Подземная нефтегазовая гидромеханика

Особенности теории фильтрации нефти и газа в природных пластах. Модели фильтрационного течения, флюидов и коллекторов. Анализ одномерных потоков при нелинейных законах фильтрации. Схема притока к несовершенной скважине. Фильтрация водонефтяной смеси.

Рубрика Геология, гидрология и геодезия
Вид дипломная работа
Язык русский
Дата добавления 24.03.2016
Размер файла 3,6 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Массовый дебит эксплуатационной и нагнетательной скважин при их совместной деятельности определяется на основе соотношения (1.5), расписанного для каждой скважины при учете отношений радиусов (рис.1.3): на контуре эксплуатационной скважины - ; на контуре нагнетательной скважины - . Решая, полученную систему уравнений, имеем

. (1.7)

Массовая скорость фильтрации в любой точке пласта М (рис.1.2) находится по правилу суперпозиции сложения векторов скорости от действия источника и стока

Модуль массовой скорости i-ой скважины равен

(1.8)

Для поддержания пластового давления часто используется нагнетание воды в пласт. Определим для однородной несжимаемой жидкости время движения частицы по кратчайшему пути между нагнетательной и эксплуатационной скважинами, то есть по оси 0х. При жестководонапорном режиме решается при этом вопрос о времени, прошедшем от начала закачки воды в пласт до начала её прорыва в эксплуатационную скважину.

Чтобы решить указанную задачу, выразим скорость в (1.8) через производную расстояния по времени и, поместив начало координат в сток О1, проинтегрируем полученное уравнение по х от х0 до х. Тогда время движения частицы от некоторой точки х0 до точки х определится зависимостью

. (1.9)

Время обводнения Т, т.е. прохождения частицы расстояния О1О2= 2а определится из (1.9), если принять х=0; х0=2а

, (1.10)

где m - пористость; Q - объёмный дебит.

Зная Т, можно найти площадь обводнения ?, приравнивая объёмы TQ и mhw.

Откуда. (1.11)

Анализ формул (1.9) и (1.10) показывает, что расстояние, пройденное частицей за время Т от нагнетательной скважины до эксплуатационной, вдвое больше расстояния пройденного другой частицей за это же время в положительном направлении оси х.

Приток к группе скважин с удаленным контуром питания

В большинстве практических случаев контур питания находится довольно далеко. Поэтому решения данной задачи позволяют провести предварительную оценку однородных участков месторождений.

Пусть в пласте расположена группа из n скважин (рис. 1.5) с различными дебитами Gi, забойными потенциалами pi и радиусами скважин ri. Расположение скважин задано и на достаточно большом удалении находится контур питания, форма которого неизвестна, но известен порядок расстояния rк от контура питания до группы скважин. При этом rк намного больше расстояния между скважинами. Считаем, что потенциал контура ? к и забойные потенциалы скважин j i. заданы.

Рис. 1.5. Схема группы скважин в пласте с удаленным контуром питания

Для определения дебитов используем формулу (1.2) при помещении точки М на забое каждой скважины, что позволяет записать n - уравнений вида

, (1.12)

где rci - радиус скважины на которую помещена точка М; rji - расстояние между i - й и j - й скважинами; jci - забойный потенциал i - й скважины.

Неизвестных же - n+1, так как константа С тоже неизвестна. Для нахождения С воспользуемся условием j=jк на удалённом контуре питания:

. (1.13)

Приближение заключается в том, что для удаленных точек контура питания от скважин принимаем одно и то же расстояние rк , что справедливо для достаточного удаления контура, учитывая что оно находится под знаком логарифма. Уравнение (1.13) и будет (n+1) уравнением.

Таким образом, плоская задача интерференции при удалённом контуре питания сводится к решению алгебраической системы уравнений первой степени (1.12), (1.13).

При помощи данной системы можно находить или депрессию при заданном дебите, или получить значения дебитов при заданных депрессиях. При найденных дебитах можно определить пластовое давление в любой точке по (1.2), причем результат будет тем точнее, чем дальше эта точка отстоит от контура питания.

Приток к скважине в пласте с прямолинейным контуром питания

Пусть в полосообразном пласте пробурена одна скважина с центром в точке О1 на расстоянии а от прямолинейного контура (ось у ) бесконечного протяжения, на котором поддерживается постоянный потенциал jк. На скважине радиуса rc поддерживается постоянный потенциал jс.

Рис. 1.6. Схема притока к скважине с прямолинейным контуром питания

Найдём дебит скважины G и распределение функции j. Так как контур питания пласта является эквипотенциальной линией, то все линии тока, сходящиеся в центре скважины О1, должны быть перпендикулярны к прямой (рис.1.6). Для определения поля течения добьёмся выполнения граничных условий на контуре введением фиктивного источника О2 с дебитом, равным дебиту стока О1, путём зеркального отображения данного стока относительно прямой .Таким образом используем ранее упомянутый метод отображения и задачу о потоке в пласте с прямолинейным контуром питания и с одиночной эксплуатационной скважиной сведём к ранее рассмотренной в разделе 1.1.1. задаче о фильтрационном потоке от источника к стоку. Отличие данных задач только в постановке граничных условий: в задаче раздела 1.1.1. источник питания - нагнетательная скважина, а в данном случае - прямолинейный контур, а источник О2 фиктивный.

Используем для определения дебита выражение (1.10), но со следующей заменой граничных условий:

j = jк при r1 = r2 ,т.е. при r1/r2 = 1;

j = jс при r1 = rс , r2 », т.е. при r1/r2 » rс /2а.

Подставляя последовательно соответствующие граничные значения ?, r1 и r2 в равенство (1.10) получаем два уравнения, определяющих потенциалы на контуре и забое. Из этих уравнений легко находится массовый дебит одиночной скважины в пласте с прямолинейным контуром

. (1.14)

Если бы в пласте была нагнетательная скважина, то в формуле (1.14) достаточно только изменить знак правой части.

Приток к скважине, расположенной вблизи непроницаемой прямолинейной границы

Данная задача может возникнуть при расположении добывающей скважины вблизи сброса или около границы выклинивания продуктивного пласта. В этом случае реальную скважину-сток зеркально отображают относительно непроницаемой границы, и дебиту скважины - отображения приписывают тот же знак, что и дебиту реальной скважины. При притоке к двум равнодебитным скважинам скорость фильтрации на непроницаемой границе будет направлена вдоль границы, т.е. граница является линией тока и фильтрация через неё отсутствует. Дебит скважины определяется из уравнений (1.12) и (1.13) для n=2 в пласте с удалённым контуром питания:

. (1.15)

Приток к скважине в пласте с произвольным контуром питания

В естественных условиях контур питания имеет произвольную форму и её не всегда удаётся определить. Кроме того, часто не удаётся определить достаточно точно и расстояние а от скважины О1 до контура. Можно ли в этом случае пользоваться формулой предыдущего раздела? Любой произвольный контур В находится между прямолинейным Впр. и круговым Вкр. (рис.1.7).

Рис.1.7. Схема видов контуров питания

Расчеты дебитов проведенные для этих двух крайних разновидностях контуров показывают:

При вычислении дебита скважины форма внешнего контура пласта не имеет сколько-нибудь существенного значения.

Чем дальше от внешнего контура пласта находится скважина, тем меньший дебит она имеет. Однако так как величина расстояния входит под знаком логарифма, то даже значительное изменение этого расстояния мало влияет на величину дебита

В случае расположения скважины эксцентрично относительно контура поток можно считать плоскорадиальным и дебит рассчитывать по формуле Дюпюи, если rк.>103 rc и эксцентриситет а1< rк /2.

Таким образом, для практических расчетов точное знание формы и расстояния до контура питания необязательно, но порядок расстояния до контура питания должен быть известен.

1.1.2 Приток к батареям скважин

Приток к бесконечным цепочкам и кольцевым батареям скважин

При рациональной системе разработки нефтяных месторождений скважины располагают обычно в виде рядов, расставленных вдоль контура нефтегазоносности и контура питания. Эти линии называются батареями или рядами скважин. Без большой погрешности можно считать дебит скважин в каждом ряду одинаковым, если в каждом ряду скважины находятся в одинаковых условиях. Дебиты же скважин в разных рядах будут отличаться друг от друга. Наибольший дебит имеет первый ряд, ближайший к контуру питания, а по мере удаления дебит уменьшается. Поэтому число одновременно работающих рядов редко превышает два-три, и последующие ряды включаются по мере приближения контура нефтегазоносности. Когда вода подошла к первому ряду, то он выключается и включается один из следующих рядов и так далее.

В этом случае число неизвестных уменьшается от числа скважин n до числа рядов N (обычно число рядов не превышает 2-4), что значительно упрощает решение задачи пункта 1.1.2.

Приток к скважинам кольцевой батареи

Рис. 1.8. Схема кольцевой батареи

Пусть центры скважин располагаются в вершинах правильного n-угольника, т.к. что скважины образуют кольцевую батарею радиуса а (рис. 1.8). Контур питания удалён от скважин на расстояние, значительно превышающее радиус батареи, и тогда можно считать, что все скважины равноудалены от контура питания на расстояние rк. Будем считать, что на контуре питания поддерживается постоянное значение потенциала jк и на контуре скважин потенциал постоянен и равен jс. В данной постановке, следовательно, надо решить задачу о плоском течении к n точечным стокам, размещённым равномерно на окружности радиуса а.

Для получения формулы дебита скважин воспользуемся формулой (1.2):

, (1.15)

где G - массовый дебит любой скважины батареи, rj - расстояния от некоторой точки пласта до всех n скважин; h - толщина пласта.

Граничные условия:

на контуре питания j=jк=const при rj=rк;

на контуре скважины j=jс=const

при r1=rс; rj(j1)=2a sin[(n-1)p/n].

Используя данные граничные условия, преобразуем формулу (1.15):

, (1.16)

. (1.17)

В последнем выражении

. (1.18)

Тогда (1.17) перепишется в виде

(1.19)

и из (1.16), (1.19) получим выражение для определения дебита скважины

. (1.20)

Формула (1.20) справедлива при любом целом n. В частности, при n=1 имеем выражение типа формулы Дюпюи для определения дебита при плоскорадиальном потоке:

. (1.21)

Формула (1.20) - приближенная. Её можно применять в случае, если размеры пласта во много раз больше площади внутри окружности батареи скважин, например, при водонапорном режиме, когда жидкость можно считать несжимаемой. Если же в пласте установился режим растворенного газа, то трудно ожидать, что площадь, занятая газированной жидкостью, простирается до границ пласта.

Если расстояние до контура незначительно превышает радиус батареи, то, строго говоря, следует воспользоваться более точной формулой:

. (1.22)

Эта формула при n=1 переходит в формулу определения дебита эксцентрично заложенной одиночной скважины (а - эксцентриситет скважины). В большинстве практических случаев можно пользоваться формулой (1.20), т.к. уже при rк=10а дебиты, подсчитанные по формулам (1.20) и (1.22), различаются не более чем на одну тысячную процента.

Определим дебит батареи, умножив формулу (1.20) на число скважин в батарее n:

. (1.23)

Рассмотрим поле течения в области действия круговой батареи, т.е. построим семейства линий тока и изобар. Уравнение изобар получаем из (1.3) путём представления радиусов rj в полярной системе координат (рис. 1.8):

. (1.24)

Данное уравнение позволяет построить поле изобар, а линии тока пересекают изобары под прямым углом.

Плоскость течения (рис. 1.9) кольцевой батареи с n равнодебитными скважинами, размещенными в вершинах правильного многоугольника, делится на n равных частей (секторов) прямыми линиями тока Н, сходящимися в центре батареи и делящими расстояние между двумя соседними скважинами пополам.

Рис. 1.9. Изобары и изолинии тока для кольцевой батареи из трёх скважин

Эти линии тока называются нейтральными. Другое семейство прямых линий тока Г проходит через центры скважин и делит сектор, ограниченный двумя нейтральными линиями, пополам. Это - главные линии.

Семейство изобар подразделяется на два подсемейства, которые разграничиваются изобарой пересекающей себя в центре батареи столько раз, сколько скважин составляет данную батарею. Первое подсемейство изобар определяет приток к отдельным скважинам и представляет собой замкнутые, каплеобразные кривые, описанные вокруг каждой скважины. Второе семейство - определяет приток к батарее в целом и представляет собой замкнутые кривые, описанные вокруг батареи.

Скорость фильтрации по главным линиям максимальна, а по нейтральным линиям - минимальна. В центре кольцевой батареи скорость фильтрации равна нулю, т.е. частица жидкости, находящаяся в точке, в которой изобара пересекает сама себя, неподвижна. Такие точки фильтрационного поля называются точками равновесия и при разработке в окрестностях таких точек образуются “застойные области”. В условиях водонапорного режима в этих областях могут возникать “целики нефти”. Зная положения точек равновесия в пласте, можно находить рациональные приёмы для своевременной ликвидации целиков нефти. Одним из таких приёмов является изменение режима работы скважин, заставляющее нефть целика прийти в движение в нужном направлении.

Для кольцевой батареи, на основе анализа формул (1.20)-(1.23), можно сделать ряд оценок эффекта взаимодействия:

дебит изменяется непропорционально числу скважин и радиусу батареи (расстоянию между скважинами);

с увеличением числа скважин дебит каждой скважины уменьшается при постоянном забойном давлении, т.е. растет эффект взаимодействия;

взаимодействие скважин может практически не проявляться только при очень больших расстояниях между скважинами (в случае несжимаемой жидкости, строго говоря, влияние скважин распространяется на весь пласт);

с увеличением числа скважин темп роста суммарного дебита батареи замедляется (рис. 1.1), а именно, сверх определённого предела увеличение числа скважин оказывается неэффективным в виду прекращения прироста дебита.

Приток к прямолинейной батарее скважин

Рассмотрим, как и в предыдущем случае, приток к батарее при удалённом контуре питания в режиме поддержания постоянного забойного давления. В отличие от круговой батареи необходимо различать два случая:

число скважин батареи нечетное;

число скважин четное.

В обоих случаях дебиты скважин, равноудаленные от середины или от концов батареи, будут одинаковы, а при разной удаленности будут отличаться. Последнее вызывается неодинаковой интенсивностью влияния со стороны скважин батареи на те или иные скважины. При этом при нечетном числе скважин дебит средней скважины отличается от дебитов других скважин.

Дебиты равномерно расположенных скважин можно определить общим методом с использованием формулы (1.2). Можно вывести аналогичные уравнения для любой скважины прямолинейной батареи конечной длины в пласте с прямолинейным контуром питания, но с использованием дополнительно метода отображения. В этом случае запись уравнений оказывается громоздкой из-за необходимости учета не только взаимных расстояний между скважинами, но также расстояний между скважинами и воображаемыми источниками и расстояний между этими последними.

Для практических расчетов можно использовать приближенную формулу П.П. Голосова для общего дебита скважин прямолинейной батареи:

для нечетного числа скважин 2n+1, где n - любое целое число

; (1.25)

для четного числа скважин 2n

. (1.26)

Здесь h - толщина пласта; s - расстояние между скважинами; L - расстояние до контура.

Ошибка в определении дебитов по данным формулам не превышает 3-4% при L=10км, rс=10см, при расстояниях между скважинами 100мЈ--s Ј500м.

Приведенные формулы можно использовать при любом контуре питания, т.к. проведенные ранее исследования взаимодействия двух скважин показали, что форма контура питания пласта мало влияет на взаимодействие скважин. При этом, по мере приближения скважин к контуру питания эффект взаимодействия уменьшается, но в реальных условиях значительного удаления скважин от контура питания погрешность определения расстояния до контура даже в 100% не отражается значительно на эффекте взаимодействия. Для однородных пластов и жидкостей относительные изменения дебитов скважин, вызванные эффектом взаимодействия, не зависят от физико-геологических характеристик пласта и от физических параметров жидкости.

Рис. 1.10. Схема прямолинейной батареи скважин

Рассмотрим фильтрационное поле (рис.1.10), поддерживаемое бесконечной цепочкой равностоящих скважин (требование бесконечности приводит к ликвидации граничных эффектов на концах батареи и равнодебитности скважин, так как все скважины оказываются в равных условиях притока к ним флюидов).

Для получения формул дебита скважины бесконечной прямолинейной батареи воспользуемся формулой (1.20) дебита скважины кольцевой батареи. Положим, что

rк = L + a; a = ns /(2p ), (1.27)

где L = const - разность между радиусом контура питания и радиусом кольцевой батареи а; s = const - длина дуги окружности радиусом а между двумя соседними скважинами кольцевой батареи.

Подставив значения rк , a в формулу (1.20), получим

, (1.28)

где z=s / (2pl).

Переходя в данной формуле к пределу при n®Ґ и учитывая, что=e, получаем формулу массового дебита скважины прямолинейной батареи

. (1.29)

Здесь L - расстояние от контура питания до батареи;s - расстояние между скважинами батареи; h - толщина пласта.

Суммарный дебит из n - скважин определится следующим выражением

. (1.30)

Для несжимаемой жидкости соотношение (1.35) можно переписать через давление и объёмный дебит

. (1.31)

Рис.1.11. Фильтрационное поле для бесконечной батареи.

Ортогональная сетка, изображающая фильтрационное поле бесконечной прямолинейной батареи, изображена на рис. 1.11 .

Здесь, как и в кольцевой батарее, имеются главные и нейтральные линии тока перпендикулярные цепочке. Нейтральными линиями тока вся плоскость течения делится на бесконечное число полос, каждая из которых является полосой влияния одной из скважин, находящейся в середине расстояния между двумя соседними нейтральными линиями. Главные линии тока проходят через центры скважин параллельно нейтральным линиям.

Изобара, бесчисленное множество раз пересекающая сама себя, отделяет изобары внешнего течения ко всей батареи, охватывающих всю цепочку скважин, от изобар притока к скважине, охватывающих только данную скважину. Точки пересечения граничной изобары являются точками равновесия и они делят интервал между двумя соседними скважинами пополам.

1.1.3 Метод эквивалентных фильтрационных сопротивлений (метод Борисова)

Данный метод называется методом Борисова и позволяет сложный фильтрационный поток в пласте при совместной работе нескольких батарей эксплуатационных и нагнетательных скважин разложить на простейшие потоки - к одиночно работающей скважине и к одиночно работающей батареи. Реализация данного метода достигается введением понятий внутреннего и внешнего фильтрационных сопротивлений, которые придают простейший физический смысл членам уравнений, используемых для подсчетов дебитов и значений потенциальных функций. Для выяснения этих понятий сравним формулы (1.30) или (1.31) с законом Ома I=U / R, где I - ток, U - разность потенциалов и R - сопротивление. Из сравнения видно, что фильтрационное сопротивление определяется величиной знаменателя правой части (1.30), который состоит из двух слагаемых. Если в (1.30) оставить только первое слагаемое, то оно будет выражать дебит в прямолинейно-параллельном потоке через площадь величиной nhs на длине L . Таким образом первое слагаемое выражает фильтрационное сопротивление потоку от контура питания к участку прямолинейной бесконечной цепочки, занятому n скважинами, в предположении замены батареи галереей. Борисов назвал эту часть фильтрационного сопротивления - внешним фильтрационным сопротивлением:

. (1.32)

Оставим теперь в (1.30) только второе слагаемое. В этом случае получим аналог формулы Дюпюи для суммарного дебита n скважин при плоскорадиальном течении и в предположении, что каждая скважина окружена контуром питания длиной s. Таким образом второе слагаемое выражает местное фильтрационное сопротивление, возникающее при подходе жидкости к скважинам. Появление этого сопротивления объясняется искривлением линий тока у скважин и по Борисову оно получило название внутреннего

. (1.33)

На внешнее и внутреннее фильтрационные сопротивления разделяется также полное фильтрационное сопротивление кольцевой батареи:

. (1.34)

Здесь r выражает фильтрационное сопротивление потоку от контура питания к кольцевой батареи радиуса а в предположении, что поток плоскорадиален и батарея заменена галереей. Внутреннее сопротивление r/ - это сопротивление плоскорадиального потока от воображаемого контура окружности длиной 2pа/n к скважине. Величина 2pа/n - длина дуги сектора радиуса а, который содержит одну из скважин батареи.

Рис. 1.12. Схема одной батареи Рис. 1.13 Электрическая схема одной батареи

Электрическая схема в случае одной батареи (рис.1.12) имеет вид (рис.1.13). На рис.1.12 затемнены области внутреннего сопротивления.

а b

Рис.1.14. Схема n-батарей с двумя контурами питания: а) линейные батареи; b) кольцевые батареи

Рис. 1.15. Электрическая схема n-батарей с двумя контурами питания

Рис.1.16. Электрическая схема n-батарей с двумя контурами питания

(проницаемым и непроницаемым)

Рассмотрим случай притока к n эксплуатационным и нагнетательным батареям скважин и составим схему сопротивлений. Предположим, что скважины i - й батареи имеют забойные потенциалы jсi (i = 1,...,n), пласт имеет контурные потенциалы jк1 и jк2 (рис. 1.14). Пусть jк1 > jк2. Очевидно, поток от контура питания к первому ряду скважин будет частично перехватываться первой батареей и частично двигаться ко второй. Поток ко второй батарее будет частично перехватываться второй батареей, частично двигаться к третьей и т.д. Этому движению отвечает разветвленная схема фильтрационных сопротивлений (рис. 1.15).

Расчет ведется от контура с большим потенциалом к контуру с меньшим потенциалом, а сопротивления рассчитываются по зависимостям:

прямолинейная батарея

(1.35)

круговая батарея

(1.36)

где Li - расстояние между батареями (для i = 1 - L1 = Lк1 ); ri - радиусы батарей (для i = 1 - r0 = rк ); ki - число скважин в батарее.

Дальнейший расчет ведется, как для электрических разветвленных цепей, согласно законам Ома и Кирхгоффа:

- алгебраическая сумма сходящихся в узле дебитов равна нулю, если считать подходящие к узлу дебиты положительными, а отходящие - отрицательными.

- алгебраическая сумма произведения дебитов на сопротивления (включая и внутренние) равна алгебраической сумме потенциалов, действующих в замкнутом контуре. При этом и дебиты и потенциалы, совпадающие с произвольно выбранным направлением обхода контура, считаются положительными, а направленные навстречу обходу отрицательными.

Следует помнить, что для последовательных сопротивлений r = Sri , а для параллельных -

Если одна из границ непроницаема, то расход через неё равен нулю. В этом случае в соответствующем узле схемы фильтрационных сопротивлений задаётся не потенциал, а расход. На рис. 1.16 показана схема в случае непроницаемости второго контура. Вместо потенциала jк2, показанного на рис.1.15, здесь в узле задано условие SGi = 0.

a b

Рис. 1.17. Схема замены соседних батарей скважин одной батареей

Приведенные формулы тем точнее, чем больше расстояние между батареями по сравнению с половиной расстояния между скважинами. Если расстояние между скважинами много больше расстояния между батареями, то расчет надо вести по общим формулам интерференции скважин, или использовать другие виды схематизации течения, например, заменить две близко расположенные соседние батареи скважин с редкими расстояниями между скважинами (рис. 1.17,а) эквивалентной батареей - с суммарным числом скважин и расположенной посредине (рис.1.17,b).

1.1.4 Интерференция несовершенных скважин

В случае интерференции скважин несовершенных по степени вскрытия в условиях течения по закону Дарси вначале определяется дебит совершенных скважин с радиусами rс по формулам теории интерференции для притока к стокам и источникам на плоскости, а затем фильтрационное сопротивление каждой скважины увеличивается на величину коэффициентов несовершенства Сi (i = 1,...,4). Если определены коэффициенты фильтрационных сопротивлений Ан и Вн указанным выше аналитическим оценочным методом или прямым испытанием скважины путем пробных откачек при установившемся режиме, можно использовать метод эквивалентных фильтрационных сопротивлений для исследования интерференции несовершенных скважин, в том числе при двухчленном законе фильтрации. Для этого двухчленный закон надо представить в виде

, (1.50)

где можно рассматривать как нелинейное сопротивление, добавляемое к внутреннему сопротивлению r, определяемому конечным расстоянием между скважинами в батарее.

Например, в схеме фильтрационных сопротивлений для условий линейного закона фильтрации, внутренние сопротивления r следует заменить суммой , где для каждой скважины. Дальнейший расчет ведется, как и ранее, при помощи законов Ома и Кирхгофа, но система уравнений получается уже не линейной, а содержащей квадратные уравнения, что приводит к усложнению вычислений.

1.1.5 Взаимодействие скважин в неоднородно проницаемом и анизотропном пластах

Рис. 1.18. Кольцевая батарея скважин при двухзональной неоднородности пласта

При разработке часто возникают условия, при которых проницаемость в законтурной области меньше проницаемости внутри контура (рис.1.18).

Пусть в круге радиуса R0 проницаемость k1, а в кольце Rк проницаемость k2. При этом Rк >> a радиуса батареи.

Поток к n эксплуатационным скважинам идёт от окружности радиуса R0 и дебит G1 каждой скважины определяется по (1.20), где вместо jк следует поставить j0 - потенциал на границе двух сред, а вместо rк - R0. Во второй области поток плоскорадиален от контура Rк до укрупненной скважины радиуса R0 и дебит скважины

,

где G определяется по формуле (1.21). Имея в виду, что в пределах каждой зоны k = const, распишем потенциал в виде

j = kФ+С, где .

Подставляя данное выражение для ? в соотношение для дебитов и исключая Ф0, получаем

. (1.51)

Для однородной несжимаемой жидкости Ф = р/h, а вместо массового дебита G/ надо подставить объёмный дебит Q. Пользуясь (1.51), можно сравнить дебиты батареи при различных относительных размерах частей I и II пласта и при различных соотношениях между проницаемостями. Расчеты показывают, что при k1/k2 = b < 1 величина коэффициента суммарного взаимодействия (отношение суммарного дебита группы совместно действующих скважин к дебиту одиночной скважины) всегда выше, чем U батареи, действующей при тех же условиях в однородном пласте (b = 1). Если же b >1, то U будет меньше его значения в однородном пласте. При одних и тех же значениях b взаимодействие скважин будет тем больше, чем большую площадь при данных условиях занимает менее проницаемая часть пласта.

Рассмотрим случай, когда кольцевая батарея занимает область II, то есть область, примыкающую к контуру питания (а > R0). В этом случае

. (1.52)

Для анизотропных пластов, то есть при направленном изменении неоднородности, скважины взаимодействуют приблизительно так же, как и в анизотропном пласте. Эффект взаимодействия будет значительно усиленным или ослабленным лишь при резком различии проницаемостей в двух определённых направлениях: в направлении линии расстановки скважин и в направлении перпендикулярном к этой линии.

Ослабление взаимодействия наблюдается в случае более низкой проницаемости в направлении линии расстановки скважин по сравнению с проницаемостью в перпендикулярном направлении. Усиление эффекта взаимодействия происходит в обратном случае. Таким образом, для уменьшения эффекта взаимодействия при закладывании новых скважин следует выбирать направление, в котором пласт наименее проницаем.

Взаимодействие скважин. С целью выявления влияния радиуса скважин на дебит при взаимодействии скважин сравним дебиты скважин кольцевой батареи из n эксплуатационных скважин в двух случаях: 1)скважины имеют радиус rc и 2)скважины имеют радиус хrc.

Из (1.20) следует

. (1.53)

Кроме того, рассмотрим случай, если в центре батарей действует нагнетательная скважина с дебитом равным дебиту батареи:

. (1.54)

Из данных зависимостей следует, что с увеличением числа эксплуатационных скважин кольцевой батареи влияние их радиуса на дебит уменьшается, если отсутствует нагнетание жидкости в пласт. Если в центре батареи находится нагнетательная скважина, то влияние радиуса скважины на дебит будет больше, чем при отсутствии центрального нагнетания жидкости в пласт. При этом радиус скважины влияет на производительность больше, чем при одиночной эксплуатационной скважине. Число скважин при этом несущественно. Таким образом, взаимодействие эксплуатационных скважин с нагнетательными повышает влияние радиуса скважин на дебит.

1.1.6 Взаимодействие скважин при нестационарных процессах

Метод суперпозиции фильтрационных потоков используется и в задачах неустановившихся процессов при упругом режиме.

Группа скважин. Так, если в пласте действует группа скважин, в числе которых имеются как эксплуатационные, так и нагнетательные скважины, понижение давления в какой либо точке пласта Dр определяется сложением понижений давлений, создаваемых в этой точке отдельными источниками и стоками, изображающими скважины Dрj. Следовательно

, (1.29)

где n - число скважин; Qj - объемный дебит стока (+) или источника(-) за номером j; rj- расстояние данной точки пласта от скважины за номером j.

Так как аргумент интегрально-показательной функции мал (меньше 1), то зависимость (1.29) можно переписать в виде

. (1.30)

Данная зависимость используется для расчета параметров пласта путем обработки кривой восстановления давления в случае скважины, эксплуатирующейся в течение длительного времени и остановленной для исследования.

Периодически работающая скважина. В неограниченном пласте останавливается скважина, эксплуатирующаяся с постоянным дебитом Q в течении времени Т, сравнимого со временем проведения исследований. Понижение давления Dр/ в момент времени Т можно найти по формуле (1.23). С момента остановки давление в ней и окружающей области пласта повышается, т.е. с данного момента в одном и том же месте пласта как бы действуют совместно и непрерывно эксплуатационная (сток) и нагнетательная (источник) скважины. При этом источник имеет тот же дебит Q. Обозначим повышение давления за счет работы источника через Dр//. Таким образом, начиная с момента времени Т, на основании формулы (1.23) имеем:

, (1.31)

.

Результирующее понижение давления ?р в любой точке пласта находится по методу суперпозиции

. (1.32)

Обозначая через рс давление на забое скважины после её остановки, получаем

. (1.33)

Зависимость (1.33) используется при гидродинамических исследованиях скважин, работающих не продолжительное время, методом построения кривой восстановления давления.

1.2 Решение плоских задач фильтрации методами теории функций комплексного переменного

1.2.1 Общие положения теории функций комплексного переменного

Круг задач, рассмотренных в предыдущем разделе может быть значительно расширен, если к решениям применить аппарат теории функций комплексного переменного. При этом оказывается возможным исследовать отдельные вопросы плоского потока более полно. Рассмотрим связь между задачами плоского фильтрационного потока и теорией функций комплексного переменного.

Совместим с основной плоскостью течения плоскость комплексного переменного z = х + iy. Каждое комплексное число z изображается в этой плоскости точкой М (х, у) (рис. 1.22.). Функцией комплексного переменного z будет комплексное переменное F (z), если указан закон, позволяющий получить значение F (z) no заданному значению z.

Отделив в функции F (z) действительную часть от мнимой, можем записать

F (z) = F (х + iy) = j (х, у) + iy (х, у), (1.34)

где j (х, у) и y (х, у) - некоторые функции действительных переменных х и у; i -- мнимая единица.

Задать функцию комплексного переменного - значит задать соответствие между парами чисел (х, у) и (j, y). Функция F (z) является аналитической в точке zm, т. е. имеющей производную во всех точках некоторой окрестности zm.

В теории функций комплексного переменного имеются следующие положения:

1. Каждые две кривые, из которых одна принадлежит семейству кривых, определяемых уравнением j (х, у) = С, а другая - семейству кривых y(х, у) = С* (С и С* -- постоянные), пересекаются под прямым углом, т. е. два семейства кривых образуют ортогональную сетку в основной плоскости течения.

2. Функции j (х, у) и y(х, у) удовлетворяют уравнению Лапласа, т, е.

; (1.35)

; (1.36)

Положения 1 и 2 справедливы, если выполняются такие условия:

. (1.37)

Условия (1.37) называются уравнениями Коши -- Римана.

1.2.2 Общие положения теории функций комплексного переменного

Круг задач, рассмотренных в предыдущем разделе может быть значительно расширен, если к решениям применить аппарат теории функций комплексного переменного. При этом оказывается возможным исследовать отдельные вопросы плоского потока более полно. Рассмотрим связь между задачами плоского фильтрационного потока и теорией функций комплексного переменного.

Совместим с основной плоскостью течения плоскость комплексного переменного z = х + iy. Каждое комплексное число z изображается в этой плоскости точкой М (х, у). Функцией комплексного переменного z будет комплексное переменное F (z), если указан закон, позволяющий получить значение F (z) no заданному значению z.

Отделив в функции F (z) действительную часть от мнимой, можем записать

F (z) = F (х + iy) = j (х, у) + i? (х, у), (1.34)

где j (х, у) и y (х, у) - некоторые функции действительных переменных х и у; i -- мнимая единица.

Задать функцию комплексного переменного - значит задать соответствие между парами чисел (х, у) и (j, y). Функция F (z) является аналитической в точке zm, т. е. имеющей производную во всех точках некоторой окрестности zm.

В теории функций комплексного переменного имеются следующие положения:

1. Каждые две кривые, из которых одна принадлежит семейству кривых, определяемых уравнением j (х, у) = С, а другая - семейству кривых y(х, у) = С* (С и С* -- постоянные), пересекаются под прямым углом, т. е. два семейства кривых образуют ортогональную сетку в основной плоскости течения.

2. Функции j (х, у) и y(х, у) удовлетворяют уравнению Лапласа, т, е.

; (1.35)

; (1.36)

Положения 1 и 2 справедливы, если выполняются такие условия:

. (1.37)

Условия (1.37) называются уравнениями Коши -- Римана.

1.2.3 Характеристическая функция, потенциал и функция тока

Представим себе, что имеем плоский фильтрационный поток любой жидкости или газа, подчиняющийся закону Дарси. При рассмотрении одномерных течений было показано, что если фильтрация протекает по закону Дарси, существует потенциальная функция j, удовлетворяющая уравнению Лапласа. Но если существует потенциальная функция j, то наряду с ней существует функция y, также удовлетворяющая уравнению Лапласа. Зная функцию j, всегда можно определить функцию y путем интегрирования уравнения (1.37).

Потенциальная функция течения определяется зависимостью основных параметров жидкости (или газа) и пористой среды от давления. Допустим, что эта зависимость однозначная; тогда можно заключить, что в основной плоскости течения линии равного давления (изобары) совпадают с эквипотенциальными линиями j (х, у) = С. Но кривые--y(х, у) = С* взаимно ортогональны с эквипотенциальными линиями. Следовательно, направление векторов скорости фильтрации будет совпадать в любой данной точке М с направлением касательной к кривой семейства y (х, у) = С*, т. е. кривые этого семейства можно считать линиями тока. (При установившемся движении линии тока и траектории частиц жидкости совпадают). Функция ?(х,у) называется функцией тока.

Потенциальную функцию течения j и функцию тока y всегда можно принять за действительную и мнимую части некоторой функции F (z) комплексного переменного z (см. формулу (1.34))

Функция F (z) называется характеристической функцией течения (комплексным потенциалом).

Исследование любого плоского течения жидкости или газа в пористой среде должно начинаться с определения характеристической функции, соответствующей данной задаче. Найдя ее, мы можем считать задачу решенной. В самом деле, отделив в характеристической функции действительную часть от мнимой, т. е. представив ее в виде, показанном формулой (1.34), можно определить потенциальную функцию j (х, у) и функцию тока y (х, у). В результате можно представить полную картину потока: принимая различные значения функции j, получим уравнения семейства эквипотенциальных линий j (х, у) = С, а придавая различные значения y, найдем уравнения: семейства линий тока y(х, у) = С*. По эквипотенциальным линиям определяется распределение давлений в пласте, по линиям тока - направление движения и характер поля скоростей фильтрации.

Проекции вектора массовой скорости фильтрации на оси координат можно записать в виде:

(1.38)

Рис. 1.20. Распределение потока между двумя параллельными плоскостями 1 и 2

Примечание. Функции тока может быть дан следующий смысл. Фиксируем некоторую линию тока y(х, у) = 0 и вообразим канал, ограниченный цилиндрическими поверхностями с образующими, перпендикулярными плоскости течения, проведенными через линию тока y = 0 и другую линию тока y(х, у) = С* и двумя плоскостями - плоскостью движения и ей параллельной, отстоящей от первой плоскости на расстояние, равное единице (рис. 1.20).

Рассматривая два произвольных поперечных сечения канала щ1 и щ2 убеждаемся, что количество массы жидкости, протекающей через эти сечения в единицу времени (расход) будет одно и то же; внутри такого канала количество массы жидкости при установившемся движении измениться не может; через боковые стенки канала, образованные линиями тока y = 0 и y(х, у) = С*1, и через плоскости движения жидкость не протекает, следовательно, втекает жидкости в единицу времени через щ1 столько, сколько вытекает через щ2.

Функцией тока можно назвать функцию, принимающую на линии тока y(х, у) = С* значение y(х, у) = С*, равное массе жидкости (газа), протекающей в единицу времени через поперечное сечение канала, построенного на линиях y = 0 и ?(х, у) = С*1 . Функция тока определена с точностью до произвольной постоянной, зависящей от выбора начальной линии тока y = 0.

Массовую скорость фильтрации можно очень просто определить в любой точке пласта, найдя производную от характеристической функции по комплексному аргументу z. Чтобы это показать, составим полный дифференциал от характеристической функции F (z):

(1.39)

Вынося во второй скобке множитель i за знак скобки и воспользовавшись затем уравнениями Коши - Римана (1.37) получим:

т.е. . (1.40)

Учитывая (1.38), перепишем (1.40) в виде:

. (1.41)

Из (1.40) и (1.41) следует, что производная dF/dz есть комплексное число, модуль которого равен модулю массовой скорости фильтрации:

. (1.42)

Таким образом, модуль производной от характеристической функции течения равен модулю массовой скорости фильтрации.

Характеристическая функция течения, действительно, позволяет полностью характеризовать плоский фильтрационный поток.

Для однородной несжимаемой жидкости, движущейся в однородном изотропном пласте, будем иметь линейную зависимость между потенциальной функцией j и давлением р:

, (1.42)

где С -- постоянная интегрирования.

. (1.43)

Для однородной несжимаемой жидкости давление р удовлетворяет уравнению Лапласа.

Вместе с тем в случае однородной несжимаемой жидкости можно опустить множитель r = const в выражение для y и Fz. Тогда функция тока будет иметь значение объемного (а не массового) расхода жидкости через поперечное сечение канала, построенного на линиях тока y = 0 и y =С* Модуль же производной от характеристической функции течения будет равен скорости (а не массовой скорости) фильтрации жидкости u.

Исследование плоского потока методом комплексного переменного начнём с того, какие типы плоского потока соответствуют простейшим аналитическим функциям.

Исследуем течения, заданные характеристическими функциями вида

F(z) = Az и F(z) = Alnz.

I. Пусть характеристическая функция имеет вид F(z) = Az

где z = x +iy, a A - любое комплексное или действительное число. Пусть, например, А = А1 + iA2.

Отделим в F (z) действительную часть от мнимой:

.

Следовательно, потенциальная функция ? и функция тока ? выразятся следующим образом:

Рис. 1.21. Сетка, изображающая прямолинейно-параллельный поток в направлении, показанном стрелками.

(1.44)

Приравнивая полученное выражение потенциальной функции j постоянной С, найдем уравнение семейства эквипотенциальных линий:

А1х - А2y = С. (1.45)

Из (1.45) следует, что эквипотенциальные линии - прямые с угловым коэффициентом A12.

Уравнение семейства линий тока найдем, приравняв выражение для y (1.44) постоянной С*:

А1у + А2х = С**. (1.45)

Отсюда следует, что линии тока -- прямые с угловым коэффициентом (-A2А1).

...

Подобные документы

  • Исследование притока жидкости и газа к несовершенной скважине. Влияние радиуса скважины на её производительность. Определение коллекторских свойств пласта. Фильтрация газа в пористой среде. Приближенные методы решения задач теории упругого режима.

    презентация [577,9 K], добавлен 15.09.2015

  • Сущность дифференциальных уравнений движения сжимаемой и несжимаемой жидкости в пористой среде. Анализ уравнения Лапласа. Характеристика плоских задач теории фильтрации и способы их решения. Особенности теории фильтрации нефти и газа в природных пластах.

    курсовая работа [466,6 K], добавлен 12.05.2010

  • Основы фильтрации неньютоновских жидкостей. Реологические модели фильтрующихся жидкостей. Плоские задачи теории фильтрации об установившемся притоке к скважине. Оценки эффекта взаимодействия скважин круговой батареи. Скважины с удаленным контуром питания.

    презентация [430,1 K], добавлен 15.09.2015

  • Установившееся движение газов по линейному закону фильтрации. Одномерное движение газов. Плоскорадиальный фильтрационный поток газа по двухчленному закону фильтрации и по степенному закону фильтрации. Обобщенная интерпретация законов фильтрации газа.

    курсовая работа [561,7 K], добавлен 11.04.2015

  • Основные положения науки о движении нефти, воды, газа и их смесей (флюидов) через коллектора. Описание требований адекватности моделей реальным процессам подземной гидромеханики. Изучение особенностей законов фильтрации пористой и трещинной среды.

    презентация [760,3 K], добавлен 15.09.2015

  • Основы теории фильтрации многофазных систем. Характеристики многофазной среды. Сумма относительных проницаемостей. Потенциальное движение газированной жидкости. Определение массовой скорости фильтрации капельно-жидкой фазы газированной жидкости.

    презентация [255,4 K], добавлен 15.09.2015

  • Литолого-стратиграфическая характеристика разреза. Cеноманская и неокомские залежи. Приток газа к несовершенным скважинам при двучленном законе фильтрации. Определение давлений и расхода газа. Определение коэффициентов фильтрационного сопротивления.

    курсовая работа [216,7 K], добавлен 12.03.2015

  • Гидродинамическая фильтрации жидкостей и газов в однородных и неоднородных пористых средах. Задачи стационарной и нестационарной фильтрации. Расчет интерференции скважин; теория двухфазной фильтрации. Особенности поведения вязкопластичных жидкостей.

    презентация [810,4 K], добавлен 15.09.2015

  • Определение коэффициентов продуктивности скважины при различных вариантах расположения скважины в пласте. Оценка применимости линейного закона Дарси для рассматриваемых случаев фильтрации нефти. Расчет давления на различных расстояниях от скважины.

    курсовая работа [259,3 K], добавлен 16.10.2013

  • Расчёт фильтрационных параметров при движении нефти в трещиноватых породах. Границы приёмистости линейного закона фильтрации. Анализ течения несжимаемой жидкости в деформируемом пласте. Методика исследования коллекторских свойств трещиноватых пластов.

    курсовая работа [417,5 K], добавлен 08.04.2013

  • Потенциал точечного стока на плоскости и в пространстве. Исследование задач интерференции скважин. Приток жидкости к группе скважин в пласте с удаленным контуром питания; к бесконечным цепочкам и кольцевым батареям скважин при фильтрации нефти и газа.

    курсовая работа [1,3 M], добавлен 21.10.2012

  • Точное решение осесимметричного притока газа к скважине. Линеаризация уравнения Лейбензона и основное решение. Метод усреднения: понятие, особенности. Расчет депрессии на пласт по точной и приближенным формулам. Относительная погрешность расчетов.

    курсовая работа [99,3 K], добавлен 02.03.2015

  • Физические свойства коллекторов. Абсолютная, фазовая и эффективная проницаемость. Линейный закон фильтрации, закон Дарси. Физический смысл размерности коэффициента проницаемости. Радиальная фильтрация пластовых флюидов. Гранулометрический состав породы.

    презентация [778,0 K], добавлен 07.09.2015

  • Влияние радиуса скважины на ее производительность. Формулы для плоских и сферических радиальных притоков к скважинам с линейным и нелинейным законами фильтрации. Закон распределения давления для галереи. Расчет скорости фильтрации по закону Дарси.

    курсовая работа [1,3 M], добавлен 07.04.2012

  • Осесимметричный приток газа к скважине. Линеаризация уравнения Лейбензона и основное решение линеаризованного уравнения. Решение задачи о притоке газа к скважине методом последовательной смены стационарных состояний. Расчет по линеаризованной формуле.

    курсовая работа [108,5 K], добавлен 31.01.2011

  • Наблюдение за изменением содержания индикатора на забое скважины. Промысловый опыт определения пути движения закачиваемой воды по пласту, испытание роданистого аммония. Индикаторные исследования фильтрации нагнетаемой воды в нефтенасыщенных пластах.

    курсовая работа [6,4 M], добавлен 13.01.2011

  • Движение воды в зонах аэрации и насыщения, водоносных пластах. Определение скорости движения подземных вод, установившееся и неустановившееся движение. Методы моделирования фильтрации. Приток воды к водозаборным сооружениям. Определение радиуса влияния.

    курсовая работа [340,2 K], добавлен 21.10.2009

  • Расчет дебита воды через слабопроницаемый экран при дренировании нефтяного пласта. Уравнение границы раздела "нефть — вода". Совместный приток нефти и воды к несовершенной скважине, перфорированной в водоносной зоне без отбора газа из газовой шапки.

    курсовая работа [990,8 K], добавлен 20.03.2013

  • Схемы плоскорадиального фильтрационного потока и пласта при плоскорадиальном вытеснении нефти водой. Распределение давления в водоносной и нефтеносной областях. Скорость фильтрации жидкостей. Определение коэффициента продуктивности работы скважины.

    курсовая работа [371,9 K], добавлен 19.03.2011

  • Определение понижения уровня в центральной скважине водозабора, состоящего из n=3 скважин, расположенных параллельно совершенному урезу реки на расстоянии 2Q=100 м друг от друга. Определение времени наступления стационарного режима фильтрации в скважине.

    контрольная работа [1,3 M], добавлен 29.06.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.