Общая и неорганическая химия
Характеристика современного атомно-молекулярного учения. Основные положения квантово-механической теории строения атома. Основы теории химической связи. Метод валентных связей. Основы химической термодинамики. Теория электролитической диссоциации.
Рубрика | Химия |
Вид | курс лекций |
Язык | русский |
Дата добавления | 26.10.2014 |
Размер файла | 1,6 M |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Медь - довольно распространенный элемент земной коры (0,0036 мол.%), содержание серебра и золота незначительно (1,610-6 и 510-8 мол.%). Основные минералы меди: медный колчедан (халькопирит) - CuFeS2, медный блеск - Cu2S, куприт - Cu2O. Серебро и золото образуют сульфидные минералы, а также встречаются в самородном состоянии.
Медь является биометаллом, входит в состав гемоцианина - переносчика кислорода в крови моллюсков. Известно около 30 белков и ферментов, в состав которых также входит катион меди.
Медь имеет красную окраску, серебро - белый металл, золото - металл желтого цвета. Медь, серебро и особенно золото отличаются высокой пластичностью, тепло- и электропроводностью.
Свойства |
Cu |
Ag |
Au |
|
Плотность, г/см3 |
9,94 |
10,5 |
19,3 |
|
Т.пл., С |
1085 |
961 |
1047 |
Медь широко применяется в электротехнике для изготовления проводов, печатных плат и контактов, в металлургии для получения разнообразных сплавов (латунь, бронза, монетные сплавы), в химической промышленности в качестве катализатора. Значительная часть серебра и золота в виде сплавов идет на изготовление монет и ювелирных изделий. Кроме этого, серебро и золото широко применяются в радиотехнике и электронике для изготовления контактов. Серебро применяется при изготовлении химической аппаратуры для работы в агрессивных средах. Коллоидное серебро используется в некоторых медицинских препаратах. Золото - основной валютный металл.
Медь - довольно инертный металл, хотя при нагревании реагирует с кислородом, серой и галогенами:
t t t
2Cu + O2 = 2CuO; Cu + Cl2 = CuCl2 2Cu + S = Cu2S
При высокой температуре медь реагирует также с фосфором, мышьяком, кремнием, углеродом с образованием соединений нестехиометрического и переменного состава (бертолидов).
В ряду стандартных электродных потенциалов медь стоит после водорода, поэтому с кислотами, не являющимися окислителями, не реагирует. Металлическая медь растворяется в азотной и концентрированной серной кислоте. Легко растворяется медь также в растворах цианидов, в аммиаке и растворах солей железа(III):
4Cu + 8NaCN + 2H2O + O2 = 4Na[Cu(CN)2] + 4NaOH
4Cu + 8NH3 + 2H2O + O2 = 4[Cu(NH3)2](OH)
Cu + 2FeCl3 = CuCl2 + 2FeCl2
Серебро и золото - химически весьма инертны. Серебро при нагревании реагирует с галогенами, серой, фосфором и углеродом с образованием AgHal, Ag2S, Ag3P, Ag4C. Во влажном воздухе уже при комнатной температуре серебро реагирует с сероводородом:
4Ag + 2H2S + O2 = 2Ag2S + 2H2O
Золото легко реагирует с галогенами (с хлором в присутствии влаги уже на холоду):
2Au + 3Cl2 = 2AuCl3
С кислородом, серой, азотом и бором золото не реагирует, при нагревании вступает во взаимодействие с теллуром и фосфором, образуя AuTe2, Au3P4.
Серебро растворимо в азотной и концентрированной серной кислотах. Золото - в царской водке (смесь концентрированных азотной и соляной кислот в соотношении 1:3):
Au + HNO3 + 4HCl = H[AuCl4] + NO + 2H2O
Серебро и золото легко растворяются в растворах цианидов щелочных металлов в присутствии окислителей:
2Au + O2 + 4KCN = 2K[Au(CN)2] + 2KOH
Соединения в степени окисления +1 наиболее характерны для серебра. У меди и особенно у золота данная степень окисления проявляется реже. Бинарные соединения меди(I) и серебра(I) (оксиды, сульфиды, галогениды) - кристаллические вещества, малорастворимые в воде. Из солей серебра(I) хорошо растворимы в воде нитрат и перхлорат. Оксиды меди(I) и серебра(I) амфотерны, гидроксиды - нестабильны. Медь(I) и серебо(I) образуют устойчивые комплексные ионы как катионного, так и анионного типа, в которых обычно проявляют координационное число 2:
AgCl + 2NH3 = [Ag(NH3)2]Cl; Agl + KI = K[AgI2]
Соединения меди, и особенно золота, в степени окисления +1 - сильные восстановители и легко окисляются уже кислородом воздуха:
4CuCl + O2 + 4HCl = 4CuCl2 + 2H2O
Степень окисления +2 характерна только для меди, которая образует бинарные соединения (оксид, галогениды и пр.), гидроксид, разнообразные соли и координационные соединения. Оксид и гидроксид меди(II) амфотерны и растворяются как в кислотах, так и в щелочах:
CuO + 2HCl = CuCl2 + H2O
CuO + 2KOH + 2H2O = K2[Cu(OH)4]
Гидроксид меди(II) термически неустойчив:
t
Cu(OH)2 = CuO + H2O
Из солей меди(II) хорошо растворимы в воде хлорид, нитрат, сульфат. Иодид и цианид меди(II) нестабильны, поскольку анионы окисляются катионом меди:
Cu2+ + 3I- = CuI + I2
Наиболее широко из солей меди применяется медный купорос - CuSO45H2O. В основном он используется для производства минеральных красок и для борьбы с вредителями и заболеваниями растений.
Степень окисления +3 наиболее характерна для золота. Золото(III) образует галогениды, амфотерный гидроксид и разнообразные координационные соединения анионного типа.
Au(OH)3 + NaOH = Na[Au(OH)4]
Au(OH)3 + HCl = H[AuCl4] + 3H2O
29.2 Элементы IIB-подгруппы (подгруппы цинка)
Цинк, кадмий и ртуть имеют общую электронную формулу (n-1)d10ns2 и завершают ряды d-элементов. Устойчивость завершенной d-оболочки обуславливает проявление этими элементами степени окисления +2. Ртуть может проявлять также степень окисления +1 за счет образования катиона [Hg-Hg]2+. Завершенность предвнешнего уровня роднит элементы подгруппы цинка с непереходными металлами. В тоже время цинк, кадмий и ртуть подобно переходным металлам склонны к образованию координационных соединений.
Цинк - распространенный элемент (0,0015 мол. %). Основные минералы цинка: цинковая обманка или сфалерит - ZnS, смитсонит - ZnCO3. Кадмий и ртуть - элементы редкие, но образуют рудные месторождения: гринокит - CdS, киноварь - HgS. Ртуть встречается в самородном состоянии.
Цинк - биометалл, входит в состав инсулина (гормона поджелудочной железы) и некоторых ферментов, например, карбоангидразы.
В виде простых веществ цинк, кадмий и ртуть - серебристо-белые металлы, ртуть при комнатной температуре находится в жидком состоянии.
Свойства |
Zn |
Cd |
Hg |
|
Плотность, г/см3 |
7,1 |
8,7 |
13,55 |
|
Т.пл., С |
420 |
321 |
-38,9 |
Металлический цинк в основном применяется для нанесения защитных покрытий (цинкование) и производства сплавов, основным из которых является латунь (медь + цинк). Значительное количество цинка используется для получения других металлов металлотермическим методом. Кадмий используют в атомной энергетике как поглотитель нейтронов (регулирующие стержни), а также для производства легкоплавких и типографских сплавов. Ртуть применяют в измерительных приборах, установках для собирания газов, электролизерах (жидкий катод), а также в металлургии для извлечения золота и серебра методом амальгамирования.
Цинк - довольно активный металл. При нагревании он легко окисляется кислородом, галогенами и другими неметаллами, образуя бинарные соединения:
При температуре 150 С цинк реагирует с парами воды с выделением водорода:
t
Zn + H2O = ZnO + H2
По отношению к неметаллам кадмий и ртуть напоминают цинк. Ртуть отличается большим сродством к сере и йоду, с которыми она реагирует уже при комнатной температуре. Азот, фосфор, углерод, кремний и бор с ртутью непосредственно не взаимодействуют. Ртуть растворяет многие металлы с образованием жидких или твердых сплавов - амальгам.
В ряду стандартных электродных потенциалов цинк и кадмий стоят левее водорода, поэтому они энергично растворяются в растворах кислот (кадмий менее активен). Ртуть в ряду стандартных электродных потенциалов стоит правее водорода, поэтому растворяется только в кислотах - окислителях по аниону, например:
Hg + 4HNO3(конц) = Hg(NO3)2 + 2NO2 + 2H2O
6Hg + 8HNO3(разб) = 3Hg2(NO3)2 + 2NO + 4H2O
Цинк, в отличие от кадмия и ртути, легко растворим в щелочах:
Zn + 2KOH + 2H2O = K2[Zn(OH)4] + H2
Цинк и кадмий образуют оксиды и гидроксиды, обладающие амфотерными свойствами (у соединений кадмия преобладают основные свойства), а также бинарные соединения с неметаллами. Оксид ртути обладает основными свойствами, термически нестоек:
t
2HgO = 2Hg + O2
Гидроксиды цинка и кадмия растворимы в аммиачных растворах за счет образования устойчивых координационных соединений:
Zn(OH)2 + 4NH3 = [Zn(NH3)4](OH)2
Гидроксид ртути неизвестен. При действии аммиака на другие соединения ртути обычно образуются амидные производные:
HgCl2 + 2NH3 = HgNH2Cl + NH4Cl
Для металлов подгруппы цинка известно большое число солей, из которых малорастворимы фториды, карбонаты (неизвестен для ртути), а также HgBr2 и HgI2. Цинк и в меньшей степени кадмий образуют координационные соединения как катионного, так и анионного типа.
Для ртути(I) описаны оксид - Hg2O (черного цвета), галогениды, например, Hg2Сl2 (каломель) и некоторые соли. Хорошо растворим нитрат ртути(I) - Hg2(NO3)22H2O, являющийся основным соединением при получении производных ртути(I). Производные катиона Hg22+ склонны к диспропорционированию:
Hg22+ = Hg2+ + Hg
Пары ртути и ее соединения чрезвычайно токсичны! Весьма ядовиты также соединения кадмия.
Литература: [1] с. 551 - 563, 599 - 608, [2] с. 550 - 554, [3] с. 585 - 602
Лекция 30. Основы геохимии
Геохимия - наука о распространенности и миграции химических элементов в геосферах. Законы, управляющие миграцией элементов, условиями их разделения и концентрации составляют предмет геохимии.
Выяснение вопросов, связанных с миграцией и распределением химических элементов, невозможно без знания теории строения атома, закономерностей ядерных реакции и радиоактивного распада. Знакомство с явлением радиоактивности позволит глубже разобраться с методами определения абсолютного возраста пород, понять процессы, происходящие в высших слоях атмосферы.
30.1. Теория строения атомных ядер. Радиоактивность.
Атомное ядро - это центральная часть атома, в которой сосредоточена основная часть его массы (около 99,9%). Ядра атомов представляют собой сложные образования, структурными элементами которых являются элементарные частицы. Современное представление о строении ядра атома изложено в протонно-нейтронной теории Д. Иваненко и В. Гейзенберга (1932 г.), которая может быть сведена к следующим положениям:
1. Ядро состоит из протонов и нейтронов, их объединяют под общим названием нуклон. Число нуклонов в атомном ядре называется массовым числом (А). Так как массы протона и нейтрона в а.е.м. близки к единице, то массовое число ядра равно атомной массе, округленной до целого числа. Число протонов в ядре (Z) равно заряду ядра, совпадающему с порядковым номером элемента в периодической системы, число нейтронов можно определить по следующей формуле:
N = A - Z
При записи формул атомных ядер верхним левым индексом при химическом символе элемента указывается массовое число, нижним левым - число протонов, например, .
Ядра атомов, имеющие одинаковое число протонов при разном числе нейтронов (например, ), называются изотопами. Термин "изотоп" распространяется и на атомы, содержащие соответствующие ядра.
2. В атомных ядрах непрерывно протекают процессы взаимопревращения протонов в нейтроны и наоборот, что обусловливает стабильность ядер. Превращения происходят в результате обмена элементарными частицами - пи-мезонами (+; - или 0):
p + n n + + + n n + p
n + p p + - + р p + n
Время жизни пи-мезонов в ядре не превышает 10-23 - 10-24 с. Таким образом, протон и нейтрон можно рассматривать как разные квантово-механические состояния одной элементарной частицы - нуклона.
3. Между нуклонами действуют силы притяжения, называемые ядерными силами. Их действие проявляется лишь на расстояниях порядка 10-3 пм и быстро падает при удалении нуклонов друг от друга. Ядерные силы необычайно велики, следствием этого являются малые размеры атомных ядер и высокая плотность ядерного вещества, достигающая 1014 г/см3 (для сравнения плотность наиболее тяжелого металла осмия равна 22,5 г/см3).
Наряду с ядерными силами в ядре действуют электростатические силы отталкивания одноименно заряженных протонов, понижающие устойчивость ядер, особенно имеющих высокий заряд. Так, у элементов, расположенных в периодической системе после висмута (порядковый номер - 83), не существует стабильных изотопов. Лишенные зарядов нейтроны стабилизируют ядра, ослабляя взаимное отталкивание протонов. С увеличением зарядов ядер отношение N:Z в них возрастает: у элементов начала периодической системы отношение близко к единице, а с увеличением порядкового номера повышается до 1,6 у урана.
4. Энергия, которую необходимо затратить, чтобы расщепить ядро на отдельные нуклоны, называется энергией связи ядра (Есв). Такое же количество энергии выделяется при синтезе ядра из нуклонов. Энергию связи, отнесенную к одному нуклону, называют средней (удельной) энергией связи ядра:
Значения средней энергии связи, в отличие от Есв, изменяются в относительно узких пределах, составляя 6 - 8 мЭв на каждый нуклон. Максимальные значения <Есв> отвечают элементам середины периодической системы, достигая 8,8 мЭв. Взаимодействие одного моля нуклонов сопровождается выделением 8,5·108 кДж, что многократно превышает тепловые эффекты обычных химических реакций. Выделение столь значительных количеств энергии в соответствии с уравнением Эйнштейна (Е = mc2) сказывается на массе ядра. Уменьшение массы ядра сравнительно с массой входящих в состав ядра нуклонов называется дефектом массы:
m = Zmp + Nmn - Mx,
где mp и mn - массы протона и нейтрона, Mx - масса синтезированного ядра.
Для объяснения свойств ядер широко используется оболочечная модель (М. Гепперт-Майер, 1948 г.). Согласно этой модели ядро имеет ряд дискретных ядерных уровней, емкость которых определяется значениями ядерных квантовых чисел. Уровни заполняются нуклонами в соответствии с правилами квантовой механики по аналогии с атомными электронными уровнями. Полному заполнению энергетических уровней ядра соответствуют числа нуклонов, равные 2, 8, 14, 20, 28, 50, 82, 126 и 184. Эти числа называют магическими, а ядра, в которых они реализуются, получили название магических ядер. Магические ядра в какой-то мере аналогичны атомам благородных газов в периодической системе, они характеризуются большей устойчивостью и распространенностью в природе. Ядра могут содержать магическое число протонов () или нейтронов (например, ), а также тех и других (дважды магические ядра). К дважды магическим ядрам относятся: 42He (2p,2n); 168O (8p,8n); 2814Si (14p,14n); 4020Ca (20p,20n); 20882Pb (82p,126n).
Ядерные реакции - это превращения атомных ядер, обусловленные их взаимодействием с элементарными частицами или другими ядрами. В отличие от химических реакций, ядерные реакции всегда сопровождаются изменением элементного или изотопного состава.
Обычным методом осуществления ядерных реакций является метод бомбардировки, при котором ядра вещества-мишени подвергаются действию пучка частиц, энергия которых достаточна для преодоления электростатического отталкивания одноименно заряженных частиц. Ядерные реакции зачастую протекают по схеме:
X + Y U X' + Y'
Взаимодействующие частицы X и Y сливаются в короткоживущее ядро U (так называемое компаунд-ядро), которое затем распадается на частицы X' и Y'. При записи уравнения ядерных реакций принято указывать заряды и массовые числа исходных и образующихся ядер. Часто используют сокращенную форму записи подобных уравнений; при этом записывают символы исходного и полученного ядер с указанием массовых чисел, а между ними в круглых скобках через запятую указывают символы бомбардирующей и образующейся легких частиц. При такой форме записи ядро обозначается символом , ядро атома водорода (протон) - символом р, фотон - . Например:
или 63Cu(p,n)Zn
или 27Al(,p)26Mg
или 14N(,p)17O
К ядерным реакциям относятся также термоядерные процессы - реакции синтеза тяжелых ядер из более легких. Термоядерным реакциям соответствуют огромные тепловые эффекты, однако для начала протекания таких реакций необходимы очень высокие температуры (порядка 106 градусов). Простейшей термоядерной реакцией является синтез ядер гелия из протонов:
,
где - элементарная частица нейтрино.
Радиоактивность - это явление самопроизвольного распада неустойчивых атомных ядер, сопровождающееся корпускулярным или электромагнитным излучением.
Явление радиоактивности было открыто французским физиком А. Беккерелем в 1896 г. при работе с ураном и его соединениями. Фундаментальное изучение связано с именами Марии и Пьера Кюри, выделившими из урановых руд радиоактивные элементы полоний и радий, являющиеся в миллионы раз более мощными излучателями, чем уран. М. Кюри предложила и сам термин "радиоактивность". Связь радиоактивности с распадом атомных ядер была установлена Э. Резерфордом и Ф. Содди.
Системной единицей радиоактивности является беккерель (Бк). Беккерель равен активности образца, в котором происходит один акт радиоактивного распада в секунду; размерность беккереля - с-1. Несистемной единицей радиоактивности является кюри (Ки), соответствующая радиоактивности 1 г радия, 1 Ки = 3,7001010 Бк.
Существует несколько типов радиоактивного распада, важнейшими из которых являются следующие:
1. -Распад сопровождается испусканием двух протонов и нейтронов в виде ядра гелия и протекает по уравнению
-Распад характерен для элементов с высокими значениями заряда ядра. Все элементы, располагающиеся в периодической системе после висмута, имеют изотопы, подвергающиеся -распаду. Примером этого типа распада может служить распад ядер радия:
2. -Распад сопровождается испусканием электрона (--распад) или позитрона (+-распад). При --распаде ядро испускает электрон за счет превращения одного нейтрона ядра в протон:
10n 11p + е- +
Часть энергии при распаде уносится вместе с антинейтрино () - частицей, лишенной заряда и отличающейся от нейтрино спином. При --распаде заряд ядра увеличивается на единицу, массовое же число не изменяется, т.е. образуется ядро другого элемента, атомный номер которого на единицу больше, чем у исходного, например:
или 21083Bi 21084Po + е- +
Этот тип радиоактивности присущ как легким, так и тяжелым элементам. При этом изотопы одного и того же элемента могут подвергаться как --распаду, так и +-распаду (позитронный распад). Позитрон - элементарная частица с положительным зарядом и массой электрона. Позитронный распад является следствием превращения одного протона в нейтрон, при этом заряд ядра уменьшается на единицу, а массовое число не изменяется.
11p 10n + е+ + ;
Если масса радиоактивного ядра больше массы стабильного изотопа данного элемента, то оно обычно подвергается --распаду, если меньше - то +-распаду. Например, масса стабильного изотопа углерода равна 12 а.е.м., ядра углерода и распадаются согласно уравнениям:
146C 147N + e- + ; 116C 115B + е+ +
3. Электронный захват приводит к такому же изменению ядер как и позитронный распад, его часто рассматривают как третий вид -распада. Это явление состоит в том, что электрон, находящийся на одном из ближайших к ядру слоев, захватывается ядром. При этом один из протонов превращается в нейтрон:
11p + е- 10n + ; +
Чаще всего захват электрона происходит с ближайшего к ядру К-слоя (К-захват), реже с L- или М-слоев. Электронный захват, как и +-распад, присущ нейтронодефицитным изотопам. Например, К-захвату подвергается ядро :
Благодаря эффекту К-захвата небольшая часть изотопов калия-40 (около 12 %) превращается в аргон:
4019K 4018Ar +
Эта ядерная реакции используется при определении возраста калиевых минералов (так называемый "аргоновый метод"), аргон в минералах накапливается прямо пропорционально их возрасту.
4. Спонтанное деление ядер - самопроизвольное деление тяжелого ядра на два (реже на три или четыре) осколка, являющиеся ядрами элементов середины периодической системы. Известно очень мало изотопов, для которых спонтанное деление является единственным видом радиоактивного распада. Примером таких ядер может служить изотоп менделевия - . Обычно ядра, способные к спонтанному делению, одновременно подвергаются также - или -распаду, являющемуся для них основным. При спонтанном делении образуются самые разнообразные осколки, однако их массы и заряды чаще всего относятся как 3:2.
Рассмотренные типы радиоактивного превращения ядер часто сопровождаются гамма-излучением, связанным в основном с переходом образовавшегося ядра из возбужденного в нормальное состояние.
Если радиоактивный распад сопровождается изменением зарядов ядер, то образующиеся ядра занимают в периодической системе иные места, нежели исходные. Для характеристики подобных перемещений пользуются правилом смещения (К. Фаянс, Ф. Содди, 1913 г.): нуклид, образующийся в результате -распада смещается в периодической системе на две клетки влево, а нуклид, образующийся в результате --распада - на одну клетку вправо от исходного радионуклида. К правилу можно добавить, что позитронный распад и электронный захват смещают ядро на одну клетку влево, при этом -распад на массу ядра не влияет, а испускание -частицы изменяет массу ядра и массовое число на четыре единицы.
Основной закон радиоактивного распада - закон радиоактивной постоянной: число ядер, распадающихся в единицу времени, пропорционально их числу. Закон обусловлен тем, что распад каждого атомного ядра не зависит от поведения других ядер.
Пусть за отрезок времени t число радиоактивных ядер изменилось от N0 до N. В соответствии с законом радиоактивной постоянной скорость распада в каждый момент времени будет пропорциональна величине N:
N (1)
или
-t (2)
Коэффициент пропорциональности называется радиоактивной постоянной или константой радиоактивного распада, значения которой зависят от природы радиоактивного изотопа. Величина, обратная радиоактивной постоянной, называется средним временем жизни ядра:
=
Проинтегрировав левую часть уравнения (2) в пределах от N0 до N, а правую - от нуля до t, получим математическое выражение основного закона радиоактивного распада в интегральной форме:
N = N0e-t (3)
Следствием из закона радиоактивной постоянной является правило полураспада: отрезок времени, за который распадается половина имеющихся радиоактивных ядер, есть величина постоянная для данного изотопа, называемая периодом полураспада (Т1/2).
Если t = Т1/2, то N = 1/2N0, то в соответствии с уравнением (3):
или
Значения периода полураспада изменяются в широком диапазоне - от нескольких долей секунды до многих миллионов лет.
Естественная радиоактивность присуща изотопам, существующим в природе. Естественные радиоактивные изотопы достаточно многочисленны и содержатся в различных природных объектах (горные породы, минералы, атмосфера, гидросфера, космические тела), к ним относятся все изотопы элементов, порядковый номер которых превышает 83. В результате непрерывно протекающего распада ядер этих изотопов Земля получает значительное количество энергии - около 5,71010 кДж/с. За счет этой энергии повышается температура при углублении в земные недра.
Очевидно, что на земле имеются те элементы, которые не подверглись радиоактивному распаду за 4,5 - 5 млрд. лет (время существования нашей планеты) или запасы которых постоянно пополняются за счет соответствующих ядерных превращений. Так, ядра тория (период полураспада 1,4·1010 лет), урана (7·108 лет), (4,5 109 лет) могли сохраниться на Земле. Другие элементы, расположенные за висмутом, постоянно образуются за счет естественного радиоактивного распада.
При распаде изотопов урана и тория протекает ряд последовательных ядерных превращений, при которых нуклид, образующийся на определенной стадии, становится исходным ядром для следующей стадии. Совокупность генетически связанных нуклидов, последовательно образующихся один из другого, называется радиоактивным рядом. Радиоактивный ряд начинается нуклидом с периодом полураспада, достаточным для того, чтобы этот изотоп не исчез за время существования земной коры (Т1/2 > 108 лет), завершается каким-либо стабильным изотопом. В настоящее время известны три естественных радиоактивных ряда, в которых происходят только - и --превращения. Все существующие в земной коре изотопы тяжелых радиоактивных элементов являются членами этих рядов.
1. Ряд урана. Родоначальником ряда является , завершает ряд стабильный изотоп свинца . Превращение осуществляется в 14 стадий (8 -распадов, 6 --распадов). Часть радиоактивного ряда урана приведена ниже:
Изменение массового числа членов ряда происходит только при -распаде, для любого нуклида ряда справедлива формула A = 4n + 2, где А - массовое число изотопа, n - целое число.
2. Ряд тория открывается изотопом , включает 10 стадий (6 - и 4 --распадов) и заканчивается изотопом . Массовые числа членов ряда отвечают формуле A = 4n.
3. Ряд актиноурана. Актиноуран - одно из названий изотопа . В результате 11 ядерных превращений (7, 4-) заряд ядра понижается на 10 единиц, а массовое число - на 28, что приводит к образованию стабильного изотопа свинца . Массовое число членов ряда соответствует формуле А = 4n +3.
На определении точного соотношения количеств радиоактивного элемента и продукта его распада основаны методы определения абсолютного возраста минералов. Так называемый "свинцовый метод" определения возраста природных объектов основан на сравнении соотношений количеств изотопов 206Pb; 207Pb; 208Pb к количеству изотопа свинца-204. Изотоп 204Pb не имеет радиоактивных предшественников, поэтому его количество в земной коре остается неизменным, в то время как количества изотопов 206Pb; 207Pb и 208Pb все время нарастает в результате радиоактивного распада урана и тория. Между значениями изотопных соотношений свинцовых месторождений и их возрастом наблюдается строгая закономерность.
Четвертый ряд радиоактивности 23793Np 20983Bi возможно когда-то реализовывался на Земле, но начиная с нептуния (Т1/2 = 2,14106 лет) элементы отличаются сравнительно короткими периодами полураспада (максимально 6580 лет у плутония-240, 7800 лет у америция) и поэтому подверглись распаду сравнительно быстро. В настоящее время удалось искусственно воссоздать четвертый радиоактивный ряд, образуемый изотопами, для которых массовое число А = 4n + 1. Родоначальник ряда - изотоп нептуния , ряд включает 7- и 4--превращений и заканчивается стабильным изотопом .
В свете представлений о радиоактивных рядах становится понятным, почему в природных образованиях можно обнаружить радиоизотопы с малыми периодами полураспада (например, полоний, периоды полураспада изотопов которого не превышают 102 года, или радон, для самого устойчивого изотопа которого период полураспада равен 2,8 сут), тогда как некоторые изотопы с периодами распада порядка сотен тысяч и миллионов лет в природе отсутствуют (например, ). Действительно, ядра изотопов полония, радона, актиния, являющиеся членами радиоактивных рядов, непрерывно образуются при распаде урана и тория, тогда как количество ядер нептуния, родоначальника ряда, могло только уменьшаться.
Естественная радиоактивность присуща и некоторым элементам, имеющим стабильные изотопы. Примером такого элемента может служить калий, который представлен в земной коре, наряду со стабильным , радиоактивным изотопом ; содержание последнего составляет 0,012% от общего числа ядер изотопов калия. Период полураспада - 1,25109 лет, этот изотоп на 88 % распадается по уравнению:
30.2. Распространенность химических элементов
"Геохимия изучает историю атомов в земной коре", - так впервые сформулировал В.И. Вернадский задачи этой науки. Первые сведения о распространенности химических элементов в земной коре мы находим в работах Ф.У. Кларка, использовавшего собранные им данные химических анализов горных пород. Первоначально он определил среднее содержание 50 элементов, дальнейшая работа была продолжена И. Фохтом и В.И. Вернадским. Среднее относительное содержание данного элемента в природной системе называется его распространенностью или кларком. Такой термин в честь американского ученого предложил использовать академик А.Е. Ферсман. Распространенность часто определяется в массовых или мольных %.
В космической распространенности элементов отмечается ряд закономерностей:
Распространенность элементов неравномерно уменьшается с возрастанием атомного номера.
Наиболее распространенными элементами являются водород и гелий; космическое вещество на 3/4 состоит из этих элементов.
Относительная распространенность элементов с четным числом протонов выше, чем с нечетным.
Характер распространения химических элементов в земной коре сходен с характером их распространения в космосе. Впервые в 1914, 1918 годах Г. Оддо и В. Гаркинс обратили внимание на преимущественную распространенность элементов с четными атомными номерами.
Распространенность атомных ядер
Атомный номер |
Число протонов |
Число нейтронов |
Число ядер данного типа |
|
Четный |
Четное |
Четное |
164 |
|
Нечетный |
Четное |
Нечетное |
58 |
|
Нечетный |
Нечетное |
Четное |
51 |
|
Четный |
Нечетное |
Нечетное |
5 |
Позже А.Е. Ферсман подсчитал, что распространенность изотопов в природе подчиняется закону кратности четырем: максимальная распространенность свойственна изотопам, главным образом, с четным числом протонов и нейтронов, т.е. с массовым числом, кратным четырем. В качестве примера можно привести весьма характерную распространенность изотопов стронция и свинца (мас.%):
84Sr - 0,56; 86Sr - 9,86; 87Sr - 7,02; 88Sr - 82,56
204Pb - 1,4; 206Pb - 24,7; 207Pb - 21,16; 208Pb - 52,74
Распространенность изотопов первых 28 элементов периодической системы Д.И. Менделеева
Число нуклонов в ядре (х - целое число) |
Распространенность, мас.% |
|
4х |
86,81 |
|
4х+1 |
0,01 |
|
4х+2 |
0,05 |
|
4х+3 |
12,68 |
|
1 (Н) |
1,0 |
Изотопный состав химических элементов в земной коре отражает многие геохимические процессы образования пород и руд. Одной из причин различного распределения изотопов в природных объектах служат геологические процессы. Расшифровка этих явлений на основании анализа возникшей изотопной смеси - одна из задач геохимии.
Например, экспериментально определено соотношение изотопов кислорода - 18О (0,204 %) и 16О (99,759 %), однако в природных объектах их соотношение может изменяться на 10 %. Вариации изотопного состава кислорода в горных породах определяются в первую очередь температурой, при которой протекал процесс их формирования. Так изменение изотопного состава кислорода в карбонатах скелетов различных моллюсков свидетельствует о температуре древнего моря, в котором происходил их рост. Другой пример касается изотопного состава серы. К настоящему времени произошло разделение серы земной коры на две группы: серу биогенного происхождения - сера сульфидов (в природе их образование осуществляется бактериальным путем), - обогащенную изотопом 32S, и серу сульфатов, входящую в солевой остаток океанической воды, с большим содержанием изотопа 34S.
В состав земной коры входят 88 элементов, практически отсутствуют короткоживущие технеций, прометий, астат, франций и трансурановые элементы. Основу земной коры составляют всего восемь элементов: кислород, кремний, алюминий, натрий, железо, кальций, магний, калий - суммарный кларк которых составляет 98,5 мас.%. Далее по распространенности следует четыре элемента: титан, фосфор, водород и марганец. Распространенность всех других элементов меньше 0,6 масс.%.
Согласно геохимической классификации химических элементов В.М. Гольдшмидта выделено четыре группы химических элементов, их названия отражают ту область Земли, где преимущественно встречаются входящие в нее элементы. Для ядра Земли характерна группа сидерофильных элементов, для земной коры - литофильных, для промежуточного слоя - мантии - группа халькофильных элементов и, наконец, атмосфера представлена группой атмофильных элементов.
Группа литофильных элементов характерна для горных пород земной коры и включает кислород, кремний, алюминий, кальций , магний, хлор, натрий, калий и другие. Железо, никель, кобальт, фосфор, платиновые металлы и другие элементы составляют группу сидерофильных элементов. Группа халькофильных элементов, имеющих высокое сродство к сере и встречающихся в рудных жилах, - сера, селен, теллур, мышьяк, медь, серебро, золото, цинк, свинец, ртуть и др. Элементы атмофильные: водород, азот и инертные газы.
Между химическими свойствами и распространенностью элементов имеется тесная зависимость. Специфика Земли заключается в преимущественной роли кислорода в составе земной коры (кларк кислорода составляет 49,13 масс.%), тогда как на Солнце он занимает скромное место. Причина этого заключается в прочной химической связи кислорода со многими элементами земной коры, что препятствует его удалению. Следующие по распространенности элементы земной коры - кремний и алюминий - отличаются способностью образовывать легкоплавкие соединения с щелочными и щелочноземельными металлами, а потому сравнительно легко накапливаются в шлаковой корке - земной коре. Таким образом, в земной коре преобладают кислородные соединения, из которых наиболее распространены силикаты, слагающие все главнейшие горные породы. Заметно менее распространены карбонаты, еще меньше - сульфидные и сульфатные минералы.
Преимущественно в виде оксидов в земной коре находятся такие металлы как железо, хром, марганец, никель, ванадий, вольфрам, в виде сульфидов - медь, олово, цинк, ртуть, свинец, а также железо, никель и кобальт. Натрий, калий, рубидий чаще встречаются в виде хлоридов и сульфатов. Литий, бериллий и цезий входят в состав силикатов. Магний и щелочноземельные металлы образуют карбонатные и сульфатные минералы. Ряд металлов встречается в природе в виде простых веществ в самородном состоянии: палладий, платина, осмий, иридий, золото, серебро.
В зависимости от химической природы элемент может либо иметь свои минералы, либо сопутствовать другим элементам. Геохимики выделяют обширную группу элементов, для которых характерно равномерное распределение в земной коре, такие элементы называются рассеянными. Распространенность в земной коре и число разновидностей минералов не находятся в прямой зависимости. Так рубидий практически не имеет собственных минералов и является рассеянным элементом, тогда как менее распространенная медь образует собственные минералы, а потому к рассеянным элементам не относится.
В.И. Вернадский классифицировал химические элементы по способности образовывать химические соединения, концентрироваться, участвовать в циклических процессах, а также по радиоактивности и выделил шесть групп:
благородные газы;
благородные металлы - золото и платиновые металлы (Ru, Rh, Pd, Os, Ir, Pt);
циклические элементы - водород, углерод, кислород, азот, калий, магний, алюминий и др;
рассеянные элементы - литий, скандий, галлий, бром, рубидий и др.;
радиоактивные элементы;
редкоземельные элементы - иттрий, лантан, лантаноиды.
30.3. Миграция химических элементов. Факторы миграции
В земной коре постоянно происходят многообразные химические процессы, разобраться в них - значит понять, как образуются минералы, горные породы и руды и в каких условиях они формируются, т.е. понять процессы миграции химических элементов. Это в свою очередь позволяет определить наиболее вероятные расположения месторождений полезных ископаемых
Перемещение химических элементов в пределах земной коры, гидросферы и атмосферы может происходить в виде водных растворов, силикатных расплавов (магма) и газов и подчиняется законам физико-химических явлений диффузии, сорбции, растворения и осаждения. Чтобы иметь представление о процессах миграции элементов рассмотрим различные области их существования на Земле: атмосферу, гидросферу и земную кору.
Геохимия атмосферы. В состав атмосферы (за вычетом паров воды) входят 75,5 масс.% азота; 23,03 масс.% кислорода; 1,28 масс.% аргона; 0,04 масс.% углекислого газа; 0,0016 масс.% приходится на неон, криптон, гелий и ксенон. Основная масса вещества (80 масс.%) приходится на тропосферу, которая является областью активного взаимодействия газовой оболочки с земной корой. При переходе в стратосферу на уровне 25 - 30 км над поверхностью появляется так называемый озоновый экран. Значение озонового экрана огромно, он поглощает до 97 % ультрафиолетового излучения и предохраняет земную поверхность от его губительного действия. Активность солнечной энергии проявляется в том, что в области озонового экрана заметно повышается температура до 0 - 10 С, а на границе с ионосферой снижается до -80 С. Нижние слои атмосферы являются пограничной областью, в которой происходит взаимодействие внешних космических излучений с веществом земного происхождения. На высоте более 100 км в составе ионосферы доминируют водород и гелий. Ионосфера - зона газовой оболочки Земли, где особенно активно протекают ядерные реакции.
Высокое содержание азота в атмосфере отчасти объясняется достаточно низкой его химической активностью в обычных условиях. Азот может удаляться из атмосферы при грозовых разрядах, образуя оксиды азота и азотную кислоту, а затем легкорастворимые нитраты. Возвращение азота в атмосферу происходит в результате окисления органических веществ, кроме того существенная доля азота возвращается в процессе выветривании пород, в которых азот находится в виде катиона аммония NH4+, изоморфно замещающего калий в слюдах.
Необычный состав газовой оболочки Земли связан с интенсивным влиянием жизни, обусловившей присутствие в ней свободного кислорода и углекислого газа. Высокая концентрация кислорода в атмосфере является геохимическим парадоксом, не повторяющимся в известном нам мироздании. Кислород активно поглощается в процессе окисления и дыхания, но наряду с этим непрерывно протекает процесс фотосинтеза, сопровождающийся выделением свободного кислорода в атмосферу.
Огромную роль в атмосфере играет углекислый газ, темп его круговорота несоизмерим ни с одним другим газом. Этот газ активно поглощается в процессе фотосинтеза, а также при карбонатном осадкообразовании. Возвращение углекислого газа в атмосферу связано с окислительными процессами на поверхности Земли и с вулканической деятельностью.
Чтобы говорить о происхождении современной атмосферы, необходимо рассмотреть состав подземных газов, постоянно проникающих в атмосферу. Подземные газы подразделяют на биохимические, воздушные, химические и радиогенные.
Образование биохимических газов связано с разложением органических веществ, поэтому наиболее крупные скопления газов ассоциируют с нефтяными залежами, эти газы содержат метан, углекислый газ, азот, сероводород и в небольших количествах водород. К газам химического происхождения могут быть отнесены газы, образующиеся в процессе горения угля, разложения карбонатных пород (СО2), окисления залежей колчедана - FeS2 и других сульфидов (SO2). Вулканические газы (СО, H2, N2, SО2, H2S, H2O, HCl, HF, NH3, CH4) также отнесены к химическим.
Недавно найдены выходы значительного количества метана в магматических структурах, где осадочные органические вещества отсутствуют. Это позволило предположить существование метана и водорода глубинного подкоркового происхождения и последующего синтеза из них нефти. Вероятность подобного допускал и В.И. Вернадский (1933 г.): "Именно для метана исключительная связь с жизнью сомнительна.... Известны его синтезы в лабораторных условиях часто независимые от органических соединений. Аналогичные процессы должны идти в магмах."
Радиогенные газы характеризуются присутствием аргона и гелия. Гелий является продуктом распада урана и тория, происхождение аргона связано с ядерным превращением (К-захват) изотопа калия-40. Аргон и гелий освобождаются при выветривании горных пород, либо поступают в подземные струи газов, в том числе и вулканических, при глубинных термальных процессах. Количество гелия в атмосфере Земли ничтожно мало, так как происходит его удаление в космическое пространство. Аргон в десять раз тяжелее гелия и поэтому встречается в сравнительно больших количествах.
В догеологический период существования Земли атмосфера отличалась меньшей плотностью, а её состав обладал более восстановительными свойствами, так как в ней доминировали СО, H2S, HCl, HF, NH3, CH4 и H2. Понадобился длительный процесс зарождения жизни и ее эволюции, для того чтобы генерируемый кислород смог окислить всю массу аммиака, метана и водорода.
Геохимия гидросферы. Одной из самых важных особенностей океана является его солевой состав. В среднем соленость вод океана составляет 35 г на 1 кг морской воды.
Содержание солевого остатка на 1 кг морской воды
Катионы |
Содержание, г |
Анионы |
Содержание, г |
|
Na+ |
10,764 |
Cl- |
19,353 |
|
Mg2+ |
1,297 |
SO42- |
2,701 |
|
Ca2+ |
0,408 |
HCO3- |
0,143 |
|
K+ |
0,388 |
CO32- |
0,070 |
|
Sr2+ |
0,014 |
Br- |
0,066 |
|
F- |
0,001 |
|||
H3BO3 |
0,027 |
Солевой остаток океана сформировался из элементов разрушающейся породы, которая смогла достигнуть океана. Обращает на себя внимание отставание калия при миграции по сравнению с натрием: этот факт объясняется лучшей поляризацией калия (больший размер иона), что в свою очередь повышает сорбционные свойства. Калий лучше удерживается глинами и другими осадками. Магний и кальций сравнительно быстро покидают океан из-за процессов седиментации, однако растворимость соединений магния больше, поэтому содержание его в морской воде несколько выше.
Два элемента, занимающие второе и третье места по распространенности в земной коре - алюминий и кремний - практически полностью отсутствуют в океане. Поскольку алюминий при значениях рН = 8,1 образует нерастворимый гидроксид, его миграция с водными растворами весьма ограничена. Кремний встречается в океанических водах в ненасыщенном состоянии (5 мг/л), в то время как в грунтовых водах его концентрация достигает 10 - 23 мг/л. Присутствие кремнезема в морской воде в ничтожных концентрациях вызвано низкой растворимостью его природных образований. Вторая причина связана с биогенным фактором - аморфный кремнезем идет на постройку скелета диатомовых водорослей, кремниевых губок и других организмов.
Концентрация некоторых элементов в океане во много раз выше, чем в земной коре. Например: бора в 260, хлора в 270, серы в 296 раз. По мнению А.П. Виноградова первоисточником всех главных анионов океанической воды являются кислые дымы подводных и надводных вулканических извержений.
Океан находится в динамическим равновесии с газовой оболочкой Земли. Так количество углекислого газа в атмосфере регулируется океаном, в нем растворяется до 0,04 % СО2, кроме того углекислый газ поступает в воды океана в результате деятельности подводных вулканов и жизнедеятельности организмов. Удаление углекислого газа происходит фитопланктоном в процессе фотосинтеза, а также при осаждении карбонатных отложений.
Основное поступление воды в океан осуществляется потоками речных вод. Соленость пресной воды составляет в среднем 200 - 350 мг/л. В зависимости от континента содержание некоторых компонентов в водах изменяется, в особенности это касается коллоидных частиц и органического материала, переносимого реками.
При испарении воды из океанических вод выпадают следующие фазы:
гипсовая - CaSO4·2H2O;
галитовая - NaCl;
магнезиальная - MgSO4·7H2O;
сильвинитовая - NaCl·KCl;
карналлитовая - KCl·MgCl2·6H2O;
бишофитовая - MgCl2·6H2O.
Факторы миграции. Важными факторами миграции веществ являются температура и давление. В 1903 году Д. Джоули показал, что радиогенного тепла достаточно для образования магм, объяснения вулканической и тектонической деятельности Земли. Увеличение температуры и давления с глубиной служит причиной перекристаллизации горных пород. Изменения, происходящие с горными породами под влиянием температур и давления в глубинах Земли, называются метаморфизмом.
На значительных глубинах Земли, отвечающих фазовому переходу мантия ядро, под влиянием давления происходит удаление кислорода; остающиеся металлы в самородном состоянии (железо, никель) обеспечивают исключительную вязкость материала верхней части ядра. Вещество земной мантии и тем более ядра, находится в состоянии интенсивного сжатия. Внедрение этого вещества в верхние слои земной коры, его взаимодействие с гидросферой и атмосферой приводят к увеличению объема и уменьшению плотности вещества.
На поверхности Земли также происходят изменения горных пород и миграция вещества. Одним из факторов миграции является размер ионов, их поляризационные свойства. Начала ионной концепции в геохимии - трактовки поведения элементов в растворах и расплавах с учетом свойств ионов - были заложены В.М. Гольдшмидтом и А.Е. Ферсманом. Знание природы химической связи, а также о поляризационных свойствах ионов позволяют прогнозировать изоморфное замещение ионов в кристаллических решетках минералов.
Инородный ион должен отвечать следующим условия при замещении: обладать соответственными размерами, проявлять одинаковые степени окисления и иметь сходные поляризационные свойства. Например, широко известны примеры изоморфного замещения калия рубидием, алюминия галлием. Рубидий и галлий, будучи сравнительно редкими элементами, практически полностью оказываются поглощены минералами более распространенных элементов - "хозяев". Их самостоятельные минералы не известны.
Более сложной и распространенной формой является гетеровалентный изоморфизм, при котором замещающие друг друга атомы могут иметь разные степени окисления при одинаковых размерах. Классическим примером является изоморфизм, наблюдаемый в алюмосиликатах:
СaO·Al2O3·2SiO2 (СaAl2Si2O8 ) Ca2+ Al3+
Na+ Si4+ NaAlSi3O8 (NaAlO2·3SiO2)
Замещение одного катиона натрия на кальций сопровождается компенсирующим замещением кремния алюминием (сумма зарядов остается без изменения). Этот случай изоморфизма настолько удачен ( компоненты относятся к широко распространенным элементам), что замещение может происходить в любых соотношениях.
А.Е. Ферсман в 1931 году указал на расположение катионов с близкими эффективными радиусами в диагональном направлении периодической системы. Так можно наметить несколько рядов элементов с близкими радиусами, внутри которых возможны случаи изоморфизма, например, литий - магний - скандий - цирконий; натрий - кальций - иттрий - гафний. Следует обратить внимание на разную способность ионов замещать друг друга. Так, например, кальций достаточно часто замещается редкоземельными элементами, появление примесей кальция в редкоземельных минералах - явление необычное.
Важным фактором миграции вещества на поверхности Земли являются равновесные процессы гидратации, растворения и переосаждения, главными участниками которых оказываются вода и растворенные в ней газы атмосферы. Равновесия в водном растворе можно описать константой равновесия, а используя принцип смещения равновесия Ле Шателье, прогнозировать какие реакции будут протекать при изменении условий. Например, интенсивность поглощения углекислого газа океаном в основном зависит от температуры. Особенно активно океан поглощает углекислоту в северных и южных широтах; в районах, прилегающих к экватору этот процесс идет слабее. Другой пример, весьма распространенная реакция так называемого волластонитового равновесия:
CaCO3 + SiO2 CaSiO3 + CO2 ,
которая при значительном увеличении давления не может протекать, так как давление препятствует образованию углекислого газа.
Величина водородного показателя (рН) является мощным фактором, регулирующим миграцию и осаждение многих соединений в земной коре. Значение рН в значительной мере регулируется содержанием в водах углекислого газа и сероводорода - продуктов жизнедеятельности организмов. Вода, соприкасающаяся с атмосферой, имеет рН = 6,4 за счет ионов водорода, образующихся при растворении углекислого газа. Для речных вод характерна величина рН = 5 - 6,5, почвенные воды и воды торфяных болот отличаются более кислой реакцией за счет растворенных органических кислот (рН = 3,5 - 4), в то время как в водах океана рН = 8,1 - 8,3. В некоторых бессточных озерах пустынь значения водородного показателя достигают 9 - 10.
Морская вода выполняет роль природного буферного раствора. Наличие растворенного гидрокарбоната кальция поддерживает рН морской воды постоянным, несмотря на колебания концентраций растворенных в ней солей. Повышение кислотности морской воды всегда приводит к растворению карбоната кальция и, наоборот, увеличение щелочности - к его осаждению.
H+ + СаCO3 = Са2+ + HCO3-
Са2+ + HCO3- + OH- = СаCO3 + H2O
При строго определенных значениях рН осаждаются гидроксиды различных металлов. Например: гидроксид марганца (IV) осаждается лишь при рН = 8 - 8,5; в то время как гидроксиды цинка, меди, никеля и свинца(II) выпадают в интервале рН = 5,2 - 6,5. Этим обстоятельством объясняется накопление марганца в виде конкреций на дне океана вдали от области его выноса и сравнительно большие скопления халькофильных элементов в осадках с большим содержанием органического материала в прибрежных областях океана.
При процессах осадкообразования происходит более полное разделение компонентов, чем в каком-либо другом геологическом процессе. Так железо и марганец в породах магматического происхождения находятся вместе, а в осадочном процессе резко разделяются. Размеры ионов Fe2+ и Mn2+ и растворимость их солей близкие по значениям, однако гидроксиды железа выпадают в осадок при более низких значениях рН, чем соединения марганца.
Немаловажным фактором миграции являются окислительно-восстановительные реакции и их потенциалы. Многие элементы земной коры могут находиться в различных степенях окисления. Так, например для меди известны два состояния в степенях окисления +2 и +1; для марганца в природных условиях устойчивы степени окисления +2, +3, +4. Переход из одной степени окисления в другую сопровождается изменением растворимости, изоморфных свойств соединений, что может привести к разделению близких до этого по свойствам элементов, например, к выпадению одного из них в осадок или наоборот растворению. Значения окислительно-восстановительных потенциалов, приведенные ниже, наглядно показывают, что до тех пор, пока не будет окислена вся масса меди, находящаяся в степени окисления +1, не начнется окисление ванадия(III) и лишь потом урана(IV) и железа(II).
Окислительно-восстановительные потенциалы некоторых реакций
Реакции |
Е, В |
|
Fe2+ = Fe3+ + e- |
0,77 |
|
U4+ = U6+ + 2e- |
0,41 |
|
V3+ = V4+ + e- |
0,40 |
|
Cu+ = Cu2+ + e- |
0,345 |
А.Е. Ферсман отметил явление автолизии, или самоочистки, кристаллов минерала при его неоднородной перекристаллизации, в ходе которой минерал избавляется от изоморфной примеси посторонних элементов. Разделение изоморфных смесей имеет значение там, где на поверхность земной коры выводятся минералы, образовавшиеся на больших глубинах. При избытке кислорода и влаги составляющие их элементы быстро повышают степень окисления. Так U4+ превращается в катион-уранила UO22+ и в этой форме, отличающейся значительной растворимостью, выносится поверхностными водами. В это же время Th4+ остается в составе минералов (монацит, циркон, торианит) поскольку он не может увеличить свою степень окисления. Точно такое же разделение элементов под влиянием окислительных процессов происходит с кобальтом, никелем, железом и ванадием - элементами, "неразлучными" в недрах земной коры.
Важным фактором миграции веществ является образование ими коллоидных растворов. В природе коллоиды получаются при измельчении горных пород, в результате реакций гидролиза, окислительно-восстановительных процессов и обменных реакций. В речных водах концентрация коллоидов весьма велика. Огромные массы вещества переносятся именно в таком виде с континентов в морские бассейны. На границе контакта подобных вод с морскими, обогащенными электролитами, происходит массовая коагуляция и образование осадка. Таким образом, коллоидная форма переноса соединений выполняет огромную роль в миграции элементов.
...Подобные документы
Характеристика и сущность основных положений теории электролитической диссоциации. Ориентация, гидратация, диссоциация - веществ с ионной связью. История открытия теории электролитической диссоциации. Разложение хлорида меди электрическим током.
презентация [218,7 K], добавлен 26.12.2011Процесс зарождения и формирования химии как науки. Химические элементы древности. Главные тайны "трансмутации". От алхимии к научной химии. Теория горения Лавуазье. Развитие корпускулярной теории. Революция в химии. Победа атомно-молекулярного учения.
реферат [36,8 K], добавлен 20.05.2014Характеристика строения атома. Определение числа протонов, электронов, нейтронов. Рассмотрение химической связи и полярности молекулы в целом. Уравнения диссоциации и константы диссоциации для слабых электролитов. Окислительно-восстановительные реакции.
контрольная работа [182,3 K], добавлен 09.11.2015Теории химического строения (структурная и электронная). Квантово-механическое описание химической связи. Комплексы переходных и непереходных элементов. Основные постулаты классической теории химического строения. Структура конденсированных фаз.
презентация [97,1 K], добавлен 15.10.2013Метод валентных химических связей, ионная и ковалентная связи в комплексных соединениях. Теория кристаллического поля. Развитие на квантовомеханической основе электростатической теории Косселя и Магнуса. Анализ изомерии в комплексных соединениях.
контрольная работа [274,4 K], добавлен 13.02.2015Развитие модельных представлений в квантовой химии. Метод валентных связей. Основные положения данного метода. Гибридизация атомных орбиталей и условия их образования. Правила выбора канонических форм. Гибридизация атома углерода и гибридных орбиталей.
презентация [284,1 K], добавлен 15.10.2013Основы квантовой механики атома. Соотношение де Бройля. Уравнение Шредингера. Ионная (гетерополярная) связь. Расчет энергии ионной связи. Теория ковалентной (гомеополярной) связи. Метод валентных связей. Метод молекулярных орбиталей (МО).
курсовая работа [152,7 K], добавлен 17.02.2004Изучение взаимосвязи химических дисциплин с другими фундаментальными и клиническими предметами. Анализ функций, которые выполняет общая химия в медицинском вузе. Обзор учения о растворах, комплексных соединений, биогенных элементов, основ электрохимии.
презентация [3,5 M], добавлен 19.12.2011Основные понятия химической термодинамики. Стандартная энтальпия сгорания вещества. Следствия из закона Гесса. Роль химии в развитии медицинской науки и практического здравоохранения. Элементы химической термодинамики и биоэнергетики. Термохимия.
презентация [96,9 K], добавлен 07.01.2014Предпосылки к созданию теории электролитической диссоциации, этапы данного процесса. Понятие и основные факторы, влияющие на степень электролитической диссоциации, способы определения. Закон разбавления Оствальда. Определение ионного произведения воды.
презентация [280,8 K], добавлен 22.04.2013Роль и значение комплексных соединений в современной науке, их классификация. Основные положения координационной теории А. Вернера. Лиганды и их виды. Теории химической связи в координационных соединениях, магнитные и оптические свойства комплексов.
курсовая работа [9,0 M], добавлен 22.03.2011Особенности валентности - образования у атомов определенного числа химических связей. Основные типы химической связи: ионная, ковалентная, водородная, металлическая. Виды кристаллов по типу химической связи: ионные, атомные, металлические, молекулярные.
курсовая работа [241,7 K], добавлен 19.10.2013Качественное развитие квантово-химических моделей. Кинетическая концепция Рюденберга. Анализ теории гипервалентных связей, основные условия их образования. Электронная структура непереходных соединений. Орбитально-избыточные связи, правило четности.
презентация [209,2 K], добавлен 22.10.2013Возникновение неклассических представлений в физике. Эксперимент Дэвиссона и Джермера. Особенности квантово-механического описания микромира. Главные задачи квантовой химии. Электронное строение атомов и молекул. Атомные орбитали Зенера-Слейтера.
лекция [198,0 K], добавлен 15.10.2013Простейшая одноэлектронная двуцентровая связь, иона водорода. Максимальное число возможных в природе различных химических связей между парами атомов. Круг специфических физических явлений, приводящих к образованию химических связей, теории валентности.
реферат [169,5 K], добавлен 29.01.2009Общая характеристика углерода как химического элемента, его основные свойства, особенности строения. Типы химических связей: ковалентная, ионная и водородная. Способы разрыва химической связи. Электронные эффекты. Кислоты и основания, их сравнение.
контрольная работа [180,4 K], добавлен 05.08.2013Представление о строении метана (молекулярная, электронная и структурная формулы). Физические свойства, нахождение в природе, тип химической связи и пространственное строение молекулы и атома углерода в трёх валентных состояниях, понятие гибридизации.
дипломная работа [21,6 K], добавлен 31.03.2009Ранние теории ковалентной связи. Правило октета и структуры Льюиса. Характеристики химической связи, корреляция между ними. Концепции электроотрицательности. Модель отталкивания электронных пар валентных оболочек. Квантовые состояния молекулы как целого.
лекция [1,9 M], добавлен 18.10.2013Развитие модельных представлений в квантовой химии. Метод валентных связей. Особенности описания гибридизации атомных орбиталей. Концепция резонанса. Правила выбора канонических форм. Условия образования молекулярных орбиталей и заполнение их электронами.
презентация [289,6 K], добавлен 22.10.2013Задачи и методы качественного и количественного анализа. Аналитическая система катионов. Закон действующих масс. Теория электролитической диссоциации. Окислительно-восстановительные реакции. Характеристика комплексных соединений. Буферные растворы.
курс лекций [618,3 K], добавлен 15.12.2011