Строительные материалы

Связь состава и строения материалов с их свойствами. Каменные материалы и древесина. Вяжущие вещества воздушного и гидравлического твердения. Железобетон и строительные растворы. Полимеры, пластмассы и керамика. Виды тепло- и звукоизоляционных материалов.

Рубрика Строительство и архитектура
Вид курс лекций
Язык русский
Дата добавления 14.02.2021
Размер файла 2,4 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Полярность молекулы тем больше, чем больше абсолютная величина заряда и длина диполя. Мерой полярности служит произведение q . l, называемое электрическим моментом диполя м: м = q . l.

Единицей измерения м служит Дебай (Д). 1 Д = 3,3 . 10 -30 Кл . м.

В молекулах, состоящих из двух одинаковых атомов м = 0. Их называют неполярными. Если такая частица попадает в электрическое поле, то в ней под действием поля произойдет поляризация -- смещение центров тяжести положительных и отрицательных зарядов. В частице возникает электрический момент диполя, называемый наведенным диполем.

Дипольный момент двухатомной молекулы АВ можно отождествить с дипольным моментом связи А-В в ней. Если общая электронная пара смещена к одному из атомов, то электрический момент диполя связи не равен нулю. Связь в этом случае называется полярной ковалентной связью. Если электронная пара симметрично расположена относительно атомов, то связь называется неполярной.

В многоатомной молекуле определенный электрический момент диполя можно приписать каждой связи. Тогда электрический момент диполя молекулы может быть представлен как векторная сумма электрических моментов диполя отдельных связей. Существование или отсутствие момента диполя у молекулы связано с ее симметрией. Молекулы, имеющие симметричное строение, неполярны (м = 0). К ним относятся двухатомные молекулы с одинаковыми атомами (Н2, С12 и др.), молекула бензола, молекулы с полярными связями BF3, A1F3, CO2, ВеС12 и др.

Электрический момент диполя молекулы является важным молекулярным параметром. Знание величины м может указать на геометрическую структуру молекулы. Так, например, полярность молекулы воды указывает на ее угловую структуру, а отсутствие момента диполя СО2 -- на ее линейность.

Ионная связь

Предельным случаем ковалентной полярной связи является ионная связь. Если электроотрицательности атомов различаются очень сильно (например, атомов щелочных металлов и галогенов), то при их сближении валентные электроны одного атома полностью переходят на второй атом. В результате этого перехода оба атома становятся ионами и принимают электронную структуру ближайшего благородного газа. Например, при взаимодействии атомов натрия и хлора, они превращаются в ионы Na+ и Сl-, между которыми возникает электростатическое притяжение. Ионная связь может быть описана в рамках методов ВС и МО, однако обычно ее рассматривают с помощью классических законов электростатики.

Молекулы, в которых существует в чистом виде ионная связь, встречаются в парообразном состоянии вещества. Ионные кристаллы состоят из бесконечных рядов чередующихся положительных и отрицательных ионов, связанных электростатическими силами. При растворении ионных кристаллов или их плавлении в раствор или расплав переходят положительные и отрицательные ионы.

Следует отметить, что ионные связи обладают большой прочностью, поэтому для разрушения ионных кристаллов необходимо затратить большую энергию. Этим объясняется тот факт, что ионные соединения имеют высокие температуры плавления.

В отличие от ковалентной связи ионная не обладает свойствами насыщаемости и направленности. Причина этого состоит в том, что электрическое поле, создаваемое ионами, имеет сферическую симметрию и действует одинаково на все ионы. Поэтому количество ионов, окружающих данный ион, и их пространственное расположение определяются только величинами зарядов ионов и их размерами.

Рассматривая ионную связь, необходимо иметь в виду, что при электростатическом взаимодействии между ионами происходит их деформация, называемая поляризацией. На рис. 1.3, а изображены два взаимодействующие электростатически нейтральных иона и сохраняющие идеально сферическую форму. На рис. 1.3, б показана поляризация ионов, которая приводит к уменьшению эффективного расстояния между центрами положительных и отрицательных зарядов. Чем больше поляризация ионов, тем меньше степень ионности связи, т. е. тем больше ковалентный характер связи между ними. В кристаллах поляризация оказывается невысокой, т. к. ионы симметрично окружены ионами противоположного знака и ион подвергается одинаковому воздействию во всех направлениях.

a b

Рис.1.3. Поляризация ионов

Металлическая связь

Особенностью всех металлов является их высокая электропроводность и теплопроводность. Эти свойства свидетельствуют о том, что валентные электроны способны свободно перемещаться в пределах кристаллической решетки. Простейшая модель строения металла выглядит так: в узлах кристаллической решетки находятся положительные ионы металла, которые прочно связаны электронным газом. Валентные электроны одновременно находятся на всех доступных орбиталях соседних атомов, осуществляя между ними связь. Такая нелокализованная связь называется металлической. Эта связь является достаточно прочной, т. к. большинство металлов имеет высокую температуру плавления. Указанная модель объясняет также свойственные металлам ковкость (способность расплющиваться в тонкие листы) и пластичность (способность вытягиваться в проволоку). Эти свойства обусловлены тем, что подвижный электронный газ позволяет плоскостям, состоящим из положительных ионов, скользить одна по другой.

Более строгую интерпретацию металлической связи позволяет дать метод молекулярных орбиталей. Напомним, что при взаимодействии двух атомных орбиталей образуются две молекулярные орбитали: связывающая и разрыхляющая. Происходит расщепление энергетического уровня на два. Если взаимодействуют одновременно четыре атома металла, образуются четыре молекулярные орбитали. При одновременном взаимодействии N частиц, содержащихся в кристалле, образуется N молекулярных орбиталей, причем величина N может достигать огромных значений, сравнимых с числом Авогадро (6 * 1023). Молекулярные орбитали, образованные атомными орбиталями одного подуровня, находятся настолько близко, что практически сливаются, образуя определенную энергетическую зону.

Рассмотрим в качестве примера электронную структуру кристалла лития. Прежде всего, вспомним электронную конфигурацию молекулы Li2, образовавшуюся издвух изолированных атомов. При взаимодействии N ls-орбиталей в кристалле лития образуется внутренняя энергетическая зона, полностью занятая электронами. Эти электроны не принимают участия в металлической связи. Атом лития имеет один валентный электрон на 2s-орбитали. При взаимодействии N атомов лития 2s -орбитали, на которых находятся валентные электроны, образуют валентную зону. Нижняя часть валентной зоны, образованная связывающими 2s -орбиталями, заполнена электронами, которые перемещаются по кристаллу хаотически. Достаточно близко расположенная верхняя часть, образованная разрыхляющими 2s-opбиталями, электронами не занята. При наложении даже незначительной разности потенциалов электроны возбуждаются и переходят в верхнюю часть валентной зоны, где перемещаются в направлении поля, перенося электрические заряды через весь кристалл. Верхнюю часть валентной зоны называют зоной проводимости. Таким образом, у металлов валентная зона сливается с зоной проводимости. Это связано с тем, что число валентных электронов в атомах металлов относительно невелико и всегда недостаточно для заполнения всех валентных орбиталей.

В атомах неметаллов число валентных электронов велико и валентная зона кристалла практически заполнена электронами. Зона проводимости в кристаллах, содержащих атомы или ионы неметаллов, образуется за счет орбиталей, имеющих намного большую энергию по сравнению с валентными орбиталями, т. е. принадлежащих к следующему электронному уровню. В таких кристаллах между валентной зоной и зоной проводимости находится запрещенная зона. Электроны не могут перемещаться вдоль кристалла, даже если к нему приложить высокое напряжение -- такие вещества называются изоляторами или диэлектриками.

Промежуточное положение между проводниками электрического тока и диэлектриками занимают полупроводники (кремний, германий, многие сложные вещества). Особенность полупроводников состоит в том, что у них сравнительно небольшая ширина запрещенной зоны. Поэтому даже при незначительном нагревании электроны переходят в зону проводимости и вещество проводит электрический ток. В некоторых случаях переход электронов в зону проводимости происходит при освещении -- возникает фотопроводимость.

В диэлектриках ширина запрещенной зоны более 3 эВ, а в полупроводниках она составляет 0,1--3 эВ.

Под действием внешнего электрического поля на диэлектрик часть его электронов, получив достаточное количество энергии, может переброситься из полностью заполненной валентной зоны в зону проводимости и участвовать в переносе электричества. При этом в валентной зоне появится эквивалентное число так называемых дырок (вакантных мест), имеющих положительный заряд. Они также могут участвовать в переносе тока. Такая проводимость называется электронно-дырочной.

Межмолекулярное взаимодействие -- взаимодействие, не приводящее к разрыву или образованию новых химических связей. Силы притяжения, действующие между молекулами на больших расстояниях (от 5-8 до 100 Е), называются силами Ван-дер-Ваальса и представляют собой кулоновские силы, возникающие между электронами и ядрами двух молекул.

При небольшом смещении отрицательных и положительных зарядов в нейтральной молекуле она перестает быть неполярной, превращаясь в электрический диполь. Имеются молекулы, обладающие постоянным электрическим дипольным моментом и называющиеся полярными. При сближении они стремятся развернуться так, чтобы их обращенные друг к другу стороны были заряжены разноименно. В этом случае суммарная сила притяжения между зарядами больше, чем суммарная сила отталкивания, поэтому полярные молекулы притягиваются. Эти электростатические силы иногда называют дипольно-ориентационными.

Если молекулы не имеют постоянного дипольного момента, то при помещении во внешнее электрическое поле они его приобретают. Во внешнем электрическом поле положительные заряды молекулы несколько смещаются в направлении поля, а отрицательные - в противоположном направлении. Поляризация может быть обусловлена также деформацией электронной оболочки неполярной молекулы под влиянием электрического поля полярной (индуцированный диполь), что всегда приводит к понижению энергии системы и притяжению молекул. Такие силы межмолекулярного взаимодействия называют поляризационными (индукционными). Межмолекулярное взаимодействие может быть связано также с переносом электронного заряда с одной молекулы на другую. Перенос заряда происходит при перекрывании электронных оболочек молекул, если их сродство к электрону различно. Перенос заряда можно рассматривать как предельный случай поляризации.

При сближении неполярных молекул электрические поля составляющих их зарядов быстро меняются во времени и лишь в среднем компенсируют друг друга в различных точках пространства. Поэтому при сближении молекулы поляризуют друг друга, причем обращенные друг к другу стороны поляризованных молекул обладают зарядами противоположного знака.

В результате взаимно поляризованные молекулы притягивают друг друга. Такие силы межмолекулярного взаимодействия называются дисперсионными (лондоновскими). Они действуют между любыми атомами и молекулами независимо от их строения.

Таким образом, различают три вида сил Ван-дер-Ваальса: электростатические (дипольно-ориентационные), поляризационые (индукционные) и дисперсионные.

Водородная связь

Водородная связь возникает между молекулами, в которых атом водорода связан с атомом элемента, обладающего высокой электроотрицательностью. Так, атом водорода, образующий в молекуле НХ прочную ковалентную связь с атомом X, может образовывать водородную связь с атомом X (или Y) другой молекулы. Водородную связь принято изображать пунктиром: X - Н …У. Обычно энергия водородной связи (8-80 кДж/моль) значительно уступает энергии химической связи, но намного больше энергии ван-дер-ваальсова взаимодействия (1-5 кДж/моль). Исключением является сильная водородная связь в ионе (FHF) (250 кДж/моль).

Возникновение водородной связи обусловлено двумя причинами:

1. Атом водорода, связанный полярной ковалентной связью с атомом X, фактически не имеет электронов и способен легко внедряться в электронные облака других частиц.

2. Обладая вакантной s-орбиталью, атом водорода может принимать неподеленную электронную пару атома Y, образуя с ним донорно-акцепторную связь.

Определенный вклад в образование водородной связи вносит электростатическое взаимодействие между положительно поляризованным атомом водорода в молекуле Н--X и отрицательно поляризованным атомом Y в другой молекуле. Чаще всего водородная связь образуется с участием атомов таких элементов, как кислород, фтор, азот. Наиболее типичный пример соединения с водородными связями -- это вода. В жидком состоянии вода находится в виде ассоциатов (Н2О)n, а в кристаллах льда каждый атом кислорода образует по две водородные связи, что определяет его тетраэдрическое окружение.

Водородная связь существенно влияет на свойства веществ. Так, при ее наличии повышаются температура кипения, теплоты испарения и плавления, молекулы веществ в жидком состоянии становятся ассоциированными. Структура и свойства большинства органических веществ определяются образованием таких связей. Так, молекулы протеинов сохраняют свою спиральную форму из-за водородных связей. Они же удерживают вместе двойные спирали ДНК.

Мерой энергии межмолекулярного взаимодействия могут служить температура кипения и теплота испарения ДНисп жидкости. Для некоторых жидкостей эти величины приведены в табл. 1.3.

Таблица 1.3. температура кипения и теплота испарения некоторых веществ

Вещество

Ткип, К

ДНисп. кДж/моль

Вещество

Ткип, К

ДНисп. кДж/моль

Аr

87,25

7,607

С2Н6

184,52

14,63

Кr

119,75

9/025

С3Н8

231,09

18,78

Хе

165,05

16,02

С5Н12

309,22

25,79

СН4

111,57

8,197

Н2О

373,15

40,66

Повышение Ткип и ДНисп при переходе от Аг к Хе обусловлено увеличением поляризуемости, а с увеличением размеров частиц и, как следствие, к усилению дисперсионного взаимодействия. Увеличение Ткип и ДНисп при переходе от СН4 к С5Н12 связано с тем, что с удлинением углеводородной цепи увеличивается число точек соприкосновения между молекулами и усилением межмолекулярного взаимодействия. Сравнительно высокие значения Ткип и ДНисп воды -- следствие ассоциации в результате возникновения водородных связей.

Структура материалов

Основные понятия, термины, определения

В строительном материаловедении под структурой понимается совокупность устойчивых связей тела, обеспечивающих его целостность. Такое определение является достаточно общим. Поэтому его стараются конкретизировать, например, путем введения дополнительных понятий: кристаллическая структура, стеклообразная структура, аморфно-кристаллическая структура. Часто при рассмотрении материалов употребляют термины «плотная» или «пористая» структура. Различают микро- и макроструктуру.

При изучении макроструктуры материалов часто используют термин «текстура», который уточняет наше отношение к данному материалу. Например, для уточнения характера структуры применяют термины «волокнистая», «зернистая», «чешуйчатая» текстуры.

Текстура материала - это преимущественно ориентированное расположение элементов, составляющих материал, характеризующих рисунок его внутренних слоев или поверхности. Текстура, в отличие от структуры, не имеет такой логической связи с составом, химическими связями и свойствами и является дополнением к более широкому понятию - «структура материала».

Внутреннее строение материалов

В зависимости от агрегатного состояния и устойчивости твердые вещества могут иметь строго упорядоченное строение - кристаллическое, или неупорядоченное, хаотическое строение - аморфное.

Природа частиц, находящихся в узлах кристаллической решетки, и преобладающие силы взаимодействия (химические связи) определяют характер кристаллической решетки: атомный с ковалентными связями, молекулярный с ван-дер-ваальсовыми и водородными связями, ионный с ионными связями, металлический с металлическими связями.

Атомная решетка состоит из нейтральных атомов, связанных между собой ковалентными связями. Вещества с ковалентными связями отличаются высокой твердостью, тугоплавкостью, нерастворимостью в воде и в большинстве других растворителях. Примером атомных решеток являются алмаз и графит. Энергия ковалентных связей составляет от 600 до 1000 кДж/моль

Молекулярная решетка построена их молекул (I2, Cl2, CO2 и т.д.), связанных друг с другом межмолекулярными или водородными связями. Межмолекулярные связи имеют небольшую величину энергии, не более 10кДж/моль; несколько большую величину имеют водородные связи (20-80 кДж/моль), поэтому вещества с молекулярной решеткой имеют невысокую прочность, низкую температуру плавления, высокую летучесть. Такие вещества не проводят ток. К веществам с молекулярной решеткой относятся органические материалы, благородные газы, некоторые неорганические вещества.

Ионная решетка образуется атомами, сильно отличающимися по электроотрицательности. Она характерна для соединений щелочных и щелочноземельных металлов с галогенами. Ионные кристаллы могут состоять и из многоатомных ионов (например, фосфаты, сульфаты и пр.). В такой решетке каждый ион окружен определенным числом его противоионов. Например, в кристаллической решетке NаCl каждый ион натрия окружен шестью ионами хлора, а каждый ион хлора - шестью ионами натрия. Вследствие ненаправленности и ненасыщенности ионной связи кристалл можно рассматривать как гигантскую молекулу, а обычное понятие молекулы здесь утрачивает свой смысл. Вещества с ионной решеткой характеризуются высокой температурой плавления, малой летучестью, высокой прочностью и значительной энергией кристаллической решетки. Эти свойства сближают ионные кристаллы с атомными. Энергия связи ионной решетки примерно равна, по некоторым источникам меньше, энергии ковалентной решетки.

Металлические решетки образуют металлы. В узлах решеток находятся ионы металлов, а валентные электроны делокализованы по всему кристаллу. Такие кристаллы можно рассматривать как одну огромную молекулу с единой системой многоцентровых молекулярных орбиталей. Электроны находятся на связывающих орбиталях системы, а разрыхляющие орбитали образуют зону проводимости. Так как энергия связи связывающих и разрыхляющих орбиталей близка, электроны легко переходят в зону проводимости и перемещаются в пределах кристалла, образуя как бы электронный газ. В табл. 1.4 в качестве примера приведены энергии связи для кристаллов с разным типом связи.

Упорядоченное расположение частиц в кристалле сохраняется на больших расстояниях, а в случае идеально образованных кристаллов - во всем объеме материала. Такая упорядоченность строения твердых тел носит название дальний порядок.

Таблица 1.4 Энергия связи в кристаллах

Кристалл

Ar

CH4

Алмаз

SiC

LiF

NaCl

Fe

Na

Энергия связи кДж/моль

7,5

10

750

1180

1000

750

390

110

Тип связи

Ван-дер-вальсовская

Ковалентная

Ионная

Металлическая

В телах с менее упорядоченным или хаотичным расположением частиц, что свойственно аморфным телам, имеет место лишь местная упорядоченность, которая не распространяется дальше данной совокупности частиц. В этом случае говорят, что имеет место ближний порядок. Хаотичность расположения частиц свидетельствует о неустойчивом агрегатном состоянии системы, способном изменяться как под действием внутренних, так и внешних факторов. Аморфные тела, например, не имеют определенной точки плавления.

Каждому агрегатному состоянию соответствует определенное соотношение между потенциальной и кинетической энергиями частиц вещества. У твердых тел потенциальная энергия частиц больше кинетической. Поэтому они занимают в теле вполне определенное положение относительно других частиц и лишь колеблются около этих положений.

В газах кинетическая энергия частиц превышает потенциальную, поэтому молекулы газов всегда находятся в состоянии хаотического движения. Силы сцепления между молекулами отсутствуют, вследствие чего газ заполняет весь предоставленный ему объем.

У жидкостей соотношение между энергиями стремится к единице, т. е. частицы связаны друг с другом, но не жестко. Поэтому жидкости обладают текучестью, но имеют при данной температуре постоянный объем. По строению жидкости напоминают аморфные твердые тела; каждая частица жидкости окружена одинаковым количеством ближайших соседних частиц, т.е. для жидкостей характерен «ближний порядок» взаимодействия частиц.

Итак, что же такое микроструктура и макроструктура? Иногда в строительном материаловедении упоминают «мезоструктуру». Обобщая имеющиеся высказывание по данному вопросу. Г.И. Горбунов справедливо, по нашему мнению, предлагает различать только микроструктуру и макроструктуру строительных материалов. Микроструктура - это структура материала, которую можно рассматривать, изучать с помощью оптических, электронных, рентгеновсих и пр. приборов; Макроструктура - это структура материала, которую можно видеть невооруженным глазом. Традиционно микроструктуру подразделяют на кристаллическую, аморфную и аморфно-кристаллическую.

Микроструктура. Кристаллическая структура

Изложенное выше позволяет дать следующее определение понятию «кристаллическая структура». Кристаллическая структура - это такая структура, которой свойственно упорядоченное расположение частиц в строго определенных точках пространства, которые образуют кристаллическую решетку. Эта упорядоченность позволяет экспериментально и теоретически полностью изучить структуру твердого состояния и явления, связанные с природой сил взаимодействия в кристаллических телах.

Для каждого кристалла характерна анизотропность и резко выраженная температура перехода в жидкое состояние. Кристаллы характеризуются внешней симметрией в расположении частиц, которая выражается наличием трех элементов симметрии: центра, оси и плоскости симметрии. Центр симметрии - точка, делящая пополам все соединительные между внешними поверхностями кристалла прямые линии, проведенные через нее по любому направлению. Плоскость симметрии делит кристалл на две части, относящиеся друг к другу, как предмет к своему зеркальному отражению. Ось симметрии - это такая линия, при повороте вокруг которой на определенный угол получается полное совпадение нового положения с прежним. Чем больше элементов симметрии, тем выше внешняя симметрия кристалла. Идеально симметричной фигурой является шар.

В настоящее время все многообразие кристаллических форм по сочетанию элементов симметрии (сингонии) сводится к семи типам: правильная (кубическая), тригональная, гексагональная, тетрагональная, ромбическая, моноклинная и триклинная. В таблице 1.5. приведена классификация кристаллов по сингонии.

Таблица 1.5. Классификация кристаллов по сингонии

Сингония

Класс

Название

Соотношение ребер

Соотношение углов

Название минералов

Высшая

VII

Кубическая

а=в=с

б=в=г=90о

Алмаз, галит

Средняя

VI

Тетрагональная

а=в?с

б=в=г=90о

Апатит

V

Гексагональная

а=в?с

б=в=90о; г=120о

Циркон

IV

Тригональная

а=в=с

б=в=г?90о

Кварц

Низшая

III

Ромбическая

а?в?с

б=в=г=90о

Муллит

II

Моноклинная

а?в?с

б=в=90о; г?90о

Гипс, авгит

I

Триклинная

а?в?с

б=в=г?90о

Полевой шпат

Кристаллы низшей сингонии характеризуются меньшей симметрией; кристаллы более высокой категории сингонии имеют более совершенную форму кристаллической решетки и, следовательно, являются более устойчивыми в определенных условиях существования.

Многим веществам в кристаллическом состоянии характерен полиморфизм, т.е. способность вещества существовать в виде нескольких кристаллических структур с различными свойствами. Полиморфизм простых веществ называется аллотропией. Известны полиморфные модификации углерода (алмаз, графит), кварца (б-кварц, в-кварц), железа, вольфрама и др.

Если два разных вещества имеют одинаковую кристаллическую структуру, похожую химическую формулу и не очень сильно различаются по размеру составляющих их частиц, то они могут образовывать смешанные кристаллы. Такие вещества называют изоморфными, их способность образовывать смешанные кристаллы - изоморфизмом. Пример: сходные по составу и структуре, но разные по свойствам являются кристаллы каолинита Al2O3.2SiO2.2H2O, пирофиллита Al2O3.4SiO2.2H2O и монтмориллонита Al2O3.4SiO2.3H2O.

Реальные кристаллы. В свей практической деятельности мы имеем дело с реальными кристаллми, которые отличаются от идеальных нарушениями (дефектами) кристаллической решетки, образующимися в результате изменения равновесных условий роста кристаллов, захвата примесей при кристаллизации, а также под влиянием различного рода внешних воздействий.

Различают следующие дефекты:

точечные или нульмерные - это вакансии, междуузельные атомы и пр;

линейные или одномерные - это дислокации (краевые, винтовые);

поверхностные или двумерные - это границы зерен и двойников, межфазные границы, дефекты упаковки частиц, трещины на поверхности (трещины Гриффитса);

объемные или трехмерные - это пустоты, включения второй фазы и пр.

Точечные дефекты подразделяются на энергетические, электронные и атомные.

К энергетическим дефектам относят фононы - кванты тепловых колебаний, которые заполняют кристаллы и распределяются в них соответственно условиям теплового равновесия. К этому же типу дефектов относят возбуждения решетки в результате облучения кристаллов световыми, рентгеновскими и прочими лучами.

К электронным дефектам относят наличие избыточных электронов или их недостаток.

К атомным дефектам относят нарушения в виде вакансий (дефекты по Шотки), смещений (дефекты по Френкелю), избытка или недостатка атомов, а также примеси посторонних атомов.

Дислокациями называют линейные дефекты, возникшие в процессе роста или пластической деформации кристалла. Различают краевые и винтовые дислокации.

Образование дислокаций в процессе роста кристаллов происходит в тех случаях, когда растущие навстречу блоки и зерна повернуты друг относительно друга. При срастании таких блоков образуются избыточные атомные плоскости - дислокации.

В процессе пластической деформации происходит не одновременный сдвиг атомов данной плоскости, а последовательное перемещение связей между атомами, лежащими по обе стороны линии скольжения. Такое перераспределение связей предопределяет движение дислокаций от одной группы атомов к другой. Количество дислокаций в твердых кристаллических телах очень велико. Число дислокаций пересекающих 1см2 площади внутри кристалла может достигать 104 -106 и более.

Наличие дислокаций значительно снижает прочность кристаллов, на несколько порядков. Дислокации влияют на электрические, оптические, магнитные и другие свойства материалов.

Вместе с тем замечено, что при определенных условиях дислокации и другие дефекты кристаллов увеличивают прочность материалов. Это происходит тогда, когда накоплено значительное количество дислокаций, которые, взаимодействуя друг с другом, мешают своему развитию и перемещению. Перемещению дислокаций препятствуют также атомы примесей, границы блоков, различные обособленные включения в решетки. Отсюда ряд исследователей делают вывод о положительном влиянии дислокаций на прочностные свойства материалов. Видимо, все таки, лучше вообще не иметь дефектов, чем иметь их в огромном количестве, которое несколько увеличивает прочность материала по сравнению с некоторой минимальной прочностью, которую имеет материал при неблагоприятном числе дефектов. Прочность бездефектного материала в сотни раз больше прочности материала с «оптимальным» количеством дефектов. Необходимо также отметить возможность локального скопления дислокаций, которые могут вызвать местные концентрации напряжений, которые способны образовать зародыши микротрещин (трещины Гриффитса).

Аморфная структура

Аморфная структура является одним из физических состояний твердых тел, Аморфные вещества характеризуются двумя особенностями. Во-первых, свойства таких веществ при обычных условиях не зависят от выбранного направления, т.е. они - изотропны. Во-вторых, при повышении температуры происходит размягчение аморфного вещества и постепенный переход его в жидкое состояние. Точное значение температуры плавления отсутствует.

Общим для кристаллического и аморфного состояний веществ является отсутствие поступательного перемещения частиц и сохранение только их колебательного движения около положения равновесия. Различие между ними состоит в наличии геометрически правильной решетки у кристаллов и отсутствии дальнего порядка в расположении атомов у аморфных веществ.

Аморфное состояние вещества, по сравнению с кристаллическим, всегда менее устойчиво и обладает избыточным запасом внутренней энергии. В связи с этим, при определенных условиях, самопроизвольно осуществляется переход из аморфного состояние в кристаллическое.

Твердые тела в аморфном состоянии можно получить двумя путями. Первый путь - быстрое охлаждение расплавов кристаллических веществ, преимущественно ионного и ковалентного строения. Типичный представитель таких аморфных тел - силикатные стекла, битумы, смолы и пр.

Второй путь - диспергация кристаллических структур. В результате диспергации кристаллических тел образуются аморфизованные дисперсии в виде коллоидов и растворов. Разрушаясь или конденсируясь, дисперсии изменяют свое агрегатное состояние. Пересыщенные растворы, например, могут превратиться в гель и образовать полимер или кристаллизоваться.

Аморфные вещества подразделяют на витроиды (стекла), дисперсные системы и полимеры.

Витроиды - это твердые тела в аморфном состоянии, имеющие стекловидную структуру. Как уже отмечалось, стекла образуются в результате быстрого охлаждения, преимущественно силикатных расплавов. Быстрое охлаждение препятствует созданию упорядоченной структуры. Особенно, если молекулы громоздки, а скорость охлаждения велика.

Дисперсные системы - мельчайшие частицы размером 10-7-10-9 м. к ним относятся коллоиды, золи (органозоли, гидрозоли), пасты, клеи мастики краски, латексы и пр. К дисперсным аморфным системам относятся также некоторые горные породы (диатомит, опоки), имеющие общую формулу SiO2.nH2O; а также активный кремнезем, который образуется в результате разложения глин при их нагревании.

Полимеры - вещества, характерной особенностью которых является большой размер и большая молекулярная масса молекул. Кроме того, молекулы объединены в структурные единицы, включающих 103-105 молекул-мономеров.

Аморфно-кристаллическая структура

Многие природные и искусственные каменные материалы в своем составе содержат и кристаллические, и аморфные фазы. Соотношение между объемами кристаллической и аморфной фазами, а также их взаимное расположение оказывают огромное влияние на свойства материалов, имеющих такую структуру. Типичными представителями подобных материалов являются ситаллы, фарфор и другие керамические материалы. Свойства некоторых материалов, имеющих амрфно-кристаллическую структуру приведены в табл 1.6.

Таблица 1.6. Свойства материалов с аморфно-кристаллической структурой

Наименование материала

Содержание стеклофазы, %

Плотность, г/см3

Прочность, МПа

Водопоглощение, %

Фарфор

40-60

2.3-2.5

680

< 0,5

Плитка керамическая

10-30

2.0-2,2

20-50

1,5-4,0

Каменное литье

< 5

2,6-3,0

200-250

0

Ситаллы

5-10

2,3-2,5

~ 500

0

Все представленные в таблице материалы обладают аморфно-кристаллической структурой, содержат кристаллы и стекловидную фазы. Как видно из приведенных данных, содержание фаз не оказывает решающего влияния на свойства материалов. Ситаллы и каменное литье имеют небольшое количество стеклофазы по сравнения с керамической плиткой и, видимо, поэтому имеют более высокую (в 10-20 раз большую) прочность, чем плитка. Однако, фарфор содержит стекловидную фазу в большем размере, чем ситаллы и каменное литье, а прочность имеет большую, чем эти материалы. Несомненно, свойства материалов с аморфно-кристаллической структурой зависят не только от количества этих фаз, но и от их качества, и взаимного расположения друг относительно друга - от микро- и макроструктуры.

Макроструктура - это видимая невооруженным глазом или при небольшом увеличении (до 6 раз) внутренняя или поверхностная часть материала. В строительном материаловедении принято различать структуры поверхностного и внутреннего слоев.

Особенности структуры поверхностного слоя

Структура поверхностного слоя искусственных строительных материалов, как правило, отличается от структуры внутренних слоев по двум причинам. Первая, атомы и молекулы, расположенные на поверхности, имеют избыточную энергию по сравнению с частицами, расположенными внутри материала. Вторая, поверхностный слой постоянно взаимодействует с окружающей средой, благодаря чему он претерпевает постоянные изменения, как в процессе изготовления изделий, так и в процессе их эксплуатации.

Избыточная энергия поверхностного слоя возникает вследствие того, что каждая частица на поверхности твердого тела и жидкости имеет некомпенсированные химические связи, которые образуют на поверхности несимметричное силовое поле. Это силовое поле втягивает поверхностные частицы во внутрь материала, создавая на поверхности напряжение сжатия. Поверхностный слой, таким образом, постоянно находится в упруго-напряженном состоянии, а его частицы обладают значительно большим запасом потенциальной энергии, чем частицы внутреннего слоя. Благодаря этому частицы поверхностного слоя более активно реагируют с окружающей средой, более активно вступают в химические реакции.

Величина энергии поверхностного слоя прямо пропорциональна энергии химической связи данного материала и зависит от параметров окружающей среды. Так, например, поверхностная энергия твердого тела на границе с жидкостью, которая его смачивает, уменьшается на величину, равную силе взаимодействия поверхностных частиц с жидкостью.

Большое влияние на строение и поверхностных, и внутренних слоев материала оказывают примеси, смачивание поверхности активными жидкостями, диффузионные процессы.

Примеси оказывают не однозначное влияние на свойства внешних и внутренних слоев. Если примеси имеют меньшую поверхностную энергию, чем материал, то они равномерно распределяются по поверхности, уменьшая его энергию. Если большую, - то концентрируются на отдельных участках поверхности или перемещаются во внутренние слои материала, где могут оказывать как положительное, так и отрицательное влияние на его свойства.

Смачивание имеет большое значение при формировании композиционных материалов, искусственных строительных конгломератов (по определению Рыбьева). Смачивание компонентов искусственных смесей необходимо для уменьшения энергии поверхностей твердых составляющих, что позволяет получать более плотные их упаковки в искусственных конгломератах.

Диффузия представляет собой самопроизвольное перемещение частиц вещества, в результате которого устанавливается равновесное распределение концентрации этих частиц в объеме газа, жидкости, твердого тела. Перенос частиц методом диффузии мы наблюдаем при получении - обжиге строительной керамики, глазуровании керамических плит, получения фарфора и пр. Высокая прочность фарфора не в малой степени определена диффузией расплава в направлении кристаллической части материала, в результате чего уплотняется структура и упрочняется зона контакта.

Особенности структуры внутреннего слоя

Макроструктура внутреннего слоя строительного материала достаточно хорошо просматривается на срезе невооруженным глазом или через обычную лупу. В состав структуры входят отдельные твердые тела (зерна) различной крупности, поры и матрица, объединяющая зерна в единый монолит. В качестве матрицы могут быть затвердевший цементный камень, алюмосиликатное или полимерное стекло, затвердевшая глина и пр.

Еще раз подчеркнем, что деление структуры строительных материалов на макро- микроструктуру является весьма условным. Такое деление имеет чисто методологическое значение; оно позволяет упростить реологические модели деформирования систем, характеризующихся разным размером компонентов, и, следовательно, применить для описания процессов более простые математические модели.

Единая и монолитная структура строительного материала может быть оптимальной и не оптимальной.

Оптимальная структура характеризуется равномерным распределением компонентов системы (заполнителей, пор, элементов матрицы и пр.) по строительному материалу; отсутствием или минимальным количеством дефектов; наличием непрерывной пространственной сетки - матрицы; наибольшей плотностью упаковки зерен твердой дискретной составляющей как на микро-, так и на макро-уровне.

Не оптимальными являются структуры, в которых не соблюдается хотя бы одно из перечисленных условий.

каменный железобетон полимер звукоизоляционный

Тема №2. Основные свойства. Физико-механические свойства строительных материалов (физические, механические, химические, технологические)

Свойства материалов

Свойство - это качественная, отличительная характеристика вещества, материала или изделия. В материаловедении эта характеристика является заключительным звеном во взаимосвязи «состав - химическая связь -- структура -- свойство», а при разработке технологии и создании нового материала -- основным, определяющим параметром или условием его получения.

Совокупность различных свойств предопределяет назначение материала и граничные условия его эксплуатации.

Часто, особенно производственники, используют сходные с понятием “свойство” термины, такие, как “техническая характеристика”, “основные параметры”, “технические показатели” и др., которые в конкретном контексте строительного материаловедения являются не совсем корректными. Эти термины вполне приемлемы в тех случаях, когда они не подменяют понятие “свойство”.

Свойство -- это отличительная особенность вещества, материала или изделия, которая проявляется во взаимодействии с окружающей средой или с другими веществами и соединениями.

В зависимости от вида окружающей среды и характера взаимодействия все свойства объединены в крупные группы. Например, теплопроводность, теплоемкость, температуропроводность и др. от носятся к теплофизическим свойствам; водопоглощение, водопроницаемость и др. часто называют гидрофизическими свойствами; водостойкость, кислотостойкость, коррозионная стойкость и др. составляют группу химических свойств; упругость, пластичность, хрупкость и др. -- упругодеформативные свойства, и т.д.

Количественно свойства определяются при испытании и, как правило, выражаются в физических величинах в соответствии с действующими стандартами.

Взаимосвязь основных свойств

Так как свойства материала являются производными от его состава, химических связей и структуры, то они взаимосвязаны и находятся в равновесии. Известно, что при изменении какого-либо одного свойства под действием каких-то факторов в большей или меньшей степени изменяются и другие свойства материала. В строительном материаловедении хорошо известны такие зависимости, как плотность -- теллопроводность, плотность -- прочность, теллопроводность -- электропроводность упругость -- пластичность и др.

Параметры состояния и структурные характеристики материалов

Плотность

Плотностью называют физическую величину, определяемую для однородного вещества его массой в единице объема.

Для неоднородного вещества плотность с его в определенной точке есть предел отношения массы m к объему V при объеме, стремящемся к этой точке:

с = lim m/V при V > О.

Для характеристики макроструктуры материала с учетом наличия газовой фазы используют термин «средняя плотность», обозначаемый символом рm. Средняя плотность всегда меньше истинной, так как на одну и ту же единицу массы приходится больший объем (с ср < с). Разность между этими величинами, отнесенная к большей величине, есть пористость.

При изучении свойств кристаллов, минералов, жидких и газовых сред под плотностью подразумевают (строительное материаловедение) истинную плотность, а при изучении строительных материалов (кроме плавленых) -- среднюю или кажущуюся плотность.

С точки зрения химического строения вещества, плотность есть функция его химического состава. Согласно принципу минимальной энергии каждый атом стремится взаимодействовать с максимально большим числом других атомов, что приводит к образованию плотнейших упаковок. Количественно это характеризуется коэффициентом плотности Kпл, который определяется по формуле:

Kпл = n.Vяч /Vмол

где n - число молекул в ячейке;

Vмол - объем молекулы;

Vяч - объем ячейки.

Характер упаковки атомов и его влияние на плотность хорошо просматриваются на примере плотно упакованных решеток кристалла.

Простейшим типом кристаллической решетки является кубическая, в которой расположение атомов образует пустотность, приблизительно равную 48%. Более плотной является гранецентрированная кубическая упаковка, дающая около 26% пустот. В такой решетке каждый атом имеет 12 ближайших соседей (4 по бокам и по 4 сверху и снизу). Кроме того, она образует два типа пустот: октаэдрические (окружение из 6 атомов) и тетраэдрические (окружение из 4 атом ов). Гексагональная решетка также относится к плотнейшим упаковкам и отличается от гранецентрированной лишь способом наложения слоев (без смещения) (рис. 2.1).

Рис. 2.1. Схемы упаковки атомов кристаллической решетки: а- кубическая, б гранецентрированная кубическая, в - гексагональная

Плотность кристаллических решеток оксидов очень высока, так как пустоты, образуемые ионами, частично или полностью заполнены катионами. Кроме того, при одинаковой упаковке атомов плотность зависит от молекулярной массы оксида. При равных молекулярных массах, например в силикатах, решающее значение имеет координационное число и валентность катиона. для примера сравним характеристики двух оксидов: А12O3 и SiO2 (табл. 2.1).

Из таблицы следует, что в соединениях, имеющих плотную кри сталлическую упаковку и примерно равные молекулярные массы катионов, решающее влияние на плотность оказывают более низкая валентность катиона и высокое координационное число.

Таблица 2.1 Строение оксидов и их плотность

В основе формирования структуры металлов -- совсем другие принципы, нежели структуры твердых тел с ковалентной связью. Каждый атом металла окружен столькими атомами, сколько ему позволяет окружающее пространство. Поэтому кристаллическая решетка металлоидов имеет так называемую плотноупакованную структуру.

Соединения одинакового химического состава, имеющие различную структуру, характеризуются, как правило, различной плотностью. Это связано с энергетическим состоянием вещества. Чем ниже значение внутренней энергии и выше устойчивость соединения, тем выше его плотность. Известно, что при поглощении энергии (например, тепловой) телом плотность его уменьшается. Покажем это на примере полиморфных превращений кварца. При нагревании кварца поглощенная тепловая энергия идет на перестройку его кристаллической. решетки: в-кварц переходит в б-кварц и далее -- в тридимит, кристобалит и, наконец, в кварцевое стекло. При этом плотность, равная 2,65 г/см3 у -кварца, уменьшается до 2,25 г/см у кварцевого стекла.

Изменение плотности одного и того же соединения при изменении его структуры может быть представлено в виде схемы:

Ркрист. стр > Рам. крист. стр > Рам. стр или Ркристалла > Рситалла > Рстекла

Если рассматривать различные агрегатные состояния одного и того же соединения, то можно заметить:

Р тв.тела > Ржидк > Ргаза,

что вполне отвечает вышеизложенному. Исключение составляют лишь чугун и вода, у которых плотность в жидком состоянии больше плотности твердого тела.

Пористость

Пористость - степень заполнения объема материала порами. Обычно выражают в %:

П = [(Vест - Vп)/Vест].100;

Где Vест - объем твердого тела вместе с порами;

Vп - объем твердой фазы тела.

Чаще пористость рассчитывают, исходя из кажущейся сm и истинной с плотности материала:

П = (1 - сm / с)100.

Пористость строительных материалов колеблется от 0 до 90-98%. Для сравнения в табл. 2.2. приведены величины пористости некоторых материалов.

Помимо объема пор на свойства материалов большое влияние оказывают геометрическая и структурная характеристики пор. К геометрической характеристике относят размер пор, их общую удельную поверхность, общий объем пор. К структурной характеристике относят форму пор (ячеистая, замкнутая, волокнистая) и характер пор (открытые, замкнутые, сообщающиеся).

Таблица 2.2 - Значения пористости некоторых материалов

Наименование материала

Плотность, кг/м3

Пористость, %

истинная

кажущаяся

Гранит

2700-2800

2600-2700

0,5-1

Тяжелый бетон

2600-2700

2200-2500

8-12

Кирпич

2500-2600

1400-1800

25-45

Керамзит (зерна)

2400-2600

250-1000

60-90

Пеностекло

2350-2450

100-300

88-95

Древесина

1500-1600

400-800

45-70

Пенопласт

900-1200

20-100

90-98

Наиболее стройной и общей для различных видов материалов является классификация по размеру пор:

макропоры > 10мкм (по Дубинину); > 0,5мкм (по Ф.М. Иванову);

капиллярные поры > 1мкм (по Г.И Горчакову);

контракционные - 1-10-2 мкм (по Горчакову);

поры геля - 10-2-10-4мкм (по Горчакову).

Макропоры и капиллярные поры относятся к элементам макроструктуры. Более мелкие поры - к элементам микроструктуры.

Капиллярами принято называть канальные поры, которые способны впитывать жидкость. Впитывание жидкости происходит, если так называемый капиллярный потенциал в каждой точке соприкосновения жидкости с внутренней поверхностью превышает потенциал поля тяжести.

Капиллярный потенциал зависит от величины поверхностного натяжения, радиуса капилляра, плотности жидкости, краевого угла смачивания жидкости при взаимодействии с данным материалом. Впитывание жидкости происходит, если так называемый капиллярный потенциал цк.п в каждой точке соприкосновения жидкости с внутренней поверхностью капилляра превышает потенциал поля тяжести цк.п.т Эффект впитывания тем выше, чем больше разность потенциалов, т.е. цк.п - цк.п.т > ?.

Под капиллярным потенциалом понимают потенциальную энергию поля капиллярных сил, отнесенную к единице массы жидкости (плотности).

Для цилиндрического капилляра, один конец которого находится в воде, капиллярный потенциал в Н.м/кг определяют по формуле:

цк.п =(2уп.н.ж).(1/r)

где: уп.н - коэффициент поверхностно натяжения, Н/м;

сж - плотность жидкости, кг/м3;

г - радиус кривизны мениска, м.

Потенциал поля тяжести:

цк.п.т = gh

где: g - ускорение свободного падения, м/с;

h - высота капилляра, м.

При поднятии уровня жидкости в капилляре разность потенциалов уменьшается и при цк.п.т = цк.п. высота капилляра h -- достигает максимума. С учетом краевого угла смачивания максимальная высота капиллярного подъема жидкости в пористом материале может быть вычислена по формуле Жюрена:

h = 2 уп.н соs/ сж г g,

где г -- условный радиус капилляра, м.

Средний радиус капилляра, т.е. поры, в которой имеет место капиллярный подсос, для различных материалов неодинаков, так как основные параметры этого процесса значительно различаются.

В стеновых материалах, где основными взаимодействующими фазами являются вода и цементный камень, верхний критический размер пор, впитывающих воду, не превышает 20 мкм, тогда как в огнеупорных материалах, работающих в среде расплавленных шлаков, этот критерий составляет - 25 мкм. В последнем случае химическое взаимодействие жидкой и твердой фаз уменьшает потенциал капиллярного подсоса.

В стеновых материалах с учетом изменения фазового состояния воды макропоры (по А.С. Беркману и И.Г. Мельниковой -- свыше 200 мкм) являются резервными, а микропоры (<0,05 мкм) - безопасными. Но, по В.М. Москвину и Г.И. Горчакову, опасный интервал размера пор несколько уже, так как при уменьшении радиуса капилляра вода в нем замерзает при более низкой температуре.

Интересно отметить, что значения нижних критических радиусов капилляров при заполнении водой и силикатными расплавами практически одинаковы и равны примерно 0,1 мкм. Это указывает на близкие значения длин свободного пробега молекулы воды при тем температуре 20°С и силикатных расплавов при 1500°С.

Однако, практически, в поры размером ниже 5 мкм шлаки не проникают. По-видимому, это объясняется увеличением вязкости в тонких капиллярах как в результате изменения состава шлаков (коррозия), так и под влиянием пристеночного эффекта.

Таким образом, для огнеупорных материалов опасный интервал, связанный с прониканием шлаков в капилляры, находится в пределах 5.. .25 мкм (по данным К.К. Стрелова).

Исходя из вышесказанного, можно констатировать, что основная проблема оптимизации пористой структуры материалов, в частности повышения морозостойкости для гидратационных и эксплуатационной стойкости обжиговых систем, связана с уменьшением интервала между верхним и нижним критическими радиусами капилляров. А как это осуществить? Есть два возможных варианта:

- исключение из структуры опасного интервала капиллярных пор путем создания преимущественно крупнопористой или мелко пористой структуры;

- уменьшение капиллярного потенциала системы при неизменных пористости и размерах радиусах капилляров.

Рассмотрим первый вариант. Крупнопористая структура (макропоры) без учета некоторых факторов может отвечать требованиям к акустическим, теплоизоляционным и некоторым видам стеновых материалов, а мелкопористая (микропоры) -- материалам для несущих, гидротехнических и других конструкций. Однако есть некоторые нюансы. Создание крупнопористой, а значит, высокопористой структуры влечет за собой резкое снижение прочностных характеристик изделий. Получение же плотной структуры с пористостью ниже 10% представляет в настоящее время серьезную проблему, особенно для гидратационных материалов.

...

Подобные документы

  • Строительные материалы по назначению. Методы оценки состава стройматериалов. Свойства и применение гипсовяжущих материалов. Цементы: виды, применение. Коррозия цементного камня. Состав керамических материалов. Теплоизоляционные материалы, их виды.

    шпаргалка [304,0 K], добавлен 04.12.2007

  • Общие сведения о строительных материалах, их основные свойства и классификация. Классификация и основные виды природных каменных материалов. Минеральные вяжущие вещества. Стекло и стеклянные изделия. Технологическая схема производства керамической плитки.

    реферат [20,3 K], добавлен 07.09.2011

  • Виды санитарно-технической керамики. Сырьё, технология ее изготовления. История возникновения и производства стекла. Свойства акустических материалов и применение их в строительстве. Основные свойства строительных растворов. Физические свойства древесины.

    контрольная работа [41,7 K], добавлен 12.09.2012

  • Классификация искусственных строительных материалов. Основные технологические операции при производстве керамических материалов. Теплоизоляционные материалы и изделия, применение. Искусственные плавленые материалы на основе минеральных вяжущих бетонных.

    презентация [2,4 M], добавлен 14.01.2016

  • Естественные и искусственные строительные материалы. Материалы из древесины, сохранившие ее природную физическую структуру и химический состав (лесоматериалы), их разделение на обработанные и необработанные. Основные свойства и пороки древесины.

    курсовая работа [8,9 M], добавлен 16.12.2010

  • Свойства дорожно-строительных материалов. Способы формования керамических изделий. Природные каменные материалы. Сырье, свойства и применение низкообжигового строительного гипса. Основные процессы, необходимые для получения портландцементного клинкера.

    контрольная работа [302,3 K], добавлен 18.05.2010

  • Свойства строительных материалов, области их применения. Искусство изготовления изделий из глины. Классификация керамических материалов и изделий. Цокольные глазурованные плитки. Керамические изделия для наружной и внутренней облицовки зданий.

    презентация [242,9 K], добавлен 30.05.2013

  • Роль качественной звукоизоляции помещений в жизни человека. Основные виды шума: воздушный и структурный. Защита от производственного шума. Группы звукоизоляционных материалов, строительные нормы и правила. Эффективные решения проблемы звукоизоляции.

    реферат [5,4 M], добавлен 16.04.2011

  • Прочность материалов и методы ее определения. Разновидности облицовочной керамики в строительстве. Глиноземистый цемент, его свойства и применения. Полимерные материалы, применяемые в отделке внутренних стен. Гидроизоляционные материалы, их применение.

    контрольная работа [33,1 K], добавлен 26.03.2012

  • Принципы, определяющие внешний вид офиса. Требования, предъявляемые к отделочным материалам и ремонту офисов. Классификация потолков по конструктивному решению. Типы напольных покрытий. Строительные материалы для отделки стен. Виды оконных конструкций.

    реферат [31,3 K], добавлен 20.12.2011

  • Специальные виды цементов, их особые свойства и сферы применения. Физические, механические и технологические свойства древесины. Виды бетонов и их составляющие. Бетон и железобетон: их качества, технологические схемы производства и область применения.

    контрольная работа [50,0 K], добавлен 22.02.2012

  • Характеристика свойств строительных материалов. Минеральный состав магматических горных пород. Гипсовые вяжущие вещества, их свойства. Гниение и антисептирование древесины. Рулонные кровельные материалы. Технология получения цемента по "мокрому" способу.

    контрольная работа [87,0 K], добавлен 25.07.2010

  • Свойства кровельных и гидроизоляционных материалов на основе органических вяжущих. Виды и применение теплоизоляционных материалов. Требования к зданиям; принципы проектирования генерального плана. Системы отопления и водопровода; канализационные сети.

    контрольная работа [100,3 K], добавлен 08.01.2015

  • Классификация строительных материалов. Требования к составляющим бетона, факторы, влияющие на его прочность и удобоукладываемость. Ячеистые и пористые бетоны, их применение в строительстве. Лакокрасочные материалы и металлы, их применение в строительстве.

    контрольная работа [31,0 K], добавлен 05.05.2014

  • Характеристика предварительно напряженного железобетона и его преимущества по сравнению с обычным бетоном. Опеределение и строение древесины. Процесс изготовления минеральной ваты. Основные звукоизоляционные материалы. Назначение строительных растворов.

    контрольная работа [24,9 K], добавлен 12.05.2009

  • Сущность акустических материалов, их разновидности и свойства. Обзор мягких, полужестких и твердых звукопоглощающих материалов. Звукопоглощающие свойства акмиграна, способы его изготовления. Классификация звукоизоляционных прокладочных материалов.

    презентация [561,5 K], добавлен 02.03.2016

  • Битумы, дегти и материалы на их основе. Термопластичные и термореактивные полимеры. Технология производства асфальтобетона. Схема коллоидно-дисперсного строения битума. Классификация органических вяжущих веществ. Основные недостатки битумов и дегтей.

    лекция [76,6 K], добавлен 16.04.2010

  • Строительный раствор - затвердевшая смесь, состоящая из вяжущего вещества, мелкого заполнителя (песка) и воды. Классификация строительных растворов по назначению и по составу. Специальные виды растворов и сырьевые материалы, технология их производства.

    курсовая работа [153,8 K], добавлен 13.02.2012

  • Характеристика основных пород древесины: хвойные, лиственные кольцесосудистые и рассеяннососудистые. Особенности строения и макросруктуры древесных материалов, их физико-механических свойств: плотность, влажность, тепло- и звукопроводность, разбухание.

    реферат [71,4 K], добавлен 17.05.2010

  • Сведения о древесине: достоинства, недостатки, качество, область применения. Физические и механические свойства древесины, методы повышения ее долговечности. Свойства модифицированной древесины; полимеры-модификаторы. Строительные изделия из древесины.

    реферат [202,9 K], добавлен 01.05.2017

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.