Представления о системе органического мира
Прокариоты и эукариоты. Строение и размножение клетки. Представители зеленых бурых и красных водорослей. Подцарство миксомицеты: строение, образ жизни. Характеристика царства грибов. Основные направления эволюции высших растений, их жизненные формы.
Рубрика | Биология и естествознание |
Вид | шпаргалка |
Язык | русский |
Дата добавления | 20.12.2021 |
Размер файла | 880,4 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
11. Отдел Бурые. Экология. Общая характеристика. Принципы классификации. Основные представители. Значение в природе
Бурые водоросли, класс (в ряде систем отдел) водорослей. Включает св. 1500 видов, среди которых только ок. 10 пресноводных. Название получили из-за жёлто-бурой окраски таллома, вызванной наличием, помимо зелёных хлорофиллов, большого количества бурых каротиноидных пигментов. Многоклеточные, преимущественно макроскопические водоросли (самый крупный организм, обитающий в воде, - бурая водоросль макроцистис, которая достигает дл. 60 м, вырастая за день на 45 см). Запасные вещества - ламинарин, маннит и жир. В клеточной стенке присутствуют целлюлоза, альгиновая кислота и её соли (ради них ведётся промышленный сбор бурых водорослей), сульфатированные полисахариды. Размножение вегетативное, бесполое и половое. Гаметы и зооспоры несут сбоку два жгутика, различных по длине и морфологии. Бурые водоросли широко распространены во всех морях планеты, часто образуют подводные леса, наибольшего развития достигая в морях умеренных и приполярных широт, где они - основной источник органического вещества в прибрежной зоне. В тропических широтах крупнейшее скопление бурых водорослей находится в Саргассовом море. Ряд видов используют в пищу, на корм скоту, альгинаты находят применение в пищевой и текстильной промышленности.
У бурых водорослей, имеющих половое размножение, можно выделить два основных типа жизненных циклов. Один -- гапло-диплобионтный жизненный цикл со спорической редукцией с изо- или гетероморфной сменой форм развития. Споры бесполого размножения формируются на диплоидных спорофитах, в одногнёздных спорангиях при их формировании происходит мейоз.Гаплоидные зооспоры и тетраспоры прорастают в гаплоидный гаметофит, на котором в многогнёздных гаметангиях формируются гаметы. После слияния гамет диплоидная зигота прорастает в диплоидный спорофит.
Другой тип жизненного цикла -- диплобионтный с гаметической редукцией; редукционное деление происходит при образовании гамет. У бурых водорослей место мейоза доказано цитологически по наличию в пахитене синаптонемального комплекса.
Экология и значение
Бурые водоросли широко распространены во всех морях нашей планеты, наибольшего развития достигая в морях умеренных и приполярных широт. В тропиках массовое развитие бурых водорослей приурочено к зимним месяцам, когда понижается температура воды. В морях умеренных и приполярных широт бурный рост их талломов начинается весной, и наибольшего развития они достигают в летние месяцы. Наиболее густые заросли бурых водорослей формируются в верхней сублиторали до глубины 15 м, хотя встречаются отлиторальной зоны и до глубины 40-120-200 м. На такую глубину, например в западной части Средиземного моря, проходит только 0,6 % света по отношению к поверхности воды. Ламинариевые могут формировать гигантские подводные леса, такие, например, как вдоль тихоокеанского побережья Северной Америки. Прикрепляются бурые водоросли к различным субстратам -- скалам, камням, гравию, раковинам моллюсков, другим водорослям. Некоторые небольшие бурые водоросли живут внутри тканей других водорослей какэндофиты.
В пресных водах встречаются только 8 видов, относящихся к родам Heribaudiella, Ectocarpus, Sphacelaria, Pseudobodanella, Lithoderma,Pleurocladia и Porterinema. Возможно, H. fluviatilis -- обычный компонент речной флоры, но из-за незнания этой группы часто остаётся в пробах незамеченным.
Значение и важнейшие представители: роль бурых водорослей в природе чрезвычайно велика. Это один из основных источников органического вещества в прибрежной зоне, особенно в морях умеренных и приполярных широт; их заросли служат местом питания, укрытия и размножения многих животных.
Бурые водоросли используют в пищу, на корм скоту, как удобрения, для производства альгинатов и маннита. Ежегодный сбор Laminaria и близких к ней водорослей достигает 2 млн т. сырой массы, более миллиона тонн даёт производство её марикультуры в Китае.
Альгинаты -- нетоксичные соединения, обладающие коллоидными свойствами, поэтому они широко используются в пищевой и фармацевтической промышленности. Альгиновая кислота и её соли способны к 200-300-кратному поглощению воды, образуя гели, для которых характерна высокая кислотноустойчивость. В пищевой промышленности они используются в качестве эмульгаторов, стабилизаторов, желирующих и влагоудерживающих компонентов. Например, сухой порошковый альгинат натрия используют в производстве порошкообразных и брикетированных растворимых продуктов (кофе, чай, сухое молоко, кисели и др.) для их быстрого растворения. Водные растворы альгинатов используют для замораживания мясных и рыбных продуктов. В мире в пищевую промышленность идёт порядка 30 % получаемых альгинатов.
В текстильной и целлюлозно-бумажной промышленности альгинаты используют для загущения красок и усиления прочности их связи с основой. Пропитка тканей некоторыми солями альгиновой кислоты придаёт им водонепроницаемость, кислотоустойчивость и увеличивает механическую прочность. Ряд солей альгиновых кислот используют для получения искусственного шёлка. Во время Второй мировой войны в США и Англии из альгиновой кислоты и её солей производилось большое количество маскировочной ткани и сетей для жилых и промышленных зданий. Альгинаты применяются в металлургии как компонент формовочной земли, в радиоэлектронике -- как связующий агент при изготовлении высококачественных ферритов, а также в горнодобывающей, химической и других отраслях промышленности.
В фармацевтической промышленности альгинаты используются для покрытия таблеток, пилюль, в качестве компонентных основ для различных мазей и паст, как гели-носители лекарственных препаратов. В медицине альгинат кальция используют как кровеостанавливающее средство, как сорбент, способствующий выведению радионуклидов (в том числе стронция).
В Северной Америке для получения альгинатов собирают Macrocystis и Nereocystis, на европейском побережье используют видыLaminaria и Ascophyllum. К концу двадцатого столетия ежегодное производство альгинатов в мире достигло 21 500 т: 12 800 т в Европе, 6 700 -- в Северной Америке, 1 900 -- в Японии и Корее, 100 -- в Латинской Америке. В России в 1990 г. было получено всего 32 т пищевого альгината натрия.
Фукоиданы -- эффективные антикоагулянты, даже более активные, чем гепарин. Перспективным считается их использование для получения противоопухолевых препаратов и антивирусных соединений. Даже в очень низких концентрациях они могут ингибировать прикрепление вирусов к поверхности клеток. Фукоиданы способны образовывать исключительно прочные и вязкие слизи, что находит применение в получении стабильных эмульсий и суспензий.
Маннит используют как заменитель сахара для больных диабетом. Кроме того, он может быть использован в качестве плазмозаменителя при консервации крови.
Клетки многих бурых водорослей накапливают йод. Его содержание может достигать 0,03 %-0,3 % от свежей массы водорослей, в то время как его содержание в морской воде достигает только 0,000005 % (0,05 мг на литр воды). До 40-х гг. XX в. бурые водоросли использовали для добычи йода.
Энергетический кризис, который охватил в последние годы многие страны мира, привёл к необходимости поиска новых нетрадиционных источников энергии. Так, в США с этой целью изучается возможность разведения водоросли Macrocystis pyrifera с последующей переработкой в метан. Подсчитано, что с площади 400 квадратных километров, занятых этой водорослью, можно получить 620 млн кубических метров метана.
В последние годы бурые водоросли привлекают внимание в связи со способностью выделять в атмосферу органические бромиды(бромоформ, дибромохлорметан и дибромометан). Ежегодный выброс водорослями органических бромидов достигает 10 000 тонн, что сравнимо с образованием этих веществ промышленностью. Существует мнение о связи выделения органических бромидов с разрушением озона в атмосфере Арктики.
Ламинамрия (морская капуста) -- род из класса бурых морских водорослей. Многие виды ламинарии употребляются в пищу.
С незапамятных времён она используется в питании тех людей, которые живут рядом с морем. Также её использовали и какудобрение, поскольку ламинария содержит очень большой набор макро- и микроэлементов. Ламинария богата иодом, который содержится в органической форме, что влияет на её усвоение организмом человека. Употребление в пищу ламинарии рекомендуется для профилактики эндемического зоба. В косметологии используется как средства для обертывания. Вгинекологии применяются палочки ламинарии, для расширения цервикального канала шейки матки перед родами, абортом,гистероскопией. Слоевище в виде пластинки, ровной или морщинистой, цельной или рассечённой, без отверстий, длиной от нескольких десятков сантиметров до 20 м, бурой окраски. Стволик неразветвлённый, прикрепляется ризоидами или дисковидной подошвой. Спорофиты Laminaria многолетние, у некоторых видов их возраст может достигать 11-18 лет. Ламинария японская распространена в южных районах Японского и Охотского морей. В Белом и Карском морях обитают ламинария сахаристая и пальчаторассеченная, которые используются для медицинских целей и в пищу.
Цистоземйра (лат. Cystoseira) -- род бурых водорослей (Phaeophyceae). Род содержит 60 видов, из которых в России встречаются два. Наиболее распространенный вид -- цистозейра бородатая (Cystoseira barbata). Представители рода -- многолетние организмы. Богата альгиновой кислотой.
Слоевище в виде крупных кустов размером от 30 до 150 см, прикрепляющихся подошвой.
Стволик покрыт радиально расположенными длинными многократно разветвлёнными ветвями. Отдельные растения в зарослях плотно прилегают друг к другу и имеют как бы одно общее основание. Стволик небольшой, цилиндрический, с гладкой или неровной поверхностью. Основные ветви отходят со всех сторон стволика поочередно или почти беспорядочно и прослеживаются в значительной части слоевища. Вторичные веточки многократно разветвленные, цилиндрические, короче, чем основные, часто собраны метелками вблизи их вершин.
Воздушные пузыри развиваются на боковых веточках, особенно обильно вблизи вершины, и располагаются в виде чёток или по одному. Имеются многочисленные криптостомы.
Рецептакулы мелкие, 0,2-1 см длиной, цилиндрические, располагаются на концах ветвей, развиваются зимой и отчасти летом. Боковые веточки, несущие рецептакулы, ежегодно отмирают.
Представители рода растут на каменистых и каменисто-ракушечных грунтах в сублиторали Черного и Азовского морей на глубине 0,5-20 м. Светолюбивы.
Разнообразие и классификация
Класс содержит около 265 родов и 1500--2000 видов. Тип организации таллома, наличие или отсутствие пиреноида, способ роста, тип полового размножения (изогамия, гетерогамия, оогамия) и жизненного цикла используют для выделения порядков бурых водорослей. В последние годы в связи с использованием данных по сравнению нуклеотидных последовательностей ряда генов активно пересматривается система бурых водорослей. В разных системах выделяют от 7 и более порядков, по-разному понимая объём порядков Ectocarpales и Fucales. В 1999 г. F. Rousseau и B. Reviers была предложена широкая концепция порядка Ectocarpales s.l., включившая в него порядки Chordariales, Dictyosiphonales, Punctariales, Scytosiphonales. В то же время из него исключили Ralfsiales и 2004 г. Ischigeales (этот порядок был описан для рода Ischige, ранее относимого к семейству хордариевые). В один порядок Fucales s.l. предложено объединить порядки Fucales и Durvillaeales. В 1998 г. был описан новый порядок бурых водорослей -- Scytothamnales -- на основании особенностей пластид (расположенные в центре клетки звёздчатые, с пиреноидом) и данных по SSU rDNA. Этот новый порядок включает три рода: Scytothamnus, Splachnidium (выведен из диктиосифоновых) и Stereocladon (выведен из хордариевых).
12. Отдел Бурые. Класс Гетерогенератные. Порядок Ламинариевые. Общая характеристика. Особенности цикла воспроизведения
Бурые водоросли, класс (в ряде систем отдел) водорослей. Включает св. 1500 видов, среди которых только ок. 10 пресноводных. Название получили из-за жёлто-бурой окраски таллома, вызванной наличием, помимо зелёных хлорофиллов, большого количества бурых каротиноидных пигментов. Многоклеточные, преимущественно макроскопические водоросли (самый крупный организм, обитающий в воде, - бурая водоросль макроцистис, которая достигает дл. 60 м, вырастая за день на 45 см). Запасные вещества - ламинарин, маннит и жир. В клеточной стенке присутствуют целлюлоза, альгиновая кислота и её соли (ради них ведётся промышленный сбор бурых водорослей), сульфатированные полисахариды. Размножение вегетативное, бесполое и половое. Гаметы и зооспоры несут сбоку два жгутика, различных по длине и морфологии. Бурые водоросли широко распространены во всех морях планеты, часто образуют подводные леса, наибольшего развития достигая в морях умеренных и приполярных широт, где они - основной источник органического вещества в прибрежной зоне. В тропических широтах крупнейшее скопление бурых водорослей находится в Саргассовом море. Ряд видов используют в пищу, на корм скоту, альгинаты находят применение в пищевой и текстильной промышленности.
Гетерогенератные - крупная группа бурых водорослей (по одной из систем -- класс). Спорофиты Г. макроскопические, высотой от 1 см до нескольких метров, иногда сложного строения; Гаметофиты -- микроскопические. Г. часто делят на 2 подкласса: Polystichineaephycidae (формы, у которых клетки делятся продольными перегородками и соответственно образуется настоящая паренхиматическая ткань) и Haplostichineaephycidae (формы, у которых слоевище состоит внутри из нитей, образующих псевдопаренхимную ткань; клетки продольно не делятся). Г. широко распространены в морях. Наибольшее практическое значение имеют ламинариевые водоросли.
Ламинариевые водоросли -- (Laminariales), порядок фэозооспоровых водорослей. Таллом спорофита дл. 1-20 (до 60) м, имеет простой или разветвлённый ствол (часто многолетний), прикреплённый к грунту ризоидами или диском; на вершине ствола одна или неск. ежегодно разрушающихся крупных пластин; сердцевина с ситовидными трубками и трубчатыми нитями, сходными по строению и функции с клетками флоэмы высших растений. Рост интеркалярный, зона роста от основания пластины до вершины ствола.
Раз в год пластины дают зооспоры, из которых вырастают микроскопические гаметофиты. Половой процесс -- Оогамия. Яйцеклетка не отделяется от гаметофита, и новое крупное слоевище (Спорофит) вырастает на его месте.
13. Отдел Бурые. Класс Циклоспоровые. Характеристика. Порядок Фукусовые. Цикл воспроизведения
Бурые водоросли, класс (в ряде систем отдел) водорослей. Включает св. 1500 видов, среди которых только ок. 10 пресноводных. Название получили из-за жёлто-бурой окраски таллома, вызванной наличием, помимо зелёных хлорофиллов, большого количества бурых каротиноидных пигментов. Многоклеточные, преимущественно макроскопические водоросли (самый крупный организм, обитающий в воде, - бурая водоросль макроцистис, которая достигает дл. 60 м, вырастая за день на 45 см). Запасные вещества - ламинарин, маннит и жир. В клеточной стенке присутствуют целлюлоза, альгиновая кислота и её соли (ради них ведётся промышленный сбор бурых водорослей), сульфатированные полисахариды. Размножение вегетативное, бесполое и половое. Гаметы и зооспоры несут сбоку два жгутика, различных по длине и морфологии. Бурые водоросли широко распространены во всех морях планеты, часто образуют подводные леса, наибольшего развития достигая в морях умеренных и приполярных широт, где они - основной источник органического вещества в прибрежной зоне. В тропических широтах крупнейшее скопление бурых водорослей находится в Саргассовом море. Ряд видов используют в пищу, на корм скоту, альгинаты находят применение в пищевой и текстильной промышленности.
Циклоспоровые - класс бурых водорослей (См. Бурые водоросли), включающий высокоспециализированный порядок -- фукусовые (Fucales). Слоевище паренхимное с дифференцированными тканями; состоит из подошвы, главного побега и боковых ветвей. Развитие проходит в диплоидной фазе, размножение половое, оогамное. Рост в длину осуществляется одной или несколькими апикальными клетками, в ширину -- за счёт деления наружного слоя клеток -- меристодермы. Хлоропласты в вегетативных клетках без Пиреноидов. Органы размножения образуются в поверхностных углублениях на слоевище -- концептакулах. Ц. насчитывают 37 родов, около 450 видов. Широко распространены в Мировом океане. Многие виды -- сырьё для получения альгиновых кислот, используемых в пищевой и текстильной промышленности.
Фукусовые водоросли (Fucales), порядок бурых водорослей из класса циклоспоровых. Слоевища кустистые, длиной 0,1-2 м, реже до 10 м, с цилиндрические или плоскими ветвями, обладающие верхушечным ростом. Ф. в. отличаются от др. водорослей циклом развития: слоевища -- диплоидные спорофиты, в которых из особых одиночных клеток (спор) развиваются диплоидные гаметофиты в виде выстилающего слоя особых углублений (концептакулов); мейоз при гаметогенезе, оогонии с 1-8 яйцеклетками; у некоторых Ф. в., имеющих по 1 яйцеклетке в оогонии, оплодотворение и первые этапы развития проростков происходят на материнском растении. При размножении обрывками слоевищ развиваются растения, не способные к образованию органов прикрепления и размножения. Около 300 видов (40 родов); главным образом относятся к 3 семейства: фукусовым (Fucaceae), цистозейровым (Cystoseiraceae) и саргассовым водорослям (Sargassaceae). Ф. в. растут во всех морях, кроме Аральского и Каспийского; в СССР 21 вид из 7 родов. Ф. в. используют для производства альгинатов, кормовой муки и удобрений, некоторые виды употребляют в пищу.
Подробнее о воспроизведении: Нормальное воспроизведение фукусовых возможно только половым путем, лишь немногие представители имеют стелющиеся ризомы или ризоиды, дающие на конце новые слоевища (например, саргассум Миябе). Антеридии образуются на гаметофитах на концах разветвленных веточек, и в их оболочке различимы два слоя. Антерозоиды выходят наружу в виде пакета, окруженного внутренней оболочкой. Субмикроскопическое строение антерозоидов не у всех фукусовых водорослей одинаково. Антерозоиды фукуса, аскофиллума и пельвеции имеют на переднем конце хоботок. Передний жгутик антерозоида химанталии снабжен на конце шипом, направленным вбок.
Оогонии у фукусовых сидят прямо на поверхности гаметофита или располагаются на одной поддерживающей клетке. Оогонии фукусовых снабжены трехслойной оболочкой, наружный слой называют экзохитоном, промежуточный -- мезохитоном, внутренний -- эндохитоном. Содержимое выходит в воду, окруженное двумя внутренними слоями. На этой стадии антерозоиды могут проникать в пакет яйцеклеток, но оплодотворения не происходит -- этому препятствует поверхность яйцеклеток. Когда они полностью освобождаются от оболочек, происходит оплодотворение. Вслед за этим оплодотворенные яйцеклетки вырабатывают собственную толстую оболочку. У некоторых фукусовых наблюдается оплодотворение и прорастание яйцеклеток на материнском растении. Это бывает у тех представителей, у которых образуется по одной яйцеклетке в оогонии.
В простейшем случае яйцеклетки прикрепляются слизью около отверстия концептакула (цистозейра), у других (Sargassaceae, Fucaceae) они прикрепляются слизистым стебельком, тянущимся от оогония и представляющим собой вытянутый мезохитон. Яйцеклетки остаются прикрепленными к материнскому растению 7-16 дней. За это время происходит их оплодотворение и дробление до стадии образования коротких первичных ризоидов, после чего проростки уносятся водой. Дробление яйцеклеток и развитие проростков у всех фукусовых протекает почти одинаково. После оплодотворения и появления оболочки яйцеклетка становится шаровидной, затем яйцевидной, ориентированной узким концом вниз. Первая перегородка проходит поперек и делит яйцеклетку на две примерно равные части. В нижней части образуется вторая поперечная перегородка, отделяющая вниз небольшую клетку, называемую ризоидальной, которая дает со временем первичные ризоиды. Последующие перегородки, с третьей по шестую, проходят в вертикальных плоскостях в верхней и средней клетках. Из ризоидалыюй клетки вырастает от 1 до 32 ризоидов, в зависимости от рода и вида; предварительно эта клетка делится вертикальными перегородками по числу будущих ризоидов. Положение первой перегородки в проростке и направление роста ризоидов определяется, кроме света, соседством других яйцеклеток того же вида. При малом расстоянии между яйцеклетками направление их роста целиком определяется этим фактором, вызывающим рост вершин в противоположные стороны. Установлено, что взаимовлияние яйцеклеток определяется химическими веществами, выделяемыми ими в воду.
14. Отдел Красные водоросли. Строение клетки. Морфологическая и анатомическая организация. Принципы классификации
Красные водоросли, как и бурые, почти все обитают в морях. Это многоклеточные растения, достигающие значительной величины (до 2 м), их слоевище обычно так расчленено, что напоминает стебель и листья. Красные водоросли в своих мелких хроматофорах, кроме хлорофилла, содержат пигмент красного цвета -- фикоэритрин и другие пигменты. Окраска этих пигментов обусловливает окраску водорослей в розовый, красный, синеватый и другие цвета. Известно около 4 000 видов. Размножаются вегетативно, спорами и половым путем. Наиболее известными являются порфира, радимения.
Хлоропласты красных водорослей двумембранные, с одиночными тилакоидами. Один или два тилакоида обычно лежат на периферии хлоропласта. На мембранах тилакоидов имеются фикобилисомы. Основным пигментом хлоропластов является хлорофилл. Кроме того, у красных водорослей имеются каротиноиды и фикобилины в фикобилисомах. Благодаря такому набору пигментов красные водоросли могут поглощать свет почти всей видимой части спектра. Как правило, хлорофилл маскируется фикобилинами (красного и синего цвета) и каротиноидами (оранжево-желтые), но среди пресноводных красных водорослей встречаются исключения. Так, Batrachospermum, обитающий в сфагновых болотах, сине-зеленого цвета.
Запасные вещества -- багрянковый крахмал, запасаемый в цитоплазме, низкомолекулярный углеводород флоридозид и многоатомные спирты.
Клеточная стенка красных водорослей состоит из фибриллярного матрикса (сложен рыхло расположенными фибриллами целлюлозы или ксилана) и аморфной фракции, в состав которой могут входить агар, агароиды, каррагинаны и маннаны. У ряда красных водорослей клеточная стенка инкрустируется карбонатами кальция, магния и стронция. Иногда поверх клеточной стенки расположена белковая кутикула.
Митоз полузакрытый ацентрический. Клетки делятся за счет впячивания клеточной мембраны. В ходе митоза образуются поры, функционально аналогичные плазмодесмам высших растений, но имеющие иное происхождение. Поры закрываются специальными поровыми пробками, состоящими из белков и полисахаридов.
У красных водорослей полностью отсутствуют жгутиковые стадии жизненного цикла.
Почти все красные водоросли являются фототрофами и строят свое тело с помощью фотосинтеза. Продукты фотосинтеза - особый багрянковый крахмал, который откладывается в цитоплазме, а не в хлоропласте, как у зеленых водорослей. Багрянковый крахмал дает с йодом ярко-красное окрашивание. Важный запасной продукт - низкомолекулярный углеводород флоридозид. Его содержание в талломах некоторых представителей может превышать 10 % от величины сухого веса. Он выполняет осморегуляторную функцию. Помимо красных водорослей, флоридозид встречается у цианобактерий и криптомонад. Его концентрация в клетках увеличивается с увеличением солёности среды. Некоторые багрянки могут также запасать многоатомные спирты.
Большинство видов красных водорослей - многоклеточные сложноустроенные организмы, размеры которых могут достигать 1-2 метров и только примитивные представители имеют одноклеточное или колониальное строение. Встречаются как однолетние, так и многолетние виды, возраст которых обычно составляет 3-6 лет. Форма тела багрянок весьма разнообразна. Она бывает: нитевидная (волосовидная или грубая), пластинчатая цельная или сложно рассеченная с выростами по краю, цилиндрическая, корковидная (корки, пленки, прижатые к субстрату), коралловидная. Многообразие внешних форм красных водорослей сводится к нескольким типам дифференциации таллома: коккоидный, нитчатый, разнонитчатый, ложнотканевый и тканевый. Прикрепляются талломы родофит ризоидами или подошвой.
Наиболее сложно устроены талломы Флоридеевых водорослей. Их слоевища имеют признаки тканевой дифференцировки со специализацией клеток. В их талломе можно различить: кору, состоящую из нескольких слоев интенсивно окрашенных клеток; сердцевину, состоящую из бесцветных клеток, часто собранных в нити. Сердцевина выполняет не только транспортную функцию, но и механическую, поскольку в ней находятся нити с толстыми продольными стенками. Между корой и сердцевиной у многих красных водорослей может находиться промежуточный слой из крупных бесцветных клеток. Рост слоевища чаще всего интеркалярный (вставочный) и апикальный (верхушечный), реже базальный.
Систематика
Отдел Rhodophyta традиционно делят на два класса: Бангиевые - Bangiophyceae и Флоридеевые - Florideophyceae. К последнему классу относится большинство родов и видов багрянок.
Современная система красных водорослей основывается на исследованиях крупного шведского альголога Кюлина. В целом ее принимают все альгологи, противоречия возникают только в отношении систематического положения некоторых мелких таксонов. Принцип, положенный в основу классификации,-- строение женских репродуктивных органов и процесс развития гонимобласта. По этой системе все красные водоросли делятся на 2 класса -- класс бангиевых и класс флоридеевых. Каждый из них содержит по 6 порядков. Основная масса багрянок относится к классу флоридеевых -- в нем 49 семейств.
15. Особенности полового размножения красных водорослей. Циклы воспроизведения
Размножение красных водорослей чрезвычайно сложный и многообразный процесс, отличающий их от других групп водорослей. Различные формы бесполого размножения, сложное строение половой системы, особенно женского репродуктивного органа, особенности развития зиготы, а также многообразие циклов развития -- все эти признаки не только придают своеобразие , но являются основой, на которой строится классификация багрянок, их разделение на порядки, семейства, роды. Поэтому, чтобы составить целостное представление о красных водорослях, нельзя не остановиться на особенностях их размножения.
Собственно говоря, сложным размножением характеризуются представители класса флоридеевых; у бангиевых строение репродуктивной системы намного проще. Вегетативное размножение флоридеевых происходит посредством образования дополнительных побегов, которые берут начало от подошвы или от стелющихся ветвей. Вертикальное слоевище в определенный период отмирает и остается только базальная часть растения, которая через какое-то время прорастает, образуя новые побеги. Самые примитивные багрянки из класса бангиевых размножаются только вегетативно. У одноклеточных и колониальных форм вегетативное размножение состоит в делении клетки на две или более дочерние клетки.
Бесполое размножение. Для бесполого размножения служат различного рода споры. У низкоорганизованных багрянок бесполое размножение осуществляется моноспорами. Они характерны для всех представителей класса бангиевых, тогда как среди флоридеевых известны за очень редкими исключениями только в порядке немалиевых. Моноспорами называют споры, которые образуются по одной в клетке в результате превращения всего протопласта. Моноспоры не имеют жгутика и оболочки, после выхода из материнской клетки они способны к амебоидному движению. У бангиевых моноспоры образуются в любой клетке слоевища и до своего выхода не отличаются от вегетативных клеток. В классе флоридеевых (там, где они встречаются) моноспорангии образуются на веточках ограниченного роста. У водорослей, построенных по типу свободных нитей, в моноспорангии превращаются конечные клетки коротких боковых веточек. Иногда они образуются группами по два-три на одной и той же клетке-ножке.
У водорослей, имеющих более или менее плотное строение и дифференцированный коровой слой, в моноспорангии превращаются внешние клетки ассимиляционных нитей. Моноспоры отличаются от вегетативных клеток яйцевидной или шаровидной формой, богатым содержимым и интенсивной окраской. Созревшие моноспорангии открываются на вершине; голые моноспоры выходят в окружающую среду, через некоторое время одеваются оболочкой и начинают прорастать.
16. Подцарство миксомицеты. Строение. Образ жизни. Капустная кила. Цикл воспроизведения. Меры борьбы
Миксомицемты -- тип слизевиков (грибоподобных организмов). Вегетативная фаза состоит из плазмодия (многоядерной подвижной протоплазматической массы, лишённой клеточных стенок) или псевдоплазмодия (агрегата голых одноядерных амёбоидных клеток, сохраняющих свою индивидуальность). Питание как голозойное, так и абсорбтивное. Жгутиконосные клетки, когда они имеются, обычно несут два неодинаковых жгутика. Споры и спорангии (вместилища спор) обычно многочисленные. Включает один отдел (тип) слизистые грибы, или миксомицеты (Мухомусоta).
На определённой стадии жизненного цикла все миксомицеты имеют вид плазмодия или псевдоплазмодия. Классы Myxomycetes и Protosteliomycetes, имеющие плазмодий, относят к плазмодиальным (неклеточным) слизевикам, а Dictyosteliomycetes, которые имеют псевдоплазмодий -- к клеточным. У большинства видов он виден невооружённым глазом и способен двигаться. Из плазмодия или псевдоплазмодия формируются спороношения, которые часто напоминают внешним видом плодовые тела грибов. Споры прорастают подвижными клетками -- зооспорами или миксамёбами, из которых различными путями образуется плазмодий или псевдоплазмодий.
Слизевики -- гетеротрофы. Зооспоры, миксамёбы и плазмодии способны питаться осмотрофно(всасыванием питательных веществ через клеточную мембрану) и (или) путём эндоцитоза (захватывать внутрь клетки пузырьки с частицами пищи).
Все миксомицеты свободноживущие и живут в наземных местообитаниях.
Капустная кила - это такой миксомицет, который проводит почти всю свою жизнь в тканях других растений.
Биология возбудителя килы
Plasmodiophora brassicae Wor. облигатный паразит, развивающийся только в живом растении. Цикл развития довольно сложен и проходит в основном в диплоидном состоянии. В почве сохраняются покоящиеся споры (в диплоидном состоянии), из которых весной образуются зооспоры с одним жгутиком, проникающие в растение через корневые волоски. В корневых волосках каждая зооспора превращается в амебоид с диплоидным ядром, который разрастается в виде более или менее шарообразного тела. Затем такие тела распадаются на несколько участков, превращающихся в зооспорангии. В последних происходит мейозис с образованием гаплоидных зооспор. Эти зооспоры в полости корневых волосков быстро копулируют и превращаются в диплоидные амебоиды, которые механически (в процессе деления клеток растения-хозяина) распространяются по камбию, сердцевинным лучам и паренхиме вторичной коры.
Пораженные клетки увеличиваются в объеме. Амебоиды разрастаются и простым делением отпочковывают молодые амебоиды (с диплоидным ядром). В дальнейшем амебоиды сливаются и образуют многоядерный плазмодий. В нем происходит двукратное деление всех ядер (увеличение в четыре раза) и формирование диплоидных покоящихся спор.
Наросты на корнях (гипертрофия тканей), образующиеся при заболевании килой, являются результатом действия ростового вещества ауксина, вырабатываемого патогеном.
К концу вегетации растений, а также весной под действием почвенных организмов наросты разрушаются и споры попадают в почву, которая и является источником инфекции. Споры прорастают при температуре 6...28°С (оптимум 18...25°С), при этой же температуре зооспоры заражают растения. Влажность почвы при этом должна находиться в пределах 50-97% (оптимум 75-90%). Насыщение почвы влагой до 98-100% препятствует развитию паразита, так как он является аэробом.
В почве споры прорастают постепенно. Их жизнеспособность сохраняется до 6-7 лет (быстрее прорастают во влажной и слабокислой почве и медленнее в слабоувлажненной и с повышенной щелочной реакцией). На незараженные участки гриб может быть занесен с пораженной рассадой, а также нередко потоками воды, дождевыми червями и насекомыми, обитающими в почве.
Н.А. Наумов [2] установил, что растения заражаются килой при наличии в 1 см3 почвы, богатой гумусом, 200 тыс. спор, глинистой -- 20 тыс. Сильная степень заражения растений наблюдается при наличии в 1 см3 почвы 400 тыс. спор.
Вредоносность килы выражается в угнетении растений, так как корни не обеспечивают в достаточном количестве надземную массу водой и питательными веществами. Особенно усиливается вредоносность болезни на пониженных участках, где застаивается вода, а также при недостатке влаги. При сильном развитии килы урожай капусты может снижаться на 30-40% и более.
Чем раньше происходит заражение, тем больший вред наносится растению. Больная рассада непригодна для посадок.
Меры борьбы
Общие:
· возделывание устойчивых сортов;
· выращивание сортов с повышенной устойчивостью на слабозараженных полях допускается через 2 года;
· восприимчивые к этой болезни сорта капусты следует возделывать на одних и тех же участках не ранее, чем через 4-6 лет;
· не следует выращивать капусту и другие капустные на одном и том же поле два года подряд;
· в парниках следует использовать свежую незараженную почву или обеззараживать ее;
· растения высаживать в ранние сроки, установленные для каждого сорта;
· при пикировке и высадке выращенной без горшочков рассады в открытый грунт, необходимо тщательно просматривать и не высаживать растения с наростами;
· кислые почвы следует известковать;
· окучивание растений после полива и подкормок способствует образованию дополнительных корней и лучшему развитию растений;
· борьба с сорняками, особенно с такими, как пастушья сумка, ярутка, дикая редька, горчица полевая, сурепка и другими капустными, в корнях которых накапливается и зимует паразит, способствует ограничению болезни;
· для предотвращения загнивания и разложения пораженных корней в почве следует обнаруженные больные растения вместе с корнями удалять с поля во время вегетации, а также собирать и удалять с поля все кочерыги после уборки урожая. Последние складируют на невспаханных краях полей, а весной сжигают.
Химические:
· обработка корней капусты перед посадкой в суспензии (препарат добавляют к глиняной болтушке) серосодержащих препаратов (коллоидная сера, Тиовит Джет, ВДГ и др.)
17. Уровни организации и варианты строения вегетативного тела грибов, их эволюция. Видоизменения мицелия. Низшие и высшие грибы
Типичное вегетативное тело, или таллом (трофическая стадия), большинства грибов, мицелий, представляет собой систему ветвящихся трубок, гиф, с апикальным ростом и боковым ветвлением. Мицелий может быть клеточный и неклеточный.
Неклеточный мицелий лишён перегородок. В течение его роста деления ядер происходят в нём без образования клеточных перегородок -- септ, что ведёт к развитию большой массы цитоплазмы, содержащей много ядер. Эта многоядерность, или ценоцитичность мицелия грибов пространственно ограничена в своем разрастании клеточными стенками гиф. Ценоцитический мицелий фактически представляет собой одну гигантскую многоядерную клетку. Он характерен для ряда представителей отдела хитридиомикота, а также для представителей отделов оомикота и зигомикота.
Другой тип вегетативного тела грибов -- клеточный, или септированный, мицелий, разделённый перегородками на одно-, дву- или многоядерные клетки. Он характерен для сумчатых, базидиальных и несовершенных, или анаморфных грибов. Септы могут формироваться и на неклеточном мицелии, обычно это происходит при повреждении мицелия или при образовании репродуктивных органов. При делении клетки септа врастает с боков к центру. В центре септы обычно остаётся пора, через которую из клетки в клетку перемещаются питательные вещества и некоторые клеточные органеллы.
У некоторых грибов, например у хитридиевых (Chytridiomycota) септа перфорирована многочисленными микропорами -- микропоровая септа. У большинства грибов в поперечной перегородке имеется одна центральная пора, при этом септа утоньшается по направлению к поре -- простая септа, распространённая у сумчатых грибов (аскомикота). У базидиальных грибов и у высших, наиболее высокоорганизованных зигомикота септа утолщается по направлению к поре -- долипоровая септа. Пора такой септы у некоторых базидиальных грибов несёт поровый колпачок -- парентосому. Детали строения септ и характер пор можно выявить только с помощью электронного микроскопа.
Мицелий, пронизывающий субстрат, всей поверхностью абсорбционно поглощающий из него питательные вещества и выделяющий продукты своего обмена, называют субстратным мицелием. Часть мицелия, располагающаяся на поверхности субстрата или над субстратом, составляет поверхностный, или воздушный, мицелий, на котором обычно образуются органы размножения грибов.
Существуют и немицелиальные грибы. У части хитридиевых и у гифохитридиевых, являющихся в основном внутриклеточными паразитами водорослей и водных грибов, таллом одноклеточный, микроскопический, иногда даже лишённый в вегетативном состоянии клеточной стенки, которая образуется только при формировании репродуктивных органов. Клетка бывает сферической, эллипсоидальной или неправильной формы размером от нескольких микрометров до нескольких сотен микрометров по большему диаметру.
У некоторых грибов из этих групп от такой клетки отходят тонкие разветвлённые нитевидные структуры, лишённые собственных ядер, -- ризомицелий, пронизывающий субстрат. Ризомицелий можно рассматривать как зачаточный мицелий, эволюционную ступень к настоящему неклеточному мицелию. При образовании ризомицелия может развиваться только одна клетка, содержащая ядро, которая в дальнейшем становится центром образования ризомицелия и развития репродуктивных органов. Это моноцентрический ризомицелий. Если у особи имеется несколько центров образования ризомицелия и, соответственно, несколько центров формирования репродуктивных органов -- это полицентрический ризомицелий.
У видов одноклеточных грибов без ризомицелия всё вегетативное тело идёт на формирование репродуктивных органов -- холокарпические виды. У видов, имеющих ризомицелий, обычно при образовании репродуктивных органов часть таллома не используется -- эукарпические виды. Такие одноклеточные талломы могут находиться целиком внутри субстрата -- интраматрикальные, или на его поверхности, погружая в субстрат только ризомицелий, -- экстраматрикальные виды.
У некоторых грибов, например дрожжей, относящихся, в основном, к классу сумчатых, вегетативное тело представлено одиночными почкующимися или делящимися клетками. Если такие почкующиеся клетки не расходятся, то образуется псевдомицелий.
Вегетативный мицелий грибов может образовывать различные, часто довольно сложные структуры, выполняющие различные функции. Так, гифы многих паразитных грибов могут формировать расширенные, плотно прилегающие к стенке хозяина клетки, напоминающие присоски -- аппрессории, от которых отходят внутрь клеток растения-хозяина особые, часто разветвлённые выросты -- гаустории, с помощью которых происходит питание гриба содержимым отдельных клеток.
Широко распространены в разных группах грибов склероции -- плотные переплетения мицелия, служащие для перенесения неблагоприятных условий. Обычно склероции темно окрашенные, так как наружные слои клеток толстостенные и пигментированные, а внутренние -- тонкостенные, светлоокрашенные и богатые запасными питательными веществами (например, склероции возбудителя белой гнили овощных культур или чёрно-фиолетовый рожок спорыньи в колосе ржи). Некоторые грибы образуют склероции, пронизывая и мумифицируя ткань хозяина -- растения или животного. В этом случае склероции состоит из ткани хозяина и гиф гриба и повторяет форму хозяина (например, склероции возбудителя плодовой гнили яблок в виде чёрного плода, или склероции гриба кордицепса, паразитирующего на гусеницах, сохраняет форму гусеницы и т. д.). Такие склероции называют псевдосклероции.
Близки к склероциям стромы -- менее плотные сплетения мицелия, обычно защищающие плодовые тела сумчатых грибов, Например, оранжевые головки на проросшем склероции возбудителя спорыньи -- это стромы, в которые погружены микроскопические плодовые тела этого гриба.
У многих грибов есть структуры, выполняющие проводящие функции. Это мицелиальные тяжи и ризоморфы. Мицелиальные тяжи состоят из гиф, расположенных параллельно и местами плотно прижатых друг к другу. Между отдельными гифами могут быть мицелиальные мостики, анастомозы. На мицелиальных тяжах, находящихся в почве, формируются зачатки, а затем и сами плодовые тела шляпочных грибов. Тяжи всегда можно найти на основаниях ножек шляпочных грибов. Хорошо развитые тяжи, у кото рых наружные гифы имеют утолщённые, обычно темно окрашенные стенки, выполняющие защитную функцию, и внутренние -- тонкостенные, выполняющие собственно проводящую функцию, называются ризоморфами. Их толщина 4-7 мм, а в длину они могут достигать нескольких метров, что способствует распространению гриба по субстрату. Такие ризоморфы известны у настоящего домового гриба -- активнейшего разрушителя деревянных построек и у опёнка осеннего, у которого они и были впервые описаны.
При плотном переплетении гиф у грибов образуется ложная ткань, плектенхима. Из такой ткани состоят плодовые тела шляпочных грибов. Плектенхима отличается (по происхождению и строению) от настоящей ткани паренхимы, которая возникает в результате деления клеток. Настоящая ткань встречается у грибов очень редко, например, в группе паразитирующих на насекомых лабульбениевых грибов из класса сумчатых таллом состоит из настоящей паренхимы.
Грибы -- это бесхлорофилльные, многоклеточные или одноклеточные организмы, питающиеся гетеротрофно. Грибы подразделяются на низшие ивысшие грибы.
Низшие грибы -- одноклеточные. Сюда относится известная всем белая плесень, или гриб мукор. Этот гриб часто появляется на хлебе, овощах в виде пушистого белого налета, который через некоторое время становится черным.
Грибница мукора состоит из тонких бесцветных нитей, хотя это всего лишь одна сильно разросшаяся клетка с множеством ядер в цитоплазме. Размножается мукор спорами. Некоторые нити грибницы (мицелия) поднимаются вверх и расширяются на концах в виде черных головок. Здесь образуются споры, которые после созревания рассыпаются и разносятся ветром.
Поселяясь на пищевых продуктах, мукор вызывает их порчу. В природе мукор играет положительную роль, разлагая остатки отмерших организмов.
Высшие грибы -- многоклеточные организмы. У них гифы разделены поперечными перегородками на отдельные клетки. Среди высших грибов, как и среди низших, имеются сапрофиты и паразиты. К сапрофитным высшим грибам относятся плесневые грибы -- пеницилл и асперилл. В природе они играют положительную роль санитаров, а для людей -- отрицательную, так как, поселяясь на пищевых продуктах и промышленных товарах, разрушают и портят их.
Пеницилл поселяется на пищевых продуктах и на почве. Его грибница состоит из ветвящихся нитей, разделенных перегородками на отдельные клетки. Этим он отличается от гриба мукора. Споры пеницилла расположены не в головках, а на концах некоторых нитей грибницы в мелких кисточках.
Пеницилл разводят специально для получения лекарства -- пенициллина, который широко применяется для подавления многих болезнетворных бактерий, например, при ангине, воспалении среднего уха, при воспалении легких.
Дрожжи -- микроскопически мелкие многоклеточные грибы овальной или удлиненной формы. Мицелия не образуют. Живут в питательной жидкости, богатой сахаром. Размножаются почкованием. Сначала на взрослой клетке появляется небольшая выпуклость, которая постепенно увеличивается и превращается в самостоятельную клетку, которая вскоре отделяется от материнской.
Почкующиеся клетки дрожжей похожи на ветвящиеся цепочки. В тесте дрожжи разлагают сахар на спирт и углекислый газ. При этом освобождается энергия, необходимая дрожжам для их жизнедеятельности. Пузырьки углекислого газа, образующиеся в тесте, делают его легким и пористым. Этот процесс с давних пор применяется в хлебопекарном деле, пивоварении, виноделии и других отраслях промышленности и сельского хозяйства (кормовые дрожжи). Хлебные, или пивные дрожжи существуют только в культуре, винные же встречаются и в природе на различных сочных плодах.
Дрожжевые грибки могут вызывать болезнь слизистых оболочек -- молочницу. Молочница может распространяться и на внутренние органы.
Грибы пеницилл, аспергилл и дрожжевые грибы относятся к сумчатым грибам, или их еще называют аскомицеты, так как у них вследствие полового процесса образуются аскоспоры (от греч. «аскос» -- мешок, сумка и спора).
К высшим грибам относятся базидиомицеты. Это большая группа грибов, среди которых есть как сапрофиты, так и паразиты. Головневые грибы паразитируют преимущественно на злаковых растениях: пшенице, ячмене, просе, кукурузе, вызывая заболевание головню. Название «головня» связано с тем, что колос, на котором развивается головневый гриб, покрывается огромным количеством черных спор и напоминает обгоревшую головню.
Ржавчинные грибы паразитируют в виде бурых пятен, напоминающих ржавчину. Отсюда и название.
Трутовики, головневые и ржавчинные грибы наносят значительный вред лесному хозяйству, садам и паркам. Основным способом борьбы с трутовиками является санитарная рубка больных деревьев и немедленное их удаление. Основными методами борьбы с головневыми и ржавчинными грибами является выведение стойких сортов культурных растений, соблюдение правил агротехники, химическая обработка растений и т. д.
Особую группу грибов базидиомицетов составляют шляпочные грибы. Их насчитывается около 8 000 видов, распространенных по всему земному шару. Все они являются по способу питания сапрофитами. Название «шляпочные» они получили оттого, что на поверхности мицелия образуются плодовые тела, имеющие вид ножки и шляпки. Ножкой гриб соединен с мицелием, а на шляпке с нижней стороны размещаются пластинки или трубочки, на которых образуются органы спороношения со спорами.
Плодовые тела (ножка и шляпка) многих шляпочных грибов съедобны, а у некоторых они ядовиты и опасны для жизни человека. Наиболее ценное и съедобное тело у белого гриба, его еще называют гриб-боровик. Известно, что некоторые грибы имеют целебные свойства. Это -- дождевик, белый гриб, шампиньоны. Они прекрасные антисептики.
18. Размножение растений. Значение полового и бесполого размножения. Виды полового процесса
Размножение растений -- совокупность процессов, приводящих к увеличению числа особей некоторого вида; у растений имеет место бесполое, половое и вегетативное (бесполое и половое размножение объединяют в понятие генеративное размножение). Изучение различных аспектов размножения является предметом репродуктивной биологии.
Бесполое размножение отличается от вегетативного тем, что при вегетативном размножении дочерняя особь, идентичная генетически материнской (клон), обязательно получает фрагмент материнского организма, так как образуется из него; при бесполом размножении же этого не происходит.
В основе генеративного размножения лежит чередование двух ядерных фаз -- гаплоидной и диплоидной. Это чередование обусловлено двумя альтернативными процессами -- оплодотворением и редукционным делением (мейозом). У растений гаплоидная фаза, образующая гаплоидные гаметы, называется гаметофитом, а диплоидная фаза, формирующая гаплоидные споры, из которых развиваются гаметофиты, -- спорофитом. Спорофит и гаметофит могут как отличаться друг от друга морфологически (гетероморфный жизненный цикл), так и быть одинакового строения (изоморфный жизненный цикл).
Отличие полового размножения от полового воспроизведения заключается в том, что в первом случае на гаметофите формируется единственный зародыш спорофита, а во втором -- несколько. У большинства растений происходит половое воспроизведение
Бесполое размножение растений осуществляется гаплоидными спорами -- апланомейоспорами. Они формируются в специальных органах -- спорангиях. У водорослей в большинстве случаев спорангии одноклеточные (только у некоторых водорослей спорангии многоклеточные, но не дифференцированные на ткани).
У высших растений спорангии многоклеточные, их клетки дифференцированы. Фертильные клетки составляют археспорий -- спорогенную ткань, наружные стерильные клетки составляют защитную стенку. Из наружных клеток археспория формируется выстилающий слой -- тапетум, который, расплываясь, образует периплазмодий. Содержащиеся в нём питательные вещества расходуются для образования спор.
Клетки археспория, делясь митозом, дают начало спороцитам, которые, делясь мейозом, образуют тетрады спор.
Споры покрыты двух- или трёхслойной оболочкой -- спородермой. Споры лёгкие, богаты цитоплазмой, имеют крупное ядро, пропластиды; запасные вещества нередко представлены жирами.
Из спор развиваются гаметофиты (заростки). В случае равноспоровых растений все споры имеют равные размеры. Это явление получило название изоспории. При гетероспории образуются споры разного размера. Более крупные споры (мегаспоры) дают начало женским гаметофитам, а более мелкие (микроспоры) -- мужским; такие растения называются разноспоровыми.
Половой процесс в растительном мире крайне разнообразен и часто очень сложен, но по существу сводится к слиянию двух половых клеток (гамет) -- мужской и женской.
Гаметы возникают в определенных клетках или органах растений. В некоторых случаях гаметы одинаковы по размерам и форме и обе обладают подвижностью благодаря наличию жгутиков (изогамия); иногда они несколько отличаются друг от друга по размерам (гетерогамия). Но чаще -- при так называемой оогамии -- размеры гамет резко различны: мужская гамета, называемая сперматозоидом, небольшая, подвижная, а женская -- яйцеклетка -- неподвижная и крупная. Процесс слияния гамет называется оплодотворением. Гаметы имеют в своем ядре по одному набору хромосом, а в образовавшейся после слияния гамет клетке, которая называется зиготой, число хромосом удваивается. Зигота прорастает и дает начало новой особи растения.
Половой процесс осуществляется у растений в определенное время и на определенном этапе его развития, на протяжении которого растение может размножаться также и бесполым путем (с образованием спор), и вегетативно.
...Подобные документы
Классификация низших растений. Строение и формы бактерий, их роль и распространение в природе. Характеристика отделов сине-зеленых, диатомовых, бурых и красных водорослей. Особенности их строения и размножения, области обитания, хозяйственное значение.
курсовая работа [43,2 K], добавлен 11.02.2014Разделение водорослей на систематические группы высшего ранга, его совпадение с характером окраски и чертами строения. Клеточные оболочки водорослей. Бесполое и половое размножение водорослей. Черты сходства и различия желто-зеленых и зеленых водорослей.
реферат [44,7 K], добавлен 09.06.2011Общая характеристика, строение, питание и размножение сине-зеленых водорослей. Основные типы спор у низших и высших грибов. Семейства покрытосеменных растений, распространенных в умеренных широтах, их роль в сложении различных растительных сообществ.
курсовая работа [11,1 M], добавлен 27.11.2010Общая характеристика зеленых водорослей – группы низших растений. Место обитания морских зеленых водорослей. Их размножение, строение и способы питания, химический состав. Описание наиболее распространенных видов морских водорослей Японского моря.
реферат [641,9 K], добавлен 16.02.2012Строение животной клетки. Основные положения клеточной теории, понятие про прокариоты и эукариоты. Структура цитоплазмы и эндоплазматический ретикулум. Хромосомный набор человека. Способы деления клетки (амитоз, митоз и мейоз) и ее химический состав.
презентация [3,1 M], добавлен 09.10.2013Видоизменения мицелия в процессе приспособления к различным наземным условиям обитания. Размножение, питание и классификация грибов, их значение в биосфере и народном хозяйстве. Строение клетки гриба и бактериальной клетки, жизнедеятельность грибов.
реферат [198,1 K], добавлен 05.06.2010Способы питания и строение клетки водорослей. Основные типы морфологической структуры их тела. Сравнительный анализ видового разнообразия различных видов водорослей в экотопах. Размножение, циклы развития и распространенность растений в водоемах.
курсовая работа [927,6 K], добавлен 05.12.2014Характеристика растительного отдела мохообразных - представителей высших или побеговых растений, которые произошли от зеленых или бурых водорослей. Изучение их размножения бесполым, половым и вегетативным способами. Обзор мохообразных Тверской области.
реферат [18,7 K], добавлен 19.03.2010Способы питания и основные типы морфологической структуры тела водорослей. Строение их клетки, размножение и циклы развития. Сравнительный анализ видового разнообразия различных видов водорослей в экотопах. Сбор материала и гербаризация растений.
курсовая работа [1,0 M], добавлен 11.12.2014Систематика. Строение прокариот. Размножение. Образ жизни. Основніе группы прокариот: бактерии – фототрофы, бактерии – хемоавтотрофы, бактерии – органотрофы, бактерии – паразиты. Сине-зеленые водоросли.
реферат [18,1 K], добавлен 22.10.2003Изучение особенностей класса аскомицетов отдела грибов, основными признаками, которых является формирование в результате полового процесса сумок (асков). Строение клетки гриба, размножение, образ жизни и распространение. Общие сведения об эуроциевых.
курсовая работа [64,5 K], добавлен 16.01.2011Схема стадий симбиогенеза. Разнообразие клеток высших растений. Направления эволюции в строении тела низших первичноводных растений - водорослей. Схема эволюции высших растений. Жизненный цикл равноспорового папоротника. Преимущества цветковых растений.
презентация [47,5 M], добавлен 05.05.2012Характерные признаки грибов как самостоятельного царства живой природы. Особенности строения грибов, жизнедеятельность и многообразие представителей этого царства. Применение грибов в медицине, пищевой промышленности и их значение для человека.
презентация [4,1 M], добавлен 02.05.2011Отдел цианобактерии: строение клетки, питание, размножение. Грибы-паразиты, вызывающие болезни растений из группы низших растений. Анализ особенностей строения вегетативных и генеративных органов семейства розанные. Формула цветка. Основные представители.
контрольная работа [310,7 K], добавлен 23.08.2016Отдел сине-зелёные водоросли (Cyanophyta). Классы и виды водорослей. Строение клетки. Протопласт. Составные части протопласта. Плазмодесмы. Псевдовакуоли. Устойчивость сине-зеленых водорослей к воздействию продолжительного затемнения. Размножение.
лекция [22,5 K], добавлен 01.06.2008Общая характеристика семейств Крокодиловых, Аллигаторовых и Гавиаловых. Внешнее и внутреннее строение крокодилов, их распространение и образ жизни. Единственные выжившие представители подкласса архозавров. Эволюция, водный образ жизни и хищничество.
курсовая работа [26,0 K], добавлен 07.12.2010Классификация растений и определение термина "систематика растений" в ходе развития ботаники. Трехчленное деление царства растений. Типы царства протистов. Исследование Линн Маргулиса предполагаемой эволюции "высших" форм жизни из "низших" форм.
реферат [6,3 M], добавлен 05.06.2010Прокариоты - организмы, не обладающие четко оформленным ядром с оболочкой и типичным хромосомным аппаратом. Классификация бактерий по Бергу. Эукариоты как ядерные организмы, имеющие ядро, окруженное ядерной мембраной. Строение автотрофов и гетеротрофов.
реферат [17,8 K], добавлен 27.10.2009Систематическое положение и происхождение грибов, их строение и питание. Происхождение и толкование слова "гриб". Основные признаки и строение грибов класса аскомицетов (сумчатых грибов), класса базидиомицетов, группы гастеромицетов (нутревиков).
реферат [1,2 M], добавлен 14.04.2010Общее описание царства растений, характеристика их органов: корень, лист, побег, цветок, плод и семя. Отличительные черты водорослей, лишайников, мхов, хвощей, папоротников, голосеменных и покрытосеменных растений, их роль в природных сообществах.
шпаргалка [26,5 K], добавлен 15.03.2011