефрона всасываются преимущественно электролиты и вода. Реабсорбция в дистальном сегменте характеризуется тем, что клетки переносят меньшее, чем в проксимальном канальце, количество ионов, но против большего градиента концентрации. В дистальном канальце калий не только реабсорбируется, но и секретируется при его избытке в организме.

В проксимальном отделе нефрона реабсорбция происходит через высокопроницаемую для воды мембрану стенки канальца (облигатная реабсорбция). Напротив, в толстом восходящем отделе петли нефрона, дистальных извитых канальцах и собирательных трубках реабсорбция ионов и воды происходит через малопроницаемую для воды стенку канальца; проницаемость мембраны для воды в отдельных участках нефрона и собирательных трубках может регулироваться, а величина проницаемости изменяется в зависимости от функционального состояния организма (факультативная реабсорбция). Под влиянием импульсов, поступающих по эфферентным нервам, и при действии биологически активных веществ реабсорбция натрия и хлора регулируется в проксимальном отделе нефрона. В конечных частям дистального сегмента нефрона и собирательных трубках проницаемость стенки канальца для воды регулируется вазопрессином.

Важное значение имеет порог выведения. Непороговые вещества выделяются при любой их концентрации в плазме крови (инулин). Выделение же глюкозы с мочой (глюкозурия) наступает тогда, когда ее концентрация в клубочковом фильтрате (и в плазме крови) превышает 10 ммоль/л.

Обратное всасывание различных веществ в канальцах обеспечивается:

4. Активным транспортом (вещество реабсорбируется против электрохимического и концентрационного градиентов). Различают два вида активного транспорта. Первично-активный - перенос вещества против электрохимического градиента за счет энергии клеточного метаболизма. Примером служит транспорт ионов Nа+, который происходит при участии фермента Nа+, К+-АТФазы, использующей энергию АТФ. Вторично-активный - перенос глюкозы, аминокислот против концентрационного градиента, с помощью специального переносчика, который обязательно должен присоединить ион Nа+. Движущей силой переноса этих веществ через плазматическую мембрану служит меньшая по сравнению с просветом канальца концентрация натрия в цитоплазме клетки. Градиент концентрации натрия обусловлен непрестанным активным выведением натрия из клетки во внеклеточную жидкость с помощью Nа+, К+-АТФазы.

5. Пассивный транспорт. Реабсорбция воды, хлора и некоторых других ионов, мочевины осуществляется по электрохимическому, концентрационному или осмотическому градиенту. Примером пассивного транспорта является реабсорбция в дистальном извитом канальце хлора по электрохимическому градиенту, создаваемому активным транспортом натрия. По осмотическому градиенту транспортируется вода, причем скорость ее всасывания зависит от осмотической проницаемости стенки канальца и разности концентрации осмотически активных веществ по обеим сторонам его стенки. В содержимом проксимального канальца вследствие всасывания воды и растворенных в ней веществ растет концентрация мочевины, небольшое количество которой по концентрационному градиенту реабсорбируется в кровь.

Небольшое количество профильтровавшегося в клубочках белка реабсорбируется клетками проксимальных канальцев с помощью пиноцитоза. Выделение белков с мочой в норме составляет не более 20 - 75 мг в сутки, а при заболеваниях почек оно может возрастать до 50 г в сутки. Увеличение выделения белков с мочой (протеинурия) может быть обусловлено нарушением их реабсорбции либо увеличением фильтрации.

Определение величины реабсорбции в канальцах почки. Обратное всасывание веществ, или, иными словами, их транспорт из просвета канальцев в тканевую (межклеточную) жидкость и в кровь, при реабсорбции определяется по разности между количеством вещества, профильтровавшегося в клубочках, и количеством вещества, выделенного с мочой.

12.4 Канальцевая секреция. Образование вторичной мочи

Многие продукты обмена и чужеродные вещества секретируются из крови в просвет канальца против концентрационного и электрохимического градиентов. Рассмотрим процесс секреции органических кислот на примере выделения почкой парааминогиппуровой к-ты (ПАГ). Принцип секреторного процесса при транспорте органических соединений состоит в том, что в мембране клетки проксимального канальца, обращенной к интерстициальной жидкости, имеется переносчик, обладающий высоким сродством к ПАГ. Переносчик обеспечивает поступление ПАГ внутрь клетки. Поступившая в клетку ПАГ движется по цитоплазме к апикальной мембране и выделяется в просвет канальца.

Транспорт в нефроне К+ характеризуется тем, что К+ не только подвергается обратному всасыванию, но и секретируется клетками эпителия конечных отделов нефрона и собирательных трубок. При секреции К+ поступает в клетку в обмен на Na+ с помощью натрий-калиевого насоса. При избытке К+ в организме система регуляции стимулирует его секрецию клетками канальцев. При дефиците К+ в организме клетки конечных отделов нефрона и собирательных трубок прекращают секрецию К+ и только реабсорбируют его из канальцевой жидкости.

В почках также образуются некоторые вещества, выделяемые в мочу (например, гиппуровая кислота, аммиак) или поступающие в кровь (ренин, простагландины, синтезируемая в почке глюкоза и др.).

Почки теплокровных животных обладают способностью к образованию мочи с большей осмотической концентрацией, чем осмотическая концентрация крови за счет деятельности поворотно-противоточной множительной системы.

Механизм работы такой системы рассмотрим на примере кровеносных сосудов в конечностях арктических животных. Во избежание потерь тепла кровь в параллельно расположенных артериях и венах конечностей течет таким образом, что теплая артериальная кровь согревает охлажденную венозную кровь, движущуюся к сердцу. Здесь такая система функционирует только как противоточный обменник; в почке же она обладает множительным эффектом, т. е. увеличением эффекта, достигаемого в каждом из отдельных сегментов системы.

Шпилькообразная форма петли Генле с движением жидкости в противоположных направлениях по лежащим рядом нисходящему и восходящему коленам создает основу концентрирования здесь мочи по принципу противоточного умножения (рис. 11). NаС1 перекачивается из восходящего колена петли Генле в нисходящее, поэтому концентрация канальцевой жидкости в последнем все более повышается. Мембрана между двумя коленами водонепроницаема, поэтому происходит разведение раствора в восходящем колене и его концентрирование в нисходящем. Поступающий в нисходящее колено изотонический раствор по мере продвижения к вершине петли Генле становится все более гипертоничным.

Рис. 11 - Схема нефрона, иллюстрирующая противоточный механизм в петле Генле. Сплошными стрелками показан транспорт NаС1 из восходящего колена в нисходящее, а штриховыми - выход воды из собирательной трубочки

На каждом уровне между двумя коленами существует лишь небольшая горизонтальная разность концентраций, и в восходящем колене натриевый насос может работать поэтапно с относительно небольшой затратой энергии. Однако за счет противотока эти отдельные эффект, умножаются, создавая очень большую вертикальную разность концентраций между основанием и вершиной петли Генле. Такой градиент важен для окончательного концентрирования мочи, и вот почему. Из восходящего колена в дистальный извитой каналец поступает гипотонический раствор; здесь он за счет осмоса теряет воду, и становится изотоническим, причем объем жидкости наполовину уменьшается. При прохождении раствора по собирательной трубочке к вершине сосочка вода продолжает удаляться, поскольку окружающая среда становится все более гипертоничной по отношению к раствору. Здесь, как и в дистальном извитом канальце, водопроницамость стенки регулируется антидиуретическим гормоном (АДГ). Его количество определяет концентрацию и объем мочи, покидающей почку в вершине сосочка. Таким образом, в корковом слое каналы нефрона содержат гипотонический раствор, в мозговом - гипертонический.

Столь простая модель годится лишь для описания основных принципов концентрирования мочи, а реальные механизмы, действующие в мозговом веществе почки, намного сложнее. Рассмотрим схему на рис. 3. Вслед за NaСl, выкачиваемым из толстого сегмента восходящего колена петли Генле, в межклеточное пространство из нисходящего колена петли Генле и соседних собирательных трубочек устремляется вода (этот процесс регулируется АДГ). Из нисходящей части петли Генле вода выходит и за счет гидростатического давления (участок сужен и возникает перепад давления). Трубочки относительно непроницаемы для мочевины, поэтому ее концентрация в канальцевой жидкости, достигающей внутренней зоны мозгового вещества, сильно повышается. Здесь проницаемость для мочевины возрастает, и она диффундирует в межклеточное пространство, что обеспечивает осмотическую потерю воды из нисходящего колена. Последнее непроницаемо для NaСl, и концентрация этой соли постепенно повышается к вершине сосочка. В тонком сегменте восходящего колена жидкость попадает в противоположные по проницаемости условия: здесь проницаемость низка для воды и высока для NaСl и мочевины. По градиенту концентрации NaСl диффундирует из петли Генле, а мочевина поступает в нее. У толстого сегмента восходящего колена низкая проницаемость для мочевины, как и у дистального извитого канальца и верхнего сегмента собирательной трубочки, в которых под влиянием АДГ реабсорбируется вода. Таким образом, концентрация мочевины в растворе непрерывно повышается, и последняя замещает NaСl, интенсивно реабсорбируемый дистальной частью нефрона, особенно в присутствии альдостерона. Следовательно, некоторое количество мочевины челночно перемещается в дистальном отделе нефрона, перенося энергию для концентрирования мочи из толстого сегмента петли во внутреннюю зону мозгового вещества.

...

Подобные документы

  • Функции нервной системы в организме человека. Клеточное строение нервной системы. Виды нервных клеток (функциональная классификация). Рефлекторный принцип работы нервной системы. Отделы центральной нервной системы. Учение о высшей нервной деятельности.

    реферат [1,6 M], добавлен 15.02.2011

  • Ознакомление с принципами организации деятельности двигательных систем мозга. Исследование роли спинного мозга, мозжечка, таламуса, базальных ганглий и коры больших полушарий в регуляции фазной (динамической) и позной (статической) активности мышц.

    реферат [29,7 K], добавлен 10.07.2011

  • Основные анатомические закономерности в деятельности центральной нервной системы. Распространение нервных импульсов. Анатомия спинного и головного мозгов. Характеристика проводящих путей спинного мозга. Клеточные элементы нервной ткани, типы нейронов.

    презентация [7,6 M], добавлен 17.12.2015

  • Анализ этапов развития нервной системы в онтогенезе. Клеточные элементы нервной ткани. Описание схемы строения рефлекторной дуги. Изучение особенностей образования серого и белого веществ нервной системы. Характеристика проводящих путей спинного мозга.

    контрольная работа [41,4 K], добавлен 10.11.2013

  • Роль Павлова в создании учения о высшей нервной деятельности, объяснении высших функций мозга животных и человека. Основные периоды научной деятельности ученого: исследования в областях кровообращения, пищеварения, физиологии высшей нервной деятельности.

    реферат [25,7 K], добавлен 21.04.2010

  • Изучение рефлекторной теории и её принципов: материалистического детерминизма, структурности, анализа и синтеза. Характеристика понятия рефлекса, его значения и роли в организме. Рефлекторный принцип построения нервной системы. Принцип обратной связи.

    реферат [16,0 K], добавлен 19.02.2011

  • Анатомические характеристики ствола мозга, который является продолжением спинного мозга в полости черепа и в своем строении сохраняет ряд характерных для него особенностей. Черепно-мозговые ядра моста. Строение стволовых двигательных проводящих путей.

    реферат [6,1 M], добавлен 27.10.2010

  • Строение и структура головного мозга. Мозговой мост и мозжечок. Промежуточный мозг как основа сенсорных, двигательных и вегетативных реакций. Функции головного мозга. Отличительные черты и задачи спинного мозга как части центральной нервной системы.

    реферат [27,1 K], добавлен 05.07.2013

  • Общее понятие и особенности функций высшей нервной деятельности человека. История открытия механизмов условных рефлексов и изучение их физиологии И.П. Павловым. Исследование высших функций мозга в трудах философов античности Гиппократа и Декарта.

    реферат [20,1 K], добавлен 17.04.2011

  • Строение нервной системы человека, роль головного и спинного мозга в восприятии сенсорной информации и рефлекторной деятельности. Структура серого и белого вещества, представляющего собой скопление тел нейронов и их отростков - дендритов и аксонов.

    реферат [565,6 K], добавлен 03.02.2016

  • Общая характеристика нервной системы. Рефлекторная регуляция деятельности органов, систем и организма. Физиологические роли частных образований центральной нервной системы. Деятельность периферического соматического и вегетативного отдела нервной системы.

    курсовая работа [1,6 M], добавлен 26.08.2009

  • Нейробиологические концепции нервной системы. Составляющие нервной системы, характеристика их функций. Рефлекс - основная форма нервной деятельности. Понятие рефлекторной дуги. Особенности процессов возбуждения и торможения в центральной нервной системе.

    реферат [55,5 K], добавлен 13.07.2013

  • Характеристика эмбриогенеза нервной системы. Спинной мозг - расположение в позвоночном канале, внутреннее строение (серое и белое вещество), проводящие пути, топография сегментов. Строение и назначение твердой, паутинной и мягкой оболочки спинного мозга.

    презентация [1,0 M], добавлен 30.04.2015

  • Значение нервной системы в приспособлении организма к окружающей среде. Общая характеристика нервной ткани. Строение нейрона и их классификация по количеству отростков и по функциям. Черепно-мозговые нервы. Особенности внутреннего строения спинного мозга.

    шпаргалка [87,9 K], добавлен 23.11.2010

  • Особенности исследования мозга, его строение. Сущность стресса и механизмы центральной нервной системы. Понятие психики и ее значение. Общая характеристика психических свойств (темперамент, способности, мотивации и характер), сферы их проявления.

    контрольная работа [30,6 K], добавлен 14.03.2011

  • Нейроны как основа нервной системы, их основные функции: восприятие, хранение информации. Анализ деятельности нервной системы. Структура опорно-двигательного аппарата, характеристика функций легких. Значение ферментов в пищеварительной системе человека.

    контрольная работа [400,1 K], добавлен 06.06.2012

  • Паратирин как основной гормон паращитовидных желез, анализ эффектов. Характеристика механизмов регуляции обмена кальция в организме. Знакомство с гормонами поджелудочной железы: инсулин, глюкагон, соматостатин. Рассмотрение схемы головного мозга человека.

    презентация [1,2 M], добавлен 08.01.2014

  • Обмен веществ и энергии как основная функция организма, его основные фазы и протекающие процессы - ассимиляции и диссимиляции. Роль белков в организме, механизм их обмена. Обмен воды, витаминов, жиров, углеводов. Регуляция теплообразования и теплоотдачи.

    реферат [27,2 K], добавлен 08.08.2009

  • Общая физиология центральной нервной системы. Нервная система позвоночных. Рефлекторный тонус нервных центров. Значение процесса торможения. Принципы координации в деятельности центральной нервной системы. Физиологические принципы исследования почек.

    контрольная работа [26,4 K], добавлен 21.02.2009

  • Иерархический принцип управления функциями организма. Характеристика общего строения головного мозга человека. Особенности функций среднего мозга, его структура, роль в регуляции мышечного тонуса, осуществлении установочных и выпрямительных рефлексов.

    контрольная работа [16,8 K], добавлен 13.03.2009

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.