Строительные материалы
Связь состава и строения материалов с их свойствами. Каменные материалы и древесина. Вяжущие вещества воздушного и гидравлического твердения. Железобетон и строительные растворы. Полимеры, пластмассы и керамика. Виды тепло- и звукоизоляционных материалов.
Рубрика | Строительство и архитектура |
Вид | курс лекций |
Язык | русский |
Дата добавления | 14.02.2021 |
Размер файла | 2,4 M |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Второй вариант. Уменьшение капиллярного потенциала системы теоретически возможно лишь за счет снижения сил поверхностного натяжения, т.е. снижения поверхностной энергии твердой фазы, и увеличения краевого угла смачивания контакта “жидкость -- твердая фаза”, т.е. снижения эффекта смачиваемости.
Следует заметить, что оба эти фактора взаимозависимы, и поэтому для снижения капиллярного потенциала цк.п гидратационных систем ограничиваются снижением смачиваемости за счет применения гидрофобных добавок, а для обжиговых материалов, в частности огнеупоров, используют так называемые “спеки”, или специальные покрытия поверхности твердой фазы тонким твердым высокоогнеупорным слоем с низким значением поверхностной энергии, так как снизить смачиваемость самих шлаков практически невозможно Кроме того, для снижения цк.п в технологии огнеупоров используют различного рода “присадки”, вызывающие адсорбционный эффект.
Гигроскопичность
Анализируя вышеизложенное, можно заключить, что при уменьшении радиуса пор ниже критического значения (< 0,5 мкм) исчезает капиллярный подсос, однако жидкость все же заполняет даже мельчайшие поры за счет конденсации паров на их стенки с последующим переходом пленок в столбик жидкости. Такое свойство заполнения пор жидкостью называют гигроскопичностью структуры.
Согласно эмпирическому уравнению Фрейндлиха можно рассчитать количество адсорбированного газа или водяного пара (б):
б = Kpl/n,
где: pl/n -- давление газа;
К и п -- эмпирические параметры, постоянные для адсорбента и газа при определенной температуре.
Такие высокопористые материалы, как силикагель, древесина керамзитовый гравий и др., могут быть использованы в качестве регуляторов влажности в замкнутых объемах. Ограждающие конструкции из древесины и керамического кирпича благодаря гигроскопичности структуры и в зависимости от климатических условий регулируют влажностный режим помещения, т.е. они как бы дышат.
П.А. Ребиндер дает следующую классификацию пор по насыщению их жидкостью (табл. 2.3).
Пористость как основная характеристика структуры во многом определяет такие ее свойства, как теплопроводность, прочность и др.
Таблица 2.3. Классификация пор по насыщению их жидкостью
Структура материала |
Размер пор, мкм |
Характер пор |
Характер процесса |
Физический смысл явления |
|
Крупнопористая |
>10 (20) |
Макропоры (резервные) |
Насыщение окунанием |
Гравитационное вытеснение газа жидкостью |
|
Пористая |
10 (20)…0,5 |
Капилляры (опасные) |
Капиллярный подсос |
цкп > цпт |
|
Мелкопористая |
< 0,5 |
Микропоры (безопасные) |
Сорбция и конденсация |
б= Кр1/n |
Газопроницаемость
Газопроницаемость - свойство пористой структуры пропускать газ при перепаде давлений. Газопроницаемость зависит от размеров и вида пор, поэтому этот показатель часто используют при оценке равномерности структуры.
Наибольшее значение газопроницаемости соответствует размеру пор порядка 20... 100 мкм. Однако проницаемость газов через бетоны может происходить и при более низких значениях размера пор (0,1 мкм и ниже), например, в тонких трещинах.
Газопроницаемость весьма чувствительна к изменению структуры изделий. Так, если при некотором изменении структуры открытая пористость изменилась в 2 раза, то газопроницаемость меняется более чем в 100 раз.
Поскольку материал, как правило, имеет макро- и микропоры, перенос газа может происходить одновременно вязкостным и молекулярным потоками, которые подчиняются соответственно законам Пуазейля и Кнудсена.
Таблица 2.4. Сопротивление воздухопроницанию некоторых материалов и конструкций
Материал конструкции |
Толщина слоя, мм |
Сопротивление воздухопроницанию, м2.ч.Па/кг |
|
Кирпичная кладка |
120 |
2000 |
|
Обшивка из шпунтованных досок |
20…25 |
15 |
|
Плиты минераловатные, жесткие |
50 |
2 |
|
Легкий бетон, слитный |
400 |
13000 |
|
Цементно-песчаная штукатурка |
15 |
373 |
|
Пенобетон автоклавный |
100 |
1960 |
|
Бетон тяжелый, слитный |
100 |
19620 |
Для вывода уравнения газопроницаемости пористость материала условно представляют в виде цилиндрических каналов одинакового сечения, идущих параллельно направлению движения газа.
Уравнение Пуазейля хорошо отражает процесс газопроницаемости, но очень сложно для практических расчетов. Поэтому часто для расчета газопроницаемости строительных изделий и конструкций используют упрощенную формулу Дарси, хотя она описывает лишь перенос газа через стенку:
V = Kr.А. ф.Др/д,
где V -- объемный или массовый поток газа в единицу времени, м3/c или кг/с;
Kr -- коэффициент газопроницаемости. Для объемной газопроницаемости -- м2/Па.с; для массовой -- кг/м.Па.с;
А -- площадь сечения потока, м2;
ф -- время протекания процесса, с;
д -- глубина проникания газа, м.
Др - Разность давлений газа на входе и выходе из поры, Па.с.
Коэффициент газопроницаемости фактически является той физической константой для каждой пористой структуры, которая оценивает ее способность, при определенных условиях, пропускать газ.
При расчете строительных конструкций учитывают газопроницаемость структуры материалов через сопротивление воздухопроницанию.
Паропроницаемость является разновидностью газопроницаемости с той лишь особенностью, что пар способен в зависимости от условий изменять свое агрегатное состояние, т.е. конденсироваться, вытесняя газовую фазу, и значительно изменять свойство структуры. В табл. 2.5. приведены данные о сопротивлении паропроницаемости некоторых материалов.
Паропроницаемость, как характеристику структуры рассматривают в двух аспектах:
- материаловедческом -- защита структуры и конструкции в целом от разрушительного действия конденсата;
- теплофизическом -- решение проблемы создания надлежащего телловлажностного режима помещения.
Таблица. 2.5. Сопротивление паропроницанию некоторых строительных материалов
Материал |
Толщина слоя, мм |
Сопротивление паропроницанию, м2.ч.Па/мг |
|
Плиты древесноволокнистые, твердые |
10 |
0,11 |
|
Листы гипсовые (сухая штукатурка) |
10 |
0,12 |
|
Пергамин кровельный |
0,4 |
0,33 |
|
Толь кровельный |
1,9 |
0,4 |
|
Рубероид |
1,5 |
1,1 |
|
Пленка полиэтиленовая |
0,16 |
7,3 |
В обоих случаях устраивают так называемую пароизоляцию с внутренней стороны ограждающих конструкций, в частности наружных стен и покрытий здания, из газопаронепроницаемых материалов. Качество таких материалов характеризуется сопротивлением паропроницанию Rn в м2.ч.Па.с/мг.
Водопроницаемость
Водопроницаемость - способность пористой структуры пропускать воду (жидкие среды) под давлением. Как характеристика структуры водопроницаемость аналогична газопроницаемости и подчиняется тем же законам течения жидкости под давлением.
Методы определения водопроницаемости позволяют полнее судить о характере пористой структуры.
Определение водопроницаемости сухих и предварительно насыщенных образцов дает близкие по значению конечные результаты. Однако в первом случае по кинетике проницания воды, характеризуемой изменением электропроводности, можно судить об анизотропии пор, для чего водопроницаемость измеряют в трех взаимно перпендикулярных направлениях, тогда как во втором - такой вывод сделать невозможно.
Фактор анизотропии выражается среднеквадратичным отклонением а выборочной дисперсии коэффициентов водопроницаемости в трех направлениях (кь к2, к3), отнесенных к его среднему значению КсР:
Каниз = у/ КсР
Чем ниже значение этого фактора, тем меньше степень анизотропии структуры. Для изотропной структуры он равен нулю.
Значение водопроницаемости одной и той же структуры значительно ниже, чем газопроницаемости. Это можно объяснить рядом причин:
значительным различием величин вязкости жидкостей и газа;
возможным образованием застойных зон жидкости вследствие отрыва вязкой жидкости в процессе обтекания твердого тела;
уменьшением фильтрации жидкости, связанным с действием электростатических сил между жидкостью и твердой фазой.
Свойство, обратное водопроницаемости, - водонепроницаемость. Характеризует структуру плотных материалов, работающих в условиях непосредственного контакта с водой (например, гидротехнический бетон). Такие материалы подразделяются на классы по водонепроницаемости (W2, W4, W6, W8, W12). Цифра показывает величину давления воды в кгс/см2, при котором образец - цилиндр высотой 15 см не пропускает воду.
Теплофизические свойства. Теплоемкость
Основные понятия, термины определения
Теплоемкость является мерой энергии, необходимой для повышения температуры материала. Эта энергия затрачивается на:
- увеличение энергии колебательного движения атомов относительно их равновесного положения в узлах решетки;
- повышение энергетического состояния некоторых электронов в решетке;
- изменение положения атомов (при образовании дефектов структуры или при перестройке структуры).
Теплоемкость вещества С -- один из важнейших термодинамических параметров, значение которого используют для определения энтропии, энтальпии, энергии Гиббса и других величин. Например, согласно третьему началу термодинамики определение абсолютного значения энтропии S основано на измерении температурной зависимости теплоемкости в области низких температур и применении уравнения:
С = Т (dS/dТ),
где Т -- абсолютная температура.
В термодинамической системе теплоемкость схематически расположена на отрезке прямой между термодинамическими потенциалами Т и S.
Величина С характеризуется отношением количества теплоты сообщенного телу (системе) в каком-либо процессе, к соответствующему изменению его температуры dТ:
С = Q/dT.
Отношение теплоемкости к массе тела m называют удельной теплоемкостью сm, а отношение теплоемкости к количеству вещества M в молях называют молярной теплоемкостью -- сM:
сm = С/m [Дж/кг.К] или [ккал/кг.оС] -- удельная теплоемкость;
см = С/М [Дж/моль.К] или [ккал/моль.оС] - молярная теплоемкость.
Теплоемкость зависит не только от начального и конечного состояний, но и от способа, которым был осуществлен переход между ними.
Обычно различают теплоемкость при постоянном давлении Сp (изобарический процесс) и при постоянном объеме Сv (изохорический процесс).
Различие двух процессов заключается в том, что при нагревании в первом случае (Р = соnst) часть теплоты идет на производство работы по расширению тела, а часть -- на увеличение внутренней энергии, тогда как при нагревании во втором случае (V = соnst) вся теплота расходуется на увеличение внутренней энергии тела.
Сp = (dQ/dТ)p = (dH/dT)p; СV = (dQ/dT)v = (dU/dТ)v
где: Q - количество теплоты, Дж;
U - внутренняя энергия, Дж;
Т -- абсолютная температура, К;
Н -- энтальпия, Дж.
Разница между этими величинами у твердых тел невелика при низких температурах, однако, при высоких температурах она может быть значительной.
Теплоемкость зависит не только от способа сообщения телу тепла при нагревании, но и от макроструктуры, химического состава, агрегатного состояния тела.
Теплоемкость при нагревании и переходных процессах
Взаимосвязь тецлоемкость -- температура достаточно сложна. Она объясняется основными положениями квантовой теории и характеризуется “температурой Дебая”. При этом теплоемкость пропорциональна температуре лишь при низких значениях температуры.
Теплоемкость резко возрастает при наличии процесса, называемого “переход: порядок -- беспорядок”, т.е. при переходе тела из кристаллического состояния в аморфное. Следовательно, можно заключить, что теплоемкость расплава значительно превышает теплоемкость исходного кристаллического соединения. Наблюдения за процессами обжига и плавления керамических материалов наглядно показывают резкое уменьшение скорости подъема температуры в печи в период превращения, так как часть тепловой энергии затрачивается на переход кристаллической фазы в расплав.
При полиморфных превращениях изменение теплоемкости минералов также имеет место, хотя оно не так велико и носит скачкообразный характер.
Теплоемкость не зависит от строения кристаллической решетки, однако, увеличивается при ее разрушении.
Химический состав и теплоемкость
Наиболее отчетливо проявляет себя взаимосвязь «теплоемкость -химический состав» вещества.
Органические вещества имеют значительно большую удельную теплоемкость чем минеральные. Можно представить следующий условный ряд строительных материалов, различающихся химическим составом, по удельной теплоемкости кДж/кг°С при t = 25°С (в сторону увеличения):
железо - 045
сталь - 0,48
гранит - 0,65
стекло - 0, 74
бетон, цемент, известь - 0,84
строит. керамика - 0,88
известняк - 0,92
перлитофосфогелевые изделия - 1,05
пенопласты типа ПВХ - 1,26
пенополистирол - 1,34
пенополиуретан - 1,47
битумы, фенопласты - 1,68
древесина, древесное волокно - 2,30
вода - 4,18
Возникает вопрос: почему на нагрев единицы массы металла или бетона расходуется значительно меньше тепловой энергии, чем на нагрев полимеров или древесины? Видимо, за счет химической природы одни материалы способны передавать энергию, оставаясь устойчивыми, а другие -- накапливать ее до момента их разрушения. Другими словами, неорганические вещества, атомное строение которых имеет волновой характер, являются проводниками тепла, а органические вещества -- накопителями или изоляторами.
По этому критерию удельная теплоемкость «с» имёет взаимосвязь с теплопроводностью «л», температуропроводностью «а» и влияет на теплоусвоение материалов «b»:
с= л / а с ; b = ? л. с. с
Агрегатное состояние и теплоемкость
Агрегатное состояние тела влияет на его теплоемкость. Известно, что при переходе тела из твердого состояния в жидкое теплоемкость увеличивается, так как увеличивается внутренняя энергия тела:
Ср = (dН/dТ)
где Н -- энтальпия (внутренняя энергия тела при Р = соnst)
Если сравнивать удельные теплоемкости разных веществ с одинаковыми химическими соединениями в различных агрегатных состояниях, то их значения будут очень близки. Главным фактором является химический состав. Приведем некоторые результаты сравнительной оценки:
- газы (за исключением инертных), такие, как воздух, кислород, водород и азот, имеют равную удельную теплоемкость с ~ 0,92 кДж/кг°С, т.е. как у известняка;
- жидкости ряда от бензола (с = 1,35 кДж/кг.оС -- минимальное значение) до этилового спирта (с = 2,42 кДж/кг.оС -- максимальное значение) имеют примерно такую же удельную теплоемкость, как органические полимерные материалы ряда от пенопластов (с = 1,26 кДж/кг.°С) до древесины (с = 2,30 кДж/кг.оС). У металлов даже крайние значения «с» для жидкости (ртуть) и твердого тела (свинец) равны и составляют всего 0,13 кДж/кг.°С.
Необходимо отметить аномально высокую удельную теплоемкость воды: с = 4,18 кДж/кг что следует учитывать при проектировании и расчете тепловых установок для сушки и тепловлажностной обработки строительных материалов. Увлажнение материалов приводит к значительному повышению их удельной теплоемкости и, как следствие, к увеличению расхода энергии при тепловой обработке.
Удельную теплоемкость влажных материалов рассчитывают по формуле
с = (со + св. 0,0IW) / (1+0,01W);
где со -- удельная теплоемкость материала в сухом состоянии, кДж/кг°С;
св -- удельная теплоемкость воды, кДж/кг°С;
W - влажность материала, % по массе.
Теплоемкость и ее практическое использование
Теплоемкость тела учитывают:
при изучении строения веществ и их свойств;
исследовании фазовых переходов и критических явлений;
расчете суммарного количества примеси в веществе;
определении тепловых эффектов химических реакций.
Выражая, например, Сp = (ДH /ДТ) в дифференциальной форме ДСp = [d(ДH)/dT], получаем уравнение Кирхгофа: общее изменение теплоемкости системы в результате реакции есть разность сумм теплоемкостей продуктов реакции и исходных веществ:
ДСp = Уn.ДCpпр- Уm.ДСрив;
где n и m -- количество исходных веществ и продуктов реакции.
Тепловой эффект реакции в зависимости от температуры определяется из уравнения
ДH = ДH2 - ДH1 или ДH = ? ДСp dT.
Уравнение Кирхгофа позволяет вычислить тепловой эффект реакции при любой температуре, исходя из известных величин теплового эффекта реакции при какой-либо температуре и изменения теплоемкости процесса. Чем больше ДСp тем в большей степени температура влияет на тепловой эффект реакции.
Удельная теплоемкость с является также важнейшей характеристикой при расчете тепловых потерь ограждающих конструкций и составлении балансов тепловых агрегатов.
Следует заметить, что теплоемкость, так же, как и плотность, не зависит от анизотропии кристаллов.
Тепловое расширение
Тепловое расширение -- это физическое свойство вещества и материала, характеризующееся изменением размеров тела в процессе его нагревания.
С точки зрения термодинамики тепловое расширение следует рассматривать как изобарический процесс, при котором теплота при нагревании затрачивается на производство работы по расширению и на увеличение внутренней энергии тела. Количественно оно характеризуется изобарным коэффициентом расширения или коэффициентом объемного теплового расширения в:
в = (1/ V)(dV/dТ)p,
где: V -- объем тела (твердого, жидкого или газообразного);
Т -- его абсолютная температура.
Практически значение в определяется по формуле:
в = (V1 -V2)/V1(T2-T1);
где: Т1 и Т2 -- температуры соответственно до и после нагревания;
V1 и V2 -- объемы тела соответственно при Т1 и Т2.
Механизм теплового расширения твердых тел
Механизм теплового расширения твердых тел можно представить следующим образом. Если к твердому телу подвести тепловую энергию, то благодаря колебанию атомов в решетке происходит процесс поглощения им теплоты. При этом колебания атомов становятся более интенсивными, т.е. увеличиваются их амплитуда и частота. С увеличением расстояния между атомами увеличивается и потенциальная энергия, которая характеризуется межатомным потенциалом. Последний выражается суммой потенциалов сил отталкивания и притяжения. Силы отталкивания между атомами с изменением межатомного расстояния меняются быстрее, чем силы притяжения; в результате форма кривой минимума энергии оказывается несимметричной, и равновесное межатомное расстояние увеличивается. Это явление и соответствует тепловому расширению.
Тепловое расширение зависит от химических связей, типа структуры кристаллической решетки, ее анизотропии и пористости твердого тела.
Связь “тип химической связи -- тепловое расширение”
Материалы с очень прочными химическими связями, такие, как алмаз, карбид кремния и другие соединения с ковалентной связью, имеют низкие коэффициенты термического расширения -- КТР, поскольку при увеличении потенциальной энергии тел с ковалентной связью ее симметричность практически не нарушается и равновесное межатомное расстояние изменяется незначительно.
В соединениях с ионной связью, например МgО, NаСI и др., при повышении температуры потенциальную энергию определяет главным образом сила притяжения. В результате кривая межатомного потенциала становится асимметричной и увеличение межатомного расстояния, т.е. расширение, становится значительным.
КТР металлов из-за слабости химической связи обычно достаточно высок.
Высокомолекулярные соединения со слабыми ван-дер-ваальсовыми связями имеют очень высокий КТР (табл. 2.6.).
Таблица 2.6. Химические связи и тепловое расширение
№ п/п |
Тип материала |
Тип хим. связи |
Вещество |
KTPxl0-6C-1, при 25°С |
|
1 |
Прир. минерал |
Ковалентная |
Алмаз |
-0,9 |
|
2 |
Керамика |
Кордиерит |
1,7 |
||
3 |
Муллит |
-5,0 |
|||
4 |
Карбид кремния |
5,6 |
|||
5 |
Оксид |
Ионная |
Периклаз |
13,5 |
|
6 |
Соль |
Хлористый натрий |
40 |
||
7 |
Металлы |
Металлическая |
Железо |
11,6 |
|
8 |
Свинец |
29,3 |
|||
9 |
Цинк |
39,7 |
|||
10 |
Полимеры |
Ван-дер-ваальсовая |
Полиметил-метакрилат |
50 |
|
11 |
Сложный полиэфир |
55...100 |
|||
12 |
Полиэтилен |
120 |
Из таблицы видно, что КТР находится в прямой зависимости от прочности химической связи.
Влияние структуры материала на тепловое расширение
Эту зависимость следует рассмотреть в двух аспектах: на микроуровне (особенности строения -- решетки и анизотропия кристаллов) и на макроуровне (влияние состояния твердой фазы и наличия пористости).
КТР тел кристаллической структуры значительно более высокий, чем тел такого же химического состава в аморфном состоянии. Так, КТР кварца примерно в 20 раз выше КТР кварцевого стекла. У более сложных по составу минералов, например альбита, при переходе в стеклообразное состояние также несколько уменьшается значение КТР.
Особенности строения кристаллической решетки сильно влияют на тепловое расширение кристаллических тел. У кристаллов с кубической решеткой тепловое расширение вдоль всех кристаллографических осей одинаково и изменение их размеров при изменении температуры симметрично. Следовательно, КТР, в данном случае линейный (a), оказывается у таких кристаллов однозначным в любом направлении.
У изотропных материалов средний коэффициент объемного термического расширения в ограниченном интервале температур связан с коэффициентом линейного температурного расширения б и выражается соотношением: в = 3б
У анизотропных кристаллов б различен вдоль разных кристаллографических осей, причем при более высоких температурах кристалл становится симметричнее. Другими словами, при повышении температуры кристалла уменьшается его анизотропия, что связано с полиморфизмом, т.е. способностью кристалла при повышении температуры приобретать более устойчивую для данных условий форму. Особенно это отчетливо прослеживается при полиморфных превращениях кварца и диоксида циркония.
Наиболее выраженное анизотропное расширение наблюдается у веществ со слоистой кристаллической решеткой, у которых химические связи настолько сильно направлены, что расширения между слоями и в плоскости слоев отличаются более, чем на порядок (табл. 2.7.).
Таблица 2.7. Коэффициенты линейного температурного расширения некоторых анизотропных минералов
Минералы |
б х 10-6, °С-1 |
||
перпендикулярно к с-оси |
параллельно с-оси |
||
Кварц (SiO2) |
14 |
9 |
|
Корунд (А12О3) |
8,3 |
9 |
|
Альбит [NaAl (Si3O8)] |
4 |
13 |
|
Кальцит (СаСО3) |
-6 |
25 |
|
Графит (С) |
1 |
27 |
У ярко выраженных анизотропных кристаллов коэффициент б в одном из направлений может быть отрицательным, но в целом объеме он компенсируется и становится положительным, и тогда результирующий коэффициент объемного термического расширения, в может быть очень низким. Такие материалы (например, кордиерит, титанат алюминия, алюмосиликаты лития и др.) обладают очень высокой термостойкостью, т.е. способностью многократно выдерживать без разрушения структуры резкие колебания температуры.
Фазовый состав и макроструктура материала оказывают существенное влияние на его КТР. Последний, в свою очередь, при изменении температуры определяет напряженное состояние структуры и, как следствие, прочностные характеристики материала.
Реально на границе двух фаз с разными КТР при изменении температуры одновременно возникают два вида напряжений: сжимающие, действующие на фазу с высоким б, и растягивающие, действующие на другую фазу с меньшим б. При напряжениях сверх некоторого критического значения появляются трещины. В поликристаллическом теле, имеющем много подобных контактов, как правило, появляется множество мельчайших трещин, которые не концентрируют напряжения, а релаксируют их.
Если поверхность контактов различных фаз велика и непрерывна, что имеет место в случае контакта керамического слоя с глазурью, то трещины из-за разности коэффициентов термического расширения слоев не образуются и релаксация не наступает. Тогда напряжения суммируются и происходит отрыв слоев. Во избежание этого явления производят расчет и подбор б глазури по химическому составу с учетом б черепка.
Пористость не влияет на б в случае, если непрерывной средой является твердая фаза. Если материал состоит из слабосвязанных частиц и непрерывной средой являются поры, то б в некоторой степени зависит от размера частиц и сил их сцепления и, следовательно, от величины пор.
Теплопроводность
Теплопроводность является физическим свойством материалов, связанным с переносом в них тепловой энергии за счет взаимодействия их мельчайших частиц (атомов, ионов, электронов, молекул).
Перенос тепловой энергии осуществляется непосредственно от частиц, обладающих большей энергией, к частицам с меньшей энергией и приводит к выравниванию температуры тела. Взаимодействие частиц происходит в результате непосредственного их столкновения, при перемещении или колебании.
Когда такие условия переноса тепловой энергии выполняются и такой вид переноса является доминирующим, соблюдается закон Фурье, согласно которому вектор плотности теплового потока пропорционален и противоположен по направлению градиенту температуры Т(grad Т):
Q = - л grad Т;
где л -- коэффициент теплопроводности (теплопроводность), который не зависит от grad Т, а зависит от агрегатного состояния вещества, его атомно-молекулярного строения, состава, температуры, давления и других физических показателей.
Агрегатное состояние вещества и теплопроводность
Механизм переноса тепловой энергии в веществах, находящихся в различных агрегатных состояниях, неодинаков. В газах и жидкостях он осуществляется хаотически движущимися молекулами, образующими однородную среду, в твердых телах -- за счет взаимодействия соседних атомов решетки.
Однако внутри каждого вида агрегатного состояния имеют место свои особенности переноса энергии, которые, в свою очередь, зависят от структуры и свойств конкретного вещества.
В газах механизм переноса энергии и величина теплопроводности л во многом зависят от расстояния между молекулами, т.е. определяются длиной их пробега l. В разреженных газах, когда l сравнимо с расстоянием между стенками L, ограничивающими объем газа, молекулы чаще сталкиваются со стенками, чем между собой. В результате происходит не направленный перенос тепла, а лишь теплообмен между молекулами в газовой среде. Следовательно, не соблюдается закон Фурье.
Если имеет место условие L >> l >> d, где d -- диаметр твердой cферической молекулы газа, то согласно кинетической теории газов для теплопроводности идеальных газов справедливо следующее выражение:
л = 1/3 ссv.н.l;
где с -- плотность газа, моль/м3;
сv - удельная теплоемкость газа при V=соnst, Дж/моль°С;
н -- средняя скорость движения молекул, м/с;
1 -- средняя длина свободного пробега частиц, м.
Кроме того, в идеальных газах теплопроводность л связана еще и с вязкостью з соотношением:
л = 5/2 з. сv
В плотных (реальных) газах расстояние между молекулами сравнимо с размерами самих молекул, а кинетическая энергия движения молекул и потенциальная энергия межмолекулярного взаимодействия -- величины одного и того же порядка. В связи с этим перенос энергии столкновениями происходит значительно интенсивнее, чем в разреженных газах, и теплопроводность значительно выше.
В реальных газах зависимость теплопроводности от температуры и давления очень сложна, хотя при их увеличении теплопроводность газов растет.
Теплопроводность л газов зависит от молекулярной массы М и количества атомов в молекуле n. При прочих равных условиях между л и М существует следующая зависимость:
л = 1/M0,5
Поэтому некоторые хлористые соединения, например фреоны, плохо проводят тепло.
Увеличение количества атомов в молекуле повышает теплопроводность в среднем на 2% на каждый атом. По этой причине бутан (n = 14) значительно более теплопроводен, чем сернистый газ (n=3), при примерно равных значениях молекулярных масс.
В жидкостях межмолекулярное расстояние еще меньше, чем в реальных газах. Плотность жидкости высока, а молекулы, хотя и подвижны, но не так хаотичны, как в газах, и перенос тепловой энергии осуществляется практически между слоями жидкости. Скорость такого распространения близка скорости распространения звука в жидкой среде нзв, а теплопроводность жидкости описывается уравнением:
л = с.сv. нзв.l;
Как видно из этого уравнения, теплопроводность жидкости л тем больше, чем выше ее удельная теплоемкость сv и плотность с. При повышении температуры жидкости расстояние между молекулами увеличивается, жидкость расширяется, а ее теплопроводность снижается. Исключения составляют вода, тяжелая вода и глицерин.
Химический состав жидкости влияет на теплопроводность через изменение температуры кипения. Чем ниже температура кипения жидкости, тем выше скорость уменьшения ее теплопроводности при нагревании.
В твердых телах перенос тепловой энергии осуществляется с помощью двух основных механизмов:
- за счет взаимодействия между тепловыми упругими колебаниями решетки;
- за счет движения электронов и столкновения их с атомами.
В большинстве случаев теплопроводность твердых тел л складывается из теплопроводности решетки лреш и теплопроводности электронами лэл т.е. условно л = лреш + лэл.
В неорганических, неметаллических, тугоплавких материалах (керамика, природные каменные материалы, бетоны и др.) количество свободных электронов, которые могли бы двигаться через кристаллическую решетку и осуществлять перенос энергии, недостаточно и теплота в основном передается за счет колебаний решетки.
Величина теплопроводности зависит от характера колебаний решетки. При гармонических колебаниях сопротивление переносу энергии отсутствует и теплопроводность может достигать огромных значений. Однако в реальных кристаллах колебания имеют ангармонический характер, который способствует частичному затуханию упругих тепловых колебаний и значительному снижению теплопроводности.
В теории теплопроводности предполагается, что колебания нормального вида квантуются и по аналогии с фотонами в теории света эти кванты называют фононами, а механизм переноса тепловой энергии -- фононной теплопроводностью.
Таким образом, у твердых неметаллических тел перенос тепловой энергии осуществляется за счет взаимодействия фононов, в результате их движения, сталкивания, рассеивания и т.п. По аналогии с кинетической теорией газов фононную теплопроводность твердых тел можно представить как
л = с н l;
где l - длина свободного пробега фононов.
с -- удельная теплоемкость тела;
н -- средняя скорость фононов;
В металлах перенос тепловой энергии определяется движением и взаимодействием электронов проводимости, так как решетчатая фононная составляющая теплопроводности исчезающе мала и лэл>> лреш.
Явление переноса тепла в полупроводниках сложнее, чем в диэлектриках и металлах, так как для них существенны как решеточная, так и электронная составляющие теплопроводности. Кроме того, здесь теплопроводность зависит от теплопроводности примесей и многих других факторов.
Влияние состава, структуры и параметров состояния на фононную теплопроводность твердого тела (кристалла)
Анализируя механизм переноса тепловой энергии в неорганических, неметаллических материалах (кристаллах), заметим, что основными факторами, влияющими на величину теплопроводности, являются:
- теплоемкость
- средняя скорость движения частиц (фононов);
- средняя длина свободного пробега частиц (фононов);
- степень гармоничности (ангармоничности) колебания решетки.
По изменениям этих параметров можно объяснить закономерности влияния состава, структуры, температуры и давления на теплопроводность того или иного тела.
Рассмотрим влияние структуры на теплопроводность кристаллов. Напомним, что структура кристаллов определяется типом химических связей и строением кристаллической решетки. Состав и структура кристаллов тесно взаимосвязаны, поэтому и оказывают совместное влияние на теплопроводность.
Известно, что строение кристаллической решетки и характер ее колебания влияют на степень отклонения гармоничности колебаний.
Ангармоничность обусловливается прежде всего различием атомных масс ионов решетки. Это различие вызывает так называемое рассеяние колебания с уменьшением средней длины пробега частиц. В результате этого теплопроводность уменьшается. Так, у оксидов и карбидов с легкими катионами, атомная масса которых близка соответственно атомной массе кислорода и углерода, теплопроводность оказывается более высокой, чем у оксидов и карбидов с тяжелыми катионами.
Расположение атомов в решетке влияет на образование осей симметрии и, как следствие, на анизотропию кристаллов. Теплопроводность в отличие от теплоемкости является анизотропным свойством; для многих кристаллов ее величина л почти в 2 раза больше при потоке тепла параллельно оси симметрии, а не перпендикулярно к ней.
У кристаллов с простым строением решетки термическое рассеяние мало, а l велико, поэтому их теплопроводность высокая.
Кристаллы с более сложным строением решетки в общем имеют большее рассеяние тепловых упругих волн, увеличивающее ангармоничность ее колебания и, следовательно, пониженную теплопроводность.
Введение второго компонента в основной кристалл (твердые растворы) вызывает:
- усложнение строения кристаллической решетки;
- образование дополнительных центров рассеяния и, как следствие, уменьшение средней длины свободного пробега частиц.
В результате совместного влияния этих факторов теплопроводность нового соединения оказывается значительно ниже теплопроводностей его составляющих. Например, глинозем (Аl2O3) и периклаз (МgO) имеют примерно равные, но очень высокие значения теплопроводности, порядка 30. . .35 Вт/м.К, в то время как теплопроводность алюмомагнезиальной шпинели (МgO.А12O3) значительно ниже -- порядка 13...15 Вт/м.К. Другой пример: глинозем (А12О3) и кремнезем (SiO2) -- простые компоненты, а муллит (3 А12О3. 2SiO2) -- сложное соединение. В обоих случаях примесные компоненты МgO и SiO2 значительно уменьшают теплопроводность соединения за счет усложнения строения кристаллической решетки и уменьшения средней длины свободного пробега частиц.
Взаимосвязь температура и теплопроводность твердого тела сложна и неоднозначна. Она определяется характеристической “температурой Дебая” (температура Дебая - интервал от 100 до 1000о К), которая устанавливает для каждого вещества температурную границу, выше которой не улавливаются квантовые эффекты, и фононовая теплопроводность теряет физический смысл.
Для большинства обжиговых и плавленых материалов эта температурная граница находится в пределах 100... 1000 К. В таком интервале температур составляющие формулы фононной теплопроводности, удельной теплоемкости и скорости распространения фононов практически остаются неизменными, а средняя длина свободного пробега фононов, с учетом теории теплоемкости, должна быть обратно пропорциональной абсолютной температуре, хотя имеются многочисленные исключения.
Итак, с увеличением температуры кристалла средняя длина свободного пробега частиц сокращается, ангармоничность растет и теплопроводность, уменьшается.
При температурах выше 1500оС теплопроводность огнеупорных оксидов обычно увеличивается, так как составляющая переноса тепла излучением значительно превосходит фононную.
Влияние давления на теплопроводность твердых тел выражается линейной зависимостью. Для многих минералов и металлов теплопроводность растет с увеличением давления.
Теплопроводность некристаллических тел
Тела с сильно разупорядоченной кристаллической решеткой, а также с полностью некристаллическим строением имеют очень низкую среднюю длину свободного пробега фононов, которая находится в пределах межатомного расстояния (порядка 3.. .5 ?). Этим в основном объясняется низкая теплопроводность стекол и других аморфных тел и ее слабая зависимость от температуры.
Данные по теплопроводности стекол, приведенные в табл. 2.7, являются типичными для некристаллических твердых тел. Как видно из таблицы, их теплопроводности очень близки, хотя состав стекла все же оказывает некоторое влияние. Например, стекла с высоким содержанием бария или свинца имеют теплопроводность ниже, чем натрий, калий, силикатные стекла.
Таблица 2.7. Теплопроводность различных твердых тел
Тип материала |
Вещество |
Теплопроводность, Вт/м°С |
|
Минералы |
Корунд (А12О3) |
-30 |
|
Периклаз (MgO) |
-36 |
||
Шпинель (MgOAl2O3) |
-15 |
||
Кварц (SiO2) |
0,63 |
||
Муллит (3Al2O3-2SiO2) |
5,8 |
||
Графит (С) |
180 |
||
Стекла |
Кварцевое стекло |
1,72 |
|
Натрий-кальций-силикатное стекло |
1,44 |
||
Металлы |
Медь (Си) |
397 |
|
Алюминий (А1) |
230 |
||
Железо (Fe) |
73,2 |
||
Титан (Ti) |
4,1 |
||
Полимеры |
Полиэтилен |
0,34 |
|
Полистирол |
0,084 |
||
Поливинилхлорид |
0,15 |
||
Полиметилметакрилат |
0,16 |
Стекловидная фаза, которая обычно выполняет роль связки в традиционной керамике, имеет теплопроводность, близкую к теплопроводности натрий, калий, силикатного стекла.
Природные и синтетические полимеры ввиду особого строения макромолекул обладают самой низкой теплопроводностью из твердых веществ и соединений, потому что такие легкие элементы, как С, О, Н и др., образуют ковалентную связь, и можно предположить высокую теплопроводность их молекул. Однако из-за слабости и неоднородности молекулярных связей рассеяние фононов оказывается значительным, а теплопроводность низкой.
В зависимости от агрегатного состояния веществ и особенностей переноса ими тепловой энергии условный ряд тел по величине их теплопроводности (по мере возрастания) может иметь следующий вид:
газы <<полимеры<<жидкости<<стекла<<кристаллы<<металлы,
Существенное изменение теплопроводности тел при изменении их состава и температуры и проявление в различных интервалах температур разных механизмов переноса тепла усложняет анализ этого явления ввиду значимости каждого фактора и их взаимосвязей.
Следует заметить, что для каждого агрегатного состояния тела имеется параметр (критерий), определяющий интервал состояния тела, за пределами которого его свойства резко изменяются. Такими параметрами (критериями) являются:
- для газа -- соотношение между суммарным объемом частиц и общим объемом, занимаемым газом, т.е. величина, которая определяет его плотность и, следовательно, теплопроводность;
- жидкости -- температура кипения, определяющая скорость изменения теплопроводности при изменении температуры;
- кристаллических тел -- температура Дебая, которая определяет эффективные параметры упругих колебаний кристаллической решетки, обеспечивающих перенос тепловой энергии.
Теплопроводность гетерогенных систем
В строительном материаловедении теплопроводность л учитывается при расчете ограждающих конструкций для обеспечения:
- тепловой изоляции зданий и сооружений
- тепловой защиты поверхностей тепловых агрегатов и трубопроводов;
- термостойкости огнеупорных материалов и специальных составов;
- хладоизоляции.
Поскольку ограждающие конструкции по своему назначению многофункциональны, составляющие их материалы, как правило, являются гетерогенными пористыми телами. Общая, или эффективная теплопроводность таких систем определяется теплопроводностями твердых и газовых фаз:
л = лтв + лгаз
Однако, учитывая тот факт, что теплопроводность является векторной величиной, ее суммарное значение для гетерогенных систем зависит не только от количественного соотношения фаз, но и от их взаимного расположения, характера пограничного слоя, степени непрерывности или дискретности фаз и т.д., т.е. от структуры и текстуры материала.
Чтобы оценить эффективную теплопроводность системы, рассмотрим влияние каждой составляющей.
Для оценки зависимости теплопроводности системы от сочетания твердых фаз приведем в качестве примера три упрощенных варианта сочетания твердых фаз двухфазной системы:
- параллельное расположение слоев (фаз), свойственное слоистой структуре материалов (рис.4.4, а);
- основная фаза является непрерывной, а другая - в виде отдельных включений, что соответствует структуре стеклокристаллических материалов (рис.4.4. б);
- основная фаза является дискретной, соответствует структуре, подобной конгломератам, например бетонам, (рис.2.2. в).
Рис. 2.2. Схемы распределения фаз: а - параллельными слоями; б - с непрерывной основной фазой; в - с дискретной основной фазой; к1 - основная фаза, к2 - вторая фаза; q1, q2 - направления теплового потока
Вариант 1 Слоистая структура (см. рис. 2.3. а)
Если тепловой поток q направлен вдоль слоев, то л рассчитывается так же, как и электропроводность цепи с параллельно включенными сопротивлениями. При одинаковом ДТ во всех слоях большая часть тепла переносится через фазу с более высокой теплопроводностью. Среднюю теплопроводность можно рассчитать по формуле:
лср = V1 л1 + V2 / л2
где V1 и V2 -- объемные доли каждой фазы.
В этом случае общая теплопроводность системы определяется в основном фазой с более высокой теплопроводностью, и если л1 >> л2, то лср= V1 л1.
Если тепловой поток направлен перпендикулярно к плоскости слоев, то имеет место случай, аналогичный случаю электрической цепи с последовательным включением сопротивлений. Тепловой поток, проходящий через все слои, остается величиной постоянной, тогда как ДТ по слоям различна, и общая теплопроводность определяется соотношением:
1 /лср = V1/л1 +V2/ л2 или лср = л1 л2/( V1 л1 + V2 л2)
В этом случае общая теплопроводность определяется в основном фазой с меньшёй теплопроводностью, и если л1 >> л2, то лср~~ л2/ V2.
Вариант 2. Структура с непрерывной основной фазой (см. рис.2.2. 6).
Если вторая фаза дискретна и по величине не превышает 10%, то общая (средняя) теплопроводность системы определяется теплопроводностью непрерывной фазы.
Вариант З. Структура с дискретной основной фазой (см. рис.2.2. в).
Если содержание второй фазы превышает 10%, то главным фактором, определяющим теплопроводность системы, является соотношение фаз, и условно непрерывной фазой становится большая из них. Общую теплопроводность системы определяют исходя из соотношений Максвелла-Эйкена для непрерывной среды с л1 и диспергированной в нее фазой с л2:
Если л1 >> л2 , то лср = л1(1- V2)/(1+ V2).
Если л1<< л2, то лср = л2(1 + 2 V2)/(1 - V2).
Как влияет газовая фаза на теплопроводность системы? Выше упоминалось о том, что гетерогенные системы (неорганические, не металлические материалы), как правило, имеют значительную газовую составляющую, которая колеблется от доли процента у плотных природных каменных материалов до 99% у искусственных полимерных материалов.
Тот факт, что с увеличением газовой фазы или пористости теплопроводность системы уменьшается, не вызывает сомнения. Например, теплопроводность воздуха примерно в 20 раз меньше теплопроводности керамического черепка. Однако необходимо выделить два момента:
- при увеличении пористости теплопроводность системы уменьшается за счет сокращения объема более теплопроводной твердой фазы, что не требует доказательства;
- при увеличении пористости теплопроводность системы снижается еще и за счет уменьшения теплопроводности самой твердой фазы.
Такая закономерность объясняется тем, что поры, образуя новые поверхности в плотной структуре, становятся центрами рассеяния, примерно такими, как дефекты решетки, границы зерен примеси и пр. При этом уменьшается средняя длина свободного пробега частиц и снижается фононная теплопроводность системы.
Если пренебречь влиянием границ зерен и другими факторами, а также теплопроводностью самих пор (т.е. газовой составляющей) и допустить, что поры равномерно распределены в непрерывной среде, то можно получить уравнение Максвелла-Эйкена, показывающее влияние пористости на фононную теплопроводность гетерогенной системы:
л = лср(1-П)(1+0,5П);
где л, лср -- соответственно теплопроводности системы и твердой фазы в абсолютно плотном состоянии;
П -- пористость системы, ед.
Приведенное соотношение теплопроводность -- пористость условию для непрерывной твердой фазы с изолированными порами. Однако если непрерывной является газовая фаза, как в порошкообразных и волокнистых материалах, то необходимо учитывать и ее теплопроводность, которая определяется конвективным теплопереносом а, а при температурах выше 600°С -- еще и излучением «кч».
При расчете эффективной теплопроводности с учетом конвекции и излучения определяющими факторами являются размер пор и температура. Так, влияние переноса теплоты излучением на теплопроводность пор пропорционально их условному диаметру d и кубу температуры, Следовательно, наличие крупных пор приводит к повышению общей теплопроводности системы, особенно при высокой темпера туре, в то время как мелкие поры являются хорошим препятствием для переноса теплоты.
Следует, однако, снова упомянуть о том, что на теплопроводность влияет не только размер пор, но и непрерывность поровой среды. Причем влияние последнего фактора значительнее.
Из опыта применения высокотемпературной теплоизоляции известно, что в сыпучих и волокнистых материалах, где непрерывной средой является воздух, размер пор, а, следовательно, и размер зерен или толщина волокон практически не оказывают влияния на теплопроводность материалов при низких температурах.
При высоких температурах размер зерен становится значимым параметром, так как с увеличением конвективной составляющей теплопереноса резко возрастает фактор излучения. Поэтому для высокотемпературной изоляции наиболее эффективными являются мелкозернистые или мелкопористые материалы. Теплопроводность же самой твердой фазы или зерна в данном случае имеет второстепенное значение.
При высоких температурах размер зерен становится значимым параметром, так как с увеличением конвективной составляющей теплопереноса резко возрастает фактор излучения. Поэтому для высокотемпературной изоляции наиболее эффективными являются мелкозернистые или мелкопористые материалы. Теплопроводность же самой твердой фазы или зерна в данном случае имеет второстепенное значение.
Плавление материалов
Температура плавления (Тпл) - параметр состояния твердого тела, характеризующий границу его устойчивости. Другими словами, это температура равновесного фазового перехода твердого тела в жидкость при постоянном внешнем давлении.
Наличие определенной температуры плавления - важный признак кристаллического строения тел. По этому признаку их легко отличить от аморфных твердых тел, не имеющих фиксированной температуры плавления.
Механизм плавления твердого тела
Механизм перехода твердого тела в жидкость можно объяснить изменением энергетического состояния твердого тела при нагревании. При подведении к кристаллическому телу теплоты увеличивается энергия (амплитуда) колебаний его атомов, что приводит к повышению температуры и способствует возникновению в кристалле различных дефектов. Постепенный рост числа дефектов и их скопление характеризуют стадию "предплавления" (рис. 2.3.). С Достижением температуры плавления в кристалле создается критическая концентрация дефектов.
Рис. 2.3. Стадии фазового перехода твердого тела в жидкость при нагревании
Начинается плавление, т.е. кристаллическая решетка распадается на легкоподвижные субмикроскопические фрагменты. Подводимая в этот период теплота идет не на нагрев тела, а на разрыв межатомных связей и нарушение в кристалле дальнего порядка. Когда этот процесс завершится, твердое тело полностью превратится в жидкость. Температура, при которой возникает такое явление, есть температура плавления.
С точки зрения термодинамики, при температуре плавления достигается равновесное состояние, т.е. состояние, при котором выравниваются энергии Гиббса твердой и жидкой фаз.
Для обычных условий, без учета сверхвысоких давлений, также влияющих на Тт, следует считать температуру плавления одной из характеристических констант вещества.
Состав и температура плавления
Поскольку строительное материаловедение в основном рассматривает поликристаллические тела и сложные кристаллы, вызывает интерес влияние составляющих компонентов на температуру их плавления.
Это влияние представляется многофакторным и чрезвычайно сложным, так как при нагревании и плавлении даже простейшей двухкомпонентной системы необходимо рассматривать следующие возможные варианты:
-постоянство состава при фазовом переходе (конгруэнтноеплавление);
-образование нового соединения (инконгруэнтное плавление);
- разложение;
- образование твердых растворов, т.е. изоморфных смесей смешанных кристаллов;
- проявление полиморфизма одним или всеми компонентами.
Вещественный состав и температура плавления. Различные химические соединения имеют разную температуру плавления, что вполне очевидно. Однако во многих случаях прослеживается определенная закономерность изменения температуры плавления в зависимости от типа соединений. Так, для соединений одних и тех же металлов температура плавления повышается в последовательности металлы < оксиды < нитриды < карбиды и т.д.
Такую закономерность можно объяснить различием у этих соединений типов химических связей и слабостью или прочностью их структуры (табл. 4.4.).
Тип химической связи и температура плавления материала
Этот фактор является основным при определении порядка (уровня) температуры плавления различных веществ и соединений. Отмечена тенденция повышения температуры плавления с усилением химических связей в следующем порядке:
молекулярные кристаллы < кристаллы с металлической связью < ионные кристаллы <кристаллы с ковалентной связью.
Низкая температура плавления молекулярных кристаллов, к которым можно отнести органические полимеры, объясняется тем, что, несмотря на ковалентный тип связи между частицами, образующими молекулы, межмолекулярное взаимодействие осуществляется слабыми ван-дер-ваальсовыми силами (табл.2.8.).
Таблица 2.8. Взаимосвязь тип соединения - тип химической связи - температура плавления
Соединения |
Химическая связь |
Т °С |
||||
Металлы |
Оксиды |
Нитриды |
Карбиды |
|||
А1 |
Металлическая |
659 |
||||
А12О3 |
Ковалентная |
2050 |
||||
A1N |
Ковалентно-ионная |
2400 |
||||
Аl4Сз |
Тоже |
2800 |
||||
Ti |
Металлическая |
1668 |
||||
TiO2 |
Ионная |
1870 |
||||
TiN ... |
Подобные документы
Строительные материалы по назначению. Методы оценки состава стройматериалов. Свойства и применение гипсовяжущих материалов. Цементы: виды, применение. Коррозия цементного камня. Состав керамических материалов. Теплоизоляционные материалы, их виды.
шпаргалка [304,0 K], добавлен 04.12.2007Общие сведения о строительных материалах, их основные свойства и классификация. Классификация и основные виды природных каменных материалов. Минеральные вяжущие вещества. Стекло и стеклянные изделия. Технологическая схема производства керамической плитки.
реферат [20,3 K], добавлен 07.09.2011Виды санитарно-технической керамики. Сырьё, технология ее изготовления. История возникновения и производства стекла. Свойства акустических материалов и применение их в строительстве. Основные свойства строительных растворов. Физические свойства древесины.
контрольная работа [41,7 K], добавлен 12.09.2012Классификация искусственных строительных материалов. Основные технологические операции при производстве керамических материалов. Теплоизоляционные материалы и изделия, применение. Искусственные плавленые материалы на основе минеральных вяжущих бетонных.
презентация [2,4 M], добавлен 14.01.2016Естественные и искусственные строительные материалы. Материалы из древесины, сохранившие ее природную физическую структуру и химический состав (лесоматериалы), их разделение на обработанные и необработанные. Основные свойства и пороки древесины.
курсовая работа [8,9 M], добавлен 16.12.2010Свойства дорожно-строительных материалов. Способы формования керамических изделий. Природные каменные материалы. Сырье, свойства и применение низкообжигового строительного гипса. Основные процессы, необходимые для получения портландцементного клинкера.
контрольная работа [302,3 K], добавлен 18.05.2010Свойства строительных материалов, области их применения. Искусство изготовления изделий из глины. Классификация керамических материалов и изделий. Цокольные глазурованные плитки. Керамические изделия для наружной и внутренней облицовки зданий.
презентация [242,9 K], добавлен 30.05.2013Роль качественной звукоизоляции помещений в жизни человека. Основные виды шума: воздушный и структурный. Защита от производственного шума. Группы звукоизоляционных материалов, строительные нормы и правила. Эффективные решения проблемы звукоизоляции.
реферат [5,4 M], добавлен 16.04.2011Прочность материалов и методы ее определения. Разновидности облицовочной керамики в строительстве. Глиноземистый цемент, его свойства и применения. Полимерные материалы, применяемые в отделке внутренних стен. Гидроизоляционные материалы, их применение.
контрольная работа [33,1 K], добавлен 26.03.2012Принципы, определяющие внешний вид офиса. Требования, предъявляемые к отделочным материалам и ремонту офисов. Классификация потолков по конструктивному решению. Типы напольных покрытий. Строительные материалы для отделки стен. Виды оконных конструкций.
реферат [31,3 K], добавлен 20.12.2011Специальные виды цементов, их особые свойства и сферы применения. Физические, механические и технологические свойства древесины. Виды бетонов и их составляющие. Бетон и железобетон: их качества, технологические схемы производства и область применения.
контрольная работа [50,0 K], добавлен 22.02.2012Характеристика свойств строительных материалов. Минеральный состав магматических горных пород. Гипсовые вяжущие вещества, их свойства. Гниение и антисептирование древесины. Рулонные кровельные материалы. Технология получения цемента по "мокрому" способу.
контрольная работа [87,0 K], добавлен 25.07.2010Свойства кровельных и гидроизоляционных материалов на основе органических вяжущих. Виды и применение теплоизоляционных материалов. Требования к зданиям; принципы проектирования генерального плана. Системы отопления и водопровода; канализационные сети.
контрольная работа [100,3 K], добавлен 08.01.2015Классификация строительных материалов. Требования к составляющим бетона, факторы, влияющие на его прочность и удобоукладываемость. Ячеистые и пористые бетоны, их применение в строительстве. Лакокрасочные материалы и металлы, их применение в строительстве.
контрольная работа [31,0 K], добавлен 05.05.2014Характеристика предварительно напряженного железобетона и его преимущества по сравнению с обычным бетоном. Опеределение и строение древесины. Процесс изготовления минеральной ваты. Основные звукоизоляционные материалы. Назначение строительных растворов.
контрольная работа [24,9 K], добавлен 12.05.2009Сущность акустических материалов, их разновидности и свойства. Обзор мягких, полужестких и твердых звукопоглощающих материалов. Звукопоглощающие свойства акмиграна, способы его изготовления. Классификация звукоизоляционных прокладочных материалов.
презентация [561,5 K], добавлен 02.03.2016Битумы, дегти и материалы на их основе. Термопластичные и термореактивные полимеры. Технология производства асфальтобетона. Схема коллоидно-дисперсного строения битума. Классификация органических вяжущих веществ. Основные недостатки битумов и дегтей.
лекция [76,6 K], добавлен 16.04.2010Строительный раствор - затвердевшая смесь, состоящая из вяжущего вещества, мелкого заполнителя (песка) и воды. Классификация строительных растворов по назначению и по составу. Специальные виды растворов и сырьевые материалы, технология их производства.
курсовая работа [153,8 K], добавлен 13.02.2012Характеристика основных пород древесины: хвойные, лиственные кольцесосудистые и рассеяннососудистые. Особенности строения и макросруктуры древесных материалов, их физико-механических свойств: плотность, влажность, тепло- и звукопроводность, разбухание.
реферат [71,4 K], добавлен 17.05.2010Сведения о древесине: достоинства, недостатки, качество, область применения. Физические и механические свойства древесины, методы повышения ее долговечности. Свойства модифицированной древесины; полимеры-модификаторы. Строительные изделия из древесины.
реферат [202,9 K], добавлен 01.05.2017