Безопасная работа с возбудителями особо опасных инфекций 1 и 2 класса
Размножение бактерий на жидких и плотных питательных средах. Течение инфекций на современном этапе. Основы эпидемиологии и паразитологии. Единая государственная система предупреждения и ликвидации чрезвычайных ситуаций в РФ. Методы выявления COVID-19.
Рубрика | Медицина |
Вид | курс лекций |
Язык | русский |
Дата добавления | 28.06.2020 |
Размер файла | 2,5 M |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Для культивирования клеток необходимы питательные среды, которые по своему назначению делятся на ростовые и поддерживающие.
В составе ростовых питательных сред должно содержаться большое количество питательных веществ, чтобы обеспечить активное размножение клеток для формирования монослоя.
Поддерживающие среды должны обеспечивать лишь переживание клеток в уже сформированном монослое при размножении в клетке вирусов.
Они могут быть:
1) природными (сыворотка крови крупного рогатого скота, жидкости из серозных полостей, продукты гидролиза молока, различные гидролизаты - гемогидролизат, гидролизат лактальбумина, экстракты тканей)
2) синтетическими (среда 199 для культивирования первично-трипсинизированных и перевиваемых культур, среда Игла - содержит минимальный набор аминокислот и витаминов и используется для культивирования различнах линий клеток, среда Игла МЕМ - культивирование особо требовательных линий клеток).
Независимо от назначения все питательные среды для культур клеток конструируются на основе сбалансированного солевого раствора. Чаще всего им является раствор Хенкса.
Техника получения первично-трипсинизированных культур клеток из куриного эмбриона:
1. Обрабатывают скорлупу спиртом, йодом и снова спиртом.
2. Срезают скорлупу с тупого конца на границе воздушного мешка, удаляют подскорлупную оболочку, извлекают тело эмбриона (голову отделяют - не используется).
3. Тело эмбриона измельчают до кусочков 1-2 мм, поместив в раствор Хэнкса.
4. Переносят пастеровской пипеткой кусочки ткани в пробирки.
5. В пробирку наливают 2 мл раствора Хэнкса, дают жидкости отстояться, отсасывают (повторяют 2-3 раза для отмывания крови).
6. К отмытым кусочкам ткани добавляют 1-2 мл раствора трипсина, пипетируют (насасывание и выдувание на стенку пробирки) в течение 5 мин. Отстаивают жидкость в центифужной пробирке, наливают 3 мл гидролизата лактальбумина. К оставшимся кусочкам добавляют 1 мл раствора трипсина - повторяют операции.
7. Центрифугирование - 10 мин при 100 Об/мин.
8. Надосадочную жидкость отсасывают, осадок ресуспендируют в 5 мл лактальбумина.
9. Фильтруют через марлю.
10. Подсчет клеток в камере Горяева (считая всю камеру).
11. Суспензию клеток разводят раствором лактальбумина с сывороткой до содержания 400000 клеток в 1 мл и разливают по 1 мл в пробирки, закрывают стерильными пробками.
12. Инкубирование в термостате при 37єС, в практически горизонтальном положении (угол 5є).
Выделение вирусов в культурах клеток и методы их индикации.
При выделении вирусов из различных инфекционных материалов от больного (кровь, моча, фекалии, слизистые отделяемые, смывы из органов) применяют культуры клеток, обладающие наибольшей чувствительностью к предполагаемому вирусу. Для заражения используют культуры в пробирках с хорошо развитым монослоем клеток.
Перед заражением клеток питательную среду удаляют и в каждую пробирку вносят по 0,1-0,2 мл взвеси испытуемого материала, предварительно обработанного антибиотиками (пенициллином и стрептомицином в концентрации 500-1000 Ед/мл) или в случае с простыми вирусами - эфиром для уничтожения посторонней микрофлоры (бактерий и грибов). Допустимым считается использование специальных антибактериальных фильтров или центрифугирование материала на невысокой скорости. После 30-60 мин. контакта вируса с клетками удаляют избыток материала, вносят в пробирку поддерживающую среду и оставляют в термостате до выявления признаков размножения вируса.
Индикатором наличия вируса в заражённых культурах клеток может служить:
1) развитие специфической дегенерации клеток - цитопатическое действие вируса (ЦПД;
2) обнаружение внутриклеточных включений, располагающихся в цитоплазме и ядрах пораженных клеток;
3) положительная реакция гамагтлютинации (РГА);
4) положительная реакция гемадсорбции (РГАдс);
5) феномен бляшкообразования: монослой зараженных вирусом клеток покрывается тонким слоем агара с добавлением индикатора нейтрального красного (фон - розовый). При наличии вируса в клетках образуются бесцветные зоны («бляшки») на розовом фоне агара.
По морфологическим изменениям в культуре клеток можно выделить несколько типов проявления ЦПД:
- полная дегенерация клеточного монослоя - изменения в большинстве клеток, их гибель и отделение от стекла, а отдельные живые клетки изменяют свою морфологию (пикноз ядра и цитоплазмы). Напр., вирусы полиомиелита, Коксаки, ЕСНО.
- частичная дегенерация - не характерно отслоение всех клеток от стекла.
- круглоклеточная дегенерация - образование скоплений больших округлых клеток, которые напоминают гроздья. Напр., аденовирусы.
- симпластообразование - образование многоядерных клеток (симпласты или синцитии). Напр., вирус кори, краснухи, эпидемического паротита, парагриппа, респираторно-синцитиальный вирус.
- пролиферативный тип изменений - вызывается онкогенными вирусами и проявляется формированием нескольких слоев клеток.
- образование внутриклеточных включений, которые могут локализоваться внутри ядра (аденовирусы) или в цитоплазме (тельца Бабеша-Негри) клетки. Их образование, форма, величина наличие в них вирусных нуклеиновых кислот являются важными признаками при проведении лаб. диагностики вирусных инфекций.
Выделение вирусов в куриных эмбрионах.
Для вирусологических исследований используют куриные эмбрионы 7-12-дневного возраста (чаще всего 9-12 дневные, иногда 5-12 дневные).
Перед заражением определяют жизнеспособность эмбриона. При овоскопировании живые эмбрионы подвижны, хорошо виден сосудистый рисунок. Простым карандашом отмечают границы воздушного мешка. Заражают куриные эмбрионы в асептических условиях, стерильными инструментами, предварительно обработав скорлупу над воздушным пространством йодом и спиртом.
Методы заражения куриных эмбрионов могут быть различны: нанесение вируса на хориоаллантоисную оболочку, в амниотическую и аллантоисную полости, в желточный мешок, тело зародыша. Выбор метода заражения зависит от биологических свойств изучаемого вируса.
Существует два способа заражения куриных эмбрионов:
1) открытый - скорлупу над воздушным мешком обрабатывают спиртом и йодом, при помощи острых ножниц срезают скорлупу, снимают верхний листок оболочки воздушного мешка и проводят заражение. Отверстие закрывают специальной стеклянной крышкой или скорлупой и герметизируют стерильным растопленным парафином.
2) закрытый - скорлупу над воздушным мешком обрабатывают спиртом и йодом, делают колющим инструментом отверстие в скорлупе и вводят при помощи шприца с толстой иглой 0,1-0,2 мл вируссодержащего материала под контролем овоскопа. Отверстие закрывают стерильным расплавленным парафином.
Зараженные эмбрионы инкубируют в термостате 2-4 суток. Затем их охлаждают до 4єС на протяжении суток для максимального сужения сосудов. Вскрывают в стерильных условиях, предварительно обработав скорлупу спиртом и йодом.
Индикация вируса в курином эмбрионе производится по гибели эмбриона, положительной реакции гемагглютинации на стекле с аллантоисной или амниотической жидкостью, по фокусным поражениям («бляшкам») на хорион-аллантоисной оболочке.
Выделение вирусов на лабораторных животных
Лабораторные животные могут быть использованы для выделения вирусов из инфекционного материала, когда невозможно применить более удобные системы (культуры клеток или куриные эмбрионы). Берут преимущественно новорождённых белых мышей, хомяков, морских свинок, крысят. Заражают животных по принципу цитотропизма вируса: пневмотропные вирусы вводятся интраназально, нейротропные - интрацеребрально, дерматотропные - на кожу.
Индикация вируса основана на появлении признаков заболевания у животных, их гибели, патоморфологических и патогистологических изменений в тканях и органах, а также по положительной реакции гемагглютинации с экстрактами из органов.
2.5 Распространение вирусов в природе
Вирусы являются одной из самых распространенных форм существования органической материи на планете по численности: воды мирового океана содержат колоссальное количество бактериофагов (около 250 миллионов частиц на миллилитр воды), их общая численность в океане -- около 4Ч1030, а численность вирусов (бактериофагов) в донных отложениях океана практически не зависит от глубины и всюду очень высока. В океане обитают сотни тысяч видов (штаммов) вирусов, подавляющее большинство которых не описаны и тем более не изучены. Вирусы играют важную роль в регуляции численности популяций некоторых видов живых организмов (например, вирус дикования раз в несколько лет сокращает численность песцов в несколько раз).
Способы распространения вирусов в природе различны: многие из них могут непосредственно заражать чувствительный организм (вирус гриппа, оспы, мозаичной болезни табака, бактериофаги), иные циркулируют в природе более сложным образом и переносятся при помощи других организмов.
Процесс вирусного инфицирования
Условно процесс вирусного инфицирования в масштабах одной клетки можно разбить на несколько взаимоперекрывающихся этапов:
* проникновение в клетку
* перепрограммирование клетки
* персистенция (переход в неактивное состояние)
* создание новых вирусных компонентов
* созревание новых вирусных частиц и их выход из клетки.
Проникновение в клетку
На этом этапе вирусу необходимо доставить внутрь клетки свою генетическую информацию. Некоторые вирусы переносят также собственные белки, необходимые для ее реализации. Различные вирусы для проникновения в клетку используют разные стратегии: например, пикорнавирусы впрыскивают свою РНК через плазматическую мембрану, а вирионы ортомиксовирусов захватываются клеткой в ходе эндоцитоза, попадают в кислую среду лизосом, где происходит их окончательное созревание (депротеинизация вирусной частицы), после чего РНК в комплексе с вирусными белками преодолевает лизосомальную мембрану и попадает в цитоплазму. Вирусы также различаются по локализации их репликации, часть вирусов (например, те же пикорнавирусы) размножается в цитоплазме клетки, а часть (например, ортомиксовирусы) -- в ее ядре.
Перепрограммирование клетки
При заражении вирусом в клетке активируются специальные механизмы противовирусной защиты. Зараженные клетки начинают синтезировать сигнальные молекулы -- интерфероны, переводящие окружающие здоровые клетки в противовирусное состояние и активирующие системы иммунитета. Повреждения, вызываемые размножением вируса в клетке, могут быть обнаружены системами внутреннего клеточного контроля, и такая клетка должна будет «покончить жизнь самоубийством» в ходе процесса, называемого апоптозом или программируемой клеточной смерти. От способности вируса преодолевать системы противовирусной защиты напрямую зависит его выживание. Неудивительно, что многие вирусы (например, пикорнавирусы, флавивирусы) в ходе эволюции приобрели способность подавлять синтез интерферонов, апоптозную программу и т.д.
Кроме подавления противовирусной защиты вирусы стремятся создать в клетке максимально благоприятные условия для развития своего потомства.
Пример перепрограммирования систем клетки-хозяина
Хрестоматийным примером перепрограммирования систем клетки-хозяина является трансляция РНК энтеровирусов (семейство пикорнавирусы). Вирусная протеаза расщепляет клеточный белок eIF4G, необходимый для инициации трансляции подавляющего большинства клеточных мРНК (транслирующихся по так называемому кэп-зависимому механизму). При этом инициация трансляции РНК самого вируса происходит другим способом (IRES-зависимый механизм), для которого вполне достаточно отрезанного фрагмента eIF4G. Таким образом, вирусные РНК приобретают эксклюзивные «права» и не конкурируют за рибосомы с клеточными.
Персистенция
Некоторые вирусы могут переходить в латентное состояние (так называемая персистенция для вирусов эукариот или лизогения для бактериофагов -- вирусов бактерий), слабо вмешиваясь в процессы, происходящие в клетке, и активироваться лишь при определенных условиях. Так построена, например, стратегия размножения некоторых бактериофагов -- до тех пор, пока зараженная клетка находится в благоприятной среде, фаг не убивает ее, наследуется дочерними клетками и нередко интегрируется в клеточный геном. Однако при попадании зараженной лизогенным фагом бактерии в неблагоприятную среду возбудитель захватывает контроль над клеточными процессами, так что клетка начинает производить материалы, из которых строятся новые фаги (так называемая литическая стадия). Клетка превращается в фабрику, способную производить многие тысячи фагов. Зрелые частицы, выходя из клетки, разрывают клеточную мембрану, тем самым убивая клетку. С персистенцией вирусов (например, паповавирусов) связаны некоторые онкологические заболевания.
Создание новых вирусных компонентов
Размножение вирусов в самом общем случае предусматривает три процесса:
Транскрипция вирусного генома, то есть синтез вирусной мРНК.
Ее трансляция, то есть синтез вирусных белков.
Репликация вирусного генома (в некоторых случаях, когда генетическая информация вируса закодирована в виде РНК, геномная РНК одновременно играет роль мРНК, и, следовательно, процесс транскрипции в паразитируемой клетке не происходит за ненадобностью).
У многих вирусов существуют системы контроля, обеспечивающие оптимальное расходование биоматериалов клетки-хозяина. Например, когда вирусной мРНК накоплено достаточно, транскрипция вирусного генома подавляется, а репликация, напротив, активируется.
Созревание вирионов и выход из клетки
В конце концов новосинтезированные геномные РНК или ДНК одеваются соответствующими белками и выходят из клетки. Следует сказать, что активно размножающийся вирус не всегда убивает клетку-хозяина. В некоторых случаях (например, ортомиксовирусы) дочерние вирусы отпочковываются от плазматической мембраны, не вызывая ее разрыва. Таким образом, клетка может продолжать жить и продуцировать вирус.
Распространение вирусов в окружающей среде зависит от их свойств и наличия чувствительных к ним клеток. Поэтому различают несколько путей.
1. Воздушно-капельный путь распространения характерен для большинства вирусов, вызывающих респираторные заболевания, в частности грипп, корь, оспу, паратиф.
2. Пищевой, или алиментарный, путь характерен для энтеровирусов, аденовирусов, реовирусов.
3. Трансмиссивный характерен для арбовирусов, большинства вирусов растений. Вирусы проникают в клетку, организм с участием насекомых.
4. Половой путь передачи характерен для вирусов герпеса, ВИЧ и т.д.
5. Проникновение вирусов в организм осуществляется и через поврежденную кожу. Присуще рабдовирусам, миксовирусами.
6. Парентеральный -- вирусы распространяются благодаря манипуляциям, которые связаны с переливанием крови и ее препаратов. Это характерно для вирусов гепатита В-типа, ВИЧ.
7. Вертикальный способ распространения характерен для онковирусов и большинства интегративных вирусов. Вирусы передаются от матери ребенку во время внутриутробного развития.
8. Механический способ распространения вирусов связан с повреждением целостности клеток различными способами (механическая инокуляция насекомыми). Таким способом распространяются большинство вирусов растений.
3. Основы генетики микроорганизмов
3.1 Наследственность и изменчивость бактерий
Изменчивость и наследственность микроорганизмов является частью общебиологической проблемы изменчивости и наследственности. Наследственность и изменчивость в сущности две стороны одного явления. В природе постоянно наблюдается процесс передачи наследственных свойств организма из поколения в поколение и в то же время идет процесс изменчивости. Наследственность и изменчивость - это два противоречивых и вместе с тем неразрывно связанных между собой процесса. Они основа развития живого мира. По сравнению с другими организмами изменчивость микробов наблюдается чаще и осуществляется легче и быстрее, это объясняется большой быстротой их размножения и пластичностью.
Изменяться могут самые разнообразные свойства микробов - морфологические, ферментативные, антигенные, патогенные и др. Различают ненаследственную и наследственную изменчивость. Ненаследственная изменчивость (модификация) очень часто наблюдается под воздействием различных факторов внешней среды. Она заключается в количественном изменении некоторых свойств микроба, т. е. в ослаблении и утрате или усилении этих свойств. Когда воздействие факторов, вызвавших эти изменения, прекращается, то возникшие измененные признаки также утрачиваются. Наследственная изменчивость необратима, она развивается вследствие перестройки наследственного аппарата микроорганизма в результате непосредственного внешнего или внутреннего воздействия на него или внедрения чужеродного генетического материала (трансформация, конъюгация, рекомбинация и др.).
В микробиологии основоположником учения об изменчивости является Луи Пастер. Он искусственным путем получил необратимое ослабление вирулентности возбудителей сибирской язвы (1881) и бешенства (1885), а также получил способ приготовления живых вакцин для борьбы с этими заболеваниями. Это открытие Пастера имело поворотное значение для борьбы с инфекционными заболеваниями человека и животных. Применение живых вакцин привело к ликвидации многих эпидемий, сведя их до единичных заболеваний. Противосибиреязвенная вакцина получена Пастером путем длительного (12-24 дня) выращивания при повышенной температуре (42°) вирулентной культуры сибиреязвенной палочки.
Путем такой направленной изменчивости микробов в настоящее время получено 20 живых вакцин, из них 14 против вирусных и 6 против бактериальных инфекций. Все время идут работы по созданию новых вакцин и улучшению некоторых из существующих.
Благодаря простоте своего строения вирусы обладают большой способностью к изменчивости. Вирусы растений способны приспособляться к условиям жизни в организмах филогенетически очень отдаленных видов. Так, к вирусу табачной мозаики восприимчивы 236 видов растений 33 различных семейств. Из животных вирусов наибольшей изменчивостью обладает вирус гриппа. Вирусы гриппа, выделенные во время отдельных эпидемий в различных странах, отличаются от основных типов А и В по антигенному строению, морфологическим признакам, способности к адаптации и пр. В 1947-1952 гг. в Китае появилась новая разновидность - тип А2, которая вызвала эпидемию гриппа во всем мире. Об изменчивости вирусов говорит тот факт, что наибольшее количество живых вакцин получено из вирусов.
Изменчивость грибов имеет большое практическое значение, так как многие из них широко используются в различных производствах. Были получены расы дрожжей, хорошо развивающиеся при пониженных или повышенных температурах, требуемых в тех или иных производствах. Для интенсификации бродильных процессов получены расы дрожжей, способные использовать углеводы в больших концентрациях, а также приспосабливаться к высокому осмотическому давлению, к продуктам собственной жизнедеятельности, к различным физическим и химическим факторам. Применение этих рас дает большую продукцию. Ярким примером этого является производство антибиотиков.
За последние годы в изучении наследственности микроорганизмов наблюдаются большие достижения, имеющие значение не только для микробиологии, но и для общей генетики, биохимии и других наук. Проведенные генетические исследования приближают нас к реальной возможности влияния на процессы наследственности и изменчивости микробов.
Исходными для понимания явлений наследственности служат данные о химическом составе хромосом. Хромосомы высших организмов являются нуклеопротеидами, генетическим материалом в которых служит ДНК. У бактерий и фагов хромосомами является непосредственно ДНК, на нити которой в линейном порядке на определенных местах расположены определенные наследственные признаки. Количество хромосом в клетках различных организмов постоянно: у человека 46 хромосом, у кукурузы 10 и т. д. У бактерий весь генетический материал представляет одну хромосому. Это было найдено при помощи генетического метода.
Наследственность неразрывно связана с размножением, а размножение - с делением клеток, при котором происходит саморепродукция хромосом и ДНК. Соматические клетки имеют диплоидный, двойной набор хромосом. Дочерние клетки имеют такое же число хромосом, как и материнская (митоз). В половых клетках содержится вдвое меньше хромосом, так как при образовании половых клеток (мейоз) происходит особое редукционное деление с уменьшением нормального числа хромосом наполовину, например в половых клетках человека 23 хромосомы. Такой набор хромосом называется гаплоидным.
Из микроорганизмов только некоторые грибы и водоросли имеют типичный половой процесс с диплоидным и гаплоидным набором хромосом. Бактерии и фаги генетически ведут себя как организмы с одной гаплоидной хромосомой.
Характерно, что обычные морфологические методы смогли дать только общее описание ядерного вещества, применение же генетического метода исследования раскрыло тонкую структуру бактериальной хромосомы, хотя понятие хромосомы у бактерий носит несколько условный характер. Ген в настоящее время не является чисто умозрительной категорией, понятие гена получило вполне материальное содержание. Ген представляет собой участок (локус) хромосомы, слагающийся из цепи нуклеотидов молекулы ДНК, обладающий специфической функцией. Хромосома - это цепь линейно расположенных генов. Участок молекулы ДНК, составляющий ген, включает от 500 до нескольких тысяч нуклеотидов. Термину "ген" равнозначны: наследственный фактор, генетическая единица, детерминанта и др. Совокупность всех наследственных факторов (генов) в хромосомах организма называется генотипом. Фенотипом является внешний вид организма со всеми внешними и внутренними признаками. Фенотип бактерии есть результат взаимодействия ее генотипа и среды.
Появление в каком-либо организме новых наследственно передаваемых свойств может быть вызвано разными типами изменений в генетическом аппарате. Источником наследственной изменчивости могут быть мутации генов, т. е. изменения в их химическом строении, и структурные мутации хромосом.
При этом могут происходить в двойной спирали ДНК следующие изменения:
1) замещение пары оснований, имевшихся в исходной молекуле ДНК, другой парой;
2) выпадение пары оснований из молекулы ДНК (деления);
3) внедрение новой пары оснований в молекулу ДНК;
4) инверсия - поворот нескольких пар оснований на 180°. Таким образом, в основе мутаций лежат молекулярные изменения в хромосоме.
Мутации у бактерий выявляются при наследственных изменениях любого признака микроба. Наиболее легко выявляются и количественно точно учитываются такие признаки: ауксотрофность к аминокислотам, пуринам и пиримидинам, витаминам; чувствительность или устойчивость к антибиотикам или фагам; лизогенность; ферментация углеводов и др.
Предложены определенные обозначения мутантов.
Так, ауксотрофность аминокислот обозначают начальными буквами или слогами их, например: гистидина - his, триптофана - try и т. д., двойные, тройные ауксотрофы обозначаются his try.
Способность ферментировать углеводы, например, лактозу - 1ас+, неспособность ферментировать - 1ас-.
Чувствительность к стрептомицину - Str-s, резистентность - Str-r, зависимость - Str-d и т. д.
Под влиянием мутагенных факторов были получены ауксотрофные мутанты, которые потеряли способность к синтезу важных для микроорганизмов веществ.
Так, одни мутанты потеряли способность синтеза тех или иных аминокислот, другие мутанты - синтеза витаминов и т. д. Эти ауксотрофы (минус-варианты) могут расти только на средах, содержащих вещества, синтезировать которые они уже не могут. У них нарушена активность соответствующих ферментов. С помощью таких ауксотрофов удалось проследить нормальный биосинтез многих аминокислот, витаминов, углеводов, азотистых оснований.
Мутации у микробов так же, как и у высших организмов, делятся на спонтанные и индуцированные. Спонтанные мутации возникают при воздействии факторов, являющихся нормальными условиями среды. Индуцированные мутации возникают в результате обработки микробов мутагенными агентами. К последним относятся различные виды радиации (ультрафиолетовые, рентгеновские лучи, быстрые нейтроны, протоны и др.), действие температуры и пр. Спонтанные мутации наблюдаются очень редко. Частота их колеблется от 1010 до 104, т. е. одна мутантная клетка на 10 тыс. млрд. клеток. Мутагены увеличивают частоту мутаций в 10-100 тысяч раз.
Представление о строении генетического аппарата бактерийной клетки основано на изучении у них механизмов генетического обмена. У бактерий нет такого полового процесса, какой имеется у высших организмов. У бактерий обычно происходит только односторонняя передача части наследственного материала (фрагмента ДНК) от одной бактерийной клетки - донора к другой - реципиенту. При этом в клетке реципиента происходит взаимодействие между генетическим материалом донора и реципиента, которое приводит к образованию дочерних рекомбинантных клеток. Последние клетки сохраняют некоторые признаки реципиента и приобретают новые признаки, полученные от клетки донора. Механизмами такой рекомбинации, перегруппировки признаков в потомстве, т. е. изменчивости, являются трансформация, трансдукция и конъюгация.
Трансформация (превращение, перестройка) заключается в том, что некоторые бактерии при выращивании их в присутствии веществ, извлеченных из клеток родственных им видов или разновидностей, приобретают некоторые свойства последних. Пневмококки - возбудители воспаления легких - имеют несколько разновидностей. Когда к неболезнетворной бескапсульной разновидности прибавили убитые микробные тела болезнетворной разновидности, имеющей капсулу, и ввели эту смесь белым мышам, то белые мыши, вопреки ожиданию, погибли и из крови их была выделена болезнетворная капсульная разновидность (Ф. Гриффитс, 1928). Контрольные мыши, получившие только убитые микробные тела, не заболели. Таким образом, в организме мышей неболезнетворный пневмококк приобрел свойства болезнетворного, хотя и убитого, пневмококка. Это свойство стало наследственно закрепленным. После больших исследований было найдено, что эта наследственная изменчивость была вызвана ДНК убитых микробных тел болезнетворного пневмококка (О. Т. Эвери, 1944). В дальнейшем такие трансформации были получены при помощи одной только ДНК, полученной из микробных тел. Так же хорошо изучена трансформация устойчивости к антибиотикам - пенициллину, стрептомицину. Если ДНК, выделенную из антибиотиков устойчивых бактерий, добавить в культуру чувствительных к антибиотикам бактерий, то в культуре под влиянием ДНК некоторое количество клеток приобретает наследственную устойчивость к данному антибиотику. Активность ДНК, измеряемая в гаммах на 1 мл среды (v=10-6 г), оказалась чрезвычайно высокой. Показана также возможность и межвидовой трансформации. Установление генетической роли ДНК имеет общебиологическое значение, так как позволило перейти к изучению различных биологических процессов на молекулярном уровне (синтез белка, нуклеиновых кислот, кодирование и др.).
Трансдукция - наследственно закрепленная передача признаков от одной бактерийной клетки (донора) другой клетке (реципиенту), не имеющей этих признаков, при помощи умеренного фага. Так наблюдалась передача свойств разлагать некоторые сахара, образовывать жгутики, споры, устойчивость к пенициллину. Это явление оказалось довольно распространенным среди бактерий. Некоторые созревающие частицы фага захватывают небольшие фрагменты ДНК бактерий, содержащие тот или иной признак, и передают их новой бактерийной клетке - хозяину. Предполагают, что генетический материал донорской клетки частично замещается генетическим материалом умеренного фага во время его пребывания в донорской клетке и этот материал затем фагом переносится в клетку-реципиент. Одновременно трансдуцируются один, реже два тесно сцепленных признака от одной бактериальной клетки к другой.
Конъюгация бактерий. Наличие конъюгации у бактерий наблюдалось некоторыми учеными давно. Но подробно она была изучена в последнее время. Существование конъюгации у бактерий впервые было доказано генетическим методом Ледербергом и Татум (1947). Конъюгация двух бактериальных клеток была обнаружена в электронном микроскопе. Клетки, из которых одна удлиненная - донор, а другая круглая и более крупная - реципиент, сближаются, между ними образуется мостик, по которому генетический материал донора переходит в клетку-реципиент. Был установлен односторонний перенос генетического материала донора, обозначаемого как F+ (мужского типа), в клетку-реципиент, обозначаемую знаком F- (женского типа). Клетка-донор содержит особый фактор плодовитости, обозначаемый F-фактор. При скрещивании штаммов F- и F- рекомбинаций не образуется, они образуются при скрещивании штаммов F+ и F- с частотой около 106, т. е. очень незначительной.
В дальнейшем были найдены штаммы доноры F+, которые при скрещивании с F- образовывали рекомбинанты с очень большой частотой 101-103. Такие штаммы обозначаются High, frecuency of recombination Hfr. - высокая частота рекомбинации АШ, ЭФ, ЭР. Эти штаммы очень облегчили работу по изучению конъюгации.
При конъюгации происходит медленный перенос генетических факторов бактериальной хромосомы от донорской клетки в реципиентную в строгой последовательности их расположения в хромосоме донора. Количество перенесенных факторов зависит от продолжительности контакта клеток. Конъюгацию можно прекращать искусственно через различные промежутки времени путем встряхивания в особом смесителе, и таким образом можно определять, какие наследственные факторы и в какой последовательности расположены в хромосоме клетки. При помощи конъюгации оказалось возможным легко и более точно составить генетическую карту хромосомы бактерийной клетки (рис. 7).
Рисунок 7 Электронная микрограмма конъюгации кишечной палочки
Генетика вирусов изучалась главным образом на фагах. Хромосому вируса представляет одна молекула ДНК или РНК, находящаяся в белковой оболочке вируса. Основными признаками фага, наиболее часто используемыми в генетических исследованиях, являются: морфология бляшек на бактерийной культуре, способность фага реагировать с определенными штаммами бактерий хозяев, чувствительность фага к физическим и химическим факторам, лизогения и др. Генетический обмен, скрещивание фагов осуществляется путем заражения одной клетки бактерии двумя генетически различными фагами. В потомстве фага, возникшем в зараженной клетке, обнаруживаются особи с признаками каждого родительского фага и особи с объединенными признаками обоих родителей. Генетический материал фага представляет собой линейно расположенные локусы отдельных признаков. Так были построены генетические карты фагов группы Т и кишечной палочки К-12.
В настоящее время уже встал вопрос о дробимости гена, о его конечных размерах. Так, американец Бензер в опытах по детализации гена r11 фага Т4 разделил этот ген на два цистрона, которые состоят из более мелких единиц: реконов и мутонов. Реконом он считает минимальный участок хромосомы, способный к генетической рекомбинации. Мутон - минимальный участок хромосомы, изменение которого вызывает мутацию. Цистрон - функциональная единица. Он становится неактивным при мутационном повреждении входящего в его состав мутона или рекона. Бензер полагает, что если ген r11 состоит из 3000 нуклеотидов, то мутон его состоит всего из 7 нуклеотидов.
Практическая задача генетики - направленное получение микроорганизмов с полезными для человека свойствами. Значение ее особенно наглядно на примере создания микробов высокопродуктивных культур, образующих антибиотические, физиологически активные вещества, дефицитные аминокислоты и пр. Лучшим методом для этого является селекция мутантов, полученных при воздействии различных мутагенных факторов на исходные (дикие) штаммы. Процесс выведения высокопродуктивных штаммов состоит из многих ступенчатых этапов, состоящих из воздействия на культуру мутагенных факторов с последующим отбором наиболее продуктивного штамма. Этот мутантный штамм может еще подвергаться воздействию мутагенов с последующим отбором наиболее продуктивных мутантов. Так был получен советский штамм пенициллина "Новый гибрид 369", при выведении которого применялись гибридизация, ультрафиолетовые лучи, этиленимин и отбор. Этот штамм применяется на пенициллиновых заводах многих стран.
3.2 Наследственность и изменчивость вирусов
Генетика наука о наследственности и изменчивости живых организмов.
Наследственные признаки очень стойкие и передаются, из поколения в поколение от родителей к потомкам через материальные носители наследственности - нуклеиновые кислоты.
Но в тоже время организмы в мире не изолированы, а взаимосвязаны с внешней средой и другими организмами. И под влиянием этих факторов происходят изменения отдельных признаков в организмах как на генетическом уровне (наследственная изменчивость), так и не связанные с изменением генетического аппарата (не наследственная изменчивость).
Наследственность и изменчивость тесно связаны между собой и являются противоположными сторонами единого процесса эволюции живых существ. Следует отметить, что вирусы в значительной мере способствовали развитию генетики как науки, так как они являются удобной моделью для изучения состава, репликации, функций нуклеиновых кислот, явлений изменчивости, что связано с простым строением и быстрым размножением (репродукция).
В развитии биологии в том числе и вирусологии и генетики важную роль сыграли такие открытия:
1. Расшифровка структуры молекулы ДНК
2. Расшифровка синтеза белка
3. Расшифровка генетического кода
Эти открытия сравнивают с открытием атомной энергии и ХХ век называют веком биологии в связи с тем, что были раскрыты интимные стороны жизни - тончайшее строение и функции нуклеиновых кислот.
Структура вирусного генома
Долгое время считалось, что носителем наследственной информации является белок. В вирусологии значение нуклеиновой кислоты как носителя информации доказали Хергии и Чейз в 1952 году. Они заметили что заражение бактерий может вызвать фаг, лишенный белковой оболочки..Функцию вирусного генома выполняет или ДНК или РНК. ДНК или РНК могут быть одно или двухцепочные
Геном вирусов может быть представлен 10 вариантами:
1. Одноцепочной нефрагментированной РНК + цепью т.е. выполняет роль информационной РНК (пикорна- и тогавирусы, ретровирусы).
2. Одноцепочная нефрагментированная РНК - цепь ( рабдо-, парамиксовирусы)
3. Одноцепочная фрагментированная РНК - цепь (ортомиксовирусы)
4. Одноцепочная фрагментированная кольцевая РНК (бунъя вирус)
5. Двухцепочная фрагментированная РНК (реовирусы)
6.Одноцепочная ДНК нефрагментированная (парвовирусы )
7. Одноцепочная ДНК циркулярная (цирковирусы)
8.Двухцепочная ДНК нефрагментированная (герпес-, аденовирусы)
9.Двухцепочная ДНК кольцевая (папиломавирусы)
Как и в любой другой генетической системе в наследственном аппарате вирусов используется триплетный код. Три нуклеотида в одноцепочных молекулах или три пары нуклеотидов в двухцепочных молекулах нуклеиновых кислот кодируют одну аминокислоту. Они называются «кодоны».
Соединяясь между собой в определенной последовательности, триплеты образуют генетический код.
Но количество возможных вариантов кодонов (64) превышает количество аминокислот (21). Это значит, что на каждую аминокислоту приходится 2-3 кодона для страховки, исключение - триптофан и метионин они кодируется одним триплетом.
Нуклеиновая кислота вирусов состоит из участков отличающихся друг от друга определенной последовательностью и количеством триплетов - эти участки называют генами и каждый ген ответственен за синтез одного определенного белка.
Число генов в нуклеиновой кислоте у разных вирусов варьирует в широких пределах. Например, вирус ящура и гриппа имеют по 3-5 генов у вируса полиоэмилита 10, а у вируса ньюкаслской болезни -37, вируса оспы-400 генов, а у человека-10 млн.
Генетические признаки вирусов
Генетические признаки - это любые наследственно-передаваемые свойства, которым можно дать качественную и количественную оценку, и которые проявляются в определенных условиях среды. Вирусы обладают определенными генетическими признаками, совокупность которых составляет генотип вируса, а совокупность проявленных генетических признаков составляет фенотип вируса.
Изучение генетических признаков вирусов имеет большое практическое значение, как в теоретическом, так и в практическом отношении. По этим признакам вирусы классифицируются, отбираются необходимые штаммы. Эти признаки или свойства используют в диагностической и лечебно-профилактической работе.
Но генетические признаки вирусов изучены недостаточно полно т. к. не все признаки, заложенные в генотипе, могут проявиться в конкретных условиях. И еще это связано с неоднородностью генотипов вирусных частиц в одной популяции.
Генетические признаки вирусов условно разделяют на: групповые, видовые и штаммовые.
Групповые признаки - это тип нуклеиновой кислоты, тип симметрии, размер и морфология, тип капсидной оболочки, количество капсомеров, наличие суперкапсидной оболочки, устойчивость к жирорастворителям или наличие липидов, антигенная специфика
Видовые признаки - патогенность для того или иного вида животного, тропизм, устойчивость к кислотности среды (рН), способность к гемагглютинации, характер ЦПД.
Штаммовые (внутривидовые) признаки - вирулентность для животных и куриных эмбрионов, терморезистентность, гемагглютинирующая активность, антигенная активность, характер бляшек, устойчивость к различным химическим и физическим факторам.
Каждый генетический признак вируса принято обозначать латинскими буквами:
Терморезистентность - Tr
Термочувствительность - Ts
Температура размножения rct - 40°
Патогенность S
Инфекционная доза - ИД 50
Способность размножаться в культуре клеток, вызывая ЦПД - ТС
Устойчивость к рН среды - РН.
Изменчивость вирусов и селекция
В процессе репродукции вирусов в потомстве могут появляться вирионы, отличающиеся по своим свойствам от исходных родительских. Изменения могут касаться величины, формы патогенности, антигенной структуры, тропизма. Вновь возникшее свойства могут быть наследуемые т.е. связанные с изменениями в геноме вируса (генетические) или не наследуемые т.е. не связанные с изменениями в геноме вируса (фенотипические).
Фенотепическая форма изменчивости или негенетическая связана с особенностями клетки хозяина, в которой происходит репродукция. У вирусов позвоночныхизменения связаны прежде всего со строением суперкапсида, который формируется на оболочках клетки. Поэтому при образовании оболочки включаются клеточные липиды, белки, углеводы. Так в оболочку вируса гриппа, культивированного на куриных эмбрионах, встраиваются белки алантоиса.
К фенотипическим формам изменчивости относят и негенетические взаимодействия вирусов между собой, это:
- фенотипическое смешивание
- негенетическая реактивация
- комплементация
Фенотипическое смешивание происходит при заражении клетки двумя разными вирусами, при этом потомство преобретает признаки обоих вирусов. Например, при заражении вирусом гриппа и вирусом нъюкаслской болезни. При этом в потомстве выявляются вирионы содержащие антигены и вируса гриппа и вируса нъюкаслской болезни.
Негенетическая реактивация (восстановление активности). при этом инактивированный вирус, у которого разрушены белки -ферменты, необходимые для репродукции способен репродуцироватся за счет фермента у другого вируса даже у которого поврежен геном.
Комплементация это когда белки, кодируемые геномом одного вируса, способствуют репродукции другого вируса. Например, предоставление фермента вирусу, у которого его нет. Таким образом, комплементация приводит к формированию полноценного вириона, но она происходит только между близкородственными вирусами. комплементация может быть односторонняя, когда один вирус обеспечивает другого необходимыми продуктами для репродукции. Двусторонняя, когда каждый из вирусов не способен к самостоятельной репродукции.
К наследственно закрепленным формам изменчивости относят мутации и генетические взаимодействия вирусов. Причины сравнительно высокой способности вирусов к этому виду изменчивости, является огромная численность популяции вирусов, высокая скорость репродукции, слабая защищенность нуклеопротеида от внешних воздействий.
Мутация - это изменение последовательности нуклеотидов в определенном участке генома вируса.
В основе мутаций лежат следующие процессы:
1) Инверсия - изменение последовательности расположения одного или нескольких нуклеотидов (КОТ - ТОК). Аналогично тому как меняется смысл вновь полученного слова, так и меняется состав гена, а значит при синтезе получится другой белок и другие свойства у вируса.
2) Замена одной или нескольких пар нуклеотидов другими( КОТ-КОМ).
3) Вставки - в цепь встраивается один или несколько нуклеотидов (ОКО-ОКНО).
4) Делеция - выпадение из цепи одного или нескольких нуклеотидов (ОКНО-ОКО)
5) Дупликация- дублирование одного или нескольких нуклеотидов.
По обратимости необратимые при которых изменяется фенотип вируса и такие мутанты быстро вытесняют другие популяции вируса.
Обратимые мутации, при которых происходит обратная мутация в месте первичной.
По протяженности мутации могут быть точечными, захватывать лишь один триплет. Такие мутации могут не проявляться за счет того, что одна аминокислота кодируется- несколькими кодонами. Могут быть аберрационными, которые захватывают значительный участок гена. Такие мутации проявляются всегда.
По природе мутации бывают спонтанные и индуцированные.
Спонтанные - самопроизвольные, возникают в природе при воздействии на геном вируса различных естественных мутагенных факторов или ошибок действия ферментов ДНК-полимеразы или РНК-полимеразы
Одной из важных причин, приводящих к изменению вирусов в естественных условиях, является коллективный иммунитет, который препятствует дальнейшему размножению вируса, вызвавшего инфекцию - (спад эпизоотии). В иммунном организме могут репродуцироваться антигенные варианты этого вируса, которые не обезвреживаются специфическими антителами. Следовательно, в процессе эпизоотии выживают вирионы с измененной антигенной структурой, которые в последствии после селекции образуют новую популяцию вируса, способную инфицировать иммунный организм.
Хорошо известна естественная изменчивость вируса гриппа, который проявляется появлением различных антигенных вариантов вируса. Способствующим фактором является фрагментированная РНК. В результате мутации и рекомбинации между вирусами гриппа человека и животных, образуются новые варианты вируса.
Вирус ящура имеет 7 типов, а внутри десятки вариантов и в ходе эпидемии происходит смена типов и вариантов, что затрудняет специфическую профилактику болезни.
Помимо антигенной изменчивости может наблюдаться изменчивость патогенных свойств - повышение или понижение вирулентности. Например, вирус ньюкаслской болезни сначала вызывал смертельное заболевание птицы. В настоящее время регистрируют легкое течение данной болезни. такой вирус называется природно-ослабленный штамм и используется для приготовления вакцины. К сожалению, бывают и противоположные факты: усиление вирулентности вируса в природных условиях (так произошло с вирусом бешенства и вируса миксоматоза кроликов).
Индуцированные (искусственные)мутации - возникают в результате направленных воздействий экспериментатора на вирус различными физическими и химическими мутагенами а также при адаптации вируса к необычной биосистеме. Такое воздействие на вирус вызывают мутаций в десятки и сотни раз эффективнее, чем природные факторы. Действие мутагенов имеет определённую направленность, что позволяет заранее предвидеть, куда действует мутаген и какие последствия вызовет.
Виды мутагенов:
1) Физические мутагены: повышенная температура способствует удалению пуринов из ДНК и замена другими; УФО - поглощается нуклеиновой кислотой, изменяет структуру пиримидинов
2).Химические мутагены могут действовать на нуклеиновую кислоту во время её репликации (аналоги пуриновых и пиримидиновых оснований) или вступать в реакцию с покоящейся молекулой нуклеиновой кислотой, но требующие для выявления (формирования) мутаций, последующей её репликации (азотистая к-та, гидроксиломин) и т.д.
3) Процесс адаптации вирусов к нечувствительной живой системе. Происходит это таким образом. Вирусом заражается нечувствительная живая система. В первых пассажах вируса на такой живой системе большинство вирионов погибает. Остаются и размножаются только те вирионы, у которых есть изменение в генах, эти изменения позволяют им репродуцироваться в новой для них системе. Так как вируса очень мало, то какие-либо признаки размножения вируса не проявляются. После нескольких «слепых» пассажей количество вирионов, способных размножаться в необычных условиях, увеличивается до такой степени, что появляются признаки размножения вируса.
В результате появляется популяция вируса способная «размножаться» на нечувствительной живой системе. Обычно в тоже время патогенность к чувствительной системе понижается. Пример: лапинизированный вирус ящура стал патогенен для кроликов, а патогенность для КРС у него снизилась.
Пастер 1822-1895 - ослабил вирус бешенства, пассируя через организм кролика.
Рекомбинация - это обмен генетическим материалом между двумя близкими, но отличающимися по наследственным свойствам вирусами.
Рекомбинации могут быть: межгенные - обмен полными генами, внутригенная - обмен участками генов. Образующися рекомбинантный вирус преобретает свойства обоих вирусов. Рекомбинанты вирусов получаются только при скрещивании близких по свой ствам вирусов родственных.
Рекомбинации между одноцепочными НК и между двухцепочными НК.
4. Основы инфекционной иммунологии
Иммуноломгия (от лат. immunis -- свободный, освобождённый, избавленный от чего-либо + греч. льгпт -- знание) -- медико-биологическая наука, изучающая реакции организма на чужеродные структуры (антигены): механизмы этих реакций, их проявления, течение и исход в норме и патологии, а также разрабатывающая методы исследования и лечения.
Инфекционная иммунология -- раздел иммунологии, изучающий иммунный ответ при инфекционных болезнях человека и животных и разрабатывающий методы специфической профилактики, диагностики и лечения этих болезней.
4.1 Механизмы иммунных реакций
Одной из основных функций иммунной системы является распознавание и уничтожение тел и веществ, несущих признаки чужеродной генетической информации, включая возбудителей инфекционных болезней (Р.В. Петров, 1987). При формировании антиинфекционной резистентности в организме развиваются специфические и неспецифические механизмы. Их взаимодействие подвержено определенной временной последовательности и характеризуется синергизмом взаимного усиления.
Неспецифические механизмы
Первым барьером на пути проникновения возбудителя болезни в организм хозяина является кожа и слизистая. Слущивание ороговевшего эпителия, присутствие на коже жирных кислот, выделения сальных желез, функция мерцательного эпителия слизистых, наличие лизоцима, ингибиторов размножения бактерий и вирусов в секретах обусловливают уничтожение возбудителей. Однако главным механизмом защиты является фагоцитоз. При этом не все захваченные клетки погибают, например микобактерии, бруцеллы, сальмонеллы, листерии могут только сохраняться в фагоцитах, но и в ряде случаев размножаются. Некоторые бактерии (капсульные формы пневмококков) вообще почти не фагоцитируются.
Клеточные механизмы невосприимчивости сочетаются с гуморальными факторами. Это - лизоцим, интерферон, альтернативный путь активации комплемента. Последняя реакция обусловлена бактериями, вирусами, грибами, эндотоксинами, она развивается непосредственно при внедрении инфекционного агента.
Специфические механизмы
Поскольку микроорганизмы обладают разнообразными антигенными детерминантами, то в организме, спустя определенный период времени, развивается поликлональный иммунный ответ. При этом входные ворота инфекции и особенности возбудителя определяют, какая форма иммунной реактивности - клеточная или гуморальная - будет реализована.
Продолжительность иммунной защиты может быть пожизненной (корь, коклюш) или ограниченной (грипп). В обоих случаях ответственными за это являются долгоживущие клетки иммунологической памяти.
Внедрение в организм возбудителей, размножающихся внеклеточно, как правило, индуцирует гуморальный иммунитет. Инфекции, вызванные патогенами, способными размножаться внутриклеточно, - клеточный.
Большинство возбудителей бактериальных инфекций, размножающиеся внеклеточно, обусловливают образование специфических антител, которые связываются с поверхностью бактерий и в присутствии комплемента вызывают цитотоксические реакции (бактериолиз). Кроме того, нагруженные АТ или комплементом бактерии легко подвержены фагоцитозу (опсонизация).
В тех случаях, когда патогномоничные возбудители образуют экзотоксины (столбняк, дифтерия), антитоксины легко нейтрализуют токсические вещества, однако при первичной инфекции они могут синтезироваться слишком поздно и не в состоянии защитить организм.
Клеточный иммунитет имеет особое значение в тех случаях, когда реакции фагоцитоза оказываются несостоятельными, вследствие чего возникает персистенция патогенных бактерий, формируется скопление лимфоидных клеток и макрофагов (гранулема). Иногда это приводит к неспецифической стимуляции макрофагов, что обусловливает повышение резистентности к другим инфекциям. Например, при высоком уровне клеточного иммунитета против туберкулеза повышается устойчивость к грибам, простейшим, бруцеллам, листериям.
Вирусные инфекции, распространяющиеся гематогенно (полиомиелит, корь, эпидемический паротит, ветряная оспа), могут элиминироваться гуморальными механизмами, причем данное заболевание, как правило, характеризуется длительным инкубационным периодом.
В то же время возбудители, размножающиеся прямо в месте внесения (грипп), имеют короткий инкубационный период, что может быть опасно из-за определенной инерционности развития иммунных реакций, тяжелым течением заболевания. Поскольку вирусы являются внутриклеточными паразитами, основную функцию защиты от них выполняют клеточные реакции. Доказательством этого является частое образование у пациентов ГЗТ.
При грибковых, протозойных инфекциях и глистной инвазии формируется преимущественно клеточный иммунитет, что тестируется положительной внутрикожной пробой с соответствующим Аг. Для возбудителей протозойных инфекций характерно чрезвычайное разнообразие антигенного состава. К тому же большинство этих возбудителей имеют довольно сложный механизм жизненного цикла, что еще более затрудняет иммунную защиту. К этому следует добавить то обстоятельство, что сами возбудители наделены иммуносупрессорным действием, а также то, что при данных патологических процессах реализуется выраженный поликлональный митогенный эффект, истощающий защитные возможности иммунной системы, не формируя резистентности.
...Подобные документы
Условия возникновения особо опасных инфекций, их источники и предпосылки распространения. Мероприятия медицинской службы по предупреждению возникновения данных инфекций. Выявление больных и их изоляция, требования для предупреждения рассеивания.
презентация [288,8 K], добавлен 24.06.2015Причины развития, возбудители внутрибольничных инфекций. Формирование госпитальных штаммов. Исследование микробной обсемененности воздушной среды. Перечень объектов, подлежащих бактериологическому контролю. Выбор питательных сред для обнаружения бактерий.
курсовая работа [33,0 K], добавлен 01.12.2015Проблема внутрибольничных инфекций (ВБИ). Причины роста заболеваемости ВБИ. Особенности циркуляции условно-патогенных микроорганизмов как возбудителей оппортунистических инфекций. Методы микробиологической диагностики выявления и схемы профилактики ВБИ.
курсовая работа [96,1 K], добавлен 24.06.2011Возбудителями кишечных инфекций. Механизм передачи кишечных инфекций. Диагностика, медикаментозная терапия и профилактика. Задачи сестринской деятельности. Оценка состояния пациента и определение его проблем. Планирование сестринских вмешательств.
курсовая работа [55,2 K], добавлен 13.06.2014Причины, затрудняющие диагностику и лечение урогенитальных инфекций. Исследование частоты выявления возбудителей инфекций у женщин, передаваемых половым путем методом полимеразной цепной реакции с применением диагностических тест- систем "Ампли Сенс".
дипломная работа [20,2 K], добавлен 20.07.2013Общая характеристика кишечных инфекций. Фекально-оральный механизм передачи. Интенсивность и главные особенности эпидемического процесса. Лабораторная диагностика кишечных инфекций. Показания к госпитализации. Профилактика острых кишечных инфекций.
презентация [1,2 M], добавлен 20.04.2015Понятие и общая характеристика стафилококков. Основные клинические проявления стафилококковых инфекций. Описание антибактериальной терапии инфекций, вызванных резистентными стафилококками, рекомендации по диагностике и лечению инфекций данной группы.
контрольная работа [28,6 K], добавлен 15.10.2010Исследование причин возникновения инфекционных заболеваний. Пути передачи инфекций. Сравнительная характеристика воздушно-капельных инфекций. Профилактика острых респираторных вирусных инфекций в детских дошкольных учреждениях. Вакцинация дошкольников.
реферат [36,9 K], добавлен 24.02.2015Необходимость проведения раннего выявления опасных массовых инфекций на госпитальном этапе в начальном периоде болезни. Основные виды заразных недугов человека, растений и животных. Изучение динамики заболеваемости в Республике Хакасия за 2005-2010 гг.
курсовая работа [102,5 K], добавлен 09.07.2011Сущность и причины распространения, эпидемиология внутрибольничных инфекций, характеристика грамотрицательных неферментирующих бактерий как их главных возбудителей. Среды, используемые для культивирования микроорганизмов, методы их идентификации.
курсовая работа [120,2 K], добавлен 18.07.2014Рассмотрение проблемы циркулирования в стационарах возбудителией внутрибольничных инфекций, формирования госпитальных штаммов. Образование колоний стафилококков, бактерий рода Proteus, клебсиеллы, энтеробактерий, кишечной палочки, стрептококков.
презентация [8,7 M], добавлен 17.12.2015Кишечные инфекции: общий обзор и способы передачи. Характеристика эпидемического процесса кишечных инфекций при различных путях передачи возбудителя. Характеристика предпосылок и предвестников ухудшения эпидемиологической ситуации в отношении инфекций.
реферат [46,0 K], добавлен 21.04.2014Основные источники внутрибольничных инфекций. Специфические внутрибольничные факторы, влияющие на характер инфекции. Система эпидемиологического надзора. Унифицированная система учёта и регистрации внутрибольничных инфекций. Физический метод дезинфекции.
презентация [7,0 M], добавлен 11.02.2014Опасность инфекций, которые возникают среди населения в виде эпидемий и пандемий. Первичные мероприятия при ООИ, выявление контактных лиц и их обсервация, профилактика при помощи антибиотиков. Установление карантина в зоне распространения инфекции.
презентация [1,4 M], добавлен 17.09.2015Условия, влияющие на возникновение внутрибольничных инфекций - инфекционных заболеваний, полученных больными в лечебных учреждениях. Факторы влияющие на восприимчивость к инфекциям. Механизмы передачи внутрибольничных инфекций, методы профилактики.
презентация [590,7 K], добавлен 25.06.2015Причины возникновения аллергии. Развитие и проявление аллергических реакций. Медицинская помощь при заболевании. Виды особо опасных инфекций. Локальные мероприятия при обнаружении ООИ. Неотложная помощь при инфекционно-токсическом шоке и гипертермии.
презентация [178,0 K], добавлен 22.05.2012Анализ факторов, способствующих росту внутрибольничных инфекций в современных условиях. Артифициальный механизм передачи возбудителей инфекции. Меры по снижению распространенности внутрибольничных инфекций в акушерских стационарах. Методы стерилизации.
презентация [531,0 K], добавлен 04.11.2013Возбудитель менингококковой инфекции: эпидемиология, клиническая картина, патогенез, методы диагностики и профилактики. Возбудители бактериальных кровяных инфекций. Возбудитель чумы: основные носители, способы передачи инфекции, методы исследования.
презентация [195,5 K], добавлен 25.12.2011Определение внутрибольничных (госпитальных, нозокомиальных) инфекций. Проблема инфекционного контроля. Источники распространения инфекций, их этиология, профилактика и лечение. Стартовая антимикробная терапия. системы эпидемиологического надзора.
презентация [701,6 K], добавлен 07.10.2014Характеристика эпидемиологии - науки о закономерностях возникновения и распространения заразных болезней в человеческом обществе, методах их профилактики и ликвидации. Анализ признаков эпидемии, природных и социальных факторов эпидемического процесса.
презентация [2,1 M], добавлен 23.01.2010