Предмет гистологии

Изучение строения органелл, участвующих в биосинтезе веществ в клетках. Анализ биологического значения оплодотворения. Ознакомление с современными представлениями о дифферонах, "тканевых мозаиках". Рассмотрение классификации эпителиальных тканей.

Рубрика Медицина
Вид шпаргалка
Язык русский
Дата добавления 24.05.2021
Размер файла 624,9 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Секреторные эпителиоциты лежат на базальной мембране. Форма их весьма разнообразна и меняется в зависимости от фазы секреции. Ядра бывают обычно крупными, часто неправильной формы. В цитоплазме клеток, которые вырабатывают секреты белкового характера (например, пищеварительные ферменты), хорошо развита гранулярная эндоплазматическая сеть. В клетках, синтезирующих небелковые секреты (липиды, стероиды), выражена агранулярная эндоплазматическая сеть. Комплекс Гольджи обширный. Его форма и расположение в клетке меняются в зависимости от фазы секреторного процесса. Митохондрии, как правило, многочисленны. Они накапливаются в местах наибольшей активности клеток, т. е. там, где образуется секрет. В цитоплазме клеток обычно присутствуют секреторные гранулы, размер и строение которых зависят от химического состава секрета. Число их колеблется в связи с фазами секреторного процесса. В цитоплазме некоторых гландулоцитов (например, участвующих в образовании соляной кислоты в желудке) обнаруживаются внутриклеточные секреторные канальцы - глубокие впячивания плазмолеммы, покрытые микроворсинками. Плазмолемма имеет различное строение на латеральных, базальных и апикальных поверхностях клеток. На первых она образует десмосомы и плотные запирающие контакты. Последние окружают верхушечные (апикальные) части клеток, отделяя таким образом межклеточные щели от просвета железы. На базальных поверхностях клеток плазмолемма образует небольшое число узких складок, проникающих в цитоплазму. Такие складки особенно хорошо развиты в клетках желез, выделяющих секрет, богатый солями, например в клетках выводных протоков слюнных желез. Апикальная поверхность клеток покрыта микроворсинками.

Механизм выделения секрета в различных железах неодинаковый, в связи с чем различают три типа секреции: мерокринный, апокринный и голокринный. При мерокринном типе секреции железистые клетки полностью сохраняют свою структуру (клетки слюнных желез). При апокринном типе секреции происходит частичное разрушение железистых клеток (клеток молочных желез), т. е. вместе с секреторными продуктами отделяются либо апикальная часть цитоплазмы железистых клеток (макроапокринная секреция), или верхушки микроворсинок (микроапокринная секреция). Голокринный тип секреции сопровождается накоплением секрета (жира) в цитоплазме и полным разрушением железистых клеток (клеток сальных желез кожи). Восстановление структуры железистых клеток происходит либо путем внутриклеточной регенерации (при меро- и апокринной секреции), либо с помощью клеточной регенерации, т. е. деления и дифференцировки камбиальных клеток (при голокринной секреции).

5. Кровь, гемопоэз и иммуноциты

5.1 Понятие о системе крови. Кровь, как разновидность тканей внутренней среды. Функции крови, возрастные и половые особенности крови. Форменные элементы крови. Формула крови

Система крови включает кровь, органы кроветворения - красный костный мозг, вилочковую железу (тимус), селезенку, лимфатические узлы, лимфоидную ткань некроветворных органов, а также клетки крови в составе соединительной и эпителиальной тканей.

Кровь и лимфа - ткани мезенхимного происхождения. Они образуют внутреннюю среду организма (вместе с рыхлой соединительной тканью), состоят из плазмы (жидкого межклеточного вещества) и взвешенных в ней форменных элементов. Обе ткани тесно взаимосвязаны, в них происходит постоянный обмен форменными элементами, а также веществами, находящимися в плазме. Установлен факт рециркуляции лимфоцитов из крови в лимфу и из лимфы в кровь. Все клетки крови развиваются из общей полипотентной стволовой клетки крови в эмбриогенезе (эмбриональный гемопоэз) и после рождения (постэмбриональный гемопоэз).

Кровь - это циркулирующая по кровеносным сосудам жидкая ткань, состоящая из двух основных компонентов - плазмы и взвешенных в ней форменных элементов: эритроцитов, лейкоцитов и кровяных пластинок. Плазма составляет 55-60 % объема крови, а форменные элементы - 40-45 %. Кровь в организме человека составляет 5-9 % массы тела. В среднем в теле человека с массой тела 70 кг содержится около 5-5,5

Функции крови:

1) транспортная. Данная функция крови крайне разнообразна. Кровь осуществляет перенос газов (за счет способности гемоглобина связывать кислород и углекислый газ), различных питательных и биологически активных веществ;

2) трофическая. Питательные вещества поступают в организм с пищей, затем расщепляются в желудочно-кишечном тракте до белков, жиров и углеводов, всасываются и переносятся кровью к различным органам и тканям;

3) дыхательная. Осуществляется в виде транспорта кислорода и углекислого газа. Оксигенированный в легких гемоглобин (оксигемоглобин) доставляется кровью по артериям ко всем органам и тканям, где происходит газообмен (тканевое дыхание), кислород расходуется на аэробные процессы, а углекислота связывается гемоглобином крови (карбоксигемоглобинам) и по венозному кровотоку доставляется в легкие, где вновь происходит оксигенация;

4) защитная. В крови имеются клетки и системы, обеспечивающие неспецифическую (система комплемента, фагоциты, NK-клетки) и специфическую (Т- и В-системы иммунитета) защиту;

5) экскреторная. Кровь выводит продукты распада макромолекул (мочевина и креатинин выводятся почками с мочой).

Качественный и количественный состав крови (анализ крови) -- гемограмма и лейкоцитарная формула. Гемограмма взрослого человека:

1) эритроцитов содержится:

а) у мужчин -- 3,9--5,5 Ч 1012 в 1 л, или 3,9--5,5 млн в 1 мкл, концентрация гемоглобина 130--160 г/л; б) у женщин -- 3,7--4,9 Ч 1012, гемоглобин -- 120--150 г/л;

2) тромбоцитов -- 200--300 Ч 109 в 1 л;

3) лейкоцитов -- 3,8--9 Ч 109 в 1 л.

Число эритроцитов в момент рождения и в первые часы жизни выше, чем у взрослого человека, и достигает 6,0-7,0Ч1012/л. К 10-14-м сут оно равно тем же цифрам, что и во взрослом организме. В последующие сроки происходит снижение числа эритроцитов с минимальными показателями на 3-6-м мес жизни (физиологическая анемия). Число эритроцитов становится таким же, как и во взрослом организме, в период полового созревания.

Число лейкоцитов у новорожденных увеличено и достигает 10,0-30,0Ч109/л. В течение 2 нед после рождения число их снижается до 9,0-15,0Ч109/л. Количество лейкоцитов достигает к 14-15 годам уровня, свойственного взрослым. Соотношение числа нейтрофилов и лимфоцитов у новорожденных такое же, как и у взрослых. В последующем содержание лимфоцитов возрастает, а нейтрофилов - снижается.

К форменным элементам крови относятся лейкоциты и постклеточные структуры - эритроциты и кровяные пластинки (тромбоциты).

5.2 Эритроциты: размеры, форма, строение, функции, классификация по форме, размерам и степени зрелости

Эритроциты -- преобладающая популяция форменных элементов крови. Морфологические особенности:

1) не содержат ядра;

2) не содержат большинства органелл;

3) цитоплазма заполнена пигментным включением (гемоглобином). Форма эритроцитов:

1) двояковогнутые диски -- дискоциты (80%);

2) остальные 20% -- сфероциты, планоциты, эхиноциты, седловидные, двуямочные. По размеру можно выделить следующие виды эритроцитов:

1) нормоциты (7,1--7,9 мкм, концентрация нормоцитов в периферической крови -- 75%);

2) макроциты (размером более 8 мкм, количество -- 12,5%);

3) микроциты (размером менее 6 мкм -- 12,5%). Функции эритроцитов:

1) дыхательная (транспорт газов: O2 и СО2);

2) транспорт других веществ, адсорбированных на поверхности цитолеммы (гормонов, иммуноглобулинов, лекарственных препаратов, токсинов и др.).

Количество эритроцитов у взрослого мужчины составляет 3,9-5,5*1012/л, а у женщин - 3,7-4,9*1012/л крови. Однако число эритроцитов у здоровых людей может варьировать в зависимости от возраста, эмоциональной и физической нагрузки, действия экологических факторов и др.

Форма и строение. Популяция эритроцитов неоднородна по их форме и размерам. В нормальной крови человека основную массу (80-90 %) составляют эритроциты двояковогнутой формы - дискоциты. Кроме того, имеются планоциты (с плоской поверхностью) и стареющие формы эритроцитов - шиповидные эритроциты, или эхиноциты (~6 %), куполообразные, или стоматоциты (~1-3 %), и шаровидные, или сфероциты (~1 %) (рис. 7.2). Процесс старения эритроцитов идет двумя путями - кренированием (образование зубцов на плазмолемме) или путем инвагинации участков плазмолеммы.

Обязательной составной частью популяции эритроцитов являются их молодые формы (1-5 %), называемые ретикулоцитами. В них сохраняются рибосомы и эндоплазматическая сеть, формирующие зернистые и сетчатые структуры, которые выявляются при специальной суправитальной окраске.

Плазмолемма. Плазмолемма эритроцита - белково-липидная клеточная мембрана. Она имеет хорошо развитый гликокаликс, образованный олигосахарами, входящими в состав гликолипидов, гликосфинголипидов и гликопротеинов мембраны. Распространены мембранные гликопротеины - гликофорины. С ними связывают антигенные различия между группами крови человека. Гликофорины обнаружены только в эритроцитах. В состав гликофорина входят остатки сиаловой кислоты, придающие отрицательный заряд поверхности эритроцита.

С внутренней стороны плазмолеммы эритроцита расположена группа белков цитоскелета.

Среди них белок спектрин формирует в примембранном пространстве сеть, которая прикрепляется к плазмолемме с помощью белков анкирина и белка полосы 3. Все это обеспечивает плазмолемме упругость и эластичность, а эритроциту - двояковогнутую форму.

Гемоглобин - это сложный белок (68 килодальтон), состоящий из 4 полипептидных цепей глобина и гема (железосодержащий порфирин), обладающий высокой способностью связывать кислород. В норме у человека содержится два типа гемоглобина - НbА и HbF. Эти гемоглобины различаются составом аминокислот в глобиновой (белковой) части.

У взрослых людей в эритроцитах преобладает НbА, составляя 98 %. HbF, или фетальный гемоглобин, составляет у взрослых около 2 % и преобладает у плодов. К моменту рождения ребенка HbF составляет около 80 %, а HbА только 20 %. Эти гемоглобины различаются составом аминокислот в глобиновой (белковой) части. В связи с этим сродство к кислороду у фетального гемоглобина выше, чем у гемоглобина взрослых. В результате кислород из крови матери легко переходит к фетальному гемоглобину плода.

При ряде заболеваний (гемоглобинозы, гемоглобинопатии) в эритроцитах появляются другие виды гемоглобинов, которые характеризуются изменением аминокислотного состава в белковой части гемоглобина.

В настоящее время выявлено более 150 видов аномальных гемоглобинов. Например, при серповидно-клеточной анемии имеет место генетически обусловленное повреждение в в-цепи гемоглобина - глутаминовая кислота заменена на аминокислоту валин. Такой гемоглобин обозначается как HbS. Эритроциты в условиях понижения парциального давления О2 приобретают форму серпов, полулуний.

Гемоглобин способен связывать О2 в легких, при этом образуется оксигемоглобин, который транспортируется ко всем органам и тканям и там отдает О2. В тканях выделяемая СО2 поступает в эритроциты и соединяется с Hb, образуя карбоксигемоглобин.

5.3 Кровяные пластинки (тромбоциты). Классификация по степени зрелости. Размеры, строение, функции

Тромбоциты (или кровяные пластинки) -- фрагменты цитоплазмы особых клеток красного костного мозга (мегакариоцитов).

Кровяные пластинки, тромбоциты, в свежей крови человека имеют вид мелких бесцветных телец округлой, овальной или веретеновидной формы размером 2-4 мкм. Они могут объединяться (агглютинироваться) в маленькие или большие группы. Количество их в крови человека колеблется от 2,0Ч109/л до 4,0Ч109/л. Кровяные пластинки представляют собой безъядерные фрагменты цитоплазмы, отделившиеся от мегакариоцитов - гигантских клеток костного мозга.

Тромбоциты в кровотоке имеют форму двояковыпуклого диска. При окраске мазков крови азуром II-эозином в кровяных пластинках выявляются более светлая периферическая часть - гиаломер и более темная, зернистая часть - грануломер, структура и окраска которых могут варьировать в зависимости от стадии развития кровяных пластинок.

В популяции тромбоцитов различают пять основных форм: 1) юные - с голубым (базофильным) гиаломером и единичными азурофильными гранулами в грануломере красновато-фиолетового цвета (1-5 %); 2) зрелые - со слабо-розовым (оксифильным) гиаломером и хорошо развитой азурофильной зернистостью в грануломере (88 %); 3) старые - с более темным гиаломером и грануломером (4 %); 4) дегенеративные - с серовато-синим гиаломером и плотным темно-фиолетовым грануломером (до 2 %); 5) гигантские формы раздражения - с розовато-сиреневым гиаломером и фиолетовым грануломером, размерами 4-6 мкм (2 %). Молодые формы тромбоцитов крупнее старых.

Плазмолемма имеет толстый слой гликокаликса (15-20 нм), образует инвагинации с отходящими канальцами, также покрытыми гликокаликсом. В плазмолемме содержатся гликопротеины, которые выполняют функцию поверхностных рецепторов, участвующих в процессах адгезии и агрегации кровяных пластинок.

Цитоскелет в тромбоцитах хорошо развит и представлен актиновыми микрофиламентами и пучками (по 10-15) микротрубочек, расположенными циркулярно в гиаломере и примыкающими к внутренней части плазмолеммы. Элементы цитоскелета обеспечивают поддержание формы кровяных пластинок, участвуют в образовании их отростков. Актиновые филаменты участвуют в сокращении объема (ретракции) образующихся кровяных тромбов.

В кровяных пластинках имеются две системы канальцев и трубочек, хорошо видных в гиаломере при электронной микроскопии. Первая - это открытая система каналов, связанная, как уже отмечалось, с инвагинациями плазмолеммы. Через эту систему выделяется в плазму содержимое гранул кровяных пластинок и происходит поглощение веществ. Вторая - это так называемая плотная тубулярная система, которая представлена группами трубочек с электронно-плотным аморфным материалом. Она имеет сходство с гладкой эндоплазматической сетью, образуется в комплексе Гольджи.

В грануломере выявлены органеллы, включения и специальные гранулы. Органеллы представлены рибосомами (в молодых пластинках), элементами эндоплазматической сети, комплексом Гольджи, митохондриями, лизосомами, пероксисомами. Имеются включения гликогена и ферритина в виде мелких гранул.

Специальные гранулы в количестве 60-120 составляют основную часть грануломера и представлены двумя главными типами. Первый тип: а-гранулы (альфа-гранулы) - это самые крупные (300-500 нм) гранулы, имеющие мелкозернистую центральную часть, отделенную от окружающей мембраны небольшим светлым пространством. В них обнаружены различные белки и гликопротеины, принимающие участие в процессах свертывания крови, факторы роста, литические ферменты.

Второй тип гранул - д-гранулы (дельта-гранулы) - представлен плотными тельцами размером 250-300 нм, в которых имеется эксцентрично расположенная плотная сердцевина. Главными компонентами гранул являются серотонин, накапливаемый из плазмы, и другие биогенные амины (гистамин, адреналин), Са2+, АДФ, АТФ в высоких концентрациях и до десяти факторов свертывания крови.

Кроме того, имеется третий тип мелких гранул (200-250 нм), представленный лизосомами (иногда называемыми л- гранулами), содержащими лизосомные ферменты, а также микропероксисомами, содержащими фермент пероксидазу.

Основная функция кровяных пластинок - участие в процессе свертывания крови - защитной реакции организма на повреждение и предотвращение потери крови. Разрушение стенки кровеносного сосуда сопровождается выделением из поврежденных тканей веществ (факторов свертывания крови), что вызывает прилипание (адгезию) тромбоцитов к базальной мембране эндотелия и коллагеновым волокнам сосудистой стенки. При этом через систему трубочек из тромбоцитов выходят плотные гранулы, содержимое которых приводит к образованию сгустка - тромба.

Одной из функций тромбоцитов является их участие в метаболизме серотонина. Тромбоциты - это практически единственные элементы крови, в которых, поступая из плазмы, накапливаются резервы серотонина. Связывание тромбоцитами серотонина происходит с помощью высокомолекулярных факторов плазмы крови и двухвалентных катионов с участием АТФ.

В процессе свертывания крови из разрушающихся тромбоцитов высвобождается серотонин, который действует на проницаемость сосудов и сокращение гладких миоцитов их стенки. Серотонин и продукты его метаболизма оказывают противоопухолевое и радиозащитное действие.

При иммунных реакциях тромбоциты активизируются и секретируют факторы роста и свертывания крови, вазоактивные амины и липиды, нейтральные и кислые гидролазы, принимающие участие в воспалении.

Продолжительность жизни тромбоцитов в среднем 9-10 сут. Стареющие тромбоциты фагоцитируются макрофагами селезенки.

5.4 Зернистые лейкоциты (гранулоциты). Классификация, их содержание, размеры, форма, строение, основные функции

К гранулоцитам относятся нейтрофильные, эозинофильные и базофильные лейкоциты. Они образуются в красном костном мозге, содержат специфическую зернистость в цитоплазме и имеют сегментированные ядра.

Нейтрофильные лейкоциты (или нейтрофилы) -- самая большая популяция лейкоцитов (65--75%.). Морфологические особенности нейтрофилов:

1) сегментированное ядро;

2) в цитоплазме мелкие гранулы, окрашивающиеся в слабооксифильный (розовый) цвет, среди которых можно выделить неспецифические гранулы -- разновидности лизосом, специфические гранулы. Органеллы у лейкоцитов не развиты. Размер в мазке составляет 10--12 мкм.

По степени зрелости нейтрофилы подразделяются на:

1) юные (метамиелоциты) -- 0--0,5%;

2) палочкоядерные -- 3--5%;

3) сегментоядерные (зрелые) -- 60--65%.

Увеличение процентного содержания юных и палочкоядерных форм нейтрофилов носит название сдвига лейкоцитарной формулы влево и является важным диагностическим показателем. Общее увеличение количества нейтрофилов в крови и появление юных форм наблюдается при различных воспалительных процессах в организме. В настоящее время по нейтрофильным лейкоцитам возможно определение половой принадлежности крови -- у женщин один из сегментов имеет околоядерный сателлит (или придаток) в виде барабанной палочки.

Продолжительность жизни нейтрофилов -- 8 дней, из них 8--12 ч они находятся в крови, а затем выходят в соединительную и эпителиальную ткани, где и выполняют основные функции.

Функции нейтрофилов:

1) фагоцитоз бактерий;

2) фагоцитоз иммунных комплексов («антиген -- антитело»);

3) бактериостатическая и бактериолитическая;

4) выделение кейлонов и регуляция размножения лейкоцитов.

Эозинофильные лейкоциты (или эозинофилы). Содержание в норме -- 1--5%. Размеры в мазках -- 12--14 мкм.

Морфологические особенности эозинофилов:

1) имеется двухсегментное ядро;

2) в цитоплазме отмечается крупная оксифильная (красная) зернистость;

3) другие органеллы развиты слабо.

Среди гранул эозинофилов выделяют неспецифические азурофильные гранулы -- разновидность лизосом, содержащую фермент пероксидазу и специфические гранулы, содержащие кислую фосфатазу. Органеллы у эозинофилов развиты слабо. По степени зрелости эозинофилы также подразделяются на юные, палочкоядерные и сегментоядерные, однако определение этих субпопуляций в клинических лабораториях производится редко.

К способам нейтрализации гистамина и серотонина относятся фагоцитоз и адсорбция этих биологически активных веществ на цитолемме, выделение ферментов, расщепляющих их внеклеточно, выделение факторов, препятствующих выбросу гистамина и серотонина.

Функции эозинофилов -- участия в иммунологических (аллергических и анафилактических) реакциях: угнетают (ингибируют) аллергические реакции посредством нейтрализации гистамина и серотонина.

Участием эозинофилов в аллергических реакциях объясняется их повышенное содержание (до 20--40% и более) в крови при различных аллергических заболеваниях (глистных инвазиях, бронхиальной астме, при раке и др.).

Продолжительность жизни эозинофилов -- 6--8 дней, из них нахождение в кровеносном русле составляет 3--8 ч.

Базофильные лейкоциты (или базофилы). Это наименьшая популяция зернистых лейкоцитов (0,5--1%), однако в общей массе в организме их имеется огромное количество. Размеры в мазке -- 11--12 мкм.

Морфология:

1) крупное слабо сегментированное ядро;

2) в цитоплазме содержатся крупные гранулы;

3) другие органеллы развиты слабо.

Функции базофилов -- участия в иммунных (аллергических) реакциях посредством выделения гранул (дегрануляции) и содержащихся в них вышеперечисленных биологически активных веществ, которые и вызывают аллергические проявления (отек ткани, кровенаполнение, зуд, спазм гладкой мышечной ткани и др.). Базофилы также обладают способностью к фагоцитозу.

5.5 Незернистые лейкоциты (агранулоциты). Классификация, их содержание, размеры, форма, строение, основные функции

К этой группе лейкоцитов относятся лимфоциты и моноциты. В отличие от гранулоцитов они не содержат в цитоплазме специфической зернистости, а их ядра не сегментированы.

Лимфоциты являются клетками иммунной системы.

Лимфоциты при участии вспомогательных клеток (макрофагов) обеспечивают иммунитет, т. е. защиту организма от генетически чужеродных веществ. Лимфоциты являются единственными клетками крови, способными при определенных условиях митотически делиться. Все остальные лейкоциты являются конечными дифференцированными клетками. Лимфоциты -- гетерогенная (неоднородная) популяция клеток.

По размерам лимфоциты подразделяются на:

1) малые (4,5--6 мкм);

2) средние (7--10 мкм);

3) большие (больше 10 мкм).

В периферической крови до 90% составляют малые лимфоциты и 10--12% -- средние. Большие лимфоциты в периферической крови в норме не встречаются. При электронно-микроскопическом исследовании малые лимфоциты можно подразделить на светлые и темные.

Малые лимфоциты характеризуются:

1) наличием крупного круглого ядра, состоящего в основном из гетерохроматина, особенно в мелких темных лимфоцитах;

2) узким ободком базофильной цитоплазмы, в которой содержатся свободные рибосомы и слабо выраженные органеллы -- эндоплазматическая сеть, единичные митохондрии и лизосомы.

Для средних лимфоцитов характерно:

1) более крупное и рыхлое ядро, состоящее из эухроматина в центре и гетерохроматина по периферии;

2) в цитоплазме по сравнению с малыми лимфоцитами более развиты эндоплазматическая сеть и комплекс Гольджи, больше митохондрий и лизосом.

По источникам развития лимфоциты подразделяются на:

1) Т-лимфоциты. Их образование и дальнейшее развитие связано с тимусом (вилочковой железой);

2) В-лимфоциты. Их развитие у птиц связано с особым органом (фабрициевой сумкой), а у млекопитающих и человека -- с пока точно не установленным ее аналогом.

Кроме источников развития, Т- и В-лимфоциты различаются между собой и по выполняемым функции. По функции:

1) В-лимфоциты и образующиеся из них плазмоциты обеспечивают гуморальный иммунитет, т. е. защиту организма от чужеродных корпускулярных антигенов (бактерий, вирусов, токсинов, белков и др.), содержащихся в крови, лимфотканевой жидкости;

2) Т-лимфоциты, которые по выполняемым функциям подразделяются на следующие субпопуляции: киллеры, хелперы, супрессоры.

Однако эта простая классификация устарела, и сейчас принято все лимфоциты классифицировать по наличию на их мембране рецепторов (CD). В соответствии с этим выделяют лимфоциты CD3, CD4, CD8 и т. д.

По продолжительности жизни лимфоциты подразделяются на:

1) короткоживущие (недели, месяцы) -- преимущественно В-лимфоциты;

2) долгоживущие (месяцы, годы) -- преимущественно Т-лимфоциты.

Моноциты -- наиболее крупные клетки крови (18--20 мкм), имеющие крупное бобовидное или подковообразное ядро и хорошо выраженную базофильную цитоплазму, в которой содержатся множественные пиноцитозные пузырьки, лизосомы и другие общие органеллы.

По своей функции -- фагоциты. Моноциты являются не вполне зрелыми клетками. Циркулируют в крови 2--3 суток, после чего покидают кровеносное русло, мигрируют в разные ткани и органы и превращаются в различные формы макрофагов, фагоцитарная активность которых значительно выше моноцитов.

Моноциты и образующиеся из них макрофаги объединяются в единую макрофагическую систему (или мононуклеарную фагоцитарную систему (МФС)).

5.6 Иммунокомпетентные клетки. Т-лимфоциты: классификации, субпопуляции, участие в иммунных реакциях, антигеннезависимая и антигензависимая бласттрансформация, пролиферация и дифференцировка

Т-лимфоциты, или тимусзависимые лимфоциты, образуются из стволовых клеток костного мозга, а созревают в тимусе, что и обусловило их название. Они преобладают в популяции лимфоцитов, составляя около 70 % циркулирующих лимфоцитов. Для Т- клеток, в отличие от В-лимфоцитов, характерен низкий уровень рецепторов иммуноглобулина в плазмолемме. Однако Т-клетки имеют специфические рецепторы, способные распознавать и связывать антигены, участвовать в иммунных реакциях. Основными функциями Т-лимфоцитов являются обеспечение реакций клеточного иммунитета и регуляция гуморального иммунитета (стимуляция или подавление дифференцировки В-лимфоцитов). Т-лимфоциты способны к выработке лимфокинов, которые регулируют деятельность В- лимфоцитов и других клеток в иммунных реакциях. Среди Т-лимфоцитов выявлено несколько функциональных групп: Т-хелперы, Т- супрессоры, Т-киллеры.

Т-к участвуют в реакциях клеточного иммунитета, обеспечивая разрушение (лизис) чужеродных клеток и собственных измененных клеток (например, опухолевых клеток). Рецепторы позволяют им распознавать белки вирусов и опухолевых клеток на их поверхности. При этом активизация Тк происходит под влиянием антигенов гистосовместимости на поверхности чужеродных клеток.

Главной функцией Тх является распознавание чужеродных антигенов (представляемых макрофагами), секреция интерлейкинов, стимулирующих В-лимфоциты и другие клетки для участия в иммунных реакциях.

Тс способны ингибировать активность Тх, В-лимфоцитов и плазмоцитов. Они участвуют в аллергических реакциях, реакциях гиперчувствительности. Тс подавляют дифференцировку В-лимфоцитов.

Одной из основных функций Т-лимфоцитов является продукция цитокинов, которые оказывают стимулирующее или тормозящее влияние на клетки, участвующие в иммунном ответе.

Натуральные киллеры образуют первую линию защиты против чужеродных клеток, действуют немедленно, быстро разрушая клетки. Нк в собственном организме разрушают опухолевые клетки и клетки, инфицированные вирусом. Тк образуют вторую линию защиты, так как для их развития из неактивных Т-лимфоцитов требуется время, поэтому они вступают в действие позже Нк.

Пре-Т-клетки мигрируют из костного мозга через кровь в центральный орган иммунной системы -- вилочковую железу (тимус). Еще в период эмбрионального развития в вилочковой железе создается микроокружение, имеющее значение для дифференцировки Т-лимфоцитов. В формировании микроокружения особая роль отводится ретикулоэпителиальным клеткам этой железы, способным к продукции ряда биологически активных веществ. Мигрирующие в вилочковую железу пре-Т-клетки приобретают способность реагировать на стимулы микроокружения. Пре-Т-клетки в вилочковой железе пролиферируют, трансформируются в Т- лимфоциты, несущие характерные мембранные антигены (CD4+, CD8+). Т-лимфоциты генерируют и «поставляют» в кровообращение и в тимусзависимые зоны периферических лимфоидных органов 3 типа лимфоцитов: Тк, Тх и Тс. Мигрирующие из вилочковой железы «девственные» Т-лимфоциты являются короткоживущими. Специфическое взаимодействие с антигеном в периферических лимфоидных органах служит началом процессов их пролиферации и дифференцировки в зрелые и долгоживущие клетки (Т- эффекторные и Т-клетки памяти), составляющие большую часть рециркулирующих Т-лимфоцитов.

Из вилочковой железы мигрируют не все клетки. Часть Т-лимфоцитов погибает. Гибель части лимфоцитов является генетически запрограммированной (апоптоз).

Антигеннезависимая пролиферация и дифференцировка генетически запрограммированы на образование клеток, способных давать специфический тип иммунного ответа при встрече с конкретным антигеном благодаря появлению на плазмолемме лимфоцитов особых «рецепторов». Она совершается в центральных органах иммунитета (тимус, костный мозг или фабрициева сумка у птиц) под влиянием специфических факторов, вырабатываемых клетками, формирующими микроокружение.

Антигензависимая пролиферация и дифференцировка Т- и В-лимфоцитов происходят при встрече с антигенами в периферических лимфоидных органах, при этом образуются эффекторные клетки и клетки памяти (сохраняющие информацию о действовавшем антигене).

Для Т-лимфоцитов характерно явление рециркуляции, т. е. выход из крови в ткани и возвращение по лимфатическим путям снова в кровь. Таким образом, они осуществляют иммунологический надзор за состоянием всех органов, быстро реагируя на внедрение чужеродных агентов.

5.7 Иммунокомпетентные клетки. В-лимфоциты: классификации, субпопуляции, рецепторы к антигенам, антигеннезависимая и антигензависимая бласттрансформация, пролиферация и дифференцировка

В-лимфоциты впервые были обнаружены в фабрициевой сумке птиц, поэтому и получили соответствующее название. Они образуются у эмбриона человека из стволовых клеток - в печени и костном мозге, а у взрослого - в костном мозге.

Их главная функция - участие в выработке антител, т. е. обеспечение гуморального иммунитета. Плазмолемма В-лимфоцитов содержит множество рецепторов иммуноглобулина. При действии антигенов В-лимфоциты способны к пролиферации и дифференцировке в плазмоциты - клетки, способные синтезировать и секретировать защитные белки - иммуноглобулины, которые поступают в кровь, обеспечивая гуморальный иммунитет.

В-лимфоциты являются основными клетками, участвующими в гуморальном иммунитете. У человека они образуются из СКК красного костного мозга, затем поступают в кровь и далее заселяют В-зоны периферических лимфоидных органов -- селезенки, лимфатических узлов, лимфоидные фолликулы многих внутренних органов. В крови их содержится 10--30% от всей популяции лимфоцитов.

Для В-лимфоцитов характерно наличие на плазмолемме поверхностных иммуноглобулиновых рецепторов (SIg или MIg) для антигенов.

При действии антигена В-лимфоциты в периферических лимфоидных органах активизируются, пролиферируют, дифференцируются в плазмоциты, активно синтезирующие антитела различных классов, которые поступают в кровь, лимфу и тканевую жидкость.

Предшественники В-клеток (пре-В-клетки) развиваются в дальнейшем у птиц в фабрициевой сумке, откуда произошло название В-лимфоциты, у человека и млекопитающих -- в костном мозге.

В период эмбриогенеза в центре фолликула фабрициевой сумки формируется мозговая зона, а на периферии (снаружи от мембраны) -- корковая зона, в которую, вероятно, мигрируют лимфоциты из мозговой зоны. В связи с тем что в сумке Фабрициуса у птиц образуются исключительно В-лимфоциты, она является удобным объектом для изучения строения и иммунологических характеристик этого вида лимфоцитов. Для ультрамикроскопического строения В-лимфоцитов характерно наличие в цитоплазме групп рибосом в виде розеток. Эти клетки имеют более крупные ядра и менее плотный хроматин, чем у Т-лимфоцитов, в связи с увеличением содержания эухроматина.

В-лимфоциты отличаются от других типов клеток способностью синтезировать иммуноглобулины. Зрелые В-лимфоциты экспрессируют Ig на клеточной мембране. Такие мембранные иммуноглобулины (MIg) функционируют как антигенспецифические рецепторы.

Дифференцированные В-лимфоциты поступают в периферические лимфоидные органы, где при действии антигенов происходят пролиферация и дальнейшая специализация В-лимфоцитов с образованием плазмоцитов и В-клеток памяти (ВП).

Различают антигеннезависимую и антигензависимую дифференцировку и специализацию В- и Т-лимфоцитов.

5.8 Макрофаги: свободные и фиксированные. Участие в иммунных реакциях, понятие о монокинах (медиаторах), кооперации иммунокомпетентных клеток

Эти клетки также называют макрофагами-гистиоцитами. По количественному содержанию в рыхлой соединительной ткани макрофаги занимают второе место после фибробластов. По сравнению с последними они имеют меньшие размеры клеточного тела (10-15 мкм), которое хорошо отграниченное от основного вещества. Форма разная: круглая, вытянутая или неправильная. Ядро также имеет меньшие размеры, не такую правильную форму, как у фибробласта, содержит больше гетерохроматина, выглядит плотным, окрашивается довольно интенсивно. Цитоплазма макрофагов базофильная, неоднородная, пятнистая, содержит много лизосом, фагосом, пиноцитозных пузырьков. Другие органеллы развиты умеренно. Плазмолемма макрофагов образует глубокие складки и длинные микроворсинки, с помощью которых эти клетки захватывают посторонние частицы. На поверхности плазмолеммы макрофага содержатся рецепторы для опухолевых клеток, эритроцитов, Т- и В- лимфоцитов, антигенов, иммуноглобулинов. Наличие рецепторов к иммуноглобулинам обеспечивает их участие в иммунных реакциях. К свободным макрофагам относятся макрофаги рыхлой соединительной ткани, или гистиоциты; макрофаги серозных полостей; макрофаги воспалительных экссудатов; альвеолярные макрофаги легких. Макрофаги способны перемещаться в организме. Группу фиксированных макрофагов составляют макрофаги костного мозга и костной ткани, селезенки, лимфатических узлов, внутриэпидермальные макрофаги, макрофаги ворсин плаценты, ЦНС.

Макрофаги играют важную роль как в естественном, так и в приобретенном иммунитете организма. Участие макрофагов в естественном иммунитете проявляется в их способности к фагоцитозу и в синтезе ряда активных веществ - фагоцитина, лизоцима, интерферона, пирогены, компонентов системы комплемента т.д., которые являются основными факторами естественного иммунитета; их роль в приобретенном иммунитете заключается в передаче антигена иммунокомпетентных клеток (лимфоцитам) после его превращения из корпускулярной формы в молекулярную (участие в кооперативной триклеточной системе иммунного ответа вместе с T- и В-лимфоцитами). Кроме того, макрофаги продуцируют медиаторы-монокины, способствующие специфической реакции на антигены и цитолитические факторы, избирательно разрушающие опухолевые клетки. Происходят макрофаги с промоноцитов красного костного мозга, то есть со стволовых гемопоэтических клеток, и завершают собой моноцитарный Гистогенетический ряд. Вместе с другими клетками того же происхождения они образуют так называемую макрофагическую систему организма.

К макрофагичной системы принадлежит совокупность всех клеток, которые способны захватывать из тканевой жидкости организма инородные частицы, погибшие клетки и неклеточные структуры, бактерии, и др. Фагоцитированный материал внутри клетки подвергается ферментативному расщеплению в лизосомном аппарате. Таким образом ликвидируются вредные для организма агенты, которые возникают местно или попадают извне. Эти клетки можно идентифицировать с помощью метода витального окрашивания, используя прижизненное введение в организм раствора трипанового синего, коллоидного серебра или китайской туши. Все названные коллоидные вещества фагоцитируют макрофагами благодаря тому, что образуют макромолекулярные агрегаты, а клетки становятся хорошо заметными на гистологическом препарате.

К клеткам макрофагичной системы относятся гистиоциты-макрофаги рыхлой соединительной ткани, свободные и фиксированные макрофаги кроветворных органов (так называемые дендритные клетки), звездчатые клетки синусоидальных капилляров печени (клетки Купфера), альвеолярные макрофаги легких (так называемые пылевые клетки), перитонеальные макрофаги, глиальные макрофаги нервной ткани (микроглия), остеокласты костной ткани, гигантские клетки инородных тел. Все они способны к активному фагоцитозу, имеют на поверхности рецепторы к иммуноглобулинам (благодаря чему способны к иммунному фагоцитозу), происходят из промоноцитов красного костного мозга и моноцитов крови. В отличие от макрофагов, которые Мечников назвал "профессиональными фагоцитами", способностью к факультативному фагоцитозу обладают другие виды клеток - фибробласты, ретикулярные клетки, эндотелиоциты, нейтрофильные лейкоциты. Но эти клетки не относятся к макрофагичной системе, поскольку они не могут осуществлять специфический иммунный фагоцитоз, а также отличаются своим происхождением.

Концепция фагоцитоза была впервые выдвинута Мечниковым. Он пришел к выводу, что фагоцитоз, который возник в эволюции как внутриклеточное пищеварение и закрепился за многими клетками, является важным защитным механизмом. Он обосновал целесообразность объединения таких клеток в одну систему и предложил назвать ее макрофагичной.

Макрофагичная система - мощный защитный аппарат, который принимает участие как в общих, так и местных защитных реакциях организма. В целостном организме макрофагичная система регулируется местными механизмами, а также нервной и эндокринной системами.

5.9 Лимфа. Лимфоплазма и форменные элементы. Связь с кровью, понятие о рециркуляции лимфоцитов

Лимфа представляет собой слегка желтоватую жидкость белковой природы, протекающую в лимфатических капиллярах и сосудах. Она состоит из лимфоплазмы и форменных элементов. По химическому составу лимфоплазма близка к плазме крови, но содержит меньше белков. Среди фракций белка альбумины преобладают над глобулинами. Часть белка составляют ферменты - диастаза, липаза и гликолитические ферменты. Лимфоплазма содержит также нейтральные жиры, простые сахара, NaCl, Na2CO3 и другие, а также различные соединения, в состав которых входят кальций, магний, железо.

Форменные элементы лимфы представлены главным образом лимфоцитами (98%), а также моноцитами и другими видами лейкоцитов, иногда в ней обнаруживаются эритроциты. Лимфа накапливается в лимфатических капиллярах тканей и органов, куда под влиянием различных факторов, в частности осмотического и гидростатического давления, из тканей постоянно поступают различные компоненты лимфоплазмы. Из капилляров лимфа перемещается в периферические лимфатические сосуды, по ним - в лимфатические узлы, затем в крупные лимфатические сосуды и вливается в кровь. Состав лимфы постоянно меняется. Различают лимфу периферическую (до лимфатических узлов), промежуточную (после прохождения через лимфатические узлы) и центральную (лимфа грудного и правого лимфатического протоков). Процесс лимфообразования тесно связан с поступлением воды и других веществ из крови в межклеточные пространства и образованием тканевой жидкости.

5.10 Унитарная теория кроветворения А. А. Максимова и ее современная трактовка

Основоположником современной унитарной теории кроветворения является отечественный гистолог Максимов. Еще в 1907 году Максимов утверждал, что все клетки крови развиваются из единой одной и той же родоначальной клетки; мало того, он назвал эту клетку -- морфологически это малый лимфоцит. Однако имеющиеся в то время методы исследований не позволяли экспериментально доказать верность этой теории. Максимов в ходе гемоцитопоэза клетки крови подразделял на 4 группы:

a. группа -- клетки с неограниченной возможностью превращений, т.е. родоначальная клетка, способная развиваться и превратиться в любой форменный элемент крови.

b. группа -- клетки с частично ограниченный способностью развиваться в ту или иную форму клеток крови. 3 группа -- клетки со строго ограниченной возможностью развития.

4 группа -- клетки крови не способные изменяться.

Последующие исследования показали верность унитарной теории кроветворения Максимова.

Современная схема кроветворения составлена в 1973 году Чертковым и Воробьевым. Согласно этой схеме все клетки крови в процессе гемоцитопоэза подразделены на 6 классов.

5.11 Этапы кроветворения в эмбриональный и постэмбриональный периоды развития и их биологической значение

Эмбриональный период гемопоэза

Он осуществляется в эмбриогенезе поэтапно, сменяя разные органы кроветворения. В соответствии с этим выделяют три этапа:

1) желточный;

2) гепатотимусолиенальный;

3) медуллотимусолимфоидный.

1. Желточный этап осуществляется в мезенхиме желточного мешка начиная со 2--3-й недели эмбриогенеза, с 4-й -- снижается и к концу 3-го месяца полностью прекращается.

Вначале в желточном мешке в результате пролиферации мезенхимальных клеток образуются так называемые кровяные островки, представляющие собой очаговые скопления отростчатых клеток.

Наиболее важными моментами желточного этапа являются:

1) образование стволовых клеток крови;

2) образование первичных кровеносных сосудов.

Несколько позже (на 3-й неделе) начинают формироваться сосуды в мезенхиме тела зародыша, однако они являются пустыми щелевидными образованиями. Довольно скоро сосуды желточного мешка соединяются с сосудами тела зародыша, и устанавливается желточный круг кровообращения. Из желточного мешка по этим сосудам стволовые клетки мигрируют в тело зародыша и заселяют закладки будущих кроветворных органов (в первую очередь печень), в которых затем и осуществляется кроветворение.

2. Гепатотимусолиенальный этап гемопоэза осуществляется вначале в печени, несколько позже в тимусе (вилочковой железе), а затем и в селезенке. В печени происходит (только экстраваскулярно) в основном миелоидное кроветворение начиная с 5-й недели и до конца 5-го месяца, а затем постепенно снижается и к концу эмбриогенеза полностью прекращается. Тимус закладывается на 7--8-й неделе, а несколько позже в нем начинается Т-лимфоцитопоэз, который продолжается до конца эмбриогенеза, а затем и в постнатальном периоде до его инволюции (в 25--30 лет). Селезенка закладывается на 4-й неделе, с 7--8-й недели она заселяется стволовыми клетками, и в ней начинается универсальное кроветворение, т. е. и миело- и лимфопоэз. Особенно активно кроветворение протекает в селезенке с 5_го по 7_й месяцы, а затем миелоидное кроветворение постепенно угнетается, и к концу эмбриогенеза (у человека) оно полностью прекращается.

3. Медуллотимусолимфоидный этап кроветворения. Закладка красного костного мозга начинается со 2-го месяца, кроветворение в нем начинается с 4-го месяца, а с 6-го месяца он является основным органом миелоидного и частично лимфоидного кроветворения, т. е. является универсальным кроветворным органом.

В это же время в тимусе, селезенке и в лимфатических узлах осуществляется лимфоидное кроветворение.

В результате последовательной смены органов кроветворения и совершенствования процесса кроветворения формируется кровь как ткань, которая у новорожденных имеет существенные отличия от крови взрослых людей.

Постэмбриональный период кроветворения

Осуществляется в красном костном мозге и лимфоидных органах (тимусе, селезенке, лимфоузлах, миндалинах, лимфоидных фолликулах).

Сущность процесса кроветворения заключается в пролиферации и поэтапной дифференцировке стволовых клеток в зрелые форменные элементы крови.

В схеме кроветворения представлены два ряда кроветворения:

1) миелоидное;

2) лимфоидное.

Каждый вид кроветворения подразделяется на разновидности (или ряды) кроветворения. Миелопоэз:

эритроцитопоэз (или эритроцитарный ряд);

гранулоцитопоэз (или грануляцитарный ряд);

моноцитопоэз (или моноцитарный ряд);

тромбоцитопоэз (или тромбоцитарный ряд). Лимфопоэз:

Т-лимфоцитопоэз (или Т-лимфоцитарный ряд);

В-лимфоцитопоэз;

плазмоцитопоэз.

В процессе поэтапной дифференцировки стволовых клеток в зрелые форменные элементы крови в каждом ряду кроветворения образуются промежуточные типы клеток, которые в схеме кроветворения составляют классы клеток.

Всего в схеме кроветворения различают шесть классов клеток.

1. класс -- стволовые клетки. По морфологии клетки этого класса соответствуют малому лимфоциту. Эти клетки являются полипотентными, т. е. способны дифференцироваться в любой форменный элемент крови. Направление дифференцировки зависит от содержания форменных элементов в крови, а также от влияния микроокружения стволовых клеток -- индуктивных влияний стромальных клеток костного мозга или другого кроветворного органа. Поддержание популяции стволовых клеток осуществляется следующим образом. После митоза стволовой клетки образуются две: одна вступает на путь дифференцировки до форменного элемента крови, а другая принимает морфологию лимфоцита малого размера, остается в костном мозге, является стволовой. Деление стволовых клеток происходит очень редко, их интерфаза составляет 1--2 года, при этом 80% стволовых клеток находятся в состоянии покоя и только 20% -- в митозе и последующей дифференцировке. Стволовые клетки также получили название колинеобразующие единицы, так как каждая стволовая клетка дает группу (или клон) клеток.

2. класс -- полустволовые клетки. Эти клетки являются ограниченно полипотентными. Выделяют две группы клеток -- предшественницы миелопоэза и лимфопоэза. По морфологии похожи на малый лимфоцит. Каждая из этих клеток дает клон миелоидного или лимфоидного ряда. Деление происходит раз в 3--4 недели. Поддержание популяции осуществляется аналогично полипотентным клеткам: одна клетка после митоза вступает в дальнейшую дифференцировку, а вторая остается полустволовой.

3. класс -- унипотентные клетки. Данный класс клеток является поэтинчувствительными -- предшественниками своего ряда кроветворения. По морфологии они также соответствуют малому лимфоциту и способны к дифференцировке только в один форменный элемент крови. Частота деления данных клеток зависит от содержания в крови поэтина -- биологически активного вещества, специфического для каждого ряда кроветворения,-- эритропоэтина, тромбоцитопоэтина. После митоза клеток данного класса одна клетка вступает в дальнейшую дифференцировку до форменного элемента, а вторая поддерживает популяцию клеток.

Клетки первых трех классов объединяются в класс морфологически не идентифицируемых клеток, так как все они по морфологии напоминают малый лимфоцит, однако способности их к развитию различны.

4. класс -- бластные клетки. Клетки этого класса отличаются по морфологии от всех остальных. Они крупные, имеют крупное рыхлое ядро (эухроматин) с 2--4 ядрышками, цитоплазма базофильна за счет большого количества свободных рибосом. Эти клетки часто делятся, и все дочерние вступают в дальнейшую дифференцировку. Бласты различных рядов кроветворения можно идентифицировать по цитохимическим свойствам.

5. класс -- созревающие клетки. Этот класс характерен для своего ряда кроветворения. В этом классе может быть несколько разновидностей переходных клеток от одной (пролимфоцит, промоноцит) до пяти в эритроцитарном ряду. Некоторые созревающие клетки в небольшом количестве могут попадать в периферический кровоток, например ретикулоциты или палочкоядерные лейкоциты.

6. класс -- зрелые форменные элементы. К этому классы относятся эритроциты, тромбоциты и сегментоядерные гранулоциты. Моноциты не являются окончательно дифференцированными клетками. Они затем покидают кровеносное русло и дифференцируются в конечный класс -- макрофаги. Лимфоциты дифференцируются в конечный класс при встрече с антигенами, при этом они превращаются в бласты и снова делятся.

Совокупность клеток, составляющих линию дифференцировки стволовой клетки в определенный форменный элемент, образует дифферон (или гистогенетический ряд). Например, эритроцитарный дифферон составляют:

1) стволовая клетка (I класс);

2) полустволовая клетка -- предшественница миелопоэза (II класс);

3) унипотентная эритропоэтинчувствительная клетка (III класс);

4) эритробласт (IV класс);

5) созревающая клетка -- пронормоцит, базофильный нормоцит, полихроматофильный нормоцит, оксифильный нормоцит, ретикулоцит (V класс);

6) эритроцит (VI класс).

В процессе созревания эритроцитов в V классе происходят синтез и накопление гемоглобина, редукция органелл и клеточного ядра. В норме пополнение эритроцитов осуществляется за счет деления и дифференцировки созревающих клеток -- пронормоцитов, базофильных и полихроматофильных нормоцитов.

Такой тип кроветворения получил название гомопластического. При выраженной кровопотере пополнение эритроцитов осуществляется не только усилением созревающих клеток, но и клеток IV, III, II и даже I класса -- происходит гетеропластический тип кроветворения.

5.12 Понятие о стволовых и полустволовых клетках, дифферонах. Взаимоотношения стромальных и кроветворных элементов

Общий источник развития всех форменных элементов крови - стволовые клетки крови, которые образуют самоподдерживающуюся популяцию полипотентных клеток. Это положение впервые сформулировано профессором А.А.Максимовым в унитарной теории кроветворения.

Полипотентные стволовые клетки образуют первый класс полипотентных клеток. Всего же на основании способности к самообновлению, клеточному делению и образованию форменных элементов различных типов выделяют шесть классов кроветворных клеток. Три первые класса объединяют в группу так называемых морфологически нераспознаваемых клеток, поскольку они фенотипически идентичны и похожи на малые лимфоциты. Их диаметр 8-10 мкм. Имеют круглую или неправильную форму, круглое крупное ядро с 1-2 ядрышками. Цитоплазма узким ободком окружает ядро. Точная идентификация клеток может быть произведена только иммуноцитохимически по антигенам на клеточной поверхности.

Полустволовые клетки (их также называют колониеобразующие единицы (КОЕ)). Частично детерминированные, полипотентные клетки-предшественники, образующиеся при делении СКК. Их два типа:

1) клетки -- предшественники для эритроцитов, гранулоцитов, моноцитов и тромбоцитов (КОЕ-ГЭММ)

2) клетки предшественники для лимфоцитов (КОЕ-Л).

По мере развития тканей из материала эмбриональных зачатков возникает клеточное сообщество, в котором выделяются клетки различной степени зрелости. Совокупность клеточных форм, составляющих линию дифференцировки, называют диффероном, или гистогенетическим рядом. Дифферон составляют несколько групп клеток: 1) стволовые клетки, 2) клетки-предшественники (полустволовые), 3) зрелые дифференцированные клетки, 4) стареющие и отмирающие клетки.

...

Подобные документы

  • Основные типы тканей. Разделы гистологии как учебной дисциплины. Этапы развития гистологии: домикроскопический, микроскопический и современный. Ш. Бонне как теоретик преформизма, учение о рекапитуляции. Вклад П.П. Иванова в развитие эмбриологии.

    презентация [1,4 M], добавлен 15.05.2012

  • Патологические изменения клеток эпителиальных тканей шейки матки под влиянием вируса папилломы человека. Структура генома вируса, его роль в механизмах стимулирования пролиферации и индукции неопластической трансформации. Изменения клеток эпителия.

    дипломная работа [4,9 M], добавлен 31.01.2018

  • Ознакомление с понятием, сущностью и процессами метаболизма. Рассмотрение особенностей создания молекул аминокислот, углеводов, липидов и нуклеиновых кислот. Образование всех клеток и тканей, выделение энергии в процессе обмена веществ в организме.

    презентация [507,1 K], добавлен 02.06.2015

  • Уровни организации живой материи. Понятие и предмет гистологии (учения о тканях). Периоды развития науки. Практическое значение эмбриологии для медицины. Первые представления о внутриутробном развитии плода. Использование световой микроскопии в цитологии.

    презентация [470,9 K], добавлен 10.05.2014

  • Цитокины - группа полипептидных медиаторов межклеточного взаимодействия, участвующих в формировании и регуляции защитных реакций организма, а также регенерации тканей; их свойства и функции. Рассмотрение классификации по биологическим свойствам.

    презентация [344,9 K], добавлен 13.11.2014

  • Рассмотрение роли нервной системы в регуляции функций организма. Характеристика строения и классификации (афферентные, эффекторные, ассоциативные) нейронов. Ознакомление с глиальными клетками (формирование миелиовой оболочки). Изучение состава синапса.

    контрольная работа [4,2 M], добавлен 26.02.2010

  • Изолированные иммунокомпетентные клетки. Изучение строения первичных и вторичных лимфатических органов, перемещение клеток между ними. Клиническое значение строения лимфоидных тканей для иммунотерапии. Изучение расположения селезенки, вилочковой железы.

    презентация [717,0 K], добавлен 20.11.2014

  • Рассмотрение понятия ткани как системы клеток и неклеточных структур, обладающих общностью развития, строения и функции. Пространственная организация микроворсинки в апикальной части каемчатой клетки. Классификация и морфология эпителиальных пластов.

    реферат [2,2 M], добавлен 09.09.2012

  • Предмет и задачи медицинской генетики. Рассмотрение вопроса искусственного оплодотворения. Изучение основных положений биоэтики, "Основ законодательства по охране здоровья". Повышение информированности населения, касающейся проблем генетики и технологий.

    презентация [954,7 K], добавлен 15.04.2015

  • История открытия витамина A и его химической структуры. Механизм образования зрительного сигнала. Участие витамина в антиоксидантной защите организма. Поддержание и восстановление эпителиальных тканей. Изучение антиоксидантного действия каротина.

    презентация [711,1 K], добавлен 29.02.2016

  • Анализ исторического развития знаний о заболевании. Отражены основные этапы развития научных представлений о подагре и причинах её возникновения. Приведены теории патогенеза, начиная со времен Гиппократа и заканчивая современными представлениями.

    статья [21,5 K], добавлен 06.09.2017

  • Ознакомление с клетками крови, которые в основном представлены эритроцитами и лейкоцитами. Определение и анализ особенностей обмена веществ эритроцитов. Изучение системы антиоксидантной защиты организма. Рассмотрение схематического изображения почки.

    презентация [3,3 M], добавлен 09.04.2018

  • Понятие о соединительных тканях в организме, их особые виды, функции и классификация. Важнейшее отличие хрящевой ткани от костной и большинства других типов тканей. Общая схема строения. Изучение соединительной ткани как в норме, так и при патологии.

    презентация [2,0 M], добавлен 15.09.2013

  • Изучение анатомии, цитологии и гистологии печени, ее роль в метаболизме. Биохимические показатели функции печени, их клиническое значение. Нормы билирубина в крови. Гемолитическая болезнь новорожденных. Дефицит липотропных веществ. Гипоонкотические отеки.

    презентация [1,3 M], добавлен 22.06.2015

  • Задачи ферментов как веществ биологического происхождения, ускоряющих химические реакции. Организованная последовательность процессов обмена веществ. Особенности ферментативного катализа. Лекарственные препараты: ингибиторы и активаторы ферментов.

    презентация [2,9 M], добавлен 27.10.2014

  • Рассмотрение понятия и структуры органа зрения. Изучение строения зрительного анализатора, глазного яблока, роговицы, склеры, сосудистой оболочки. Кровоснабжение и иннервация тканей. Анатомия хрусталика и зрительного нерва. Веки, слезные органы.

    презентация [11,0 M], добавлен 08.09.2015

  • Рассмотрение классификации ядовитых веществ по происхождению (ботаническая, зоологическая, химическая систематика), общности основного симптома, локализации токсического процесса. Изучение основных лечебно-профилактических мероприятий при отравлении.

    реферат [26,0 K], добавлен 26.04.2010

  • Направления создания новых лекарственных веществ. Фракции каменноугольной смолы. Получение лекарственных веществ из растительного и животного сырья, биологического синтеза. Методы выделения биологически активных веществ. Микробиологический синтез.

    реферат [43,7 K], добавлен 19.09.2010

  • Ознакомление с историей открытия и свойствами лазеров; примеры использования в медицине. Рассмотрение строения глаза и его функций. Заболевания органов зрения и методы их диагностики. Изучение современных методов коррекции зрения с помощью лазеров.

    курсовая работа [4,3 M], добавлен 18.07.2014

  • Изучение химиотерапевтических веществ, объединённых в группу антибиотиков. Действие лекарств, образуемых при биосинтезе микроорганизмов. Исследование стратегии антибактериальной терапии и путей преодоления резистентности микроорганизмов к антибиотикам.

    презентация [5,7 M], добавлен 08.06.2017

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.