Сущность нормальной физиологии

Рефлекторный принцип деятельности центральной нервной системы. Основная роль спинного мозга в регуляции двигательных функций. Характеристика пищеварения в полости рта. Анализ обмена веществ и энергии в организме. Особенность мотивации и эмоций человека.

Рубрика Биология и естествознание
Вид курс лекций
Язык русский
Дата добавления 07.09.2014
Размер файла 1,7 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Гладкие мышцы обладают высокой чувствительностью к различным физиологически активным веществам: адреналину, норадреналину, АЦХ, гистамину и др.

ЛЕКЦИЯ 3. БИОЛОГИЧЕСКАЯ РЕГУЛЯЦИЯ. РЕФЛЕКТОРНЫЙ ПРИНЦИП ДЕЯТЕЛЬНОСТИ ЦНС

3.1 Биологическая регуляция и ее виды

Живой организм - открытая система, внутренние процессы которой постоянно уравновешиваются с внешними силами окружающей среды. В основе уравновешивания лежат процессы биологической регуляции или управления физиологическими функциями.

Управление в живых организмах представляет собой совокупность процессов, обеспечивающих необходимые режимы функционирования, достижение определенных полезных для организма результатов.

Контуры управления могут быть внитриорганными, внутрисистемными и внесистемными.

Управление осуществляется с использованием двух основных принципов.

1. Управление по рассогласованию предусматривает сравнение задаваемой и фактической величины на выходе системы. Примером такого управления является стимуляция образования глюкозы при уменьшении ее содержания в крови. Это уменьшение определяется клетками гипоталамуса, которые стимулируют выработку адренокортикотропного гормона в гипофизе. Последний усиливает образование глюкокортикоидов (кортизола) в надпочечниках. Кортизол стимулирует в печени образование глюкозы из других веществ, что приводит к восстановлению нормального содержания глюкозы в плазме крови.

2. Управление по возмущению предусматривает использование входного возмущающего стимула для выработки компенсирующего воздействия. Например, уменьшение парциального давления О2 в атмосферном воздухе при подъеме на высоту является возмущающим стимулом для системы дыхания. Увеличение частоты и глубины дыхания, скорости кровотока, количества эритроцитов в крови отражает процессы регуляции, направленные на восстановление исходных показателей содержания кислорода.

Способы управления в организме:

1. Запуск представляет собой процесс управления, вызывающий переход функции органа от состояния относительного покоя к деятельному состоянию или от активной деятельности к состоянию покоя (ЦНС инициирует фазные сокращения скелетной мускулатуры).

2. Коррекция позволяет управлять деятельностью органа, осуществляющего физиологическую функцию в автоматическом режиме (коррекция работы сердца центральной нервной системой посредством влияний, передаваемых по блуждающим и симпатическим нервам).

3. Координация предусматривает согласование работы нескольких органов или систем. Например, для осуществления прямохождения необходима координация работы мышц и центров, обеспечивающих перемещение нижних конечностей, смещение центра тяжести тела, изменение тонуса мышц.

Механизмы управления могут быть следующими:

1. Гуморальный механизм предусматривает изменение физиологической активности органов и систем под влиянием химических веществ, доставляемых через жидкие среды организма (кровь, цереброспинальная жидкость и др.). Так, под влиянием адреналина, выделяемого в кровь из надпочечников, изменяются частота и сила сердечных сокращений, тонус периферических сосудов и т.д. Гуморальный механизм древний и для него характерны относительно медленное распространение и диффузный характер управляющих воздействий, низкая надежность осуществления связи.

2. Нервный механизм предусматривает изменение физиологических функций под влиянием сигналов (ПД, которые объединяются в определенные паттерны - пространственно временные рисунки), передаваемых из ЦНС. Для него характерна высокая скорость распространения и точная передача воздействий, высокая надежность осуществления связи.

В естественных условиях нервный и гуморальный механизмы едины и, образуя нейрогуморальный механизм, реализуются в разнообразных комбинациях, наиболее полно обеспечивающих адекватное уравновешивание организма со средой обитания. Например, физиологически активные вещества, поступая в кровь, несут информацию в ЦНС об отклонении какой-либо функции. Под влиянием этой информации формируется поток управляющих нервных импульсов к эффекторам для коррекции отклонения.

Условием нормального функционирования живого организма является постоянство внутренней среды - гомеостаз. Основным механизмом поддержания гомеостаза является саморегуляция. Саморегуляция представляет собой такой вариант управления, при котором отклонение какой-либо физиологической функции внутренней среды от уровня, обеспечивающего нормальную жизнедеятельность, является причиной возвращения этой функции к исходному уровню.

Саморегуляция основана на использовании прямых и обратных связей.

Прямая связь предусматривает выработку управляющих воздействий на основании информации об отклонении константы или действии возмущающих факторов. Например, раздражение холодным воздухом терморецепторов кожи приводит к увеличению процессов теплопродукции.

Обратные связи заключаются в том, что выходной, регулируемый сигнал о состоянии объекта управления (константы или функции) передается на вход системы. Различают положительные и отрицательные обратные связи. Положительная обратная связь усиливает управляющее воздействие. Примером может служить увеличение скорости образования тромбина при появлении некоторого его количества на начальных этапах свертывания крови (но при отеке мозга эти связи играют негативную роль). Отрицательная обратная связь ослабляет управляющее воздействие, способствует возвращению измененного показателя к стационарному уровню. Например, информация о степени натяжения сухожилия скелетной мышцы, поступающая в центр управления этой мышцей, ослабляет степень возбуждения центра, чем предохраняет мышцу от развития избыточной силы сокращения. Отрицательные обратные связи повышают устойчивость биологической системы.

Представление о саморегуляции физиологических функций отражено в теории функциональных систем, разработанной академиком П. К. Анохиным. Функциональные системы (ФС) представляют собой саморегулирующийся комплекс центральных и периферических образований, обеспечивающий достижение полезных приспособительных результатов. Полезным для организма результатом может быть метаболический продукт, а может быть результат поведенческой деятельности удовлетворяющий основные метаболические, биологические потребности и т.п.

Рис. 2 Общая архитектура функциональной системы

I - афферентный синтез; I - обстановочная афферентация, 2 - пусковая афферентация, 3 - мотивация, 4 - память; II - принятие решения; III - акцептор результатов действия; IV - программа действия (эфферентный синтез): 5 - поведенческая деятельность; V - результат поведения; VI - параметры результата; 6. 9 - обратная афферентация; VII - метаболизм; VIII - показатель гомеостаза; 7 - гуморальные влияния; IX - рецепторы; 8 - нервные влияния. Сплошной линией сверху обозначены границы поведенческого акта.

В состав каждой ФС включаются различные органы и ткани, что определяется результатом, ради достижения которого создается ФС. Совпадение параметров реального результата и его модели означает удовлетворение исходной потребности организма. Деятельность ФС на этом заканчивается. При несовпадении параметров результата и свойств модели, возникает ориентировочно-исследовательская реакция. Она приводит к перестройке и новому запуску ФС до тех пор, пока не получен требуемый результат.

3.2 Нервная регуляция функций. Нейрон как структурно-функциональная единица ЦНС

Структурной и функциональной единицей нервной системы является нервная клетка - нейрон. Нейроны - специализированные клетки, способные принимать, обрабатывать, передавать, хранить и генерировать новую информацию. Нейронная концепция создана трудом многих ученых, прежде всего К. Гольджи и С. Рамон-и-Кахала. Сейчас известно, что число нейронов мозга человека приближается к 200 миллиардам. На одном нейроне может быть до 10 тысяч синапсов. Нейроны, организующие единую функцию, образуют так называемые популяции, ансамбли, колонки, ядра.

Функционально в нейроне выделяют следующие части: воспринимающую - дендриты, мембрана сомы нейрона; интегративную - сома с аксонным холмиком; передающую - аксонный холмик с аксоном.

Тело нейрона выполняет и трофическую функцию относительно своих отростков и их синапсов. Перерезка аксона или дендрита ведет к гибели отростков, лежащих дистальней перерезки. Сома обеспечивает также рост дендритов и аксона. Сома нейрона заключена в мембрану, обеспечивающую формирование и распространение электротонического (пассивного, физического) потенциала к аксонному холмику.

Дендриты - основное рецептивное поле нейрона. Мембрана дендрита способна реагировать на медиаторы, выделяемые аксонными окончаниями других клеток изменением электрического потенциала. Обычно нейрон имеет несколько ветвящихся дендритов на которых имеются специализированные контакты, так называемые шипики. За счет «шипиков» воспринимающая поверхность нейрона значительно возрастает. Проведение сигнала по дендритам в основном электротоническое. Но недавно в неокортексе обнаружены крупные пирамидные нейроны, чьи дендриты имеют триггерные зоны и способны генерировать ПД.

Аксон приспособлен для проведения ПД, несущих информацию, собранную дендритами, переработанную в нейроне и переданную аксону через аксонный холмик. Аксон имеет разветвленные окончания с синапсами. Кроме того, медиатор может выделяться из особого расширения аксона (варикозета) в межклеточное пространство и действует на рецепторы удаленных нейронов. Под его влиянием активность клеток-мишеней меняется плавно и поэтому такой медиатор называют модулятором.

По строению нейроны делят на три типа:

1. Униполярные. Истинно униполярные нейроны находятся только у моллюсков и в мезэнцефалическом ядре тройничного нерва млекопитающих. Другие униполярные нейроны называют псевдоуниполярными, на самом деле они имеют два отростка (один идет с периферии от рецепторов, другой - в структуры центральной нервной системы). Оба отростка сливаются вблизи тела клетки в единый отросток. Все эти клетки располагаются в сенсорных узлах: спинальных, тройничном и т. д. Они обеспечивают восприятие болевой, тактильной и другой сигнализации.

2. Биполярные нейроны имеют один аксон и один дендрит. Нейроны этого типа встречаются в основном в периферических частях зрительной (сетчатка), слуховой и обонятельной систем. Биполярные нейроны дендритом связаны с рецептором, аксоном - с нейроном следующего уровня организации соответствующей сенсорной системы.

3. Мультиполярные нейроны имеют несколько дендритов и один аксон. В настоящее время насчитывают до 60 различных вариантов строения мультиполярных нейронов, однако все они представляют разновидности веретенообразных, звездчатых и пирамидных клеток.

По медиаторной природе нейроны делят исходя из химической структуру выделяемых в окончаниях их аксонов веществ и на основе принципа Дейла: холинергические, пептидергические, дофаминергические и др.

По чувствительности к действию раздражителей нейроны делят на моно-, би-, полисенсорные.

Нервные клетки разных отделов нервной системы могут быть активными вне воздействия - фоновоактивные. Другие нейроны проявляют импульсную активность только в ответ на какое-либо раздражение или реагирующие только изменением мембранного потенциала - молчащие (более 95% нейронов неокортекса).

Функционально нейроны можно также разделить на три типа:

1. Афферентные - выполняют функцию получения и передачи информации в вышележащие структуры ЦНС. Как правило, афферентные нейроны имеют малый размер, но большую разветвленную сеть дендритных отростков (задние рога спинного мозга).

2. Интернейроны (вставочные) обрабатывают информацию, получаемую от афферентных нейронов, и передают ее на другие вставочные или на эфферентные нейроны. Вставочные нейроны, как правило, имеют аксоны, терминали которых заканчиваются на нейронах своего же центра. Вставочные нейроны могут быть возбуждающими или тормозящими.

3. Эфферентные - это нейроны, передающие информацию от нервного центра к исполнительным органам или другим центрам нервной системы. Например, эфферентные нейроны двигательной зоны коры большого мозга - пирамидные клетки, посылают импульсы к мотонейронам передних рогов спинного мозга, т. е. они являются эфферентными для этого отдела коры большого мозга. В свою очередь мотонейроны спинного мозга являются эфферентными для его передних рогов и посылают сигналы к мышцам. Основной особенностью эфферентных нейронов является наличие длинного аксона, обладающего большой скоростью проведения возбуждения.

Все эти три типа нейрона объединяются в нейронные цепи.

3.3 Рефлекс. Рефлекторная дуга. Нервные центры и их физиологические свойства

В основе нервного механизма управления организмом лежит рефлекс. Рефлексом называют ответную реакцию организма на изменения внутренней и внешней среды, осуществляемую при участии нервной системы.

Структурной основой рефлекса является рефлекторная дуга - последовательно соединенная цепочка нервных клеток, обеспечивающая осуществление реакции на раздражение. Рефлекторная дуга состоит из афферентного, центрального и эфферентного звеньев, связанных между собой синаптическими соединениями.

Афферентная часть дуги начинается рецепторами. Рецепторы - специализированные образования, воспринимающие определенные виды раздражений. Рецепторный потенциал возникает при раздражении рецептора как результат деполяризации и повышения проводимости участка его мембраны. Возникший в рецептивных участках мембраны рецепторный потенциал электротонически распространяется на аксонный холмик рецепторного нейрона, где возникает генераторный потенциал. Чем выше генераторный потенциал, тем выше частота разрядов ПД, распространяющихся к другим нейронам.

В зависимости от сложности структуры рефлекторной дуги различают моно- и полисинаптические рефлексы. В простейшем случае импульсы, поступающие в центральные нервные структуры по афферентным путям, переключаются непосредственно на эфферентную нервную клетку, т. е. в системе рефлекторной дуги имеется одно синаптическое соединение. Такая рефлекторная дуга называется моносинаптической (например, рефлекторная дуга сухожильного рефлекса в ответ на растяжение). При наличие в рефлекторной дуге двух и более синаптических переключений (т. е. три и более нейронов), ее называют полисинаптической.

Рис. 3 - Дуга спинномозгового рефлекса

А - двухнейронная рефлекторная дуга; Б - трехнейронная рефлекторная дуга; Р - реиепторный нейрон межпозвоночного ганглия; СМ - спинной мозг; I - мышца; 2 - кожный рецептор; 3 - афферентное нервное волокно; 4 - эфферентное нервное волокно.

Представление о рефлекторной реакции как о целесообразном ответе организма диктует необходимость дополнить рефлекторную дугу еще одним звеном - петлей обратной связи, призванной установить связь между реализованным результатом рефлекторной реакции и нервным центром, выдающим исполнительные команды (рецепторы конечности информируют о результате рефлекторной реакции). Обратная связь трансформирует открытую рефлекторную дугу в закрытую.

Рефлекторная деятельность организма во многом определяется общими свойствами нервных центров. Нервный центр - совокупность структур ЦНС, координированная деятельность которых обеспечивает регуляцию отдельных функций организма или определенный рефлекторный акт. На понятии нервного центра основано современное представление о динамической локализации функций - признается существование четко локализованных ядерных структур нервных центров и менее определенных рассеянных элементов анализаторных систем мозга.

Нервные центры имеют ряд общих свойств:

1. Иррадиация возбуждения. Значительное увеличение силы раздражителя приводит к расширению области вовлекаемых в процесс возбуждения центральных нейронов.

2. Суммация возбуждения. Процесс пространственной суммации афферентных потоков возбуждения обеспечивается наличием на мембране нервной клетки сотен и тысяч синаптических контактов, чьи потенциалы складываются. Процессы временной суммации обусловлены суммацией последовательных ВПСП на постсинаптической мембране.

3. Наличие синаптической задержки. Время рефлекторной реакции зависит в основном от двух факторов: скорости движения возбуждения по нервным проводникам и времени распространения возбуждения с одной клетки на другую через синапс. В нервных клетках высших животных и человека одна синаптическая задержка примерно равна 1 мс. Если учесть, что в реальных рефлекторных дугах имеются десятки последовательных синаптических контактов, становится понятной длительность большинства рефлекторных реакций - десятки миллисекунд.

4. Тонус, определяется тем, что в покое в отсутствие специальных внешних раздражений определенное количество нервных клеток находится в состоянии фоновой активности.

5. Пластичность - возможность нервного центра модифицировать картину осуществляемых рефлекторных реакций. Пластичность нервных центров тесно связана с изменением эффективности связей между нейронами.

6. Конвергенция. Нервные центры высших отделов мозга являются мощными коллекторами, собирающими разнородную афферентную информацию. Количественное соотношение периферических рецепторных и промежуточных центральных нейронов (10:1) предполагает значительную конвергенцию («сходимость») разномодальных сенсорных посылок на одни и те же центральные нейроны. Конвергенция нервных сигналов на уровне эфферентного звена рефлекторной дуги определяет физиологический механизм принципа «общего конечного пути» по Ч. Шерринггону.

7. Свойство доминанты. Доминантным называется временно господствующий в нервных центрах очаг (или доминантный центр) повышенной возбудимости в центральной нервной системе. По А. А. Ухтомскому, доминантный нервный очаг характеризуется такими свойствами, как повышенная возбудимость, стойкость и инертность возбуждения, способность к суммированию возбуждения. Принцип доминанты определяет формирование главенствующего нервного центра в соответствии с ведущими потребностями организма в конкретный момент времени.

В координационной деятельности ЦНС значительна роль взаимодействия рефлексов, которое проявляется в различных эффектах (в облегчении, и в угнетении возбуждения). Примером является реципрокная иннервация мышц-антагонистов. Известно, что сгибание или разгибание конечностей осуществляется благодаря согласованной работе двух функционально антагонистических мышц: сгибателей и разгибателей. Координация обеспечивается организацией антагонистических отношений между мотонейронами сгибателей и разгибателей. Реципрокные функциональные отношения складываются благодаря включению в дугу спинномозгового рефлекса дополнительного элемента - тормозного нейрона (клетка Реншоу).

Для взаимодействия рефлексов характерны также следующие феномены:

Феномен посттетанической потенциации. Раздражая стимулами редкой частоты афферентный нерв, можно получить некоторый рефлекс определенной интенсивности. Если затем этот нерв в течение некоторого времени подвергать высокочастотному ритмическому раздражению (300-400 стимулов в секунду), то повторное редкое ритмическое раздражение приведет к резкому усилению реакции.

Феномен окклюзии - если два нервных центра рефлекторных реакций имеют частично перекрываемые рецептивные поля, то при совместном раздражении обоих рецептивных полей реакция будет меньше, чем арифметическая сумма реакций при изолированном раздражении каждого из рецептивных полей (часть нервных элементов общие и уже задействованы одним из центров).

Феномен облегчения - при совместном раздражении рецептивных полей двух рефлексов можно наблюдать суммарную реакция выше суммы реакций при изолированном раздражении этих рецептивных полей. Это результат того, что часть общих для обоих рефлексов нейронов при изолированном раздражении оказывает подпороговый эффект для вызывания рефлекторных реакций. При совместном раздражении они суммируются и достигают пороговой силы, в результате конечная реакция оказывается больше суммы изолированных реакций.

3.4 Виды рефлексов и их физиологическое значение

Существуют различные классификации рефлексов.

По способу формирования различают безусловные рефлексы (передаются по наследству) и условные рефлексы (приобретаются на протяжении индивидуальной жизни организма).

По виду рецепторов: экстероцептивные рефлексы - рефлекторные реакции, инициируемые раздражением многочисленных экстерорецепторов (болевые, температурные, тактильные и т. д.);

интероцептивные рефлексы - рефлекторные реакции, запускаемые раздражением интероцепторов (хемо-, баро-, осморецепторов и т. д.);

проприоцептивные рефлексы - рефлекторные реакции, осуществляемые в ответ на раздражение проприорецепторов мышц, сухожилий, суставных поверхностей и т. д.

В зависимости от уровня активации части мозга дифференцируют спинномозговые, бульбарные, мезенцефальные, диэнцефальные, кортикальные рефлекторные реакции.

По биологическому назначению рефлексы делят на пищевые, оборонительные и т. д.

С учетом уровня интегративной деятельности организма выделяют шесть основных видов рефлексов:

1. Элементарные безусловные рефлексы, представлены простыми рефлекторными реакциями, осуществляемыми на уровне отдельных сегментов спинного мозга. Они имеют местное значение, вызываются локальным раздражением рецепторов данного сегмента тела и проявляются в виде локальных сегментарных сокращений поперечнополосатой мускулатуры.

2. Координационные безусловные рефлексы представляют собой согласованные акты локомоторной деятельности или комплексные реакции вегетативных функциональных объединений внутренних органов. Функциональное назначение - формирование на базе локальных элементарных безусловных рефлексов целостных, целенаправленных локомоторных актов или гомеостатических систем организма.

3. Интегративные безусловные рефлексы осуществляют сложные двигательные локомоторные акты организма в тесной связи с вегетативным обеспечением. Рефлекторные реакции этого типа инициируются такими биологически важными стимулами, как пищевые, болевые раздражители. Пример - ориентировочная реакция..

4. Сложнейшие безусловные рефлексы (инстинкты) представляют собой видовые стереотипы поведения, организующиеся на базе интегративных рефлексов по генетически заданной программе. В качестве запускающих стереотипные поведенческие реакции раздражений выступают знаковые стимулы (релизеры), имеющие отношение к питанию, защите, размножению и другим биологически важным потребностям организма (зевание, реакция на скрежет, оргазм).

Инстинктивные реакции отражают исторический опыт вида. В субъективной сфере человека сложнейшие безусловные рефлексы проявляются в виде влечений и бессознательных эмоций.

5. Элементарные условные рефлексы проявляются в реакциях, вызываемых ранее индифферентными раздражителями, приобретающими сигнальное значение в результате жизненного опыта или подкрепления их безусловными стимулами, имеющими биологическое значение. Они образуются в процессе индивидуальной жизни (основные навыки маленького ребенка).

6. Сложные формы высшей нервной деятельности представлены психическими реакциями, возникающими на основе интеграции элементарных условных рефлексов и аналитико-синтетических механизмов абстрагирования (рассудочное мышление, функции второй сигнальной системы).

ЛЕКЦИЯ 4. СИНАПСЫ ЦЕНТРАЛЬНОЙ НЕРВНОЙ СИСТЕМЫ. ВОЗБУЖДЕНИЕ И ТОРМОЖЕНИЕ В ЦНС

4.1 Синапсы ЦНС, их строение и механизмы передачи информации. Медиаторы и модуляторы

Сейчас выявлено более 20 видов различных нейромедиаторов. Все они действуют достаточно быстро: эффект их действия на нейрон-мишень наблюдается через 1 мс, продолжительность воздействия - от 100 мс до 1 с. Медиаторы из пузырьков (в объеме т.н. называемых квантов) выделяются в межклеточное пространство в ответ на ПД. Один нейрон выделяет во всех своих аксонных окончаниях один и тот же медиатор, однако могут выделяться и сопутствующие ему медиаторы. Медиаторы могут быть по химической природе аминокислотами, моноаминами, полипептидами.

Медиаторы могут быть и возбуждающие, и тормозящие, но характер их действия прежде всего зависит от соответствующего синаптического рецептора. Сами рецепторы могут быть ионотропные (прямо объединены с ионным каналом) и метаботропные, связанные с G-белками, которые через внутриклеточные вторичные посредники (цАМФ и т.п.) влияют на ионные каналы. Рецепторы могут располагаться на постсинаптической и пресинаптической части нейрона-мишени, а также на теле самой клетки, выбрасывающей медиатор (ауторецепторы).

Некоторые медиаторы могут распространяться от постсинаптической клетки к пресинаптической (NO - оксид азота), обеспечивая обратную связь между нейронами и модифицируя синаптическую передачу.

Медиатор может выделяться не только в синаптическую щель, но и из особого расширения аксона (варикозета) в межклеточное пространство и внесинаптически действовать на рецепторы удаленных нейронов. Под его влиянием активность клеток-мишеней и их синапсов меняется плавно и поэтому такой медиатор называют модулятором. Модуляторы действуют с большей задержкой (1 с и более), но действие их может длиться несколько часов.

Многие модуляторы являются одновременно и медиаторами, но типичными модуляторами являются эндорфины - модуляторы-нейропептиды (эндогенные опиаты), действующие на мозг подобно морфию. Они снимают стресс и боль, обеспечивают феномен «второго дыхания» у спортсменов, вызывают состояние эйфории. Выделяются в гипоталамусе при иглоукалывании, психотерапии, действии микроволн (КВЧ-терапия), поцелуях и других сексуальных контактах, то есть при всех событиях в жизни человека, вызывающих у него положительные эмоции. Именно поэтому наркоманы употребляют производные опия, которые связываются с рецепторами в нейронах.

4.2 Возбуждающие и тормозящие синапсы и их нейромедиаторы. Пресинаптическое торможение

Глутамат и аспартат. Функцию медиаторов выполняют некоторые аминокислоты. Важнейшие представители этой группы медиаторов - глутаминовая кислота (глутамат) и близка к ней аспарагиновая кислота (аспартат). Они высвобождаются из окончаний некоторых интернейронов и оказывают кратковременное возбуждающее действие (75% возбуждения в головном мозгу). Рецепторы глутамата (NMDA) способны к так называемой долговременной потенциации, которая является основой памяти.

Гамма-аминомасляная кислота (ГАМК). У млекопитающих ГАМК содержится почти исключительно в головном мозге. Большая часть таких нейронов образует лишь внутренние связи в таких отделах, как кора большого мозга, гиппокамп, мозжечок. Рецепторы ГАМК делятся на три вида: ГАМКа, ГАМКв, ГАМКс (а и с - ионотропные, в - метаботропные). Основной эффект ГАМК - это постсинатическое торможение, обусловленное повышением хлоридной проводимости (развивается ТПСП). Вещества, блокирующие рецепторы ГАМК (например, пикротоксин и бикукуллин), вызывают судороги; это навело на мысль, что решающую роль в развитии эпилепсии играет нарушение функции ГАМК-эргических интернейронов коры мозга. Рецепторы ГАМК исключительно сложные - полисайтные. На них действуют как агонисты бензодиазепины и барбитураты.

Пресинаптическое торможение локализуется в пресинаптических терминалях перед синаптической бляшкой. На пресинаптических терминалях располагаются окончания аксонов других нервных клеток, образующих здесь аксо-аксональные синапсы. ГАМК открывает ионные каналы для Cl-, и гиперполяризуют или деполяризуют мембрану терминалей (зависит от баланса ионов Cl- внутри и вне клетки). Это обусловливает частичную или полную блокаду проведения по нервным волокнам возбуждающих импульсов, идущих к нервным окончаниям.

Глицин обнаружен главным образом в стволе головного мозга и спинном мозге. Полагают, что в спинном мозге он обусловливает тормозные влияния интернейронов (клеток Реншоу) на мотонейроны. Однако в головном мозгу действует как активирующий медиатор и модулирует NMDA-рецепторы глютамата.

4.3 Медиаторы моноамины

Ацетилхолин (АЦХ) встречается в лимбической системе и стриатуме. АЦХ может действовать либо на никотиновые (ионотропные, возбуждение быстрое, но нестойкое), либо на мускариновые рецепторы (метаботропные, возбуждение возникает медленнее, но сохраняется дольше). АЦХ-нейроны лежат в конечном мозгу, особенно их много в базальном ядре Мейнерта. Дегенерация этих клеток приводит к ускоренному психическому старению. Причина - накопление белка-амилоида на поверхности АЦХ-нейронов.

Ущерб - около 100 млрд. долларов. Расходы в мире на исследования и лечение - около 10 млрд. долларов.

Дофаминергическая (ДА-) система головного мозга представлена телами ДА-нейронов в области черной субстанции среднего мозга, разветвлениями их аксонов и рецепторами дофамина (ДА). ДА-нейроны, как и другие аминергические клетки отличаются исключительно разветвленными аксонами и обилием разнообразных синаптических терминалей. Так, проецируясь в стриатум, ДА-нейрон способен образовывать до одного миллиона синаптических контактов. Рост и ветвление ДА аксонов продолжается вплоть до достижения человеком взрослого возраста. Помимо классических синапсов ДА-клетки образуют варикозеты, что позволяет им оказывать модулирующее действие сразу на большое количество нейронов. Основными мишенями проекций ДА-нейронов являются неостриатум и различные отделы неокортекса.

На сегодняшний день описаны пять типов рецепторов ДА (Д1-Д5), обладающих значительным генетическим полиморфизмом. Рецепторы ДА являются метаботропными - они не связаны непосредственно с ионными каналами, а ассоциированы с регуляторными G-белками, находящимися на внутренней стороне постсинаптической мембраны. Связывание ДА с рецептором побуждает G-белки активировать или тормозить фермент аденилатциклазу, которая в свою очередь управляет синтезом вторичного мессенджера - цАМФ. цАМФ действует на многие процессы в клетке, в том числе на работу натрий-калиевой АТФ-азы. Действие ДА на Д1- и Д5-рецепторы за счет повышения внутриклеточной концентрации цАМФ и активации протеинкиназы А в основном приводит к развитию в нейронах-мишенях медленного возбуждения. Второе семейство представлено Д2- Д3-Д4-рецепторами. Эти рецепторы отрицательно сопряжены с аденилатциклазой и угнетают синтез цАМФ. Активация Д2- Д3-Д4-рецепторов основном приводит к развитию гиперполяризации клеток мишеней за счет увеличения проводимости для ионов калия. В целом воздействие ДА на нейроны уникально в том плане, что оно обеспечивает увеличение соотношения сигнал/шум в нервных клетках за счет подавления их фоновой активности, без снижения вызванных реакций.

Предполагают, что ДА-нейроны играют важную роль в мозговой системе вознаграждения. ДА-систему расценивают как детектор благоприятности среды: они активируются событиями, которые лучше, чем ожидаемые; не реагируют - при совпадении с ожиданием; тормозятся - если события хуже, чем ожидалось. Если вслед за активацией корковостриатного синапса, происходит выброс ДА из варикозного расширения, то проведение в синапсе облегчается. Таким образом, ДА-система контролирует корково-стриато-таламо-корковые цепи в процессе формирования целенаправленного поведения.

ДА играет ключевую роль в системе так называемого «приближающего поведения». Деятельность системы приближающего поведения лежит в основе состояний приятного предвосхищения, надежды и дает основной вклад в генерацию положительных эмоций.

ДА-система связана с организацией движений и когнитивными процессами. При избыточной активности ДА-системы у человека развивается шизофрения. Считают, что гиперфункция ДА-системы может приводить к чрезмерному усилению сигнал/шум в нейронных цепях Генетическая предрасположенность к шизофрении обусловлена индивидуальными особенностями в наборе изоформ рецепторов Д3 и, возможно, Д4, что приводит к их гиперчувствительности. Предполагается, что развитие шизофрении может быть также связано с нарушениями баланса активности ДА- и глутаминергической систем. Имеются многочисленные данные о субоптимальной активности ДА-системы при эндогенной депрессии.

В последнее время К. Блумом и коллегами (Blum et al., 2000) высказывается предположение, что определенные генетически предопределенные варианты рецепторов ДА-системы могут лежать в основе «синдрома дефицита подкрепления». Синдром проявляется при сочетании ряда наследуемых черт с неблагоприятными воздействиями среды (ранние стрессы, родительский алкоголизм и т.д.). Главной особенностью является пониженная активность ДА-системы. Синдром приводит к повышенному риску возникновения импульсивных и компульсивных расстройств: алкогольной, никотиновой, кокаиновой, героиновой и иных зависимостей, аутизма, насильственного и асоциального поведения, СДВГ.

Норадренергическая (НА-) система головного мозга берет начало главным образом в голубом пятне (ГП). ГП расположено билатерально на границе между мостом и средним мозгом. В ядре у человека находится очень небольшое число нервных клеток - до 50.000 (в расчете на одну - левую или правую сторону мозга). ГП образует настолько широкие эфферентные проекции, что фактически иннервирует большее количество мозговых областей, чем любое иное ядро ЦНС. НА-волокна входят во фронтальный регион коры и затем образуют «паутину» волокон, пронизывающую с промежутками в 30-40 мкм на уровне III-IV слоев все области коры в рострокаудальном направлении. Имеются многочисленные варикозные расширения по ходу волокон, диффузно выделяющие НА во внеклеточное пространство коры.

Во время медленного сна активность НА-клеток снижается и полностью исчезает в стадии парадоксального сна. Выдвинуто предположение, что одной из функций парадоксального сна как раз и является снижение активности НА-клеток, что приводит к восстановлению чувствительности рецепторов НА головного мозга.

НА вызывает в клетках-мишенях как возбудительные, так и тормозные эффекты. Характер воздействия на конкретную клетку определяется концентрацией медиатора, наличием и соотношением типов рецепторов, с которыми связывается НА. В ЦНС это метаботропные б1-, б2-, в1- и в2-адренорецепторы. Регуляция адренорецепторами ионных каналов, как и у рецепторов ДА, опосредована G-белками и вторичными внутриклеточными посредниками. Считают, что в центральных нервных сетях активация б1-рецепторов приводит к возбудительным эффектам. Что касается эффектов активации б2-рецепторов, то они в общем тормозные благодаря возрастанию калиевой проводимости в клетках-мишенях. Считают, что в1-рецепторы могут опосредовать тормозные, а в2-рецепторы - возбудительные эффекты.

При активации ГП наблюдается поведенческое возбуждение, что связано с повышением эффективности воздействия внутренних и внешних стимулов. В неокортексе усиливаются как возбудительные ответы, связанные с активацией глутаматергических входов (через б1-адренорецепторы), так и тормозные. Афферентный приток может становиться более эффективным благодаря большему подавлению фоновой, чем вызванной активности клеток-мишеней. В результате этого реакции нейронов по отношению к фону усиливаются, т.е. увеличивается соотношение «сигнал-шум» клетки

Стимуляция ГП электрическим током у кошек вызывает тревогу и страх.

Обнаружена тесная связь между активностью нейронов ГП обезьян, с одной стороны, и уровнем исполнения оперантной задачи, отражающим внимание животного, с другой. Взаимоотношения между ними напоминают классическую кривую Йеркса-Додсона Низкий активности не обеспечивает выполнения задач, очевидно в связи с пониженным уровнем внимания и arousal. Средний уровень активности и хорошо выраженные фазные реакции НА-клеток лежат в основе состояния фокусированного внимания и оптимального исполнения поведенческой задачи.

Рис. 4 - Инвертированная U-образная зависимость между тонической активностью норадренергических клеток голубого пятна и уровнем выполнения поведенческой задачи, требующей выделения целевого стимула (по Aston-Jones, 2000).

Высокий уровень тонической активности сочетается со слабой выраженностью фазических реакций. Такая активность лежит в основе лабильного внимания и частых ошибок.

Хроническая гиперактивность НА-системы может приводить к развитию некоторых симптомов маниакально-депрессивных расстройств, включая приступы паники, импульсивность и бессонницу (для лечения применяют анксиолитики). В то же время, недостаточная активность НА-клеток является вероятной причиной депрессии, развивающейся вслед за стрессом, при переходе его в дистресс.

Роль НА-системы головного мозга в регуляции внимания и ответоспособности указывает на ее возможную вовлеченность в развитие синдрома дефицита внимания с гиперактивностью (СДВГ). СДВГ может быть связан с чрезмерной тонической активностью НА-нейронов ГП. Результатом является чрезмерная лабильность внимания и неспособность к его фокусированию, гиперактивность. Наоборот, некоторые типы аутизма могут быть связаны с чрезмерной выраженностью фазических ответов. Такая активность может продуцировать чрезмерно фиксированный вид взаимодействия, когда поведение становится «застревающим» на внутренних драйвах и неспособным к изменению при изменении ситуации (Aston-Jones et al., 2000).

Серотонинергическая (СТ-) система образована скоплениями нейронов, в пределах ядер шва (ЯШ). СТ-система отличается высокой степенью разветвленности. Вся неокортикальная мантия пронизана тонкими, извилистыми СТ-волокнами с варикозными расширениями.

В ЦНС в настоящее время выделяют по крайней мере семь различных типов рецепторов СТ (5-гидропситриптамина) или, как их чаще называют, 5-НТ-рецепторов с 15 подтипами. Большинство 5-НТ-рецепторов являются метаботропными и только 5-НТ3-рецепторы относятся к ионотропным. 5-НТ1-рецепторы оказывают преимущественно тормозящее действие на клетки-мишени, другие типы рецепторов - преимущественно возбуждающее, быстрое у 5-НТ3-рецепторов и более медленное, у остальных.

СТ, в противоположность ДА и НА, в сенсорных и ассоциативных регионах мозга ослабляет ответы нейронов, уменьшая соотношение сигнал/шум в процессах переработки информации. В то же время он преимущественно усиливает реакции нейронов в структурах мозга связанных с моторными функциями (Jacobs, Fornal, 1995; Саченко, Хоревин, 2001).

При недостатке СТ возникают тревожность, депрессивные состояния, сопровождающиеся мигренью и вегето-сосудистой дистонией. Количество СТ резко падает зимой (сезонная депрессия), на обмен его влияет и питание (синтезируется из триптофана). Длительное воздействие стресса, с переходом в дистресс, приводит к истощению СТ-передачи, которое сопровождается психическими нарушениями, выражающимися не только в усилении чувства тревоги, но и в агрессивности и попытках суицида. Пациенты с депрессиями обычно демонстрируют компульсивные действия, например, повторяющиеся стереотипные моторные акты. Вероятно такое поведение может рассматриваться как своего рода самолечение, т.к. подобная двигательная активность активирует СТ-систему и стимулирует повышенное выделение СТ (Jacobs, Fornal,1995). Подобный эффект вызывают и другие движения (ходьба, жевание резинки).

Гистаминергические нейроны лежат в задних отделах гипоталамуса. Их функция окончательно не выяснена, но считается, что они учавствуют в процессах мотивации и полового поведения, контролируют выделение гормонов.

Исходя из понимания роли моноаминов, применяют соответствующие антидепрессанты - ингибиторы обратного всасывания ДА, НА и СТ (амитриптилин) или СТ (флуоксетин, прозак, сертралин). Индивидуальные особенности аминергических систем лежат в основе формирования темперамента человека.

4.4 Суммация возбуждения и торможения нейронами ЦНС

Нейроны интегрируют возбуждающие и тормозные влияния. Выходной сигнал определяется следующими механизмами:

1. Алгебраическая суммация ВПСП и ТПСП.

2. Взаимное расположение возбуждающих и тормозных синапсов.

3. Эффективность синапсов.

ЛЕКЦИЯ 5. РОЛЬ СПИННОГО МОЗГА В РЕГУЛЯЦИИ ДВИГАТЕЛЬНЫХ ФУНКЦИЙ

5.1 Роль различных уровней ЦНС в регуляции двигательных функций

Рис. 5

5.2 Структурно-функциональная организация спинного мозга

Характерной чертой организации спинного мозга является периодичность его структуры в форме сегментов, имеющих входы в виде задних корешков, клеточную массу нейронов (серое вещество) и выходы в виде передних корешков.

Спинной мозг человека имеет 31-33 сегмента: 8 шейных, 12 грудных, 5 поясничных, 5 крестцовых , 1-3 копчиковых. Морфологических границ между сегментами спинного мозга не существует, поэтому деление на сегменты является функциональным и определяется зоной распределения в нем волокон заднего корешка и зоной клеток, которые образуют выход передних корешков. Каждый сегмент через свои корешки иннервирует три метамера тела и получает информацию также от трех метамеров тела. В итоге перекрытия каждый метамер тела иннервируется тремя сегментами и передает сигналы в три сегмента спинного мозга.

Задние корешки спинного мозга являются афферентными, чувствительными, центростремительными, а передние - эфферентными, двигательными, центробежными (закон Белла-Мажанди). Афферентные входы в спинной мозг организованы аксонами спинальных ганглиев, лежащих вне спинного мозга, и аксонами экстра- и интрамуральных ганглиев симпатического и парасимпатического отделов автономной нервной системы.

Афферентные входы спинного мозга образованы:

1. Чувствительными волокнами, идущими от мышечных рецепторов, рецепторов сухожилий, надкостницы, оболочек суставов (проприоцептивная чувствительность).

2. Путями от кожных рецепторов и представляет (кожная рецептирующую систему).

3. Входами от висцеральных органов (висцеро-рецептивная система).

Эфферентные (двигательные) нейроны расположены в передних рогах спинного мозга, и их волокна иннервируют всю скелетную мускулатуру.

Нейроны спинного мозга образуют его серое вещество в виде симметрично расположенных двух передних и двух задних рогов в шейном, поясничном и крестцовом отделах. В грудном отделе спинной мозг имеет еще и боковые рога.

Задние рога выполняют главным образом сенсорные функции и содержат нейроны, передающие сигналы в вышележащие центры, в симметричные структуры противоположной стороны либо к передним рогам спинного мозга.

В передних рогах находятся нейроны, дающие свои аксоны к мышцам. Все нисходящие пути центральной нервной системы, вызывающие двигательные реакции, заканчиваются на нейронах передних рогов. В связи с этим Шеррингтон назвал их «общим конечным путем».

Спинной мозг человека содержит около 13 млн нейронов, из них 3% - мотонейроны, а 97% - вставочные. Функционально нейроны спинного мозга можно разделить на 4 основные группы:

мотонейроны, или двигательные, - клетки передних рогов, аксоны которых образуют передние корешки;

интернейроны - нейроны, получающие информацию от спинальных ганглиев и располагающиеся в задних рогах. Эти нейроны реагируют на болевые, температурные, тактильные, проприоцептивные раздражения;

симпатические, парасимпатические нейроны расположены преимущественно в боковых рогах. Аксоны этих нейронов выходят из спинного мозга в составе передних корешков;

4) ассоциативные клетки - нейроны собственного аппарата спинного мозга, устанавливающие связи внутри и между сегментами.

Мотонейроны. Аксон мотонейрона своими терминалами иннервирует сотни мышечных волокон, образуя мотонейронную единицу. Несколько мотонейронов могут иннервировать одну мышцу, в этом случае они образуют так называемый мотонейронный пул. Возбудимость мотонейронов одного пула различна, поэтому при разной интенсивности раздражения в сокращение вовлекается разное количество волокон одной мышцы. При оптимальной силе раздражения сокращаются все волокна данной мышцы; в этом случае развивается максимальное сокращение мышцы.

Мотонейроны спинного мозга функционально делят на следующие группы.

1. б-Мотонейроны образуют прямые связи с чувствительными путями, идущими от мышечных веретен, имеют до 20 000 синапсов на своих дендритах и характеризуются низкой частотой импульсации (10-20 в секунду),

2. г-Мотонейроны, иннервирующие мышечные волокна веретена, получают информацию о его состоянии через промежуточные нейроны. Эти нейроны обладают высокой частотой импульсации (до 200 в секунду).

Интернейроны. Эти промежуточные нейроны, генерирующие импульсы с частотой до 1000 в секунду. Функция интернейронов заключается в организации связей между структурами спинного мозга и обеспечении влияния восходящих и нисходящих путей на клетки отдельных сегментов спинного мозга.

Важнейшую роль играют тормозные интернейроны. От мотонейронов спинного мозга отходят коллатерали к интернейронам (клетки Реншоу), аксоны которых в свою очередь образуют тормозные синапсы на этих мотонейронах. Это типичный пример торможения по принципу отрицательной обратной связи, поскольку интернейроны тормозят те клетки, которые вызвали их возбуждение. Очевидно, торможение Реншоу служит для предотвращения неконтролируемых колебаний активности мотонейронов. Стрихнин блокирует глицинергические клетки Реншоу.

5.3 Проводниковые функции спинного мозга

Белое вещество спинного мозга состоит из миелиновых волокон, которые собраны в пучки. Эти волокна могут быть короткими (межсегментарные) и длинными - соединяющими разные отделы головного мозга со спинным и наоборот. Короткие волокна (их называют ассоциативными) связывают нейроны разных сегментов или симметричные нейроны противоположных сторон спинного мозга.

Длинные волокна (их называют проекционными) делятся на восходящие, идущие к головному мозгу, и нисходящие - идущие от головного мозга к спинному. Эти волокна образуют проводящие пути спинного мозга.

Пучки аксонов образуют вокруг серого вещества так называемые канатики: передние - расположенные кнутри от передних рогов, задние - расположенные между задними рогами серого вещества, и боковые - расположенные на латеральной стороне спинного мозга между передними и задними корешками.

Ассоциативные, или проприоспинальные, пути связывают между собой нейроны одного или разных сегментов спинного мозга. Эти связи выполняют ассоциативную функцию, которая заключается в координации позы, тонуса мышц, движений разных метамеров туловища. К таким путям относятся также комиссуральные волокна, соединяющие функционально однородные симметричные и несимметричные участки спинного мозга.

Нисходящие пути связывают отделы головного мозга с моторными или вегетативными эфферентными нейронами. Сюда относятся следующие пути:

1. передний и латеральный корково-спинномозговой (от пирамидных нейронов коры, обеспечивают регуляцию произвольных движений). Прямой пучок спускается до своего сегмента и там переходит на противоположную сторону. Поэтому, все пирамидные пути являются перекрещенными.

2. тектоспинальный, участвует в осуществлении зрительных и слуховых рефлексов четверохолмия.

3. руброспинальный, участвует в управлении мышечным тонусом.

4. вестибулоспинальный, начинается от нейронов ядра Дейтерса, лежащего в продолговатом мозге. Обеспечивает тонус мускулатуры, согласованность движений, равновесие.

5. ретикулоспинальный пути, идет от ретикулярной формации ствола мозга, регулирует тонус мускулатуры.

Конечным пунктом всех этих путей являются мотонейроны передних рогов. У человека пирамидный путь оканчивается непосредственно на мотонейронах, а другие пути оканчиваются преимущественно на промежуточных нейронах. Пересечение пирамидального пути вызывает ниже перерезки гипертонус мышц (мотонейроны спинного мозга освобождаются от тормозного влияния пирамидных клеток коры) и, как следствие, к спастическому параличу.

Спиноцеребральные восходящие пути соединяют сегменты спинного мозга со структурами головного мозга. Их функция заключается в передаче информации в мозг об экстеро-, интеро- и проприорецептивных раздражениях. Эти пути представлены системами:

1. Проприоцептивный путь (тонкий и клиновидный пучки) начинается от рецепторов глубокой чувствительности мышц сухожилий, надкостницы, оболочек суставов. От спинального ганглия аксоны идут в задние корешки спинного мозга, в белое вещество задних канатиков, поднимаются в тонкое и клиновидные ядра продолговатого мозга. Далее путь идет в латеральные ядра таламуса противоположного полушария большого мозга. От таламуса путь поднимается к нейронам соматосенсорной области коры. Волокна этих трактов отдают коллатерали в каждом сегменте спинного мозга, что создает возможность коррекции позы всего туловища. Скорость проведения возбуждения по волокнам данного тракта достигает 60-100 м/с.

2. Спинно-таламический путь - основной путь кожной чувствительности. Сигналы идут в спинальный ганглий, далее через задний корешок к заднему рогу спинного мозга. Чувствительные нейроны задних рогов посылают аксоны на противоположную сторону спинного мозга и поднимаются по боковому канатику к таламусу; скорость проведения возбуждения по ним 1-30 м/с, отсюда - в сенсорную область коры большого мозга.

3. Спинно-мозжечковые пути лежат в боковых канатиках спинного мозга и представлены неперекрещивающимися передним, спинно-мозжечковым путем (пучок Говерса) и дважды перекрещивающимся задним спинно-мозжечковым путем (пучок Флексига). Следовательно, все спинно-мозжечковые пути начинаются на левой стороне тела и заканчиваются в левой доле мозжечка; точно также и правая доля мозжечка получает информацию только со своей стороны тела. Эта информация идет от сухожильных рецепторов Гольджи, проприорецепторов, рецепторов давления, прикосновения. Скорость проведения возбуждения по этим трактам достигает 110-120 м/с.

При пересечении чувствительных путей полностью утрачивается мышечная, суставная, болевая и другая чувствительность ниже места перерезки спинного мозга.

5.4 Рефлексы спинного мозга

Функциональное разнообразие нейронов спинного мозга, а также многочисленных прямых и обратных, сегментарных, межсегментарных связей и связей со структурами головного мозга - все это создает условия для рефлекторной деятельности спинного мозга с участием как собственных структур, так и головного мозга. Собственная рефлекторная деятельность спинного мозга осуществляется сегментарными рефлекторными дугами. Сегментарная рефлекторная дуга состоит из рецептивного поля, из которого импульсация по чувствительному волокну нейрона спинального ганглия, а затем по аксону этого же нейрона через задний корешок входит в спинной мозг, далее аксон может идти прямо к мотонейрону переднего рога, аксон которого подходит к мышце.

Рассмотрим некоторые рефлексы спинного мозга.

Миотатические рефлексы - рефлексы на растяжение мышцы. Быстрое растяжение мышцы, всего на несколько миллиметров механическим ударом по ее сухожилию приводит к сокращению всей мышцы и двигательной реакции. Например, легкий удар по сухожилию надколенной чашечки вызывает сокращение мышц бедра и разгибание голени. Дуга этого рефлекса следующая: мышечные рецепторы четырехглавой мышцы бедра - спинальный ганглий - задние корешки - задние рога III поясничного сегмента - мотонейроны передних рогов того же сегмента - экстрафузальные волокна четырехглавой мышцы бедра. Рефлексы на растяжение свойственны всем мышцам, но у мышц-разгибателей, они хорошо выражены и легко вызываются.

...

Подобные документы

  • Функции нервной системы в организме человека. Клеточное строение нервной системы. Виды нервных клеток (функциональная классификация). Рефлекторный принцип работы нервной системы. Отделы центральной нервной системы. Учение о высшей нервной деятельности.

    реферат [1,6 M], добавлен 15.02.2011

  • Ознакомление с принципами организации деятельности двигательных систем мозга. Исследование роли спинного мозга, мозжечка, таламуса, базальных ганглий и коры больших полушарий в регуляции фазной (динамической) и позной (статической) активности мышц.

    реферат [29,7 K], добавлен 10.07.2011

  • Основные анатомические закономерности в деятельности центральной нервной системы. Распространение нервных импульсов. Анатомия спинного и головного мозгов. Характеристика проводящих путей спинного мозга. Клеточные элементы нервной ткани, типы нейронов.

    презентация [7,6 M], добавлен 17.12.2015

  • Анализ этапов развития нервной системы в онтогенезе. Клеточные элементы нервной ткани. Описание схемы строения рефлекторной дуги. Изучение особенностей образования серого и белого веществ нервной системы. Характеристика проводящих путей спинного мозга.

    контрольная работа [41,4 K], добавлен 10.11.2013

  • Роль Павлова в создании учения о высшей нервной деятельности, объяснении высших функций мозга животных и человека. Основные периоды научной деятельности ученого: исследования в областях кровообращения, пищеварения, физиологии высшей нервной деятельности.

    реферат [25,7 K], добавлен 21.04.2010

  • Изучение рефлекторной теории и её принципов: материалистического детерминизма, структурности, анализа и синтеза. Характеристика понятия рефлекса, его значения и роли в организме. Рефлекторный принцип построения нервной системы. Принцип обратной связи.

    реферат [16,0 K], добавлен 19.02.2011

  • Анатомические характеристики ствола мозга, который является продолжением спинного мозга в полости черепа и в своем строении сохраняет ряд характерных для него особенностей. Черепно-мозговые ядра моста. Строение стволовых двигательных проводящих путей.

    реферат [6,1 M], добавлен 27.10.2010

  • Строение и структура головного мозга. Мозговой мост и мозжечок. Промежуточный мозг как основа сенсорных, двигательных и вегетативных реакций. Функции головного мозга. Отличительные черты и задачи спинного мозга как части центральной нервной системы.

    реферат [27,1 K], добавлен 05.07.2013

  • Общее понятие и особенности функций высшей нервной деятельности человека. История открытия механизмов условных рефлексов и изучение их физиологии И.П. Павловым. Исследование высших функций мозга в трудах философов античности Гиппократа и Декарта.

    реферат [20,1 K], добавлен 17.04.2011

  • Строение нервной системы человека, роль головного и спинного мозга в восприятии сенсорной информации и рефлекторной деятельности. Структура серого и белого вещества, представляющего собой скопление тел нейронов и их отростков - дендритов и аксонов.

    реферат [565,6 K], добавлен 03.02.2016

  • Общая характеристика нервной системы. Рефлекторная регуляция деятельности органов, систем и организма. Физиологические роли частных образований центральной нервной системы. Деятельность периферического соматического и вегетативного отдела нервной системы.

    курсовая работа [1,6 M], добавлен 26.08.2009

  • Нейробиологические концепции нервной системы. Составляющие нервной системы, характеристика их функций. Рефлекс - основная форма нервной деятельности. Понятие рефлекторной дуги. Особенности процессов возбуждения и торможения в центральной нервной системе.

    реферат [55,5 K], добавлен 13.07.2013

  • Характеристика эмбриогенеза нервной системы. Спинной мозг - расположение в позвоночном канале, внутреннее строение (серое и белое вещество), проводящие пути, топография сегментов. Строение и назначение твердой, паутинной и мягкой оболочки спинного мозга.

    презентация [1,0 M], добавлен 30.04.2015

  • Значение нервной системы в приспособлении организма к окружающей среде. Общая характеристика нервной ткани. Строение нейрона и их классификация по количеству отростков и по функциям. Черепно-мозговые нервы. Особенности внутреннего строения спинного мозга.

    шпаргалка [87,9 K], добавлен 23.11.2010

  • Особенности исследования мозга, его строение. Сущность стресса и механизмы центральной нервной системы. Понятие психики и ее значение. Общая характеристика психических свойств (темперамент, способности, мотивации и характер), сферы их проявления.

    контрольная работа [30,6 K], добавлен 14.03.2011

  • Нейроны как основа нервной системы, их основные функции: восприятие, хранение информации. Анализ деятельности нервной системы. Структура опорно-двигательного аппарата, характеристика функций легких. Значение ферментов в пищеварительной системе человека.

    контрольная работа [400,1 K], добавлен 06.06.2012

  • Паратирин как основной гормон паращитовидных желез, анализ эффектов. Характеристика механизмов регуляции обмена кальция в организме. Знакомство с гормонами поджелудочной железы: инсулин, глюкагон, соматостатин. Рассмотрение схемы головного мозга человека.

    презентация [1,2 M], добавлен 08.01.2014

  • Обмен веществ и энергии как основная функция организма, его основные фазы и протекающие процессы - ассимиляции и диссимиляции. Роль белков в организме, механизм их обмена. Обмен воды, витаминов, жиров, углеводов. Регуляция теплообразования и теплоотдачи.

    реферат [27,2 K], добавлен 08.08.2009

  • Общая физиология центральной нервной системы. Нервная система позвоночных. Рефлекторный тонус нервных центров. Значение процесса торможения. Принципы координации в деятельности центральной нервной системы. Физиологические принципы исследования почек.

    контрольная работа [26,4 K], добавлен 21.02.2009

  • Иерархический принцип управления функциями организма. Характеристика общего строения головного мозга человека. Особенности функций среднего мозга, его структура, роль в регуляции мышечного тонуса, осуществлении установочных и выпрямительных рефлексов.

    контрольная работа [16,8 K], добавлен 13.03.2009

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.