Охорона праці та навколишнього середовища
Шкідливі та небезпечні фактори виробничого середовища і трудового процесу, їх вплив на здоров'я та працездатність людини. Основні заходи та засоби створення безпечних та нешкідливих умов праці. Протипожежна безпека та охорона навколишнього середовища.
Рубрика | Безопасность жизнедеятельности и охрана труда |
Вид | учебное пособие |
Язык | украинский |
Дата добавления | 14.05.2015 |
Размер файла | 445,0 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Природне освітлення має важливе фізіолого-гігієнічне значення для працюючих. Воно сприятливо впливає на органи зору, стимулює фізіологічні процеси, підвищує обмін речовин та покращує розвиток організму в цілому. Сонячне випромінювання зігріває та знезаражує повітря, очищуючи його від збудників багатьох хвороб (наприклад, вірусу грипу). Окрім того, природне світло має і психологічну дію, створюючи в приміщенні для працівників відчуття безпосереднього зв'язку з довкіллям. Природному освітленню властиві і недоліки: воно непостійне в різні періоди доби та року, в різну погоду; нерівномірно розподіляється по площі виробничого приміщення; при незадовільній його організації може викликати засліплення органів зору. На рівень освітленості приміщення при природному освітленні впливають наступні чинники: світловий клімат; площа та орієнтація світлових отворів; ступінь чистоти скла в світлових отворах; пофарбування стін та стелі приміщення; глибина приміщення; наявність предметів, що заступають вікно як зсередини так і з зовні приміщення.
Оскільки природне освітлення непостійне впродовж дня, кількісна оцінка цього виду освітлення проводиться за відносним показником - коефіцієнтом природного освітлення (КПО). В основі визначення КПО покладено розмір об'єкта розпізнавання, під яким розуміють предмет, що розглядається або ж його частину, а також дефект, який потрібно виявити. Розрахунок природного освітлення полягає у визначенні площі світлових отворів (вікон, ліхтарів) у відповідності з нормованим значенням КПО.
Штучне освітлення передбачається у всіх виробничих та побутових приміщеннях, де недостатньо природного світла, а також для освітлення приміщень в темний період доби. При організації штучного освітлення необхідно забезпечити сприятливі гігієнічні умови для зорової роботи і одночасно враховувати економічні показники. Найменша освітленість робочих поверхонь у виробничих приміщеннях визначається характеристикою зорової роботи. В якості джерел штучного освітлення широко використовують лампи розжарювання та газорозрядні лампи.
Лампи розжарювання відносяться до теплових джерел світла. Під дією електричного струму нитка розжарювання (вольфрамовий дріт) нагрівається до високої температури і випромінює потік променевої енергії. Ці лампи характеризуються простотою конструкції та виготовлення, відносно низькою вартістю, зручністю експлуатації, широким діапазоном напруг та потужностей. Поряд з перевагами їм притаманні і суттєві недоліки: велика яскравість (засліплююча дія); низька світлова віддача (7-20 лм/Вт); відносно малий термін експлуатації (до 2,5 тис. год.); переважання жовто-червоних променів в порівнянні з природним світлом; висока температура нагрівання (до 140°С і вище, що робить їх пожежонебезпечними). Лампи розжарювання використовують, як правило, для місцевого освітлення, а також освітлення приміщень з тимчасовим перебуванням людей.
Газорозрядні лампи внаслідок електричного розряду в середовищі інертних газів і парів металу та явища люмінесценції випромінюють світло оптичного діапазону спектру. Основною перевагою газорозрядних ламп є їх економічність. Світлова віддача цих ламп становить 40-100 лм/Вт. Термін експлуатації - до 10 тис. год, а температура нагрівання (люмінесцентні) - 30-60°С. Окрім того, газорозрядні лампи забезпечують світловий потік практично будь-якого спектра, шляхом підбирання відповідним чином інертних газів, парів металу, люмінофора. Так, за спектральним складом видимого світла розрізняють люмінесцентні лампи: денного світла (ЛД), денного світла з покращеною передачею кольорів (ЛДЦ), холодного білого (ЛХБ), теплого білого (ЛТБ) та білого (ЛБ) кольорів. Основним недоліком газорозрядних ламп є пульсація світлового потоку, що може зумовити виникнення стробоскопічного ефекту, котрий полягає у спотворенні зорового сприйняття об'єктів, що рухаються, обертаються. До недоліків цих ламп можна віднести також складність схеми включення, шум дроселів, значний час між включенням та запалюванням ламп, відносно висока вартість.
Газорозрядні лампи бувають низького та високого тиску. Лампи низького тиску, що називаються люмінесцентними, широко застосовуються для освітлення приміщень як на виробництві так і в побуті. Однак, вони не можуть використовуватись при низьких температурах, оскільки погано запалюються та характеризуються малою одиничною потужністю при великих розмірах самих ламп. Газорозрядні лампи високого тиску застосовуються в умовах, коли необхідна висока світлова віддача при компактності джерел світла і стійкості до умов зовнішнього середовища. Серед цих типів ламп найчастіше використовуються металогенні (МГЛ), дугові ртутні (ДРЛ), та натрієві (ДНаТ).
До основних характеристик джерел штучного освітлення належать: номінальна напруга живлення, В; електрична потужність лампи, Вт; світловий потік, лм; світлова віддача, лм/Вт; термін експлуатації; спектральний склад світла.
Світильник - це світловий прилад, що складається із джерела світла (лампи) та освітлювальної арматури. Освітлювальна арматура перерозподіляє світловий потік лампи в просторі, або перетворює його властивості (змінює спектральний склад випромінювання), захищає очі працівника від засліплюючої дії ламп. Окрім того, вона захищає джерело світла від впливу оточуючого пожежо- та вибухонебезпечного, хімічно-активного середовища, механічних ушкоджень, пилу, бруду, атмосферних опадів. Світильники відрізняються цілою низкою світлотехнічних конструктивних характеристик. Основними світлотехнічними характеристиками світильників є світлорозподілення, крива сили світла (КСС), коефіцієнт корисної дії (відношення світлового потоку світильника до світлового потоку встановленої в нього лампи), захисний кут (визначає ступінь захисту очей від впливу яскравих частин джерела світла).
Надійність та ефективність природного і штучного освітлення залежить від своєчасності і ретельності їх обслуговування. Забруднення скла світлових отворів, ламп та світильників може знизити освітленість приміщень в 1,5-2 рази. Тому вікна необхідно мити не рідше двох разів у рік для приміщень з незначним виділенням пилу і не рідше чотирьох разів - при значному виділенні пилу. Періодичність чищення світильників - 4-12 разів на рік (залежно від характеру запиленості виробничих приміщень). В світильниках з люмінесцентними лампами необхідно також слідкувати за справністю схем включення (не допускати миготіння ламп та шуму дроселів), забезпечувати безпеку та зручність експлуатації і обслуговування світильників, а також своєчасно замінювати перегорілі лампи і лампи, що слабо світяться. Замінені люмінесцентні лампи зберігаються на складах і, якщо можливо, вивозяться на спеціальні підприємства для вилучення наявної в них ртуті. Періодично, не рідше одного разу на рік, необхідно перевіряти рівень освітленості в контрольних місцях виробничого приміщення. Основний прилад для вимірювання освітленості - люксметр.
У відповідності до Будівельних норм та правил приміщення з постійним перебуванням людей повинні мати, як правило, природне освітлення. При проектуванні освітлювальних установок депо необхідно керуватися галузевими стандартами для залізничного транспорту.
Для освітлення виробничих територій повинні застосовуватися освітлювальні прилади з галогенними лампами розжарювання потужністю 1-10 кВт та газорозрядними джерелами світла типу ДРЛ. Загальне освітлення виробничих приміщень необхідно здійснювати світильниками з газорозрядними джерелами світла (ДРЛ та люмінесцентні лампи). Лампи розжарювання слід використовувати переважно для місцевого освітлення, для освітлення приміщень з тимчасовим перебуванням людей, у вибухо- та пожежонебезпечних приміщеннях з важкими умовами середовища, для аварійного освітлення. Вікна виробничих та допоміжних приміщень депо, спрямованих на сонячний бік, повинні мати пристосування для захисту працюючих від прямих сонячних променів. Норми освітленості виробничих приміщень депо в залежності від системи освітлення наведені в таблиці 2.
Світильники повинні бути встановлені таким чином, щоб забезпечити захист очей працюючих від осліплення джерелом світла. Для виконання робіт на локомотивах повинні застосовуватися місцеві стаціонарні та переносні світильники з лампами напругою не більше 50В постійного струму або 36В змінного струму. Оглядові канави повинні освітлюватися електричними світильниками, розміщеними в нішах канави, з лампами напругою не вище 36В змінного струму.
Таблиця 2
Норми освітленості виробничих приміщень депо, лк
Найменування дільниць, відділень та цехів |
Загальне освітлення (газорозрядні лампи) |
Тип ламп |
|
Цех ТО-2 |
100 |
ДРЛ |
|
Цехи ПР-1, ТО-4, ТО-3 |
100 |
ДРЛ |
|
Цехи ПР-3, ПР-2 |
100 |
ДРЛ |
|
Електромашинне відділення та випробувальна станція |
100 |
ДРЛ |
|
Просочувально-сушильне відділення |
200 |
ДРЛ |
|
Електроапаратний цех |
100 |
ЛЛ/ДРЛ |
|
Дизель-агрегатний цех |
150 |
ДРЛ |
|
Дизельний цех |
150 |
ДРЛ |
|
Агрегатний цех |
150 |
ДРЛ |
|
Автогальмівний цех |
300 |
ЛЛ |
|
Колісний цех |
100 |
ДРЛ |
|
Механічний цех |
100 |
ДРЛ |
|
Цех по ремонту електронної апаратури |
300 |
ЛЛ |
|
Цех по ремонту КВП |
300 |
ЛЛ |
|
Відділення по ремонту АБ |
150 |
ЛЛ |
|
Відділення по ремонту ВУ |
150 |
ЛЛ |
|
Відділення по ремонту струмоприймачів |
150 |
ЛЛ |
|
Відділення по ремонту паливної апаратури |
100 |
ЛЛ |
|
Відділення по ремонту букс |
100 |
ЛЛ/ДРЛ |
|
Трансформаторне відділення |
150 |
ДРЛ |
|
Компресорне відділення |
150 |
ЛЛ |
|
Слюсарно-заготівельне відділення |
200 |
ДРЛ |
|
Дільниця по ремонту рам візків |
100 |
ДРЛ |
|
Адміністративні приміщення |
400 |
ЛЛ |
При проектуванні штучного освітлення необхідно вирішити наступне: вибрати систему освітлення, тип джерела світла, тип світильників, визначити розташування світлових приладів, виконати розрахунки штучного освітлення та визначити потужності світильників та ламп. Вибираючи джерела світла, слід надавати перевагу люмінесцентним лампам, які енергетично більш економічні. Окрім того, вони за спектральними характеристиками максимально наближаються до природного світла, що важливо при використанні суміщеного освітлення. Якщо немає застережень стосовно спектрального складу випромінюваного світла, то найкраще, з економічної точки зору, застосовувати люмінесцентні лампи типу ЛБ, які мають найвищу світловіддачу. Для зменшення початкових видатків на освітлювальні установки та витрат на їх експлуатацію слід використовувати лампи більшої потужності. Однак при цьому може погіршитись рівномірність освітлення, оскільки остання обернено пропорційна відстані між джерелами світла. Рівномірність освітлення в загальному досягається у випадку, коли відстань між центрами світильників не перевищує подвійної висоти к встановлення. В той же час висота, на якій встановлюються світильники, залежить від висоти приміщення, потужності лампи, класу світильника і системи освітлення. Найменша висота встановлення над підлогою світильників з числом люмінесцентних ламп до чотирьох - 2,6 м, а при чотирьох і більше - 3,2 м.
Вибір типу світильників проводиться з урахуванням характеристики приміщення, для якого проектується освітлення. Для приміщень, стіни та стеля яких мають невисокі відбиваючі властивості доцільно застосовувати світильники прямого світла, які, направляючи випромінювання ламп вниз на робочі поверхні, гарантують мінімальні втрати і найкраще використання світлового потоку. Однак слід мати на увазі, що світильники цього класу створюють різкі падаючі тіні від сторонніх предметів, що необхідно враховувати при їх розташуванні. При освітленні виробничих приміщень, стіни та стеля яких мають високі відбиваючі властивості, доцільно використовувати світильники переважно прямого світла. Деяке зменшення долі світлового потоку, що безпосередньо випромінюється у нижню півсферу, компенсується покращенням якості освітлення і в той же час мало впливає на енергетичну ефективність освітлювальної установки, оскільки такі світильники мають більш високий ККД в порівнянні з аналогічними світильниками прямого світла.
В адміністративно приміщеннях доцільно використовувати світильники розсіяного світла, значна частина світлового потоку яких направляється на стіни та стелю і, відбиваючись від них, сприяє усуненню різких тіней, що за характером роботи бажано саме для таких приміщень. В приміщеннях, де відношення висоти до площі досить велике, доцільно застосовувати світильники з концентрованою чи глибокою КСС, які направляють основну частину світлового потоку безпосередньо на робочі поверхні. В приміщеннях з великою площею та незначною висотою бажано застосувати світильники з широкою формою КСС, що дозволяє навіть при значних відстанях між світильниками забезпечити рівномірний розподіл освітленості на робочих площинах.
Невідповідність світлотехнічних характеристик світильника розмірам та характеру обробки освітлюваного приміщення викликає зростання встановленої потужності, зниження якості освітлення. В свою чергу, невідповідність конструктивного виконання світильника умовам середовища в приміщенні знижує довговічність і надійність роботи освітлювальної установки (агресивне, вологе, запилене середовище), а в окремих випадках може спричинити пожежу чи вибух. Тому світильники повинні бути з необхідним ступенем захисту від умов зовнішнього середовища в місцях встановлення. Особливо жорсткі вимоги щодо цього стосуються світильників, які встановлюються у вибухо- та пожежонебезпечних приміщеннях.
Для розрахунку штучного освітлення використовується, в основному, метод світлового потоку (коефіцієнту використання), який дозволяє врахувати як прямий світловий потік, так і відбитий від стін та стелі [3]. Полягає у наступному:
1. Визначається висота звисання світильників зі стелі:
, (1)
де Н - висота приміщення;
hр - висота виконання робіт (0,8 м).
2. Обирається тип джерела світла та освітлювального приладу.
Для приміщень депо в яких висота до 6 м обираються світильники типу ЛСП з люмінесцентними лампами (ЛЛ) (по 2 штуки в кожному), для приміщень висотою більше 6 м обираються світильники типу РСП з лампами ДРЛ (одна лампа на один світильник).
3. При заданому коефіцієнті запасу, типу, потужності та кількості освітлювальних приладів, висоті їх встановлення та розміщенні визначається значення освітленості. Для точкових джерел освітлення світловий потік окремої лампи визначається за формулою:
, (2)
де Еміn - мінімальна освітленість, лк (таблиця 2);
S - площа приміщення, що освітлюється, м2;
Кз - коефіцієнт запасу, що враховує старіння світильників (для світильників з люмінесцентними лампами Кз = 1,6; для світильників з лампами ДРЛ Кз = 1,8);
Z - коефіцієнт нерівномірності освітлення (Z = Есер/Еміп = 1,1...1,15; для ламп ЛЛ Z = 1,1; для ламп ДРЛ Z = 1,15);
N - кількість ламп (обирається довільно, користуючись наступним:
· світильники з люмінесцентними лампами розміщуються на стелі в один, або два ряди (один ряд на 6 м ширини цеху); відстань між освітлювальними приладами в ряду визначається з відношення L/H (де L - це відстань між світильниками, м; H - висота приміщення, м), для типу КСС Д-1 воно становить 1,3, для типу КСС Д-2 - 0,96, для типу КСС Г-1 - 0,91;
· світильники з лампами ДРЛ розміщуються вздовж протилежних несучих стін під стелею; відстань між освітлювальними приладами в ряду визначається з відношення L/H, для типу КСС Г-2 - 0,77, для типу КСС Г-3 - 0,66, для типу КСС Г-4 - 0,57).
з - коефіцієнт використання світлового потоку, визначається в залежності від коефіцієнтів відбиття (с) та індексу приміщення.
Індекс приміщення визначається:
, (3)
де А, В, h - довжина, ширина приміщення та висота підвісу світильника.
, (4)
де Н - висота приміщення.
Таблиця 3
Значення коефіцієнтів використання світлового потоку для світильників з лампами ЛЛ
Коефіцієнт відбиття, с |
Стелі, спот |
0,7 |
|||||
Стін, сст |
0,3 |
||||||
Робочої поверхні, ср |
0,1 |
||||||
КСС |
Індекс приміщення, І |
||||||
0,60 |
0,80 |
1,25 |
2,00 |
3,00 |
5,00 |
||
Д-1 |
0,28 |
0,40 |
0,49 |
0,59 |
0,68 |
0,74 |
|
Д-2 |
0,33 |
0,43 |
0,56 |
0,74 |
0,80 |
0,76 |
|
Г-1 |
0,42 |
0,52 |
0,69 |
0,78 |
0,73 |
0,76 |
Таблиця 4
Значення коефіцієнтів використання світлового потоку для світильників з лампами ДРЛ
Коефіцієнт відбиття, с |
Стелі, спот |
0,7 |
|||||
Стін, сст |
0,5 |
||||||
Робочої поверхні, ср |
0,1 |
||||||
КСС |
Індекс приміщення, І |
||||||
0,60 |
0,80 |
1,25 |
2,00 |
3,00 |
5,00 |
||
Г-2 |
0,55 |
0,64 |
0,78 |
0,86 |
0,92 |
0,96 |
|
Г-3 |
0,62 |
0,70 |
0,79 |
0,86 |
0,90 |
0,93 |
|
Г-4 |
0,65 |
0,71 |
0,78 |
0,83 |
0,86 |
0,87 |
4. Відбувається перевірка отриманого варіанту на його відповідність нормативним вимогам до якості освітлення.
Для обраного світильника обирається тип ламп (для світильників з люмінесцентними лампами найбільш поширені лампи потужністю 40 Вт (ЛБ-40), 65 Вт (ЛБ-65) або 80 Вт (ЛБ-80) із світловим потоком 3 000 лм, 4 650 лм та 5 220 лм відповідно; для світильників з лампами ДРЛ найбільш поширені лампи потужністю 250 Вт, 400 Вт або 700 Вт із світловим потоком 12 500 лм, 22 000 лм та 38 500 лм відповідно). Якщо в подальших розрахунках буде виконуватися умова 0,9Фп<Фсв<1,2Фп, то кількість ламп підібрали вірно, якщо ні - необхідно виконати перерахунок. Фп - світловий потік лампи за паспортом.
Приклад
Виконати розрахунок освітленості приміщення відділення по ремонту випрямляючих установок (площа відділення 144 м2 (12 м х12 м); висота 4,8 м; норма освітленості (таблиця 2) 150 лк).
Висота звисання світильників зі стелі за формулою (1):
,
де Н - висота приміщення (4,8 м);
hр - висота виконання робіт (0,8 м).
м
В подальших розрахунках приймаю світильники типу ЛСП-12 з лампами типу ЛЛ, при цьому даний світильник має тип кривої світла (КСС) - Д-2. Так як робочі місця розташовані вздовж стін світильники розміщую в два ряди (ширина відділення становить 12 м) рівномірно по три світильника (при такій КСС відношення L/H становить 0,96; тоді відстань між світильниками буде становити 0,96·4,8 = 4,6 м. Визначаю кількість світильників в кожному ряду: А/L = 12/4,6 = 2,6 (після розрахунку кількість світильників округлюю до цілого числа в більший бік), тобто 3 шт.). Загальна кількість ламп в світильниках N = 12 штук (в одному світильнику дві лампи). Якщо в подальших розрахунках буде виконуватися умова 0,9Фп<Фсв<1,2Фп, то кількість ламп підібрали вірно, якщо ні - необхідно виконати перерахунок.
Для точкових джерел освітлення світловий потік окремої лампи за формулою (2):
,
де Еміп - мінімальна освітленість, лк;
Кз - коефіцієнт запасу, що враховує старіння світильників (приймаю Кз = 1,6);
Z - коефіцієнт нерівномірності освітлення (Z = Есер/Еміп = 1,1...1,15, для ламп ЛЛ Z = 1,1);
з - коефіцієнт використання світлового потоку, визначається в залежності від коефіцієнтів відбиття (с) та індексу приміщення.
Індекс приміщення визначається за формулою (3):
,
,
м
Тоді індекс приміщення:
Користуючись методом інтерполяції та згідно з таблицею 3 для КСС - Д-2 та i = 1,875 коефіцієнт використання становить з = 0,71, тоді світловий потік окремої лампи:
лм
В якості джерела світла приймаю лампи ЛБ-65 зі світловим потоком 4 650 лм. Виконую перевірку умови 0,9Фп < Фсв < 1,2Фп = 4 185<4 462<5 580 лм. Умова виконується. В цьому випадку як джерело світла приймаю світильники типу ЛСП-12 з лампами ЛБ-65 зі світловим потоком 4 650 лм потужністю 65 Вт. В одному світильнику розміщую 2 лампи, тоді у відділенні встановлюю 2 ряди світильників по 3 в кожному. Загальна кількість ламп 12 співпадає з обраною попередньо.
3.6 Вібрація
Вібрація серед всіх видів механічних впливів для технічних об'єктів найбільш небезпечна. Знакозмінні напруження, викликані вібрацією, сприяють накопиченню пошкоджень в матеріалах, появі тріщин та руйнуванню. Найчастіше і досить швидко руйнування об'єкта настає при вібраційних впливах за умов резонансу. Вібрації викликають також й відмови машин, приладів.
За способом передачі на тіло людини вібрацію поділяють на загальну, яка передається через опорні поверхні на тіло людини, та локальну, котра передається через руки людини. У виробничих умовах часто зустрічаються випадки комбінованого впливу вібрації - загальної та локальної. Вібрація викликає порушення фізіологічного та функціонального станів людини. Стійкі шкідливі фізіологічні зміни називають вібраційною хворобою. Симптоми вібраційної хвороби проявляються у вигляді головного болю, заніміння пальців рук, болю в кистях та передпліччі, виникають судоми, підвищується чутливість до охолодження, з'являється безсоння. При вібраційній хворобі виникають патологічні зміни спинного мозку, серцево-судинної системи, кісткових тканин та суглобів, змінюється капілярний кровообіг. Функціональні зміни, пов'язані з дією вібрації на людину-оператора - погіршення зору, зміни реакції вестибулярного апарату, виникнення галюцинацій, швидка втомлюваність. Негативні відчуття від вібрації виникають при прискореннях, що складають 5% прискорення сили ваги, тобто при 0,5 м/с. Особливо шкідливі вібрації з частотами, близькими до частот власних коливань тіла людини, більшість котрих знаходиться в межах 6...30 Гц.
Загальну вібрацію за джерелом її виникнення поділяють на:
· транспортну, котра виникає внаслідок руху по дорогах;
· транспортно-технологічну, котра виникає при роботі машин, які виконують технологічні операції в стаціонарному положенні або при переміщенні по спеціально підготовлених частинах виробничих приміщень, виробничих майданчиків;
· технологічну, що впливає на операторів стаціонарних машин або передається на робочі місця, які не мають джерел вібрації.
Гігієнічне нормування вібрацій забезпечує вібробезпеку умов праці. Дія вібрації на організм людини визначається наступними характеристиками: інтенсивністю, спектральним складом, тривалістю впливу, напрямком дії. Загальні методи боротьби з вібрацією базуються на аналізі рівнянь, які описують коливання машин у виробничих умовах і класифікуються наступним чином:
· зниження вібрацій в джерелі виникнення шляхом зниження або усунення збуджувальних сил;
· відлагодження від резонансних режимів раціональним вибором приведеної маси або жорсткості системи, котра коливається;
· вібродемпферування - зниження вібрацій за рахунок сил тертя демпферного пристрою, тобто переведення коливної енергії в тепло;
· динамічне гасіння - введення в коливальну систему додаткових мас або збільшення жорсткості системи;
· віброізоляція - введення в коливальну систему додаткового пружного зв'язку, з метою послаблення передавання вібрацій, суміжному елементу конструкції або робочому місцю;
· використання індивідуальних засобів захисту.
Зниження вібрації в джерелі її виникнення досягається шляхом зменшення сили, яка викликає коливання. Тому ще на стадії проектування машин та механічних пристроїв потрібно обирати кінематичні схеми, в яких динамічні процеси, викликані ударами та прискореннями, були б виключені або знижені. Зниження вібрації може бути досягнуте зрівноваженням мас, зміною маси або жорсткості, зменшенням технологічних допусків при виготовленні і складанні, застосуванням матеріалів з великим внутрішнім тертям. Велике значення має підвищення точності обробки та зниження шорсткості поверхонь, що труться.
Для послаблення вібрацій істотне значення має запобігання резонансним режимам роботи з метою виключення резонансу з частотою збурювальної сили. Власні частоти окремих конструктивних елементів визначаються розрахунковим методом за відомими значеннями маси та жорсткості або ж експериментально на стендах. Резонансні режими при роботі технологічного обладнання усуваються двома шляхами: зміною характеристик системи (маси або жорсткості) або встановленням іншого режиму роботи (відлагодження резонансного значення кутової частоти збурювальної сили).
Вібродемпферування реалізується шляхом перетворення енергії механічних коливань коливної системи в теплову енергію. Збільшення витрат енергії в системі здійснюється за рахунок використання в якості конструктивних матеріалів з великим внутрішнім тертям: пластмас, металогуми, сплавів марганцю та міді, нікелетитанових сплавів, нанесення на вібруючі поверхні шару пружнов'язких матеріалів, котрі мають великі втрати на внутрішнє тертя. Найбільший ефект при використанні вібродемпферних покриттів досягається в області резонансних частот, оскільки при резонансі значення впливу сил тертя на зменшення амплітуди зростає. Найбільший ефект вібродемпферні покриття дають за умови, що протяжність вібродемпферного шару співрозмірна з довжиною хвилі згину в матеріалі конструкції. Покриття необхідно наносити в місцях де генерується вібрація максимального рівня. Товщина вібродемпферних покриттів береться рівною 2-3 товщинам елемента конструкції, на яку воно наноситься. Добре демпферують коливання мастильні матеріали. Шар мастила між двома спряженими елементами усуває можливість безпосереднього контакту, а відтак - появу сил поверхневого тертя, які є причиною збудження вібрацій.
Для динамічного гасіння коливань використовуються динамічні віброгасії: пружинні, маятникові, ексцентрикові, гідравлічні. Вони являють собою додаткову коливальну систему з масою та жорсткістю, власна частота котрої налаштована на основну частоту коливань даного агрегату. Віброгасій кріпиться на вібруючому агрегаті і налаштовується таким чином, що в ньому в кожний момент часу збуджуються коливання, котрі знаходяться в протифазі з коливаннями агрегату. Недоліком динамічного гасія є те, що він діє лише при певній частоті, котра відповідає його резонансному режиму коливань. Для зниження вібрацій застосовуються також ударні віброгасії маятникового, пружинного і плаваючого типів. В них здійснюється перехід кінетичної енергії відносного руху елементів, що контактують, в енергію деформації з поширенням напружень із зони контакту по елементах, що взаємодіють. Внаслідок цього енергія розподіляється по об'єму елементів віброгасія, котрі зазнають взаємних ударів, викликаючи їх коливання. Одночасно відбувається розсіювання енергії внаслідок дії сил зовнішнього та внутрішнього тертя. Маятникові ударні віброгасії використовуються для гасіння коливань частотою 0,4-2 Гц, пружинні - 2-10 Гц, плаваючі - понад 10 Гц. Віброгасії камерного типу призначені для перетворення пульсуючого потоку газу в рівномірний. Такі віброгасії встановлюються на всмоктувальній та нагнітальній сторонах компресорів, на гідроприводах. Вони забезпечують значне зниження рівня вібрацій трубо- та газопроводів. Динамічне віброгасіння досягається також встановленням агрегату на масивному фундаменті. Маса фундаменту підбирається таким чином, щоб амплітуда коливань підошви фундаменту не перевищувала 0,1-0,2 мм.
Віброізоляція полягає у зниженні передачі коливань від джерела збудження до об'єкта, що захищається, шляхом введення в коливну систему додаткового пружного зв'язку. Цей зв'язок запобігає передачі енергії від коливного агрегату до основи або від коливної основи до людини або до конструкцій, що захищаються. Віброізоляція реалізується шляхом встановлення джерела вібрації на віброізолятори. В комунікаціях повітропроводів розташовуються гнучкі вставки. Застосовуються пружні прокладки у вузлах кріплення повітропроводів, в перекриттях, несучих конструкціях будівель, в ручному механізованому інструменті. Для віброізоляції стаціонарних машин з вертикальною змушувальною силою використовують віброізолювальні опори у вигляді прокладок або пружин. Однак можлива їх комбінація. Комбінований віброізолятор поєднує пружинний віброізолятор з пружною прокладкою. Пружинний віброізолятор пропускає високочастотні коливання, а комбінований забезпечує необхідну ширину діапазону коливань, що гасяться. Пружні елементи можуть бути металевими, полімерними, волокнистими, пневматичними, гідравлічними, електромагнітними.
Засоби індивідуального захисту від вібрації застосовуються у випадку, коли розглянуті вище технічні засоби не дозволяють знизити рівень вібрації до норми. Для захисту рук використовуються рукавиці, вкладиші, прокладки. Для захисту ніг - спеціальне взуття, наколінники. Для захисту тіла - нагрудники, пояси, спеціальні костюми.
3.7 Шум та іонізуючі випромінювання
Шум - будь-який небажаний звук, який заважає. Виробничим шумом називається шум на робочих місцях, на дільницях або на територіях підприємств, що виникає під час виробничого процесу. Наслідком шкідливої дії виробничого шуму можуть бути професійні захворювання, підвищення загальної захворюваності, зниження працездатності, підвищення ступеня ризику травм та нещасних випадків, пов'язаних з порушенням сприйняття попереджувальних сигналів, порушення слухового контролю функціонування технологічного обладнання, зниження продуктивності праці.
За характером порушення фізіологічних функцій шум поділяється на такий, що заважає (перешкоджає мовному зв'язку), подразнювальний (викликає нервове напруження і внаслідок цього - зниження працездатності, загальну перевтому), шкідливий (порушує фізіологічні функції на тривалий період і викликає розвиток хронічних захворювань, які безпосередньо або опосередковано пов'язані зі слуховим сприйняттям, погіршення слуху, гіпертонію, туберкульоз, виразку шлунку), травмуючий (різко порушує фізіологічні функції організму людини).
Шум як фізичне явище - це коливання пружного середовища. Він характеризується звуковим тиском як функцією частоти та часу. З фізіологічної точки зору шум визначається як відчуття, що сприймається органами слуху під час дії на них звукових хвиль в діапазоні частот 16-20000 Гц. Загалом шум - це безладне поєднання звуків різної частоти та інтенсивності. Швидкість звуку залежить від фізичних властивостей тіла в якому він поширюється та від температури.
Звук, що поширюється в повітряному середовищі, називається повітряним звуком, в твердих тілах - структурним. Частина повітря, охоплена коливним процесом, називається звуковим полем. Вільним називається звукове поле, в якому звукові хвилі поширюються вільно, без перешкод (відкритий простір, акустичні умови в спеціальній заглушеній камері, облицьованій звукопоглинальним матеріалом). Дифузним називається звукове поле, в якому звукові хвилі надходять до кожної точки простору з однаковою ймовірністю з усіх сторін (зустрічається в приміщеннях, внутрішні поверхні котрих мають високі коефіцієнти відбивання звуку). В реальних умовах (приміщення або територія підприємства) структура звукового поля може бути якісно близькою (або проміжною) до граничних значень - вільного або дифузного звукового поля. Повітряний звук поширюється у вигляді поздовжніх хвиль, тобто хвиль, в яких коливання частинок повітря співпадають з напрямком руху звукової хвилі. Найбільш поширена форма поздовжніх звукових коливань - сферична хвиля, її випромінює рівномірно в усі сторони джерело звуку, розміри якого малі порівняно з довжиною хвилі. Структурний звук поширюється у вигляді поздовжніх та поперечних хвиль. Рух звукової хвилі в повітрі супроводжується періодичним підвищенням та пониженням тиску. Тиск, що перевищує атмосферний, називається акустичним, або звуковим тиском. Чим більший звуковий тиск, тим гучніший звук. Шумовими характеристиками джерел шуму є: спектр звукової потужності, коректований рівень звукової потужності, показник напрямленості випромінювання.
Негативний вплив шуму на продуктивність праці та здоров'я людини загальновідомий. При тривалій роботі в шумних умовах, перш за все, уражаються нервова та серцево-судинна системи та органи травлення. Зменшується виділення шлункового соку та його кислотність, що сприяє захворюванню гастритом. Необхідність кричати при спілкуванні у виробничих умовах негативно впливає на психіку людини. Вплив шуму на організм людини індивідуальний. У деяких людей погіршення слуху настає через декілька місяців, а у інших воно не настає через декілька років роботи в шумі.
Найбільш дієвий спосіб боротьби з шумом - це боротьба з ним в джерелі його виникнення. Створюються малошумні механічні передачі, розроблено способи зниження шуму в підшипникових вузлах, вентиляторах.
Зниження шуму звукопоглинанням та звукоізоляцією виконується таким чином, що об'єкт, який випромінює шум, розташовують у кожусі, внутрішні стінки якого покриваються звукопоглинальним матеріалом. Кожух повинен мати достатню звукопоглинальну здатність, не заважати обслуговуванню обладнання під час роботи, не ускладнювати його обслуговування, не псувати інтер'єр цеху. Різновидом цього методу є кабіна, в котрій розташовується найбільш шумний об'єкт і в якій працює робітник. Кабіна зсередини вкрита звукопоглинальним матеріалом, щоб зменшити рівень шуму всередині кабіни, а не лише ізолювати джерело шуму від решти виробничого приміщення. Звукоізоляційний ефект забезпечується також встановленням екранів та ковпаків. Вони захищають робоче місце і людину від безпосереднього впливу прямого звуку, однак не знижують шум в приміщенні.
Акустична обробка приміщення передбачає вкривання стелі та верхньої частини стін звукопоглинальним матеріалом. Внаслідок цього знижується інтенсивність відбитих звукових хвиль. Додатково до стелі можуть підвішуватись звукопоглинальні щити, конуси, куби, встановлюватись резонаторні екрани, тобто штучні поглиначі. Штучні поглиначі можуть застосовуватись окремо або в поєднанні з личкуванням стелі та стін. Ефективність акустичної обробки приміщень залежить від звукопоглинальних властивостей застосовуваних матеріалів та конструкцій, особливостей їх розташування, об'єму приміщення, його геометрії, місць розташування джерел шуму. Ефект акустичної обробки більший в низьких приміщеннях (де висота стелі не перевищує 6 м) витягненої форми.
Заходи щодо зниження шуму слід передбачати на стадії проектування промислових об'єктів та обладнання. Особливу увагу слід звертати на винесення шумного обладнання в окреме приміщення, що дозволяє зменшити число працівників в умовах підвищеного рівня шуму та здійснити заходи щодо зниження шуму з мінімальними витратами коштів, обладнання та матеріалів. Зниження шуму можна досягти лише шляхом знешумлення всього обладнання з високим рівнем шуму.
Інфразвук - це коливання в повітрі, в рідкому або твердому середовищах з частотою менше 16 Гц. Інфразвук людина не чує, однак відчуває; він справляє руйнівну дію на організм людини. Високий рівень інфразвуку викликає порушення функції вестибулярного апарату, зумовлюючи запаморочення, біль голови. Знижується увага, працездатність. Виникає почуття страху, загальна немічність. Всі механізми, які працюють при частотах обертання менше 20 об/с, випромінюють інфразвук. Він виникає при роботі вентиляторів, компресорів, двигунів внутрішнього згорання. Завдяки великій довжині інфразвук поширюється в атмосфері на великі відстані. Практично неможливо зупинити інфразвук за допомогою будівельних конструкцій на шляху його поширення. Неефективні також засоби індивідуального захисту. Дієвим засобом захисту є зниження рівня інфразвуку в джерелі його випромінювання. Серед таких заходів можна виділити наступні:
· збільшення частот обертання валів до 20 і більше обертів на секунду;
· підвищення жорсткості коливних конструкцій великих розмірів;
· усунення низькочастотних вібрацій;
· внесення конструктивних змін в будову джерел, що дозволяє перейти з області інфразвукових коливань в область звукових; в цьому випадку їх зниження може бути досягнуте застосуванням звукоізоляції та звукопоглинання.
Ультразвук широко використовується в багатьох галузях промисловості. Джерелами ультразвуку є генератори, які працюють в діапазоні частот від 12 до 22 кГц. В гальванічних цехах ультразвук виникає під час роботи очищувальних та знежирювальних ван. Його вплив спостерігається на відстані 25-50 м від обладнання. При завантажуванні та розвантажуванні деталей має місце контактний вплив ультразвуку. Ультразвукові генератори використовуються також при плазмовому та дифузійному зварюванні, різанні металів, при напилюванні металів. Ультразвук високої інтенсивності виникає під час видалення забруднень, при хімічному травленні, обдуванні струменем стисненого повітря при очищенні деталей, при збиранні. Під час промивання та знежирення деталей використовується ультразвук в діапазоні від 16 до 44 кГц інтенсивністю до (6-7)104 Вт/м2, а при контролі складальних з'єднань - в діапазоні частот понад 80 кГц. Ультразвук викликає функціональні порушення нервової системи, головний біль, зміни кров'яного тиску та складу і властивостей крові, зумовлює втрату слухової чутливості, підвищену втомлюваність. Ультразвук впливає на людину через повітря, а також через рідке тверде середовище. Ультразвукові коливання поширюються у всіх згаданих вище середовищах з частотою понад 16000 Гц. Для захисту від ультразвуку, котрий передається через повітря, застосовується метод звукоізоляції (ефективна в області високих частот). Між обладнанням та працівниками можна встановлювати екрани. Ультразвукові установки можна розташовувати в спеціальних приміщеннях. Ефективним засобом захисту є використання кабін з дистанційним керуванням, розташування обладнання в звукоізольованих укриттях. Для укриттів використовують сталь, дюралюміній, оргскло, текстоліт, личковані звукопоглинальними матеріалами. Звукоізолювальні кожухи на ультразвуковому обладнанні повинні мати блокувальну систему, яка вимикає перетворювачі при порушенні герметичності кожуха. У випадку дії ультразвуку захист забезпечується засобами віброізоляції. Використовують віброізолювальні покриття, гумові рукавиці, гумові килимки.
Джерелами іонізуючих випромінювань в промисловості є установки рентгеноструктурного аналізу, високовольтні електровакуумні системи, радіаційні дефектоскопи, товщиноміри, густиноміри та ін. До іонізуючих відносяться корпускулярні випромінювання, що складаються з частинок з масою спокою, яка відрізняється від нуля (альфа-, бета-частинки, нейтрони) та електромагнітні випромінювання (рентгенівське та гамма-випромінювання), котрі при взаємодії з речовинами можуть утворювати в них іони. Ступінь іонізації оцінюється за експозиційною дозою рентгенівського або гамма-випромінювання. В зв'язку з тим, що однакова поглинута доза різних видів випромінювання викликає в організмі різний біологічний ефект, введено поняття еквівалентної дози, яка дозволяє визначати радіаційну небезпеку впливу випромінювання довільного складу.
Ступінь біологічного впливу іонізуючого випромінювання залежить від поглинання живою тканиною енергії та іонізації молекул, що виникає при цьому. Під час іонізації в організмі виникає збудження молекул клітин. Це зумовлює розрив молекулярних зв'язків та утворення нових хімічних зв'язків, невластивих здоровій тканині. Під впливом іонізуючого випромінювання в організмі порушуються функції кровотворних органів, зростає крихкість та проникність судин, порушується діяльність шлунково-кишкового тракту, знижується опір організму, він виснажується. Нормальні клітини перероджуються в злоякісні, виникають лейкози, променева хвороба. Опромінення може бути внутрішнім, при проникненні радіоактивного ізотопу всередину організму, та зовнішнім; загальним (опромінення всього організму) та місцевим; хронічним (при дії протягом тривалого часу) та гострим (одноразовий, короткочасний вплив).
Захист від іонізуючих випромінювань може здійснюватись наступним чином:
· використання джерел з мінімальним випромінюванням шляхом переходу на менш активні джерела, зменшення кількості ізотопу;
· скорочення часу роботи з джерелом іонізуючого випромінювання;
· віддалення робочого місця від джерела іонізуючого випромінювання;
· екранування джерела іонізуючого випромінювання.
Екрани можуть бути пересувні або стаціонарні, призначені для поглинання або послаблення іонізуючого випромінювання. Екранами можуть бути стінки контейнерів для перевезення радіоактивних ізотопів, стінки сейфів для їх зберігання.
Альфа-частинки екрануються шаром повітря товщиною декілька сантиметрів, шаром скла товщиною декілька міліметрів. Однак, працюючи з альфа-активними ізотопами, необхідно також захищатись і від бета- або гамма-випромінювання. З метою захисту від бета-випромінювання використовуються матеріали з малою атомною масою. Для цього використовують комбіновані екрани, у яких з боку джерела розташовується матеріал з малою атомною масою товщиною, що дорівнює довжині пробігу бета-частинок, а за ним - з великою масою. З метою захисту від рентгенівського та гамма-випромінювання застосовуються матеріали з великою атомною масою та з високою щільністю (свинець, вольфрам). Для захисту від нейтронного випромінювання використовують матеріали, котрі містять водень (вода, парафін), а також бор, берилій, кадмій, графіт. Враховуючи те, що нейтронні потоки супроводжуються гамма-випромінюванням, слід використовувати комбінований захист у вигляді шаруватих екранів з важких та легких матеріалів (свинець-поліетилен). Дієвим захисним засобом є використання дистанційного керування, маніпуляторів, роботизованих комплексів.
В залежності від характеру виконуваних робіт вибирають засоби індивідуального захисту: халати та шапочки з бавовняної тканини; захисні фартухи, гумові рукавиці, щитки, засоби захисту органів дихання (респіратор „Лепесток"), комбінезони, пневмокостюми, гумові чоботи. Дієвим чинником забезпечення радіаційної безпеки є дозиметричний контроль за рівнями опромінення персоналу та за рівнем радіації в навколишньому середовищі.
3.8 Електромагнітні поля та випромінювання радіочастотного діапазону
Біосфера впродовж усієї еволюції знаходилась під впливом електромагнітних полів, так званого фонового випромінювання, викликаного природними причинами. У процесі індустріалізації людство додало до цього цілий ряд факторів, посиливши фонове випромінювання. В зв'язку з цим ЕМП антропогенного походження почали значно перевищувати природний фон і дотепер перетворились у небезпечний екологічний фактор. Усі електромагнітні поля та випромінювання діляться на природні та антропогенні.
Земля постійно знаходиться під впливом ЕМП, які випромінює Сонце, у діапазоні в основному 10 МГц...10 ГГц. Спектр сонячного випромінювання досягає і більш короткохвильової області, яка включає в себе інфрачервоне (ІЧ), видиме, ультрафіолетове (УФ), рентгенівське та гамма-випромінювання. Інтенсивність випромінювання змінюється періодично, а також швидко та різко збільшується при хромосферних спалахах.
Розглянуті ЕМП впливали на біологічні об'єкти та зокрема на людину під час усього її існування. Це дало змогу у процесі еволюції пристосуватися до впливу таких полів та виробити захисні механізми, які захищають людину від можливих ушкоджень за рахунок природних факторів. Однак все ж спостерігається кореляція між змінами сонячної активності (викликаними ними змінами електромагнітного випромінювання) і нервовими, психічними, серцево-судинними захворюваннями людей, а також порушенням умовно-рефлекторної діяльності тварин.
Антропогенні випромінювання фактично охоплюють усі діапазони. Розглянемо вплив радіохвильового випромінювання, зокрема випромінювання ВЧ та УВЧ діапазонів (діапазони З0 кГц-500 МГц). Можливості прямого опромінення радіохвилями визначаються умовами їх розповсюдження, які залежать від довжини хвилі.
На довгих хвилях (10-1 км) ЕМП створюється хвилею, яка огинає земну поверхню та перешкоди, які на ній знаходяться (будинки, рослинність, нерівності місцевості), і йде між земною поверхнею та нижньою межею іонізаційного шару атмосфери. Вони майже не поглинаються ґрунтом. Сигнали потужних радіомовних станцій в цьому діапазоні фактично у будь-який час доби вільно розповсюджуються на далекі відстані.
Середні хвилі (1000-100 м) також достатньо добре огинають земну поверхню, хоча при цьому відхиляються перешкодами, які мають розмір, більший від довжини хвилі, та значно поглинаються ґрунтом. В зв'язку з цим віддаль розповсюдження середніх хвиль становить близько 500 км, а для обслуговування великих територій встановлюється мережа ретрансляційних станцій. В цьому діапазоні працюють радіостанції на суднах та аеродромна радіослужба. Та головну екологічну небезпеку створюють потужні радіомовні станції.
У діапазоні коротких хвиль (100-10 м) радіохвилі дуже сильно поглинаються ґрунтом, але для розповсюдження на велику відстань використовується їх віддзеркалення від земної поверхні та від іоносфери. В цьому діапазоні працюють радіомовні станції та станції зв'язку.
На ультракоротких хвилях (10-1 м), які дуже поглинаються ґрунтом та майже не віддзеркалюються іоносферою, розповсюдження сигналів відбувається практично лише в межах прямої видимості. Для збільшення цієї зони використовують високо розміщені антени та ретранслятори, причому ЕМП утворюється внаслідок інтерференції прямого та віддзеркаленого променів. В цьому діапазоні працюють зв'язкові, радіомовні та телевізійні станції, розташовані, як правило, у місцях великої концентрації населення.
Активність впливу ЕМП різних діапазонів частот різна: вона значно зростає з ростом частоти та дуже серйозно впливає у НВЧ діапазоні. У даний діапазон входять дециметрові (100-10 см), сантиметрові (10-1 см) та міліметрові (10-1 мм) хвилі. Ці діапазони об'єднуються терміном "мікрохвильові". Як і УВЧ, НВЧ випромінювання дуже поглинається ґрунтом та не віддзеркалюється іоносферою. Тому розповсюдження НВЧ відбувається в межах прямої видимості. На дециметрових хвилях працюють радіомовні та телевізійні станції, які забезпечують в зв'язку із зниженням рівня перешкод вищу якість передачі інформації, ніж в УВЧ діапазоні. Усі ділянки НВЧ діапазону використовуються для радіозв'язку в тому числі радіорелейного та супутникового. В цьому діапазоні працюють практично усі радіолокатори. Оскільки випромінювання НВЧ, поглинаючись поганопровідним середовищем, викликає їх нагрівання, цей діапазон широко використовується у промислових установках, які базуються на використанні й інших ефектів, пов'язаних з НВЧ випромінюваннями. Подібні установки використовуються і в побуті. Вплив HBЧ випромінювання на живі тканини дав підставу для розробку терапевтичної медичної апаратури. Завдяки особливостям розповсюдження НВЧ саме цей діапазон використовується для передачі енергії променем на великі відстані.
Під впливом ЕМП та випромінювань спостерігаються загальні слабкість, підвищена втома, пітливість, сонливість, а також розлад сну головний біль, біль в ділянці серця. З'являється роздратування, втрата уваги, зростає тривалість мовнорухової та зоровомоторної реакцій, підвищується межа нюхової чутливості. Виникає ряд симптомів, які є свідченням порушення роботи окремих органів - шлунку, печінки, селезінки, підшлункової та інших залоз. Пригнічуються харчовий та статевий рефлекси. Реєструються зміни артеріального тиску, частота серцевого ритму, форма електрокардіограми. Це свідчить про порушення діяльності серцево-судинної системи. Фіксуються зміни показників білкового та вуглеводного обміну, збільшується вміст азоту в крові та сечі, знижується концентрація альбуміну та зростає вміст глобуліну, збільшується кількість лейкоцитів, тромбоцитів, виникають й інші зміни складу крові. Кількість скарг на здоров'я в місцевості поблизу радіостанції значно (майже вдвічі) вища, ніж поза її межами. Загальна захворюваність в селищі з радіоцентром, в основному зумовлена порушенням діяльності нервової та серцево-судинної систем.
Дослідження показали, що опромінення ЕМП малої інтенсивності впливає на тварин практично так само, як і на людей. В перший період опромінення спостерігаються зміни поведінки тварин: у них з'являються неспокій, збудження, рухова активність, прагнення втекти із зони випромінювання. Тривалий вплив ЕМП призводив до зниження збудження, зростання процесів гальмування. Вплив ЕМП на тварин у період вагітності призводив до зростання кількості мертвонароджених, викиднів, каліцтв. Спостерігалися аналогічні наслідки, які проявлялись у наступних поколіннях. Мікроскопічні дослідження внутрішніх органів тварин виявили дистрофічні зміни тканин головного мозку, печінки, нирок, легенів, міокарду. Було зафіксовано порушення на клітинному рівні. На підставі клінічних та експериментальних матеріалів виявлені основні симптоми уражень, які виникають при впливі ЕМП їх можна класифікувати як радіохвильову хворобу. Ступінь патології прямо залежить від напруженості ЕМП, тривалості впливу, фізичних особливостей, діапазонів частот, умов зовнішнього середовища, а також від функціонального стану організму, його стійкості до впливу різних факторів, можливостей адаптації. Поряд з радіохвильовою хворобою як специфічним результатом дії ЕМП спостерігається, завдяки його впливу, загальне зростання захворюваності, а також захворювання окремими хворобами органів дихання, травлення та ін. Це відмічається також і при дуже малій інтенсивності ЕМП, яка незначно перевищує гігієнічні нормативи. Одним із серйозних ефектів, зумовлених НВЧ опроміненням, є ушкодження органів зору. На нижчих частотах такі ефекти не спостерігаються і тому їх треба вважати специфічними для НВЧ діапазону. Ступінь ушкодження залежить в основному від інтенсивності та тривалості опромінення. Гостре НВЧ опромінення викликає сльозотечу, подразнення, звуження зіниць. Потім після короткого (1-2 доби), періоду спостерігається погіршення зору, яке зростає під час повторного опромінення, що свідчить про кумулятивний характер ушкоджень. При впливі випромінювання на око спостерігається ушкодження роговиці. Але серед усіх тканин ока найбільшу чутливість має у діапазоні 1-10 ГГц кришталик. Сильне ушкодження кришталика зумовлене тепловим впливом НВЧ (при щільності понад 100 мВт/см2).
Люди, опромінені імпульсом НВЧ коливань, чують звук. Залежно від тривалості та частоти повторень імпульсів цей звук сприймається як щебетання, цвірінькання чи дзюрчання у якійсь точці (всередині чи ззаду) голови. Частота відчуття звуку не залежить від частоти НВЧ сигналу. Існує наступне пояснення слухового ефекту: під впливом імпульсів НВЧ енергії збуджуються термопружні хвилі тиску в тканинах мозку, які діють за рахунок кісткової провідності на рецептори внутрішнього вуха. Виявлено значний вплив НВЧ на зміну фізико-хімічних властивостей та співвідношення клітинних структур. Особливо це призводить до затримки та припинення процесів розмноження бактерій та вірусів і знижує їх інфекційну активність.
Джерелами електромагнітних випромінювань в радіотехнічних пристроях є генератор, тракти передачі енергії від генератора до антени, антенні пристрої, електромагніти в установках для термічної обробки матеріалів, конденсатори, високочастотні трансформатори, фідерні лінії. При їх роботі в навколишнє середовище поширюються ЕМП. Електромагнітне поле ВЧ і НВЧ, що несе з собою енергію, може самостійно поширюватися в просторі без провідника електроструму зі швидкістю, близькою до швидкості світла. Воно змінюється з цією частотою, що і струм, який його створив. Коли дози електромагнітних випромінювань електромагнітних установок радіочастот перевищують допустимі значення, виникають професійні захворювання.
...Подобные документы
Загальні питання охорони праці і навколишнього середовища. Перелік шкідливих та небезпечних виробничих факторів. Оптимальні параметри мікроклімату. Промислова санітарія та електробезпека. Вимоги зниженого енергоспоживання. Система пожежного захисту.
реферат [22,4 K], добавлен 04.06.2009Правові та організаційні засади охорони праці. Організація охорони праці на виробництві. Розслідування, облік і аналіз нещасних випадків, професійних захворювань та аварій. Основні фактори виробничого середовища, що визначають умови праці на виробництві.
курс лекций [383,2 K], добавлен 09.12.2008Поняття охорони праці та її нормативно-законодавча база в Україні. Шляхи удосконалення методів і засобів створення безпечних умов праці з урахуванням специфічних особливостей виробництв. Професійне орієнтування в питаннях організації виробничого процесу.
дипломная работа [117,6 K], добавлен 29.09.2009Визначення категорії виробництва пожежної небезпеки і найбільш небезпечного процесу. Оцінка виробничого травматизму на підприємстві і рівня професійних захворювань. Принципи створення безвідхідних виробництв, утилізація відходів.
реферат [23,6 K], добавлен 09.05.2005Загальні закономірності виникнення небезпек, їх властивості, наслідки, вплив на організм, основи захисту здоров'я та життя людини і середовища проживання від небезпек. Засоби та заходи створення і підтримки здорових та безпечних умов життя і діяльності.
реферат [28,3 K], добавлен 04.09.2009Економічне та соціальне значення охорони праці. Небезпека дії на організм людини електричного струму в залежності від його параметрів. Збереження трудових ресурсів, підвищення професійної активності працюючих. Створення сприятливих і безпечних умов праці.
контрольная работа [34,8 K], добавлен 08.11.2016Історія розвитку та характеристика хазяйства. Структура управління технічною службою, характеристики виробничих зон і відділень. Охорона праці і техніка безпеки по підприємству. Організація протипожежного захисту. Охорона навколишнього середовища.
отчет по практике [414,5 K], добавлен 23.04.2013Охорона навколишнього середовища та раціональне використання її ресурсів в умовах росту промисловості. Оцінка збитку, нанесенного забрудненням атмосфери, водних ресурсів, розробкою та використанням недр. Зменшення капітальних вкладень на охорону довкілля.
контрольная работа [240,2 K], добавлен 02.04.2009Санітарно-гігієнічне дослідження факторів виробничого середовища і важкості трудового процесу на робочому місці. Порядок проведення атестації робочих місць за умовами праці. Оцінка умов праці за показниками мікроклімату. Основні напрямки їх поліпшення.
презентация [555,2 K], добавлен 25.11.2015Склад курсу "Охорона праці". Напрямки підготовки фахівців. Загальні положення ОП, зафіксовані в українському законодавстві, гарантія прав громадян при здійсненні охорони праці на виробництві, державне управління. Аналіз умов праці. Безпека на виробництві.
методичка [52,2 K], добавлен 20.03.2011Особливості робот з ПК, основні негативні наслідки для організму. Гігієнічні вимоги до параметрів виробничого середовища приміщень із ПК, організації та обладнання робочих місць. Вимоги до режимів праці та відпочинку при роботі з ПК, медичних оглядів.
контрольная работа [1,0 M], добавлен 03.02.2010Суть охорони праці як навчальної дисципліни. Основні терміни й поняття охорони праці. Небезпечні виробничі фактори. Вимоги безпеки в аварійних ситуаціях. Розслідування та облік нещасних випадків, спеціальне розслідування. Безпека праці при виплавці сталі.
реферат [51,3 K], добавлен 05.03.2009Розвиток охорони праці, зв’язок з іншими дисциплінами. Небезпечні та шкідливі виробничі фактори, їх класифікація. Правові та організаційні питання охорони праці. Вимоги безпеки при експлуатації технологічного обладнання виробництв харчової промисловості.
курс лекций [83,2 K], добавлен 25.11.2010Сукупність норм і правил, що встановлюють засоби запобігання небезпечним та шкідливим для здоров’я людини факторам. Вимоги щодо створення здорового виробничого середовища. Комплекс санітарно-гігієнічних заходів по збереженню здоров’я працівників.
статья [32,2 K], добавлен 17.08.2017Державні заходи, практичне застосування та організація охорони праці в Японії. Профілактика та попередження виробничого травматизму на підприємствах. Підтримка і зміцнення духовного і фізичного здоров'я працівників. Створення нормальних умов праці.
реферат [23,5 K], добавлен 14.06.2014Основні положення Закону України "Про охорону праці". Громадський контроль за додержанням законодавства про охорону праці. Фізіологічні особливості різних видів діяльності. Електротравматизм, допустимий рівень виробничого фактора, небезпечні речовини.
контрольная работа [57,0 K], добавлен 06.10.2013Організація системи управління охороною праці в галузі. Здійснення державної галузевої політики. Додержання пріоритету здоров'я працівників і відповідальності структурних підрозділів за створення безпечних умов праці. Усунення неприпустимих ризиків.
контрольная работа [21,4 K], добавлен 21.05.2015Проблема вдосконалення природного використання та охорони навколишнього середовища на Україні на сучасному етапі, її актуальність та можливі шляхи розв'язання. Державний нагляд і громадський контроль за охороною праці. Правила зберігання культиватора.
контрольная работа [40,5 K], добавлен 11.07.2011Закон України "Про охорону праці". Шкідливі та отруйні речовини на виробництві. Граничнодопустимі концентрації шкідливих речовин у повітрі робочої зони. Загальнообмінна вентиляція, місцева вентиляція, встановлення витяжних шаф. Режим праці і відпочинку.
реферат [20,7 K], добавлен 29.02.2012Оцінка факторів виробничого середовища і трудового процесу лікаря-рентгенолога: шкідливі хімічні речовини, вібрація, шум, інфразвук, ультразвук, електромагнітне випромінювання, електростатичне поле, постійне магнітне поле, мікроклімат у приміщенні.
контрольная работа [45,3 K], добавлен 18.01.2008