Отоларингология
История оториноларингологии как самостоятельной отрасли медицинских знаний. Физиология и методы исследования слуха. Клинические методы исследования и глотки и гортани. Нос и околоносовые пазухи: физиология, исследование, аномалии развития, лечение.
Рубрика | Медицина |
Вид | учебное пособие |
Язык | русский |
Дата добавления | 29.02.2016 |
Размер файла | 742,0 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Внутренние волосковые клетки (3500-4000) имеют связи преимущественно с афферентными нервными волокнами, а наружные (18000-20000) - c эфферентными волокнами. Слуховой нерв контактирует с волосковыми клетками на основной мембране через синапсы. От одной внутренней клетки отходит 10-20 афферентных волокон, а наружной - 1-2. Небольшая группа нервных волокон слухового нерва проводит импульсы преимущественно одной частоты. Если звуковой стимул представляет сложное колебание, то в слуховом нерве активируются все волокна, соответствующие спектру звука. На уровне слуховых рецепторов происходит частотный анализ звуков, а длительность их кодируется временем активации афферентных волокон слухового нерва.
В гуморальной регуляции функции кортиева органа определенное значение имеют особые клетки сосудистой полоски - апудоциты, являющиеся элементами системы эндокринной клеточной регуляции. Апудоциты продуцируют биогенные амины - серотонин, мелатонин и пептидные гормоны - адреналин, норадреналин.
Функция подкорковых слуховых центров изучена сравнительно мало. Через них осуществляется безусловная рефлекторная связь с двигательными реакциями на звук (повороты головы, глаз), кохлео-пальпебральный рефлекс Бехтерева, кохлео-пупиллярный рефлекс Шурыгина и др.
Основные сведения по локализации корковых центров получены при помощи условных рефлексов, опытов с экстирпацией коры и отведением биотоков. При поражении корковых центров слуха нарушается высший анализ звуковых сигналов, синтез их в слитный образ, плохая разборчивость речи при удовлетворительном восприятии чистых тонов (Ундриц В.Ф., 1923).
Роль высших центров слуха подтверждается в клинике, когда после тимпанопластики улучшается острота слуха не только на оперированное ухо, но и на другое за счёт снятия торможения слухой зоны коры (Хилов К.Л.; Белов И.М., 1963 /. Тесно связаны с функцией слуховых центров височной коры такие физиологические свойства слуховой системы, как бинауральный пространственный слух, адаптация, маскировка и др.
Пространственный слух, бинауральный слух и ототопика взамосвязаны (Руденко В.П., 1967; Альтман Я.А., 1981).Пространственный слух - способность локализовать и определять направление звука в пространстве, что связано с бинауральным слухом, основанном на двустороннем частичном перекресте слуховых путей. Пространственный слух обусловливается временем или интенсивностью поступления звука в каждое ухо. Со стороны какого уха звук будет интенсивнее или быстрее поступит в слуховую систему, с той стороны и будет локализоваться источник сигнала. Здесь имеет значение расстояние от источника звука до каждого уха, а также фаза и угол звукового луча.
Маскировкой называется явление, заключающееся в увеличении порога тестового сигнала в присутствии другого звука (маскера). Маскировка широко применяется в аудиометрии с целью заглушения лучше слышащего уха. Вследствие связей каждой улитки с обоими высшими центрами слуха часто отмечается маскирующее действие одних звуков на другие в окружающей обстановке. Действие маскера зависит от частоты и интенсивности сигнала. Низкие и более сильные звуки обладают большей маскировкой.
Под слуховой адаптацией понимают временное повышение слуховых порогов в результате звуковой стимуляции. Это приспособительная и защитная реакции. В условиях тишины или при действии очень слабых звуков чувствительность органа слуха может повышаться, что В.Ф.Ундриц (1962) назвал сенсибилизацией чувствительности. Адаптационная способность уха зависит от состояния центральных и периферических отделов слуховой системы, уравновешенности процессов возбуждения и торможения в коре головного мозга (Вартанян И.А., 1981). Утомление слуховой функции является патологической реакцией, теряющей при длительном (несколько месяцев) действии раздражителя способность обратного развития npoцecca. В кортиевом органе появляются необратимые изменения, приводящие к тугоухости.
Слух для человека является биологическим и социальным фактором развития речи и речевого общения. Центральным звеном всего аппарата речи является кора головного мозга, преимущественно левого полушария, где у правшей находятся речеслуховой и кинестезический центры. Физиологическое восприятие речи осуществляется слуховой и зрительной системами. Слуховая система контролирует интесивность, частоту, тембр и другие качества речи. Речевые сигналы - это совокупность элементов акустической энергии с быстро меняющимися амплитудами и частотами. Средняя частота основного тона речи у мужчин составляет 136 Гц, у женщин - 248 Гц, то есть на октаву выше (Ермолаев В.Г. с соавт. ,1970). Обычная речь у людей имеет частотный диапазон в пределах одной октавы, а у певцов, артистов - до двух октав. Встречаются певцы, имеющие звуковысотный диапазон до трёх и даже четырёх октав (Има Сумак, Маро Робен). Речевые сигналы ограничены частотным диапазоном 1000 - 10000 Гц и интесивностью от 50 до 80 дБ.
Звуковыми единицами речи являются фонемы, с помощью которых образуется слово, а из слов - сообщение. Слуховая система осуществляет перевод простых физических или акустических признаков речевого сигнала в дискретный ряд фонем. На втором этапе происходит непосредственный перевод фонемы в языковую единицу.
Чтобы услышать речь, её уровень должен быть выше порога слышимости или порога обнаружения. Только в этом случае человек начинает различать отдельные слова. С повышением интенсивности речевых сигналов разборчивость их увеличивается. Пороги разборчивости зависят от фонемного состава речевого материала, количества слогов в слове, частоты их употребления, а также наличия и характера шумовой помехи. Примером тесной взаимосвязи слуховой и речевой функций является опыт Ломбарда, когда при чтении текста вставляют в уши трещотки Барани и интенсивность речи резко возрастает, так как человек должен слышать и постоянно контролировать свою речь. С этой же целью в шумной обстановке люди говорят громче.
Следовательно, слуховой орган позволяет человеку воспринимать и адекватно реагировать на звуковые изменения окружаюжей среды. Каждому участку слуховой системы свойственна определённая функция, нарушение которой ведёт к частичной или полной потере слуха.
Исследование слуха
При выяснении жалоб пациента обращается внимание на понижение слуха на одно или оба уха (постоянное, прогрессирующее или с периодическим улучшением, ухудшением), степень тугоухости (слышит разговор на близком расстоянии, затруднено общение с окружающими на работе, в быту или дома, пользуется постоянно, периодически слуховым аппаратом, как он влияет на остроту слуха, изменение слуха в шумной обстановке и при волнении), субъективный шум в ушах (периодический, почти постоянный, постоянный мучительный, прогрессирующий на одно или оба уха, с чем пациент сравнивает шум и утомляемость от него), наличие аутофонии, ощущуния переливающейся жидкости в ухе.
Из анамнеза выясняется длительность тугоухости и шума в ушах, изменение слуха и характера шума в динамике болезни, причины тугоухости, сопутствующие заболевания, влияющие на слух (сердечно - сосудистые заболевания, болезни почек, остеохондроз шейного отдела позвоночника и др.), возрастное изменение слуха, применявшееся консервативное и хирургическое лечение по поводу тугоухости и его результаты.
Исследование слуха с помощью речи
Показателем остроты слуха служит расстояние, на котором исследуемый воспринимает шепотную и разговорную речь. В норме при шепотной речи человек слышит низкие звуки на расстоянии не менее 6 м, а высокие - 20 м. В комнате, где осуществляется исследование, должно быть тихо. В стационаре исследование слуха можно проводить в палате больного. Каждый врач вырабатывает постоянную интенсивность шепотной речи, соответствующую интенсивности речи других врачей. Для этого необходимо произносить цифры или слова после спокойного выдоха. При тугоухости для исключения чтения с губ говорящего, пациент не должен смотреть на врача, поэтому он поворачивается к нему боком. Противоположное ухо больной плотно закрывает указательным пальцем.
На практике чаще всего пользуются двузначными цифрами от 21 до 99 по Бецольду (Bezold F., 1896), порог восприятия которых 5-6 м. Врач становится на расстоянии 6 м от больного и произносит шепотом цифры. Обследуемый должен повторить правильно три цифры подряд. Если пациент не слышит их, то врач приближается к нему на один шаг и продолжает исследование.
Острота слуха определяется с точностью до 0,5 м и отражается в медицинских документах: слух на ШР 0,5/6 м (в числителе указывается расстояние восприятия шепотной речи правым ухом, в знаменателе - левым). При восприятии шепотной речи у ушной раковины делается запись: слух на ШР ad concham/6 м. При восприятии шепотной речи на расстоянии менее 1 м осуществляется исследование слуха разговорной речью. Если разговорная речь менее 1 м, то для исключения односторонней глухоты и переслушивания лучше слышашим ухом, последнее заглушается трещоткой Барани и определяется восприятие крика хуже слышащим ухом. Результат исследования слуха разговорной речью отмечается аналогично шепотной речи - слух на РР 5/6 м, а восприятие крика - Кр. /0. В лечебных учреждениях эти данные заносятся отоларингологами в слуховой паспорт истории болезни, а в войсковых частях записываются в медицинскую книжку после описания отоскопической картины.
До внедрения в практику тональной и речевой аудиометрии с целью дифференциальной диагностики нарушения звукопроведения и звуковосприятия использовались специальные таблицы слов басовой и дискантовой групп. Примером басовой группы таблицы слов В.И.Воячека (1906) служат слова: вор, вон, окно, а дискантовой - Саша, чашка, жечь, заяц и др.
Интенсивность шепотной речи составляет 20-30 дБ, разговорной речи - 40-60 дБ, крика - 80-90 дБ. Невосприимчивость крика считается социальной глухотой.
Исследование камертонами
Исследование слуха камертонами может производиться как с учетом длительности их звучания в секундах - количественно, так и качественно на основе сравнения восприятия их по воздуху и кости, а также у больного и врача.
Для точной количественной оценки длительности восприятия камертонов требуется достаточно много времени, поэтому в условиях войсковой части и отоларингологами в амбулаторной практике используются качественные камертональные тесты. В совокупности они имеют значение как метод дифференциальной экспресс-диагностики нарушения механизма звукопроведения и звуковосприятия. При выполнении этих тестов (опытов) используется один басовый камертон С128 или А105.
Опыт Вебера - оценка латерализации звука (Weber E., 1829). Камертон ставят больному ножкой на темя и просят его сказать, каким ухом он громче слышит звук. При одностороннем поражении звукопроводящего аппарата (серная пробка в слуховом проходе, воспаление среднего уха, перфорация барабанной перепонки и др.) наблюдается латерализация звука в больное ухо; при двустороннеем поражении - в сторону хуже слышащего уха. Нарушение звуковосприятия приводит к латерализации звука в здоровое или лучше слышащее ухо.
Опыт Ринне - сравнение длительности восприятия костной и воздушной проводимости (Rinne A., 1855). Низкочастотный камертон устанавливается ножкой на сосцевидный отросток. После прекращения восприятия звука по кости его подносят браншами к слуховому проходу. В норме человек дольше слышит камертон по воздуху (опыт Ринне положительный). При нарушении звуковосприятия пропорционально ухудшается костная и воздушная проводимость, поэтому опыт Ринне остается положительным. Если же страдает звукопроведение с нормальной функцией слухового рецептора, то звук по кости воспринимается дольше, чем по воздуху (отрицательный опыт Ринне).
Опыт Швабаха - оценка длительности восприятия камертона по кости (Schwabach D., 1885). Сравнивается длительность восприятия камертона с сосцевидного отростка у больного и нормально слышащего врача. При нарушении звуковосприятия врач дольше слышит камертон (укорочение костной проводимости в опыте Швабаха). Нарушение звукопроведения приводит к обратному эффекту - больной со сниженным слухом воспринимает камертон дольше врача (удлинение костной проводимости в опыте Швабаха).
Опыты Вебера, Ринне и Швабаха считаются классическими при качественном камертональном исследовании слуха. Их результаты в норме, при нарушении звукопроведения и звуковосприятия приведены в табл. 1.2.1.
Таблица 1.2.1
Результаты качественных камертональных тестов
Характер тугоухости |
О п ы т ы |
|||
Вебера |
Ринне |
Швабаха |
||
Норма |
Латерализация отсутствует |
Положительный |
- |
|
Нарушение звукопроведения |
В больное (хуже слышащее) ухо |
Отрицательный |
Восприятие удлинено |
|
Нарушение звуковосприятия |
В здоровое (лучше слышащее) ухо |
Положительный |
Восприятие укорочено |
В опыте Ринне целесообразно сравнивать не длительность восприятия камертона, а интенсивность его звучания. Это значительно экономит время исследования и при убедительном результате позволяет ограничиться проведением всего двух тестов. Первым из них является модифицированный опыт Ринне - сравнение интенсивности восприятия камертона с сосцевидного отростка и у наружного слухового прохода, а вторым служит опыт Вебера, результат которого сравнивается с латерализацией ультразвука. На такую камертональную дифференциальную экспресс-диагностику нарушения звукопроведения и звуковосприятия затрачивается не более одной минуты.
Кроме указанных опытов предложены и другие, из которых чаще всего применяются опыты Федеричи и Бинга.
Опыт Федеричи (Federici F., 1933) - сравнение длительности восприятия тканевой проводимости с сосцевидного отростка и козелка при обтурации им наружного слухового прохода. Проводится опыт аналогично опыту Ринне. После прекращения звучания камертона на сосцевидном отростке он ставится ножкой на козелок. В норме и при нарушении звуковосприятия опыт Федеричи положительный, т.е. звучание камертона с козелка воспринимается дольше, а при нарушении звукопроведения - отрицательный.
Опыт Бинга (Bing A., 1891) - сравнение интенсивности восприятия костно-тканевой проводимости с сосцевидного отростка при открытом и закрытом козелком наружном слуховом проходе. В норме и при нарушении звуковосприятия обтурация наружного слухового прохода приводит к усилению воспиятия камертона (положительный опыт Бинга), а при нарушении звукопроведения этого не происходит (отрицательный опыт Бинга).
Улучшение восприятия камертона по тканям черепа в опыте Бинга в норме и при нарушении звуковосприятия обусловлено в основном отсутствием влияния внешнего шума и резонансным усилением звука в закрытой полости уха. Нарушение звукопроведения в наружном и среднем ухе само по себе создает препятствие для выхода звуковой энергии наружу, поэтому закрытие наружного слухового прохода козелком не вызывает дополнительного усиления звука.
Наряду с камертональными тестами, служащими для дифференцирования поражения звукопроведения и звуковосприятия, применяется специальный опыт Желле для диагностики отосклероза.
Опыт Желле (Gelle M., 1881) - определение подвижности подножной пластинки стремени в овальном окне. Наружный слуховой проход плотно обтурируется оливой баллона Политцера и с его помощью периодически увеличивается и уменьшается давление воздуха на барабанную перепонку, слуховые косточки. Максимально звучащий низкочастотный камертон устанавливается на сосцевидный отросток. При неподвижности стремени в овальном окне громкость звука от изменения давления в наружном слуховом проходе не меняется (опыт Желле отрицательный), в то время как в норме при повышении давления звук воспринимается более тихим (опыт Желле положительный).
Количественное исследование слуха камертонами, предложенное Бецольдом (Bezold F., 1897), предназначено для более точной дифференциальной диагностики нарушений слуха на различных уровнях слуховой системы. Оно заключается в определении времени восприятия звучания камертонов. Для детального анализа слуховой функции необходим полный набор камертонов Бецольда-Эдельмана со свистком Гальтона. С внедрением тональной аудиометрии использование такого набора камертонов утратило свое значение. В настоящее время по В.И.Воячеку в клинике пользуются двумя камертонами. Обычно применяют камертоны C128 (низкий) и C2048 (высокий) или близкие к ним по тональности - A105 и C1024. Определяют длительность восприятия дискантного камертона по воздуху, а басового - по воздуху и тканям черепа.
При исследовании воздушной проводимости соблюдается ряд правил.
Возбуждение камертона производится по принципу “максимального удара”, что достигается ударом его о тенор ладони, либо ударом по нему резиновым молоточком или путем щипка. В этих случаях начальные колебания камертона будут наибольшими, а длительность звучания - приблизительно одинаковой.
Время отсчитывают по секундомеру с момента возбуждения камертона.
Звучащий камертон удерживают за ножку двумя пальцами на расстоянии 1 см от уха таким образом, чтобы бранши совершали колебания в плоскости оси слухового прохода.
Для исключения адаптации камертон периодически удаляют от уха на 3-5 с.
Костно-тканевую проводимость исследуют басовым камертоном, устанавливая его на основание сосцевидного отростка в области проекции антрума. Отмечают время восприятия камертона правым и левым ухом, а затем вновь возбуждают камертон, устанавливают его на середину темени браншами в стороны и проверяют латерализацию звука.
Ежегодно производится паспортизация камертонов биологическим методом. Для этого устанавливается средняя длительность восприятия звучания камертонов у десяти здоровых людей с нормальным речевым и тональным слухом в возрасте от 20 до 25 лет. Эти показатели наносятся на ножку камертона, например, на полоске липкого пластыря. Отмечается также месяц и год тестирования.
Результаты камертонального исследования вместе с результатами исследования слуха речью записываются в слуховой паспорт истории болезни, который предложен В.И.Воячеком и Н.Ф.Бохоном (1935). В нем отмечается и норма звучания камертонов, с которой сравниваются показатели у больных.
По данным слухового паспорта осуществляется первичная дифференциальная диагностика различных форм тугоухости: нарушения звукопроведения, звуковосприятия или смешанного типа. Обращается особое внимание на те заболевания, при которых барабанная перепонка целая и часто имеет нормальный вид (сенсоневральная тугоухость, отосклероз, болезнь Меньера, тубоотит, серозный средний отит, адгезивный средний отит, невринома VIII нерва и др.). При гнойном отите или перфорации барабанной перепонки причина тугоухости более понятна.
При нарушении механизма звукопроведения (табл. 1.2.2) ухудшается восприятие по воздуху преимущественно басового камертона. При исследовании костной проводимости он слышен дольше, чем в норме, и звук его латерализуется в больное ухо.
Таблица 1.2.2
Слуховой паспорт
(при поражении звукопроведения)
AD |
Тесты |
AS |
|
+ 0,5 м 5м Не исследовался 50 с 60 с 70 с |
СШ ШР РР Кр. (крик с трещоткой) A105 (норма - 120 с) С2048 (норма - 70 с) Aк105 (норма - 60 с) Латерализация |
0 6 м >6 м Не исследовался 120 с 70 с 60 с |
В ы в о д: понижение слуха на правое ухо по звукопроводящему типу.
Условные обозначения: СШ - субьективный ушной шум (+ имеется, 0 нет); ШР - шепотная речь; РР - разговорная речь; Кр. - крик с заглушением противоположного уха трешоткой Барани (+ воспринимается, 0 нет); А105, С2048 - воздушная проводимость; Aк105 - костная проводимость.
Нарушение механизма звуковосприятия (табл. 1.2.3) сопровождается выраженным ухудшением восприятия по воздуху дискантового камертона. Пропорционально уменьшается длительность звучания басового камертона по воздуху и тканям черепа (их соотношение, как и в норме, приблизительно равно 2:1). Отмечается латерализация звука в лучше слышащее ухо.
Таблица 1.2.3
Слуховой паспорт
(при нарушении звуковосприя)
AD |
Тесты |
AS |
|
+ 0 м 1 м + 60 с 20 с 30 с |
СШ ШР РР Кр. (крик с трещоткой) A105 (норма - 120 с) С2048 (норма - 70 с) Aк105 (норма - 60 с) Латерализация |
0 6 м >6 м Не исследовался 120 с 70 с 60 с |
В ы в о д: понижение слуха на правое ухо по звуковоспринимающему типу.
Ухудшение слуха по смешанному типу (табл. 2.3) характеризуется отсутствием преобладания нарушения восприятия басового или дискантового камертонов по воздуху и изменением нормального соотношения длительности восприятия басового камертона по воздуху и кости (в норме 2:1), а также нечеткой латерализацией звука.
Таблица 2.3
Слуховой паспорт
(при понижении слуха по смешанному типу)
AD |
Тесты |
AS |
|
+ 4 м >6 м Не исследовался 100 с 50 с 55 с |
СШ ШР РР Кр. (крик с трещоткой) A105 (норма - 120 с) С2048 (норма - 70 с) Aк105 (норма - 60 с) Латерализация |
+ 2,5 м >6 м Не исследовался 80 с 40 с 50 с |
В ы в о д: понижение слуха на оба уха по смешанному типу.
Аудиометрическое обследование
В клинической оториноларингологии применяются субъективные и объективные методы аудиометрической диагностики тугоухости.
К субъективным относятся пороговая тональная аудиометрия и определение слуховой чувствительности к ультразвукам, а также надпороговые тесты, речевая, шумовая аудиометрии, исследование помехоустойчивости слуховой системы, пространственного слуха, определение спектра и интенсивности субъективного ушного шума.
Пороговая тональная аудиометрия может проводиться в расширенном диапазоне частот, в том числе с определением нижней границы воспринимаемых звуковых частот (НГВЧ).
При надпороговой тональной аудиометрии исследуются: дифференциальный порог восприятия силы (ДПС) и частоты (ДПЧ) звука, время обратной адаптации (ВОА), уровень дискомфортной громкости (УДГ), динамический диапазон слухового поля (ДДСП). Одной из задач надпороговой аудиометрии является выявление феномена ускоренного нарастания громкости (ФУНГ), характерного для поражения рецепторных клеток кортиева органа.
К объективным методам аудиологической диагностики тугоухости относятся: импедансная аудиометрия, аудиометрия по слуховым вызванным потенциалам и отоакустическая эмиссия.
Пороговая тональная аудиометрия является самым распространённым способом аудиологической диагностики. Все аудиологические исследования начинаются с тональной аудиометрии, поэтому каждый отоларинголог должен знать её методологию и оценивать полученные результаты.
Тональная пороговая аудиометрия осуществляется с помощью аудиометров, которые отличаются один от другого по функциональным возможностям и управлению (рис. 1.2.6). В них предусмотрен набор частот (чистых тонов) 125, 250, 500, 750, 1000, 1500, 2000, 3000, 4000, 6000, 8000 и 10000 Гц (в некоторых аудиометрах имеются ещё частоты 12000 и 16000 Гц). Звуковым стимулом слуховой системы являются чистые тоны или шумы (узкополосный и широкополосный), которые образуются в аудиометре с помощью звукового генератора. В большинстве аудиометров переключение интенсивности стимулов производится шагом в 5 дБ от 0 до 110 - 120 дБ путём аттенюатора (регулятора интенсивности).
Аудиометры оснащены оголовьем с двумя воздушными телефонами, костным вибратором, кнопкой пациента, микрофоном и имеют низкочастотный вход для подключения магнитофона (или проигрывателя компакт-дисков) для проведения речевой аудиометрии.
Идеальным условием для аудиометрии является звукозаглушенное помещение (сурдокамера), с шумовым фоном до 30 дБ. В настоящее время выпусткается множество портативных сурдокамер. На практике можно проводить аудиометрию в обычной комнате, которая не подвержена воздействию внешнего шума (ходьба, разговоры в коридорах, транспорт на улице и др.).
Порог восприятия тона - минимальное звуковое давление, при котором появляется, слуховое ощущение. Исследование начинается с лучше слышащего уха, а при отсутствии асимметрии слуха - с правого уха. У здоровых людей время реакции на акустические сигналы составляет 0,1 с, а у пожилых людей и тугоухих - увеличивается.
Обследуемый получает короткий, точный и понятный инструктаж, а в процессе аудиометрии исследователь постоянно поддерживает связь по микрофону с пациентом, удостоверяясь в правильном выполнении методики.
Сначала измеряется чувствительность тона 1000 Гц, затем более высоких тонов и заканчивается измерение определением порогов низкочастотных тонов. Сигналы подаются от 0 дБ до надпороговой громкости, чтобы пациент оценил характер предъявляемого сигнала. Затем громкость звука сразу уменьшается до неслышимого уровня, после чего определяют порог на уровне слабо слышимого тона, который подтверждается трижды ступенями в 5 дБ с помощью кнопки прерывателя тона для исключения адаптации. Значения каждого порога звука наносятся на аудиограмму.
При асимметрии слуха и переслушивании тона лучше слышащим ухом осуществляется клиническая маскировка с помощью узкополосного шума. Под термином "маскировка" понимают подачу маскирующего шума, на лучше слышащее ухо с целью его выключения. Предложено много методов маскировки. При скользящем варианте маскировки (Lehnhardt E., 1987) воздушной проводимости она показана, когда разница между порогами воздушной проводимости хуже слышащего уха и порогами костной проводимости лучше слышащего уха составляет 50 дБ и более. Костная проводимость маскируется, если разница между порогами костной и воздушой проводимости хуже слышащего уха равна 15 дБ и более, а пороги костной проводимости этого уха выше противоположного на 10 дБ и более. Для первоначальной маскировки воздушной проводимости пороговую интенсивность шума увеличивают на 20 дБ, а для костной проводимости - на 10 дБ. При продолжающемся переслушивании тона интенсивность шума увеличивается ступенями по 10 дБ для воздушной и костной проводимости до тех пор, пока не наступит восприятие тона хуже слышащим ухом. Если этого не происходит, то считается, что тон на исследуемой частоте не воспринимается.
Методика определения порогов по костной звукопроводимости аналогична вышеописанной. Сначала отмечается латерализация звуков в области лба или темени (опыт Вебера) при подаче сигналов превышающих пороги костной слышимости на 10-15 дБ. Первым исследуется ухо, в сторону которого направлена латерализация тона. Костный вибратор, при надетых наушниках, прикладывается с массой 500-700 г к сосцевидному отростку. Необходимость маскировки при костной аудиометрии возникает гораздо чаще, чем при воздушной.
На тональных аудиограммах вертикальные линии (ординат) отражают интенсивность в дБ, а горизонтальные (абсцисс) - частоты в Гц или кГц. Общепринятым является обозначение пороговой кривой воздушной проводимости сплошной линией и костной проводимости - пунктиром. Данные для правого уха отмечаются красным цветом, а для левого - синим. Маскировка воздушной проводимости лучше слышащего уха обозначается жирной чёрточкой, а костной проводимости - зигзагообразным значком. Эти знаки пишутся цветом хуже слышащего уха на соответствующих частотах и интенсивностях маскирующего шума на стороне лучше слышащего.
Отклонение тональных порогов в среднем на ±10 дБ на каждой частоте считается нормальным явлением, если воздушная и костная проводимости расположены рядом и нет жалоб на расстройство слуха. При нормальной остроте слуха тональные кривые воздушной и костной проводимости проходят около нулевой линии или накладываются на неё.
Тугоухость характеризуется рядом типичных аудиологических признаков, позволяющих провести дифференциальную диагностику между звукопроводящей (кондуктивной), звуковоспринимающей (сенсоневральной или перцептивной) и смешанной формами её.
Для нарушения функции звукопроводящего аппарата характерна “восходящая” кривая воздушной проводимости, являющаяся результатом худшей слышимости низких тонов и удовлетворительного восприятия - высоких. При этом кривая на низких частотах опускается до 30-50 дБ. Кривая костной проводимости расположена близко от пороговой нулевой линии и не опускается на низких частотах более 20 дБ, а на высоких - более 10 дБ. Имеется костно-воздушный интервал - более 20 дБ.
Прогрессирование кондуктивной тугоухости ведет к дальнейшему повышению тональных порогов воздушной проводимости и на высокие частоты, в результате чего кривая становится почти горизонтальной, однако не превышает уровня 60 дБ. Развивается смешанная тугоухость, при которой костные пороги увеличиваются до 40 дБ как на низкие, так и на высокие частоты, но все же костная проводимость остается удовлетворительной на всем диапазоне частот. Между кривыми костной и воздушной проводимости сохраняется разрыв до 15 дБ.
Для нарушения функции звуковоспринимающего аппарата характерна “нисходящая” кривая воздушной проводимости, являющаяся результатом худшего восприятия высоких тонов. Нисходящая кривая костной проводимости прилежит к кривой воздушной проводимости. В области низких частот может наблюдаться костно-воздушный интервал до 10 дБ. На средних и высоких частотах кривые костной и воздушной проводимости могут сливаться или пересекаться .
При анализе тональных аудиограмм учитывается возрастное повышение порогов слышимости (пресбиакузис) по воздушной и костно-тканевой проводимости.
Речевая аудиометрия осуществляется с помощью аудиометра и подключенного к нему магнитофона или специального речевого аудиометра. Разными авторами разработаны таблицы разночастотных слов (Воячек В.И., Гринберг Г. И. и др.), которые подаются в ухо пациента через воздушные телефоны, костный вибратор или динамики в свободном звуковом поле.
Цель исследования заключается в определении порогов чувствительности (различения) и разборчивости речи. Под разборчивостью речи понимается процент правильно названных слов пациентом к числу переданных ему по испытуемому тракту (передаётся минимум 30 слов). Интенсивность речи, записанной на магнитофонную ленту, регулируется с помощью аудиометра.
Выделяют три основных порога разборчивости речи. Порог чувствительности, соответствующий наименьший интенсивности речи, при которой человек начинает слышать разговор, но не понимает ни одно слово и не может повторить его. При увеличении громкости слов определяют пороги разборчивости речи 50% и 100%, когда пациент правильно повторяет половину слов или все слова.
На речевой аудиограмме по оси абсцисс отмечаются уровни интенсивности речи от 0 до 120 дБ с интервалом в 10 дБ, а по оси ординат - процент разборчивости её от 0 до 100% с интервалом 10%. На бланках обязательно наносится кривая нормальной разборчивости речи после калибровки речевого аудиометра путём выявления вышеуказанных порогов минимум у десяти молодых людей (20-30 лет) с нормальным тональным слухом.
При кондуктиной тугоухости кривая разборчивости речи идёт параллельно нормальной кривой. Порог чувствительности речи отстоит от такового по сравнению с нормой не более чем на 40-50 дБ. Остальные пороги отстоят от соответствующих им порогов нормальной кривой на столько же децибел, что и порог чувствительности. Разборчивость речи достигает 100%.
При сенсоневральной тугоухости порог чувствительности отстоит от нормы более чем на 50-60 дБ. Кривая аудиограммы не параллельна нормальной кривой, отклонена вправо или имеет форму крючка. 100% разборчивость речи часто не достигается.
Надпороговая тональная аудиометрия в клинике в основном предназначена для выявления феномена ускоренного нарастания громкости - ФУНГ, который заключается в том, что при патологии рецептора слуховой системы наряду с тугоухостью отмечается повышенная чувствительность к громким звукам и быстрое скачкообразное восприятие их. Например, человек слышит правым ухом звук 65 дБ, а левым - 15 дБ. При увеличении интенсивности звука на оба уха ступенчато на одну и ту же величину наступает момент, когда обоими ушами сигнал воспринимается равногромким, то есть происходит выравнивание громкости. Однако для лучше слышащего уха приходится усиливать звук, например, на 65 дБ, а для хуже слышащего - всего на 30 дБ.
ФУНГ выявляется с помощью следующих надпороговых тестов: дифференциального порога силы звука (ДПС), уровня дискомфортной громкости (УДГ), динамического диапазона слухового поля (ДДСП), баланса громкости по Фоулеру, SISI-теста - индекса чувствительности к коротким нарастаниям звука и др. ФУНГ чаще отмечается при высоких порогах костной проводимости (40 дБ и более), нормальном или пониженном уровне дискомфортной громкости и уменьшении динамического диапазона слухового поля, 0,2-0.7 ДПС и 70-100% SISI-тесте. Он свидетельствует о поражении рецептора улитки и отмечается при сенсоневральной и реже - смешанной тугоухости. ФУНГ, как признак рецепторной тугоухости, рассматривается в комплексе с другими аудиологическими показателями.
Импедансная аудиометрия представляет метод измерения акустического сопротивления звукопроводящего аппарата слуховой системы (от лат. impedire - препятствовать). Она позволяет провести дифференциальную диагностику патологии среднего уха (серозного среднего отита, адгезивного среднего отита, тубоотита, отосклероза, разрыва цепи слуховых косточек), а также получить представление о функции VII и VIII пар черепно-мозговых нервов и стволомозговых слуховых проводящих путей.
С помощью импедансного аудиометра исследуются податливость звукопроводящего аппарата под влиянием давления звуковой волны или аппаратного изменения воздушного давления в слуховом проходе. Для этого существует два метода: тимпанометрия и измерение акустического рефлекса стремени. Результаты регистрируются на принтере прибора или визуально ручным способом. Методом импедансометрии оценивается так же вентиляционная функция слуховой трубы, подвижность стремени в овальном окне (воздушный опыт Желле) и давление в барабанной полости.
Тимпанометрия заключается в регистрации податливости звукопроводящего аппарата при изменении давления воздуха в слуховом проходе от 0 до + 300 - 300 мм Н2О. На тимпанограммах податливость обозначается в условных единицах - мл или см3 и вершина кривой направлена вверх. Выделяют 4 основных типа тимпанограмм: А,В,С и Д, причём в нормальной тимпанограмме (А) различают разновидности (А1 и А2), вершины которых снижены до 3 и 2 мл. Нормальная тимпанограмма (А) характеризуется полной податливостью барабанной перепонки (условно комплеанс до 5 мл), высокой вершиной кривой и нулевым давлением. Тип В отличается малой податливостью перепонки (комплеанс до 1-1,5 мл) плоской вершиной или отсутствием её, отрицательным давлением или невозможностью определить его в барабанной полости (секреторный, мукозный, адгезивный отиты, тимпаносклероз, гломусная опухоль и др.). Тимпанограмма С характеризуется почти нормальной податливостью звукопроводящего аппарата, но вершина её всегда смещена в сторону отрицательного давления (Тубоотит, аденоиды и др.). Тип Д выделяется гиперподатливостью барабанной перепонки (комплеанс более 5 мл), когда вершина тимпанограммы не фиксируется и образуется плато вследствие снижения жесткости перепонки за счёт образования обширных податливых рубцов, атрофии барабанной перепонки или перерыва цепи слуховых косточек после воспалений и травм.
Тимпанограммы А1 и А2 отмечаются при отосклерозе. При сенсоневральной тугоухости тимпанограмма нормальная.
Изучение Акустического рефлекса основано на регистрации сокращения стремянной мышцы под влиянием звуковой волны, поступающей из аудиометра, встроенного в импедансометр. Вызванные звуковым стимулом нервные импульсы по слуховым путям доходят до верхних олив, где переключаются на моторное ядро лицевого нерва и доходят до стременной мышцы. Сокращение мышц происходит с обеих сторон. Регистрировать акустический рефлекс стремени можно в стимулируемом ухе (ипсилатерально) или в противоположном - контралатерально. В норме порог акустического рефлекса стремени составляет около 80 дБ над индивидуальным порогом чувствительности.
При кондуктивной тугоухости, патологии ядер или ствола лицевого нерва акустический рефлекс стремени отсутствует на стороне поражения. При невриноме VIII нерва выпадают ипси- и контралатеральный акустические рефлексы стремени при стимуляции пораженной стороны. Патология ствола мозга на уровне трапециевидного тела приводит к выпадению обоих контралатеральных рефлексов. Объёмные процессы, захватывающие оба перекрестных и один из не перекрестных путей, характеризуются отсутствием всех рефлексов, кроме ипсилатерального на здоровой стороне. Для дифференциальной диагностики ретролабиринтного поражения слуховых путей большое значение имеет тест распада акустического рефлекса.
Аудиометрия по слуховым вызванным потенциалам. Слуховые вызванные потенциалы головного мозга регистрируются в ответ на серию коротких звуковых стимулов (щелчки, тональные посылки), которые в отдельности дают реакцию лишь в несколько микровольт и не превышают шумового фона физиологических процессов в головном мозге. Регулярные ответы (вызванные потенциалы) усиливаются компьютером методом суммации в 100000 раз, причем нерегулярная “помеха” в виде фоновой ЭЭГ при этом уничтожается. Так как для выделения сигнала из шума используется микропроцессор, то среди врачей этот метод исследования слуха получил название компьютерной аудиометрии.
Для аудиометрии по вызванным потенциалам применяется блок приборов, включающий 2 электрода, усилитель ЭЭГ, звуковой генератор, подающий короткие сигналы в 200 мс, датчик времени, ключ, сумматор (микропроцессор с памятью) и самописец.
Различают корковые длиннолатентные слуховые вызванные потенциалы (ДСВП), стволовые коротколатентные слуховые вызванные потенциалы (КСВП) и среднелатентные слуховые вызванные потенциалы (ССВП).
ДСВП отражают функцию слуховых центров височной коры головного мозга. Исследование проводится при высокой степени тугоухости, чаще у детей. Оно продолжается более часа, в экранированной камере, в неподвижном состоянии пациента (во сне после введения хлоралгидрата в клизме или др. средств).
КСВП связаны со стволовой функцией слуховой системы: I - со слуховым нервом; II - с кохлеарным ядром; III - с верхней оливой; IV - с боковой петлёй, где происходит перекрест слуховых путей и V - с буграми четверохолмия. Отсюда делают вывод, на каком уровне поражена слуховая система. Исследование КСВП можно осуществлять в обычной обстановке без экранированной камеры, в состоянии бодрствования ребёнка или физиологического сна. К недостаткам исследования этого класса слуховых вызванных потенциалов относится невысокая частотная специфичность.
Источником ССВП некоторые авторы считают первичную слуховую кору, а другие расценивают это, как результат мышечных движений скальпа черепа и глаз. Исследование проводится у бодрствующих детей или в состоянии сна. ССВП обладают выраженной частотной специфичностью, что позволяет исследовать слуховые пороги в диапазоне от 500 до 4000 Гц с достаточной достоверностью.
Отоакустическая эмиссия (ОАЭ) представляет собой постоянную генерацию звуковых сигналов в рецепторе улитки. Это чрезвычайно слабые звуковые колебания, которые регистрируются в наружном слуховом проходе с помощью высокочувствительного низкошумящего микрофона. Колебания являются результатом активных механических процессов в наружных волосковых клетках, которые усиливаются за счёт положительной обратной связи, передаются базилярной мембране, индуцируя обратно бегущие волны, достигающие подножной пластинки стремени, приводящие в колебание слуховые косточки, барабанную перепонку и воздух в наружном слуховом проходе.
Различают спонтанную и вызванную ОАЭ. Спонтанная ОАЭ регистрируется в отсутствии звуковой стимуляции. Вызванная ОАЭ отмечается в ответ на звуковую стимуляцию. Реально при регистрации вызванной ОАЭ измеряются не движения барабанной перепонки, а звуковое давление после обтурации наружного слухового прохода. Для регистрации задержанной ОАЭ используют вводимый в наружный слуховой проход зонд, в корпусе которого размещены миниатюрные телефон и микрофон. Стимулами служат широкополосные акустические щелчки. Отводимый микрофоном ответный сигнал усиливается и напрвляется в компьютер через аналого-цифровой преобразователь.
У лиц с нормальным слухом пороги вызванной ОАЭ близки к субъективным порогам слышимости, а при патологии слуховой системы результаты исследования изменяются. ОАЭ может быть зарегистрирована у детей уже на 3-4 день после рождения, поэтому метод более популярен среди детей младшего и дошкольного возрастов при тугоухости и глухоте.
1.3 ФИЗИОЛОГИЯ И клинические МЕТОДЫ ИССЛЕДОВАНИЯ ВЕСТИБУЛЯРНОГО АППАРАТА
Термином “вестибулярный аппарат” обозначают отолитовые и ампулярные рецепторы ушного лабиринта.
Благодаря особому анатомическому устройству полукружных каналов и мешочков преддверия, а так же наличию вспомогательного аппарата ампулярные рецепторы реагируют на угловое ускорение, а отолитовые - на прямолинейные. Посредниками в восприятии рецепторными клетками соответствующих ускорений в полукружных каналах служат купула и эндолимфа, а в мешочках преддверия - отолитовая мембрана, отягощенная кристаллами углекислого кальция. Обладая массой, эти вспомогательные образования приходят в движение при действии инерционных сил, Смещение купулы и отолитовой мембраны вызывает раздражение чувствительных рецепторных волосковых клеток.
Угловое и линейные ускорения являются адекватными раздражителями вестибулярного аппарата. Одной из разновидностей линейных ускорений является ускорение свободного падения, возникающее под действием гравитации. Поэтому, вестибулярный аппарат в целом называют инерционно-гравитационным датчиком. Ампулярные рецепторы воспринимают повороты головы, а отолитовые - статическое изменение положения головы в пространстве, центробежную силу, вертикальные и горизонтальные смещения головы вместе со всем телом. Линейные ускорения, складываясь по закону параллелограмма, приводят к эффективному тангенциальному смещению отолитовой мембраны.
Первые сведения о роли полукружных каналов были получены в 1824 г. Флурансом (Flourens), который пытался выяснить их значение в слуховой функции. Перерезая каналы голубя, он наблюдал подергивающие движения головы, кувыркание и другие расстройства при движениях. Нарушений слуха не отмечалось. Долгое время выявленные Флурансом реакции не находили объяснения. Лишь спустя 56 лет Гольц (Golz, 1870) высказал мысль, что вестибулярный аппарат является “органом чувств для равновесия головы, а значит и тела”. Вскоре после этого одновременно Мах (Mach), Брейер (Breuer) и Крум-Броун (Crum-Broun) предложили теории, в которых раскрывались причина и механизм раздражения полукружных каналов. По мнению этих ученых адекватным раздражителем полукружных каналов является угловое ускорение, которое, согласно закону инерции, вызывает сдвиг эндолимфы вместе с купулой, приводящий к раздражению ампулярного нерва.
Эвальдом (Ewald) в 1892 г. были описаны результаты экспериментов на голубях, выявившие зависимость направления и выраженности реакции от раздражения того или иного полукружного канала и направления смещения в нем эндолимфы. Исследователем пломбировался гладкий конец канала, а между ампулой и пломбой просверливалось отверстие в костной стенке канала, в которое вставлялся тонкий металлический стерженек, идущий от поршня пневматического цилиндра, соединенного резиновой трубочкой с резиновой грушей. При сжатии рукой груши стерженек такого пневматического молоточка оказывал давление на перепончатый канал и приводил к сдвигу эндолимфы к ампуле (ампулопетально). Разрежение воздуха сопровождалось втягиванием поршня внутрь молоточка и расправлением стенки перепончатого полукружного канала, что вызывало сдвиг эндолимфы от ампулы в сторону гладкого конца (ампулофугально). При раздражении полукружных каналов у голубя наблюдался нистагм головы и глаз. Результаты экспериментов дошли до нас как законы Эвальда.
Нистагм возникает в плоскости раздражаемого канала.
Ампулопетальный ток эндолимфы в горизонтальном полукружном канале вызывает более выраженную реакцию, чем ампулофугальный. В вертикальных каналах эта закономерность обратная.
Нистагм направлен в сторону более активного лабиринта.
Эвальд изучал так же изменения положения головы голубя после разрушения одного из лабиринтов. Правосторонняя лабиринтэктомия, кроме наблюдавшегося в первые дни нистагма в здоровую сторону, приводила к изменению тонуса мышц шеи. Это выражалось в повороте головы вправо - в сторону разрушенного лабирита. Поворот головы завершался через 20 дней перекручиванием шеи вправо на 3600. Такое положение головы у голубя сохранялось и в дальнейшем. Оставалось неясным - какой отдел ушного лабиринта вызывает такую тоническую реакцию мышц шеи?
В 1924г. Магнус (Magnus) и в 1926г. де Клейн (de Kleyn) опубликовали результаты своих совместных экспериментальных исследований, раскрывающих роль отолитового аппарата. Ими доказано, что отолитовыми рецепторами осуществляются непрерывные тонические влияния на мышцы шеи, туловища, конечностей и глаз. Именно изменение этих реакций приводит к описанному выше повороту головы голубя после односторонней лабиринтэктомии, который сохраняется на всю жизнь. В норме отолитовые реакции способствуют обычному распределению мышечного тонуса. Закономерности тонических лабиринтных реакций особенно наглядно проявляются у децеребрированных (таламических) животных. Придание такому животному любого положения в пространстве как бы “магическим” образом влияет на распределение тонуса. При положении на спине максимально выражен тонус разгибателей конечностей, а в обычном положении - тонус сгибателей. У интактных животных и тем более у человека эти закономерности скрыты благодаря пластичности неповрежденных нервных механизмов регуляции позы. Но все же и у человека можно наблюдать тонические отлитовые реакции. Например, гимнаст при выполнении сальто назад должен обязательно запрокинуть голову, чтобы облегчить тоническую реакцию разгибания туловища. Тонические отолитовые реакции называются реакциями положения (позы).
Ярким примером восстановление равновесия служит приземление на лапы падающей кошки, причем первой занимает естественное положение голова. После повреждения отолитового аппарата такая реакция становится невозможной, так как утрачивается его способность оценки гравитационной вертикали, в связи с чем нарушается программа соответствующих двигательных актов туловища и конечностей. У человека при боковом падении рефлекторно сокращаются мышцы, отводящие противоположные конечности, что также способствует сохранению равновесия. Эти реакции отолитового аппарата называются установочными или выпрямительными.
В отличие от полукружных каналов, раздражение которых вызывает ритмическую реакцию - нистагм, отолитовые рецепторы оказывают тоническое влияние на глазные мышцы. Благодаря этому глаза при медленных поворотах и наклонах головы остаются в исходном положении, совершая по отношению к голове противовращение (рис. 1.3.4). Такая тоническая реакция называется компенсаторным противовращением глаз. Она способствует удержанию поля зрения. У животных компенсаторный поворот глаз более выражен, чем у человека, что связано с преобладанием роли установки глаз посредством зрительной афферентации вследствие увеличения произвольной активности глазодвигательной системы и появления возможности плавного слежения. У кролика и морской свинки с панорамным зрением установка глаз производится исключительно за счет отолитовой и шейной реакции их противовращения.
В вестибулярном нерве в норме имеется постоянная спонтанная активность, которая проявляется определенной частотой нервной импульсации. При раздражении рецепторных клеток отолитового аппарата или полукружных каналов, этот спонтанный афферентный поток изменяется следующим образом: смещение киноцилии в сторону стереоцилий вызывает урежение импульсов в нерве, а в противоположную сторону - учащение импульсации. Следовательно, рецепторы вестибулярного аппарата обладают бидирекционной чувствительностью.
Когда человек поворачивает голову или поворачивается всем телом, то эндолимфа в полукружных каналах по инерции покоя отстает от их движения, что приводит к смещению купулы и раздражению рецепторных клеток. При завершении поворота головы положительное угловое ускорение сменяется отрицательным, что приводит к восстановлению положения купулоэндолимфатического снаряда. Кратковременность поворота головы, непосредственный переход действия положительного углового ускорения в отрицательное, а также упругость купулы и вязкость эндолимфы способствуют тому, что после окончания поворота не ощущается никаких следовых реакций в виде головокружения и потери равновесия. Этому же способствует наличие зрительного контроля за окружающей обстановкой и активный характер движения головы.
Поворот головы сопровождается разнонаправленным смещением купул в полукружных каналах правого и левого лабиринтов, поэтому в вестибулярном нерве одной стороны происходит увеличение частоты импульсации, а противоположной - уменьшение. Асимметрия афферентных потоков в данном случае является функциональной. Такая функциональная динамическая асимметрия позволяет создать повышенный имбаланс активности вестибулярных ядер правой и левой стороны. Это можно сравнить с уравновешенными весами, на одну чашу которых добавили груз, а с другой - сняли. Если у человека функционирует только один лабиринт, то в примере с весами один и тот же груз кладется то на одну, то на другую чашу. Следовательно, противофазное одновременное раздражение обоих лабиринтов создает двукратный имбаланс в вестибулярных ядрах, что значительно повышает чувствительность к действию ускорения. Ухудшение функции одного из лабиринтов (или его гибель) понижает чувствительность всей системы.
При повороте головы возникает нистагм, быстрым компонентом направленный в сторону поворота головы. Это установочная реакция, предназначенная для опережающего выведения глаз в сторону интересующего обьекта (Усачев В.И., 1993). Быстрые скачки глаз (саккады) чередуются с фазами медленного их противовращения, во время которого возможна фиксация попадающих в поле зрения предметов окружающей обстановки. Во время увеличения скорости поворота головы до максимума в нистагменных циклах амплитуда быстрого компонента преобладает над амплитудой медленного компонента, а при последующем уменьшении ее картина становится противоположной. Частота нистагма увеличивается при действии положительного углового ускорения и уменьшается при действии отрицательного ускорения. Движения глаз прекращаются с остановкой головы (рис. 1.3.6). При быстром повороте головы может наблюдаться всего одна саккада и следующее за ней противовращение глаза, возвращающее его в исходную позицию. Очень быстрое или очень медленное движение головы не вызывает саккад.
...Подобные документы
Хрящи, связки и суставы гортани - полого органа верхних дыхательных путей, соединяющего гортаноглотку и трахею. Кровоснабжение гортани, ее мышцы и основные функции. Этиология, патогенез и анатомо-физиологические предпосылки ларингита, его лечение.
презентация [1,9 M], добавлен 07.09.2015Клиническая анатомия уха. Наружное ухо. Среднее ухо. Внутреннее ухо или лабиринт. Физиология уха. Слуховой анализатор. Барабанная перепонка. Слуховая труба. Методика исследования уха. Отоскопия. Продувание слуховых труб при помощи катетера.
реферат [32,1 K], добавлен 31.12.2003Выделение оториноларингологии в медицинской науке в самостоятельную специальность. Состояние отрасли медицины во время Великой Отечественной войны, ее дальнейшее развитие. Анатомия и физиология носа, уха, гортани. Методы обследования и диагностики.
лекция [42,4 K], добавлен 27.10.2014Клиническая анатомия и физиология уха. Заболевания наружного, среднего и внутреннего уха: методы исследования, результаты осмотра и отоскопия, причины и симптомы, периодизация протекания болезни, лечение заболеваний в острой и хронической фазе.
реферат [17,6 K], добавлен 23.11.2010Изучение анатомии и физиологии ЛОР-органов как дистантных анализаторов. Анатомия уха, носа, глотки, гортани. Физиология носа и придаточных пазух, слухового и вестибулярного анализатора. Дыхательная, защитная и голосообразовательная функции гортани.
реферат [28,1 K], добавлен 29.01.2010Значение знаний по физиологии слуха для инженеров по технике безопасности. Анатомия органов слуха. Слуховые процессы в среднем и внутреннем ухе. Центральная слуховая система. Нарушения слуха, связанные с химическими факторами.
курсовая работа [27,5 K], добавлен 03.05.2007Строение, иннервация, функции век. Механизм слезоотведения и функция слезы. Методы осмотра сетчатки. Строение, функция, методы исследования хрусталика. Анатомия и физиология сетчатой оболочки. Сосуды и нервы глаза. Расстройства цветоощущения, диагностика.
шпаргалка [219,3 K], добавлен 28.04.2015Анатомия и физиология щитовидной железы. Схема анатомических взаимоотношений щитовидной железы с трахеей и гортанью. Кровоснабжение и иннервация. Гормоны, вырабатываемые органом. Методы исследования. Патология и пороки развития. Заболевания и опухоли.
реферат [467,2 K], добавлен 20.02.2014Анатомия и физиология полости носа и околоносовых пазух. Клиническая картина синусита в зависимости от степени тяжести заболевания. Рекомендуемые клинические исследования для постановки диагноза. Общие принципы и критерии эффективности лечения синуситов.
презентация [880,1 K], добавлен 24.11.2016Анатомия и физиология пищевода, основные определения и понятия. Классификация рубцовых стенозов глотки и пищевода, их клиническая картина. Вынесение дифференциального диагноза, лечение. Этиология и инструментальное исследование инородных тел пищевода.
презентация [4,8 M], добавлен 13.09.2015Анатомия и физиология органов дыхания. Клинические симптомы и методы исследования бронхита. Хроническая обструктивная болезнь легких. Лечение заболеваний верхних дыхательных путей, бронхов. Деятельность медицинской сестры в пульмонологическом отделении.
дипломная работа [201,7 K], добавлен 14.04.2017Вегето-сосудистая дистония: этиология, патогенез, клинические проявления. Анатомия и физиология нервной системы, методы исследования. Методики водолечения при вегето-сосудистой дистонии. Массаж и самомассаж, основные методы психологической коррекции.
курсовая работа [755,9 K], добавлен 16.05.2012Клинические, морфологические и генетические методы исследования в тератологии. Последовательность составления анамнеза жизни и заболевания. Исследование дерматоглифической морфологии человека. Анализ пальцевых узоров, их наследственная обусловленность.
реферат [35,6 K], добавлен 12.02.2015Причины и последствия появления аномалий развития гортани. Развитие заболеваний, связанных с врожденным пороком развития гортани. Причины рождения детей с расщелиной неба (волчья пасть). Современные методы лечения расщелины неба и аномалий гортани.
презентация [575,1 K], добавлен 10.03.2015Сущность, основные задачи, предмет изучения и методы патологической физиологии, ее значение и связь со смежными отраслями медицинской науки. Основные этапы развития патологической физиологии. Патологическая физиология в России и выдающиеся физиологи.
реферат [20,5 K], добавлен 25.05.2010Клиническая анатомия и физиология гортани, трахеи и пищевода. Общая характеристика симптомов, а также принципов лечения и профилактики различных форм ларингита, хондроперихондрита, дифтерии гортани, а также инородных тел в гортани, трахее или пищеводе.
реферат [744,9 K], добавлен 23.11.2010Камертональные методы исследования нейросенсорной тугоухости. Проведение опыта Ринне и Вебера. Исследование костной проводимости. Тональная пороговая и речевая аудиометрия. Лечение слуха. Применение современных заушных или внутриушных слуховых аппаратов.
презентация [630,1 K], добавлен 20.09.2016Сосуды полости носа. Основные пути симпатической иннервации слизистой оболочки носа. Функции носовой полости. Аномалии развития носа. Рефлекторные неврозы и их лечение. Характеристика основных повреждений носа, лечение. Деформации наружных отделов носа.
реферат [14,9 K], добавлен 30.05.2010Теоретические основы процессов роста и развития организма. Особенности высшей нервной деятельности детей младшего школьного возраста. Антропометрические методы исследования физического развития детей и подростков. Проблема памяти в позднем онтогенезе.
реферат [108,0 K], добавлен 01.02.2011Синдром поражения языкоглоточного нерва. Ветви, начинающиеся от ствола языкоглоточного нерва. Анестезия и аналгезия в верхних отделах глотки. Иннервация слизистой оболочки нижней части глотки и гортани. Основные симптомы поражения блуждающего нерва.
презентация [975,8 K], добавлен 15.04.2015