Предмет гистологии
Изучение строения органелл, участвующих в биосинтезе веществ в клетках. Анализ биологического значения оплодотворения. Ознакомление с современными представлениями о дифферонах, "тканевых мозаиках". Рассмотрение классификации эпителиальных тканей.
Рубрика | Медицина |
Вид | шпаргалка |
Язык | русский |
Дата добавления | 24.05.2021 |
Размер файла | 624,9 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
В отростках отмечается движение нейроплазмы от перикариона к нервным окончаниям (прямой ток), а также от терминалей к перикаринону (ретроградный ток). При этом в аксонах различают прямой быстрый транспорт (5--10 мм/ч) и прямой медленный (1-- 3 мм/сут). Транспорт веществ в дендритах -- 3 мм/ч.
Классификация нейроцитов
Нервные клетки классифицируются:
по морфологии;
по функции.
По морфологии по количеству отростков подразделяются на:
униполярные (псевдоуниполярые) -- с одним отростком;
биполярные -- с двумя отростками;
мультиполярные -- более двух отростков. По функции подразделяются на:
афферентные (чувствительные);
эфферентные (двигательные, секреторные);
ассоциативные (вставочные);
секреторные (нейроэндокринные).
8.3 Нейроглия. Источники происхождения, классификация, функции
Клетки нейроглии являются вспомогательными клетками нервной ткани и выполняют следующие функции:
1) опорную;
2) трофическую;
3) разграничительную;
4) секреторную;
5) защитную и др.
Глиальные клетки по своей морфологии также являются отростчатыми клетками, не одинаковыми по величине, форме и количеству отростков. Различают глию центральной и периферической нервной системы. Клетки глии центральной нервной системы делятся на макроглию (глиоциты) и микроглию. Макроглия развивается из глиобластов нервной трубки (нейроэктодермы). К макроглии относятся эпендимоциты, астроциты и олигодендроциты. Глия периферической нервной системы в отличие от макроглии ЦНС происходит из нервного гребня (из мезенхимы). К периферической нейроглии относятся нейролеммоциты (шванновские клетки) и ганглионарные глиоциты (сателлитные глиоциты).
Эпендимоциты имеют строго ограниченную локализацию: выстилают полости центральной нервной системы (центральный канал спинного мозга, желудочки и водопровод головного мозга). По своей морфологии они несколько напоминают эпителиальную ткань, так как образуют выстилку полостей мозга. Эпендимоциты имеют почти призматическую форму, и в них различают апикальный и базальный полюса. Своими боковыми поверхностями они связаны между собой посредствам десмосомных соединений.
На апикальной поверхности каждого эпиндимоцита расположены реснички, за счет колебаний которых обеспечивается движение цереброспинальной жидкости в полостях мозга.
Таким образом, эпендимоциты выполняют следующие функции нервной системе:
1) разграничительную (образуя выстилку полостей мозга);
2) секреторную;
3) механическую (обеспечивают движение церебральной жидкости);
4) опорную (для нейроцитов);
5) барьерную (участвуют в образовании поверхностной глиальной пограничной мембраны).
Астроциты -- клетки с многочисленными отростками, напоминающими в совокупности форму звезды, откуда и происходит их название. По особенностям строения их отростков астроциты подразделяются на:
1) протоплазматические (короткие, но широкие и сильно ветвящиеся отростки);
2) волокнистые (тонкие, длинные, слабо ветвящиеся отростки).
Протоплазматические астроциты выполняют опорную и трофическую функции для нейроцитов серого вещества.
Волокнистые астроциты осуществляют опорную функцию для нейроцитов и их отростков, так как их длинные, тонкие отростки образуют глиальные волокна. Кроме того, терминальные расширения отростков волокнистых астроцитов образуют периваскулярные (вокругсосудистые) глиальные пограничные мембраны, являющиеся одним из структурных компонентов гематоэнцефалического барьера.
Олигодендроциты -- малоотростчатые клетки, самая распространенная популяция глиоцитов. Локализуются они преимущественно в периферической нервной системы и в зависимости от области локализации подразделяются на:
1) мантийные глиоциты (окружают тела нервных клеток в нервных и вегетативных ганглиях;
2) леммоциты, или шванновские клетки (окружают отростки нервных клеток, вместе с которыми образуют нервные волокна);
3) концевые глиоциты (сопровождают концевые ветвления дендритов чувствительных нервных клеток).
Все разновидности олигодендроцитов, окружая тела, отростки и окончания нервных клеток, выполняют для них опорную, трофическую, а также барьерную функции, изолируя нервные клетки от лимфоцитов.
Микроглия представлена мелкими отростчатыми клетками, выполняющими защитную функцию -- фагоцитоз. Нейролеммоциты формируют оболочки отростков нервных клеток в нервных волокнах периферической нервной системы. Ганглионарные глиоциты окружают тела нейронов в нервных узлах и участвуют в обмене веществ нейронов.
8.4 Нервные волокна миелиновые и безмиелиновые. Нерв как орган. Особенности регенерации нервных волокон
Нервные волокна являются не самостоятельными структурными элементами нервной ткани, а представляют собой комплексные образования, включающие следующие элементы:
1) отростки нервных клеток (осевые цилиндры);
2) глиальные клетки (леммоциты, или шванновские клетки);
3) соединительно-тканную пластинку (вязальную пластинку).
Главной функцией нервных волокон является проведение нервных импульсов. При этом отростки нервных клеток (осевые цилиндры) проводят нервные импульсы, а глиальные клетки (леммоциты) способствуют этому проведению.
По особенностям строения и функции нервные волокна подразделяются на две разновидности:
1) безмиелиновые;
2) миелиновые.
Строение и функциональные особенности безмиелинового нервного волокна. Безмиелиновое нервное волокно представляет собой цепь леммоцитов, в которую вдавлено несколько (5--20) осевых цилиндров. Каждый осевой цилиндр прогибает цитолемму леммоцита и как бы погружается в его цитоплазму.
При этом осевой цилиндр окружен цитолеммой леммоцита, а ее сближенные участки составляют мезаксон. Мезаксон в безмиелиновых нервных волокнах не играет существенной функциональной роли.
По своему строению безмиелиновые нервные волокна относятся к волокнам кабельного типа. Несмотря на это, они тонкие (5--7 мкм) и проводят нервные импульсы очень медленно (1-2 м/с).
Строение миелинового нервного волокна. Миелиновое нервное волокно имеет те же структурные компоненты, что и безмиелиновое, но отличается рядом особенностей:
1) осевой цилиндр один и погружается в центральную часть цепи леммоцита;
2) мезаксон длинный и закручен вокруг осевого цилиндра, образуя миелиновый слой;
3) цитоплазма и ядро леммоцитов сдвигаются на периферию и составляют нейролемму миелинового нервного волокна;
4) на периферии расположена базальная пластинка.
На поперечном сечении миелинового нервного волокна видны следующие структурные элементы:
1) осевой цилиндр;
2) миелиновый слой;
3) неврилемма;
4) базальная пластинка.
Поскольку основу любой цитолеммы составляет билипидный слой, то миелиновую оболочку миелинового нервного волокна (закрученный мезаксон) образуют наслоения липидных слоев, интенсивно окрашивающихся в черный цвет осмиевой кислотой.
По ходу миелинового нервного волокна видны границы соседних леммоцитов -- узловые перехваты (перехваты Ранвье), а также участки между двумя перехватами (межузловые сегменты), каждый из которых соответствует протяженности одного леммоцита. В каждом межузловом сегменте отчетливо прослеживаются насечки миелина -- прозрачные участки, в которых содержится цитоплазма леммоцита между витками мезаксона.
Высокая скорость проведения нервных импульсов по миелиновым нервным волокнам объясняется сальтаторным способом проведения нервных импульсов: скачками от одного перехвата к другому.
Реакция нервных волокон на разрыв или пересечение. После разрыва или пересечения нервного волокна в нем осуществляются процессы дегенерации и регенерации.
Поскольку нервное волокно представляет собой совокупность нервных и глиальных клеток, то после его повреждения отмечается реакция (как в нервных, так и в глиальных клетках).
После пересечения наиболее заметные изменения проявляются в дистальном отделе нервного волокна, где отмечается распад осевого цилиндра, т. е. дегенерация отсеченного от тела участка нервной клетки. Леммоциты, окружающие этот участок осевого цилиндра, не погибают, а округляются, пролиферируют и образуют тяж глиальных клеток по ходу распавшегося нервного волокна. При этом эти глиальные клетки фагоцитируют фрагменты распавшегося осевого цилиндра и его миелиновую оболочку.
В перикарионе нервной клетки с отсеченным отростком проявляются признаки раздражения: набухание ядра и сдвиг его на периферию клетки, расширение перинуклеарного пространства, дегрануляцию мембран зернистой ЭПС, вакуолизацию цитоплазмы и др.
В проксимальном отделе нервного волокна на конце осевого цилиндра образуется расширение -- колба роста, которая постепенно врастает в тяж глиальных клеток на месте погибшего дистального участка этого же волокна. Глиальные клетки окружают отрастающий осевой цилиндр и постепенно трансформируются в леммоциты. В результате этих процессов происходит регенерация нервного волокна со скоростью 1--4 мм в сутки. Осевой цилиндр, подрастая к концевым глиоцитам распавшегося нервного окончания, разветвляется и формирует с помощью глиальных клеток концевой аппарат (двигательное или чувствительное окончание). В результате регенерации нервного волокна и нервного окончания восстанавливается иннервация нарушенного участка (реиннервация), что приводит к восстановлению его функций. Следует подчеркнуть, что необходимым условием регенерации нервного волокна является четкое сопоставление проксимального и дистального участков поврежденного нервного волокна. Это достигается сшиванием концом перерезанного нерва.
Не следует смешивать понятия «нервное волокно» и «нерв».
Нерв -- комплексное образование, состоящее из:
нервных волокон;
рыхлой волокнистой соединительной ткани, образующей оболочки нерва. Среди оболочек нерва различают:
эндоневрий (соединительную ткань, окружающую отдельные нервные волокна);
периневрий (соединительную ткань, окружающую пучки нервных волокон);
эпиневрий (соединительную ткань, окружающую нервный ствол).
В названных оболочках проходят кровеносные сосуды, обеспечивающие трофику нервных волокон.
8.5 Нервные окончания: понятие, классификация. Строение рецепторных окончаний
Нервные окончания (или концевые нервные аппараты). Представляют собой окончания нервных волокон. Если осевой цилиндр нервного волокна является дендритом чувствительной нервной клетки, то его концевой аппарат образует рецептор. Если осевой цилиндр является аксоном нервной клетки, то его концевой аппарат образует эффекторное или синаптическое окончание. Следовательно, нервные окончания подразделяются на три основные группы:
эффекторные (двигательные или секреторные);
рецептурные (чувствительные);
синаптические.
Рецепторные окончания (или рецепторы). Представляют собой специализированные концевые аппараты дендритов чувствительных нейронов, главным образом псевдоуниполярных нервных клеток спинальных ганглиев и черепных нервов, а также некоторых вегетативных нейринов (клеток II типа Догеля).
Рецепторные нервные окончания классифицируются по нескольким признакам:
по локализации:
а) интеророцепторы (рецепторы внутренних органов);
б) экстрорецепторы (воспринимают внешние раздражители: репетиры кожи, органов чувств); в) проприорецепторы (локализуются в аппарате движения);
по специфичности восприятия (по модальности): а) хеморецепторы;
б) механорецепторы; в) барорецепторы;
г) терморецепторы (тепловые, холодовые);
по строению: а) свободные;
б) несвободные (инкапсулированные, неинкапсулированные).
8.6 Нервные окончания: понятие, классификация. Строение эффекторных окончаний
Двигательное нервное окончание -- концевой аппарат аксона на поперечно-полосатом мышечном волокне или на миоците.
Двигательное нервное окончание на поперечно-полосатом мышечном волокне носит также название моторной бляшки. В нем различают три части:
1) нервный полюс;
2) синаптическую щель;
3) мышечный полюс.
В каждом терминальном ветвлении аксона содержатся следующие структурные элементы:
1) пресинаптическая мембрана;
2) синаптические пузырьки с медиатором (ацетилхолином);
3) скопление митохондрий с продольными кристами.
Мышечный полюс (или полотна моторной бляшки) включает:
1) постсинаптическую мембрану -- специализированный участок плазмолеммы миосимпласта, содержащий белки-рецепторы к ацетилхолину;
2) участок саркоплазмы миосимпласта, в котором отсутствуют миофибриллы и содержится скопление ядер и саркосом.
Сходное строение имеют секреторные нервные окончани. Они представляют собой концевые утолщения терминалей или утолщения по ходу нервного волокна, содержащие пресинаптические пузырьки, главным образом холинергические.
Синаптическая щель -- пространство в 50 нм между пре- и постсинаптическими мембранами, в котором содержится фермент ацетилхолинэстераза.
8.7 Синапсы
Синапсы - это специализированные межклеточные контакты, предназначенные для передачи импульса с одного нейрона на другой или на мышечные и железистые структуры. Синапсы обеспечивают поляризацию проведения импульса по цепи нейронов, т. е. определяют направление проведения импульса. Если раздражать аксон электрическим током, импульс пойдет в обоих направлениях, но импульс, идущий в сторону тела нейрона и его дендритов, не может быть передан на другие нейроны. Только импульс, достигающий терминалей аксона, с помощью синапсов может передать возбуждение на другой нейрон, мышечную или железистую клетку. В зависимости от способа передачи импульса синапсы могут быть химическими или электрическими (электротоническими).
Межнейрональные синапсы
В зависимости от локализации окончаний терминальных веточек аксона первого нейрона различают аксодендритные, аксошипиковый, аксосоматические и аксоаксональные синапсы.
Химические синапсы передают импульс на другую клетку с помощью специальных биологически активных веществ - нейромедиаторов, находящихся в синаптических пузырьках. Терминаль аксона представляет собой пресинаптическую часть, а область второго нейрона, или другой иннервируемой клетки, с которой она контактирует, - постсинаптическую часть.
В пресинаптической части находятся синаптические пузырьки, многочисленные митохондрии и отдельные нейрофиламенты. Форма и содержимое синаптических пузырьков связаны с функцией синапса. Например, округлые прозрачные пузырьки диаметром 30-50 нм присутствуют в синапсах, где передача импульса совершается с помощью ацетилхолина (холинергические синапсы). Холинергическими являются парасимпатические и преганглионарные симпатические синапсы, аксомышечные синапсы и некоторые синапсы ЦНС. В синапсах, в которых в качестве нейромедиатора используется норадреналин (адренергические синапсы), имеются синаптические пузырьки диаметром 50-90 нм с электронно-плотной сердцевиной диаметром 15-25 нм. Норадреналин является медиатором постганглионарных симпатических синапсов. Ацетилхолин и норадреналин - наиболее распространенные медиаторы, но существует и множество других. Различают низкомолекулярные, т. е. с небольшой относительной молекулярной массой, нейромедиаторы (ацетилхолин, норадреналин, дофамин, глицин, гамма-аминомасляная кислота, серотонин, гистамин, глютамат) и нейропептиды: опиоидные (эндорфины, энкефалины), вещество Р и др. Дофамин, глицин и гамма-аминомасляная кислота являются медиаторами тормозящих синапсов. Вырабатывающиеся в головном мозге эндорфины и энкефалины являются ингибиторами восприятия боли. Однако большинство медиаторов и соответственно синапсов являются возбуждающими. Область синаптического контакта между двумя нейронами состоит из пресинаптической мембраны, синаптической щели и постсинаптической мембраны.
Пресинаптическая мембрана - это плазмолемма клетки, передающей импульс. В ней обнаруживаются участки утолщения - активные зоны, в которых происходит экзоцитоз нейромедиатора. Зоны расположены напротив скоплений рецепторов в постсинаптической мембране. Плазмолемма в активной зоне содержит потенциалзависимые Са2+-каналы. При деполяризации мембраны каналы открываются, что способствует экзоцитозу нейромедиатора.
Синаптическая щель между пре- и постсинаптической мембранами имеет ширину 20-30 нм. Мембраны прочно прикреплены друг к другу в синаптической области филаментами, пересекающими синаптическую щель.
Постсинаптическая мембрана - это участок плазмолеммы клетки, который содержит рецепторы нейромедиатора, ионные каналы. Здесь обнаруживаются постсинаптические уплотнения толщиной 20-70 нм в виде однородного электронно-плотного образования или отдельных телец округлой формы. Уплотнения состоят из филаментозно-гранулярной основы, которая объединяется с постсинаптическим цитоскелетом.
Электрические, или электротонические, синапсы в нервной системе млекопитающих встречаются относительно редко. В области таких синапсов цитоплазмы соседних нейронов связаны щелевыми соединениями (контактами), обеспечивающими прохождение ионов из одной клетки в другую, а следовательно, электрическое взаимодействие этих клеток. Эти синапсы способствуют синхронизации активности.
Синаптические структуры обладают высокой чувствительностью к действию токсических факторов, психотропных отравляющих веществ. Нарушения передачи нервных импульсов в области синапса (приобретенные или генетически обусловленные) лежат в основе развития ряда заболеваний нервной системы человека.
8.8 Рефлекторные дуги. Нейронная теория, вклад зарубежных и отечественных ученых в ее становлении (С. Рамон-и-Кахал, К. Гольджи, А. С. Догель, Б. И. Лаврентьев)
Нервная ткань входит в состав нервной системы, функционирующей по рефлекторному принципу, морфологическим субстратом которого является рефлекторная дуга. Рефлекторная дуга представляет собой цепь нейронов, связанных друг с другом синапсами и обеспечивающих проведение нервного импульса от рецептора чувствительного нейрона до эффекторного окончания в рабочем органе.
Самая простая рефлекторная дуга состоит из двух нейронов - чувствительного и моторного. В подавляющем большинстве случаев между чувствительными и моторными нейронами включены вставочные, или ассоциативные, нейроны.
Под нейронной теорией понимают общее учение о строении нервной ткани, согласно которому вся нервная система состоит из огромного количества структурных единиц - нейронов, соединенных в различные более или менее сложные комплексы.
Нейронная теория была сформулирована в 1891 году Вальдейером и получила дальнейшее развитие в работах Рамон-и- Кахала, Валлера и многих других морфологов и физиологов. В 1907 году ее положения были уточнены Гейденгайном.
Согласно этой теории основной структурно-функциональной и генетической единицей нервной системы является нейрон. Нейрон имеет тело и отростки: дендриты и аксоны. По форме тел нейроны делятся на звездчатые, корзинчатые, пирамидные. Нейроны с большим количеством отростков называют мультиполярными. Кроме этого существуют биполярные и псевдоуниполярные нейроны. Тело нервной клетки и ее отростки покрывает двуслойная мембрана. Через нее осуществляется пассивный транспорт воды и некоторых низкомолекулярных веществ. Активный перенос ионов и органических молекул (аминокислот, сахаров) осуществляется за счет энергии макроэргических соединений, таких как АТФ. В теле нейрона находится ядро с расположенным в нем ядрышком, комплекс Гольджи, митохондрии, лизосомы, а также специфическое базофильное вещество Ниссля, представляющее собой гранулы РНК, соединенные с белком. Кроме этого в нейронах содержатся нейрофибриллы и нейротрубочки, могут быть гранулы гликогена и пигмента.
Следующим положением теории является закон динамической поляризации нервной системы. Суть его заключается в том, что возбуждение по дендритам проводится к телу нервной клетки, по аксону - от тела клетки. Таким образом, нейрон имеет несколько «входов» и один «выход». В центральной нервной системе нейроны расположены в сером веществе - коре головного мозга, подкорковых ядрах, ядрах ствола, ядрах и коре мозжечка, сером веществе спинного мозга. Аксон нервной клетки состоит из осевого цилиндра, покрытого невролеммой и миелиновой оболочкой, состоящей из белков и липидов. Миелиновая оболочка является отростком прилежащей невроглии.
В ЦНС это отростки олигодендроцитов, в периферической нервной системе отростки шванновских клеток. Между фрагментами миелиновой оболочки, образованными соседними клетками нейроглии, имеются «зазоры». Их называют перехватами Ранвье. Благодаря им передача возбуждения осуществляется скачкообразно, что повышает скорость проведения импульсов. Наличие миелиновой оболочки обусловливает белый цвет нервных волокон. По Гассеру нервные волокна делятся на три группы: А, В и С. Большинство волокон относится к группе А. Среди волокон группы А выделяют наиболее толстые альфа-волокна, проводящие нервные импульсы с наибольшей скоростью, более тонкие бета-волокна и самые тонкие дельта- и гамма-волокна.
Согласно нейронной теории нервная клетка является трофическим центром нейрона. В ней осуществляется синтез необходимых для ее жизнедеятельности белков, липидов, углеводов, ферментов, медиаторов. Посредством медленного ортоградного аксонального тока транспортируются молекулы растворимого белка и элементы клеточного каркаса. Его скорость 2-4 мм/сутки. Посредством быстрого ортоградного аксонального тока перемещаются фосфолипиды, гликопротеины, ферменты. Его скорость 200-400 мм/сутки. Благодаря существующему ретроградному аксональному току со скорость 150 мм/сутки в тело клетки перемещаются продукты метаболизма аксона. В нервной клетке они подвергаются лизису до составляющих элементов и происходит вторичная утилизация макромолекул. При разрушении аксона на каком-либо участке дистальная его часть подвергается валлеровскому перерождению. Регенерация аксона происходит за счет центрального отростка. Скорость роста нервного волокна около 1 мм/сутки.
8.9 Нервные окончания в эпителиальных тканях
Свободные чувствительные нервные окончания состоят только из терминальных ветвлений дендрита чувствительного нейрона. Они встречаются в эпителии, а также в соединительной ткани. Проникая в эпителиальный пласт, нервные волокна утрачивают миелиновую оболочку и нейролемму, а базальная мембрана их нейролеммоцитов сливается с эпителиальной. Свободные нервные окончания обеспечивают восприятие температурных (тепловых и холодовых), механических и болевых сигналов.
8.10 Нервные окончания в соединительных тканях. Характеристика инкапсулированных рецепторных нервных окончаний
Несвободные чувствительные нервные окончания содержат все компоненты нервного волокна: они образованы ветвлениями дендрита, окруженными нейролеммоцитами, в совокупности с которыми они образуют структуру, называемую внутренней колбой.
Несвободные неинкапсулированные нервные окончания состоят из ветвлений дендритов, окруженных леммоцитами. Они встречаются в соединительной ткани кожи (дерме), а также собственной пластинки слизистых оболочек.
Несвободные инкапсулированные нервные окончания весьма разнообразны, но имеют единый общий план строения: их основу составляют ветвления дендрита, окруженные нейролеммоцитами, снаружи они покрыты соединительнотканной (фиброзной) капсулой. Все они являются механорецепторами, располагаются в соединительной ткани внутренних органов, кожи и слизистых оболочек, капсулах суставов. К этому виду нервных окончаний относят тактильные тельца (осязательные тельца Мейснера), веретеновидные чувствительные тельца (колбы Краузе), пластинчатые тельца (Фатера-Пачини), чувствительные тельца (Руффини). Самыми крупными из них являются пластинчатые тельца, которые содержат слоистую наружную колбу, состоящую из 10-60 концентрических пластин, между которыми имеется жидкость. Пластины образованы уплощенными фибробластами (по другим сведениям - нейролеммоцитами). Помимо рецепции механических стимулов, колбы Краузе, возможно, воспринимают также холод, а тельца Руффини - тепло.
8.11 Нервные окончания в мышечных тканях
Нейро-мышечные веретена - рецепторы растяжения волокон поперечнополосатых мышц - сложные инкапсулированные нервные окончания, обладающие как чувствительной, так и двигательной иннервацией. Нейромышечное веретено располагается параллельно ходу волокон мышцы, называемых экстрафузальными. Оно покрыто соединительнотканной капсулой, внутри которой находятся тонкие поперечнополосатые интрафузальные мышечные волокна двух видов: волокна с ядерным мешочком (скоплением ядер в расширенной центральной части волокна) и волокна с ядерной цепочкой (расположением ядер в виде цепочки в центральной части). Чувствительные нервные волокна образуют анулоспиральные нервные окончания на центральной части интрафузальных волокон и гроздевидные нервные окончания - у их краев. Двигательные нервные волокна - тонкие, образуют мелкие нейро-мышечные синапсы по краям интрафузальных волокон, обеспечивая их тонус.
Частная гистология
9. Нервная система
9.1 Нерв. Строение, тканевой состав. Реакция на повреждение, регенерация
Нервы - периферические нервные стволы - состоят из миелиновых и безмиелиновых волокон и соединительнотканных оболочек. В автономной нервной системе, как правило, в нервах встречаются одиночные нервные клетки и мелкие ганглии. На поперечном срезе нерва видны сечения осевых цилиндров нервных волокон и одевающие их глиальные оболочки. Между нервными волокнами в составе нервного ствола располагаются тонкие прослойки рыхлой волокнистой соединительной ткани - эндоневрий. Пучки нервных волокон одеты периневрием. Периневрий состоит из чередующихся слоев плотно расположенных плоских клеток эпендимоглиального дифферона и тонких слоев соединительной ткани. Таких слоев в периневрии толстых нервов несколько (5-6). Между пучками нервных волокон снаружи периневрия находится соединительная ткань с кровеносными сосудами. Периневрий образуется из оболочек спинного мозга при выходе из него корешков. Наружная оболочка нервного ствола - эпиневрий - представляет собой плотную волокнистую соединительную ткань, богатую фибробластами, макрофагами и жировыми клетками. Соединительнотканные оболочки нерва содержат кровеносные и лимфатические сосуды и нервные окончания. В эпиневрии по всей длине нерва поступает большое количество анастомозирующих между собой кровеносных сосудов. Из эпиневрия артерии проникают в периневрий и эндоневрий. В эндоневрии артериолы формируют узкопетлистую капиллярную сеть, оплетающую нервные волокна.
Нервные волокна в составе периферического нерва способны к регенерации и формированию нервно-мышечных синапсов с клетками-мишенями (см. вопрос 4 из общей г).
9.2 Чувствительные нервные узлы (спинномозговые и черепные). Строение, тканевой состав. Цитофункциональная характеристика нейронов и нейроглии
Чувствительные узлы лежат по ходу спинномозговых нервов либо черепных нервов.
Спинномозговой узел окружен соединительнотканной капсулой. От капсулы внутрь узла проникают тонкие прослойки соединительной ткани, в которой расположены кровеносные сосуды.
Нейроны спинномозгового узла имеют грушевидную или округлую форму диаметром 30-120 мкм. Они располагаются группами, преимущественно по периферии органа, тогда как его центр состоит главным образом из отростков этих клеток. Дендриты идут в составе чувствительной части смешанных спинномозговых нервов на периферию и заканчиваются там рецепторами. Аксоны в совокупности образуют задние корешки, несущие нервные импульсы, или в серое вещество спинного мозга, или по его заднему канатику в продолговатый мозг. В спинномозговых узлах высших позвоночных животных и человека биполярные нейроны в процессе созревания становятся псевдоуниполярными. Отростки клеток постепенно сближаются, и их основания сливаются. Вначале удлиненная часть тела (основание отростков) имеет небольшую длину, но со временем, разрастаясь, она многократно обвивает клетку и часто образует клубок.
Существует и другая точка зрения на процесс формирования псевдоуниполярных нейронов: аксон отрастает от удлиненной части тела нейрона после формирования дендрита. Биполярные нейроны у низших позвоночных сохраняются в течение всей жизни. Биполярными являются и афферентные нейроны некоторых черепных нервов.
Дендриты и аксоны клеток в узле и за его пределами покрыты оболочками из нейролеммоцитов. Тела нервных клеток спинномозговых узлов окружены слоем клеток глии, которые здесь называются ганглионарными глиоцитами. Они расположены вокруг тела нейрона и имеют округлые ядра. Снаружи глиальная оболочка тела нейрона покрыта тонковолокнистой соединительнотканной оболочкой. Клетки этой оболочки отличаются овальной формой ядер.
Нейроны в составе спинномозгового узла гетероморфны. Среди них различают малые, отвечающие за болевую и температурную чувствительность; большие нейроны специализированы на проприорецепции; промежуточные нейроны относятся к тактильным.
9.3 Спинной мозг. Общая характеристика строения. Строение серого вещества: виды нейронов и их участие в образовании рефлекторных дуг, типы глиоцитов. Ядра серого вещества. Строение белого вещества
Спинной мозг состоит из двух симметричных половин, отграниченных друг от друга спереди глубокой срединной щелью, а сзади - соединительнотканной перегородкой. В спинном мозге различают центральный канал, темное серое вещество и светлое белое вещество. Центральный канал выстлан эпендимоцитами. Он остается открытым от рождения до 17 лет жизни человека.
Серое вещество на поперечном сечении мозга представлено в виде буквы «Н» или бабочки. Выступы серого вещества принято называть рогами. Различают передние, или вентральные, задние, или дорсальные, и боковые, или латеральные, рога. В процессе развития спинного мозга из нервной трубки образуются нейроны, которые группируются в 10 слоях, или в пластинах (пластины Рекседа).
Серое вещество спинного мозга состоит из тел нейронов, безмиелиновых и тонких миелиновых волокон, макро- и микроглии и кровеносных сосудов. Основной составной частью серого вещества, отличающей его от белого, являются мультиполярные нейроны.
Белое вещество спинного мозга представляет собой совокупность продольно ориентированных преимущественно миелиновых волокон, гетеротопических нейронов, фибриллярных астроцитов и гемокапилляров. Пучки нервных волокон, осуществляющие связь между различными отделами нервной системы, называются проводящими путями спинного мозга.
Нейроны. Клетки, сходные по размерам, ультрамикроскопическому строению и функциональному значению, лежат в сером веществе группами, которые называются ядрами. Среди нейронов спинного мозга можно выделить следующие виды клеток: корешковые клетки, нейриты которых покидают спинной мозг в составе его передних корешков, внутренние клетки, или интернейроны, отростки которых заканчиваются синапсами в пределах серого вещества спинного мозга, и пучковые клетки, аксоны которых проходят в белом веществе обособленными пучками волокон, несущими нервные импульсы от определенных ядер спинного мозга в его другие сегменты или в соответствующие отделы головного мозга, образуя проводящие пути. Отдельные участки серого вещества спинного мозга значительно отличаются друг от друга по составу нейронов, нервных волокон и нейроглии.
Серое вещество мозга состоит из мультиполярных нейронов трех типов. Первый тип нейронов является филогенетически более древним и характеризуется немногочисленными длинными, прямыми и слабо ветвящимися дендритами (изодендритический тип). Такие нейроны преобладают в промежуточной зоне и встречаются в передних и задних рогах. Второй тип нейронов имеет большое число сильно ветвящихся дендритов, которые переплетаются, образуя «клубки» (идиодендритический тип). Они характерны для ядер передних рогов, а также для задних рогов (ядра студневидного вещества, ядро Кларка). Третий тип нейронов по степени развития дендритов занимает промежуточное положение между первым и вторым типами. Они расположены в передних (дорсальная часть) и задних (вентральная часть) рогах, типичны для собственного ядра заднего рога.
В задних рогах различают губчатый слой, желатинозное вещество, собственное ядро заднего рога и грудное ядро. Между задними и боковыми рогами серое вещество вдается тяжами в белое, вследствие чего образуется его сетеобразное разрыхление, получившее название сетчатого образования.
Губчатый слой задних рогов характеризуется широкопетлистым глиальным остовом, в котором содержится большое количество мелких вставочных нейронов.
В желатинозном веществе преобладают глиальные элементы. Нервные клетки здесь мелкие, и количество их незначительно.
Задние рога богаты диффузно расположенными вставочными клетками. Это мелкие мультиполярные ассоциативные и комиссуральные клетки, аксоны которых заканчиваются в пределах серого вещества спинного мозга той же стороны (ассоциативные клетки) или противоположной стороны (комиссуральные клетки).
Нейроны губчатой зоны, желатинозного вещества и вставочные клетки осуществляют связь между чувствительными клетками спинномозговых узлов и мотонейронами передних рогов, замыкая местные рефлекторные дуги.
В средней части заднего рога спинного мозга располагается собственное ядро заднего рога. Оно состоит из пучковых клеток, аксоны которых, переходя через переднюю белую спайку на противоположную сторону спинного мозга в боковой канатик белого вещества, образуют вентральный спиномозжечковый и спиноталамический пути и направляются в мозжечок и зрительный бугор.
В задних рогах диффузно расположены вставочные нейроны. Это мелкие клетки, аксоны которых заканчиваются в пределах серого вещества спинного мозга той же (ассоциативные клетки) или противоположной (комиссуральные клетки) стороны.
Дорсальное ядро, или ядро Кларка, состоит из крупных клеток с разветвленными дендритами. Их аксоны пересекают серое вещество, входят в боковой канатик белого вещества той же стороны и в составе дорсального спиномозжечкового пути поднимаются к мозжечку.
Медиальное промежуточное ядро находится в промежуточной зоне, нейриты клеток его присоединяются к вентральному спиномозжечковому пути той же стороны, латеральное промежуточное ядро расположено в боковых рогах и представляет собой группу ассоциативных клеток симпатической рефлекторной дуги.
Аксоны этих клеток выходят из спинного мозга вместе с соматическими двигательными волокнами в составе передних корешков и обособляются от них в виде белых соединительных ветвей симпатического ствола.
Самые крупные нейроны спинного мозга находятся в передних рогах, они также образуют ядра из тел нервных клеток, корешки которых, образуют основную массу волокон передних корешков.
В составе смешанных спинномозговых нервов они поступают на периферию и завершаются моторными окончаниями в скелетной мускулатуре.
Глиоциты спинного мозга. Спинномозговой канал выстлан эпендимоцитами. Это цилиндрические клетки. Апикальная часть клетки имеет микроворсинки и реснички (киноцилии). Посредством микрофиламентов, десмосом, щелевых контактов плазмолеммы боковой поверхности клетки объединяются в эпендиму - эпителиоподобную выстилку. Боковые поверхности соседних клеток образуют множество взаимных интердигитаций. Овальное ядро располагается у основания клетки, а органеллы - в апикальной половине эпендимоцита. Базальный отросток клетки содержит большое количество глиофиламентов. Эпендимоциты осуществляют трансцеллюлярный транспорт веществ и в той или иной степени секреторную функцию.
Основную часть остова серого вещества составляют протоплазматические и фиброзные астроциты. Отростки волокнистых астроцитов выходят за пределы серого вещества и вместе с элементами соединительной ткани принимают участие в образовании перегородок в белом веществе и глиальных мембран вокруг кровеносных сосудов и на поверхности спинного мозга. Олигодендроциты входят в состав оболочек нервных волокон.
Микроглия поступает в спинной мозг по мере врастания в него кровеносных сосудов и распределяется в сером и белом веществе. Клетки микро-глии - наиболее мелкие из всех глиальных элементов и реже встречаются в центральной нервной системе. Микроглиоциты составляют около 3 % всех клеток центральной нервной системы, располагаются в сером и белом веществе мозга и часто сопровождают нервные клетки. Показано, что около 50 % клеток микроглии - это макрофаги мозга, происходящие от моноцитов крови. Другая половина микроглиальных клеток - это «покоящиеся астроциты», способные при различных условиях к активной пролиферации и дифференцировке в астроциты.
Белое вещество спинного мозга состоит из миелиновых волокон, идущих продольно. Пучки нервных волокон, осуществляющие связь между различными отделами нервной системы, называются проводящими путями спинного мозга.
9.4 Головной мозг (большие полушария). Цитоархитектоника слоев коры больших полушарий, нейронный состав. Представление о модульной организации коры. Миелоархитектоника - радиальные и тангенциальные нервные волокна. Особенности строения коры в двигательных и чувствительных зонах. Гематоэнцефалический барьер, его строение и функции
В головном мозге также выделяют серое и белое вещество, но распределение этих двух составных частей здесь сложнее, чем в спинном мозге. Основная часть серого вещества головного мозга располагается на поверхности большого мозга и мозжечка, образуя их кору. Другая (меньшая по объему) часть образует многочисленные ядра ствола мозга.
Цитоархитектоника коры большого мозга. Нейроны коры весьма разнообразны по форме, они являются мультиполярными клетками. Они делятся на пирамидные, звездчатые, веретенообразные, паукообразные и горизонтальные нейроны.
Пирамидные нейроны составляют основную часть коры большого мозга. Их тела имеют форму треугольника, вершина которого обращена к поверхности коры. От вершины и боковых поверхностей тела отходят дендриты, заканчивающиеся в различных слоях серого вещества. От основания пирамидных клеток берут начало нейриты, в одних клетках короткие, образующие ветвления в пределах данного участка коры, в других -- длинные, поступающие в белое вещество.
Пирамидные клетки различных слоев коры различны. Мелкие клетки представляют собой вставочные нейроны, нейриты которых связывают отдельные участки коры одного полушария (ассоциативные нейроны) или двух полушарий (комиссуральные нейроны).
Крупные пирамиды и их отростки образуют пирамидные пути, проецирующие импульсы в соответствующие центры ствола и спинного мозга.
В каждом слое клеток коры головного мозга имеется преобладание каких-либо видов клеток. Выделяется несколько слоев:
1) молекулярный;
2) наружный зернистый;
3) пирамидный;
4) внутренний зернистый;
5) ганглионарный;
6) слой полиморфных клеток.
В молекулярном слое коры содержится небольшое количество мелких клеток веретенообразной формы. Отростки их идут параллельно поверхности мозга в составе тангенциального сплетения нервных волокон молекулярного слоя. При этом основная масса волокон этого сплетения представлена ветвлениями дендритов нижележащих слоев.
Наружный зернистый слой представляет собой скопление мелких нейронов, имеющих различную форму (преимущественно округлую) и звездчатые клетки. Дендриты этих клеток поднимаются в молекулярный слой, а аксоны уходят в белое вещество или, образуя дуги, идут в тангенциальное сплетение волокон молекулярного слоя.
Пирамидный слой -- самый большой по толщине, очень хорошо развитый в прецентральной извилине. Размеры пирамидных клеток различны (в пределах 10--40 мкм). От верхушки пирамидной клетки отходит главный дендрит, который располагается в молекулярном слое. Дендриты, идущие от боковых поверхностей пирамиды и ее основания, имеют незначительную длину и образуют синапсы со смежными клетками этого слоя. При этом надо знать, что аксон пирамидной клетки всегда отходит от ее основания. Внутренний зернистый слой в некоторых полях коры развит очень сильно (например, в зрительной зоне коры), но в некоторых участках коры он может отсутствовать (в прецентральной извилине). Этот слой образован мелкими клетками звездчатой формы, в его состав также входит большое количество горизонтальных волокон.
Ганглионарный слой коры состоит из крупных пирамидных клеток, причем область прецентральной извилины содержит гигантские пирамиды, описанные впервые киевским анатомом В. Я. Бецем в 1874 г. (клетки Беца). Для гигантских пирамид характерно наличие крупных глыбок базофильного вещества. Нейриты клеток этого слоя образуют главную часть кортико-спинальных путей спинного мозга и оканчиваются синапсами на клетках его моторных ядер.
Слой полиморфных клеток образован нейронами веретенообразной формы. Нейроны внутренней зоны более мелкие и лежат на большом расстоянии друг от друга, а нейроны внешней зоны более крупные. Нейриты клеток полиморфного слоя уходят в белое вещество в составе эфферентных путей головного мозга. Дендриты достигают молекулярного слоя коры.
Надо иметь в виду, что в разных участках коры головного мозга разные ее слои представлены по-разному. Так, в моторных центрах коры, например, в передней центральной извилине, сильно развиты 3, 5 и 6 слои и недоразвиты 2 и 4. Это так называемый агранулярный тип коры. Из этих областей берут начало нисходящие проводящие пути центральной нервной системы.
В чувствительных корковых центрах, где заканчиваются афферентные проводники, идущие от органов обоняния, слуха и зрения, слабо развиты слои, содержащие крупные и средние пирамиды, тогда как зернистые слои (2 и 4-й) достигают своего максимального развития. Такой тип называется гранулярным типом коры.
Миелоархитектоника коры. В больших полушарий можно выделить следующие типы волокон: ассоциативные волокна (связывают отдельные участки коры одного полушария), комиссуральные (соединяют кору различных полушарий) и проекционные волокна, как афферентные, так и эфферентные (связывают кору с ядрами низших отделов центральной нервной системы).
Основным элементом структуры ГЭБ являются эндотелиальные клетки. Особенностью церебральных сосудов является наличие плотных контактов между эндотелиальными клетками. В структуру ГЭБ также входят перициты и астроцимты.
Функциональная схема гематоэнцефалического барьера включает в себя наряду с гистогематическим барьером нейроглию и систему ликворных пространств. Гистогематический барьер имеет двойную функцию: регуляторную и защитную. Регуляторная функция обеспечивает относительное постоянство физических и физико-химических свойств, химического состава, физиологической активности межклеточной среды органа в зависимости от его функционального состояния. Защитная функция гистогематического барьера заключается в защите органов от поступления чужеродных или токсичных веществ эндо- и экзогенной природы.
9.5 Мозжечок. Строение и нейронный состав коры мозжечка. Межнейрональные связи. Клубочек мозжечка. Афферентные и эфферентные нервные волокна. Глиоциты мозжечка
Главной функцией мозжечка является обеспечение равновесия и координации движений. Он имеет связь со стволом мозга с помощью афферентных и эфферентных проводящих путей, образующих в совокупности три пары ножек мозжечка. На поверхности мозжечка множество извилин и бороздок.
Серое вещество образует кору мозжечка, меньшая его часть лежит глубоко в белом веществе в виде центральных ядер. В центре каждой извилины имеется тонкая прослойка белого вещества, покрытая слоем серого вещества -- корой.
В коре мозжечка имеются три слоя: наружный (молекулярный), средний (ганглионарный) и внутренний (зернистый). Эфферентные нейроны коры мозжечка -- грушевидные клетки (или клетки Пуркинье) составляют ганглионарный слой.
Только их нейриты, покидая кору мозжечка, образуют начальное звено его эфферентных тормозных путей.
Все остальные нервные клетки коры мозжечка относятся к вставочным ассоциативным нейронам, передающим нервные импульсы грушевидным клеткам. В ганглионарном слое клетки располагаются строго в 1 ряд, верви их, обильно ветвясь, пронизывают всю толщу молекулярного слоя. Все ветви дендритов располагаются только в одной плоскости, перпендикулярной к направлению извилин, поэтому при поперечном и продольном сечении извилин дендриты грушевидных клеток выглядят различно.
Молекулярный слой состоит из двух основных видов нервных клеток: корзинчатых и звездчатых.
Корзинчатые клетки располагаются в нижней трети молекулярного слоя. Они имеют тонкие длинные дендриты, которые ветвятся преимущественно в плоскости, расположенной поперечно к извилине. Длинные нейриты клеток всегда идут поперек извилины и параллельно поверхности над грушевидными клетками.
Звездчатые клетки находятся выше корзинчатых. Выделяют две формы звездчатых клеток: мелкие звездчатые клетки, которые снабжены тонкими короткими дендритами и слабо разветвленными нейритами (они образуют синапсы на дендритах грушевидных клеток), и крупные звездчатые клетки, которые имеют длинные и сильно разветвленные дендриты и нейриты (их ветви соединяются с дендритами грушевидных клеток, но некоторые из них достигают тел грушевидных клеток и входят в состав так называемых корзинок). Вместе описанные клетки молекулярного слоя представляют собой единую систему.
Зернистый слой представлен особыми клеточными формами в виде зерен. Эти клетки малы по величине, имеют 3--4 коротких дендрита, заканчивающихся в этом же слое концевыми ветвлениями в виде лапки птицы. Вступая в синаптическую связь с окончаниями приходящих в мозжечок возбуждающих афферентных (моховидных) волокон, дендриты клеток-зерен образуют характерные структуры, именуемые клубочками мозжечка.
Отростки клеток-зерен, доходя до молекулярного слоя, образуют в нем т-образные деления на две ветви, ориентированные параллельно поверхности коры вдоль извилин мозжечка. Эти волокна, идущие параллельно, пересекают ветвления дендритов многих грушевидных клеток и образуют с ними и дендритами корзинчатых клеток и звездчатых клеток синапсы. Таким образом, нейриты клеток-зерен передают возбуждение, полученное ими от моховидных волокон, на значительное расстояние многим грушевидным клеткам.
Следующий вид клеток составляют веретенообразные горизонтальные клетки. Они находятся в основном между зернистым и ганглионарным слоями, от их вытянутых тел отходят в обе стороны длинные, горизонтально идущие дендриты, заканчивающиеся в ганглионарном и зернистом слоях.
Афферентные волокна, поступающие в кору мозжечка, представлены двумя видами: моховидными и так называемыми лазящими волокнами. Моховидные волокна идут в составе оливомозжечкового и мостомозжечкового путей и оказывают на грушевидные клетки возбуждающее действие. Они заканчиваются в клубочках зернистого слоя мозжечка, где вступают в контакт с дендритами клеток-зерен.
Лазящие волокна поступают в кору мозжечка по спиномозжечковому и вестибуломозжечковому путям. Они пересекают зернистый слой, прилегают к грушевидным клеткам и стелются по их дендритам, заканчиваясь на их поверхности синапсами. Эти волокна передают возбуждение грушевидным клеткам. При возникновении различных патологических процессов в грушевидных клетках ведет к расстройству координации движения.
Корамозжечкасодержитразличныеглиальныеэлементы.Взернистомслое имеются волокнистые и протоплазматические астроциты. Ножки отростков волокнистых астроцитов образуют периваскулярные мембраны. Во всех слоях в мозжечке имеются олигодендроциты. Особенно богаты этими клетками зернистый слой и белое вещество мозжечка. В ганглионарном слое между грушевидными нейронами лежат глиальные клетки с темными ядрами. Отростки этих клеток направляются к поверхности коры и образуют глиальные волокна молекулярного слоя мозжечка.
9.6 Автономная (вегетативная) нервная система. Общая характеристика строения центральных и периферических отделов симпатической и парасимпатической систем. Строение и нейронный состав ганглиев (экстрамуральных и интрамуральных). Пре- и постганглионарные нервные волокна
Часть нервной системы, контролирующая висцеральные функции организма, такие как моторика и секреция органов пищеварительной системы, кровяное давление, потоотделение, температура тела, обменные процессы и другое, называется автономной (вегетативной) нервной системой. По своим физиологическим особенностям и морфологическим признакам автономная нервная система делится на симпатическую и парасимпатическую. В большинстве случаев обе системы одновременно принимают участие в иннервации органов.
Автономная нервная система состоит из центральных отделов, представленных ядрами головного и спинного мозга, и периферических: нервных стволов, узлов (ганглиев) и нервных сплетений.
Ядра центрального отдела автономной нервной системы находятся в среднем и продолговатом мозге, а также в боковых рогах грудных, поясничных и крестцовых сегментов спинного мозга. К симпатической нервной системе относятся автономные ядра боковых рогов грудного и верхнепоясничного отделов спинного мозга, к парасимпатической - автономные ядра III, VII, IX и X пар черепных нервов и автономные ядра крестцового отдела спинного мозга. Мультиполярные нейроны ядер центрального отдела представляют собой ассоциативные нейроны рефлекторных друг автономной нервной системы. Их нейриты покидают центральную нервную систему через передние корешки спинномозговых нервов или черепные нервы и оканчиваются синапсами на нейронах одного из периферических автономных узлов. Это преганглионарные волокна автономной нервной системы, обычно миелиновые. Преганглионарные волокна симпатической и парасимпатической автономной нервной системы - холинергические. Их терминали содержат мелкие светлые синаптические пузырьки (40-60 нм) и одиночные крупные темные везикулы (60-150 нм).
Периферические узлы автономной нервной системы лежат как вне органов (симпатические паравертебральные и превертебральные узлы, парасимпатические узлы головы), так и в стенке органов в составе интрамуральных нервных сплетений пищеварительного тракта, сердца, матки, мочевого пузыря и др.
...Подобные документы
Основные типы тканей. Разделы гистологии как учебной дисциплины. Этапы развития гистологии: домикроскопический, микроскопический и современный. Ш. Бонне как теоретик преформизма, учение о рекапитуляции. Вклад П.П. Иванова в развитие эмбриологии.
презентация [1,4 M], добавлен 15.05.2012Патологические изменения клеток эпителиальных тканей шейки матки под влиянием вируса папилломы человека. Структура генома вируса, его роль в механизмах стимулирования пролиферации и индукции неопластической трансформации. Изменения клеток эпителия.
дипломная работа [4,9 M], добавлен 31.01.2018Ознакомление с понятием, сущностью и процессами метаболизма. Рассмотрение особенностей создания молекул аминокислот, углеводов, липидов и нуклеиновых кислот. Образование всех клеток и тканей, выделение энергии в процессе обмена веществ в организме.
презентация [507,1 K], добавлен 02.06.2015Уровни организации живой материи. Понятие и предмет гистологии (учения о тканях). Периоды развития науки. Практическое значение эмбриологии для медицины. Первые представления о внутриутробном развитии плода. Использование световой микроскопии в цитологии.
презентация [470,9 K], добавлен 10.05.2014Цитокины - группа полипептидных медиаторов межклеточного взаимодействия, участвующих в формировании и регуляции защитных реакций организма, а также регенерации тканей; их свойства и функции. Рассмотрение классификации по биологическим свойствам.
презентация [344,9 K], добавлен 13.11.2014Рассмотрение роли нервной системы в регуляции функций организма. Характеристика строения и классификации (афферентные, эффекторные, ассоциативные) нейронов. Ознакомление с глиальными клетками (формирование миелиовой оболочки). Изучение состава синапса.
контрольная работа [4,2 M], добавлен 26.02.2010Изолированные иммунокомпетентные клетки. Изучение строения первичных и вторичных лимфатических органов, перемещение клеток между ними. Клиническое значение строения лимфоидных тканей для иммунотерапии. Изучение расположения селезенки, вилочковой железы.
презентация [717,0 K], добавлен 20.11.2014Рассмотрение понятия ткани как системы клеток и неклеточных структур, обладающих общностью развития, строения и функции. Пространственная организация микроворсинки в апикальной части каемчатой клетки. Классификация и морфология эпителиальных пластов.
реферат [2,2 M], добавлен 09.09.2012Предмет и задачи медицинской генетики. Рассмотрение вопроса искусственного оплодотворения. Изучение основных положений биоэтики, "Основ законодательства по охране здоровья". Повышение информированности населения, касающейся проблем генетики и технологий.
презентация [954,7 K], добавлен 15.04.2015История открытия витамина A и его химической структуры. Механизм образования зрительного сигнала. Участие витамина в антиоксидантной защите организма. Поддержание и восстановление эпителиальных тканей. Изучение антиоксидантного действия каротина.
презентация [711,1 K], добавлен 29.02.2016Анализ исторического развития знаний о заболевании. Отражены основные этапы развития научных представлений о подагре и причинах её возникновения. Приведены теории патогенеза, начиная со времен Гиппократа и заканчивая современными представлениями.
статья [21,5 K], добавлен 06.09.2017Ознакомление с клетками крови, которые в основном представлены эритроцитами и лейкоцитами. Определение и анализ особенностей обмена веществ эритроцитов. Изучение системы антиоксидантной защиты организма. Рассмотрение схематического изображения почки.
презентация [3,3 M], добавлен 09.04.2018Понятие о соединительных тканях в организме, их особые виды, функции и классификация. Важнейшее отличие хрящевой ткани от костной и большинства других типов тканей. Общая схема строения. Изучение соединительной ткани как в норме, так и при патологии.
презентация [2,0 M], добавлен 15.09.2013Изучение анатомии, цитологии и гистологии печени, ее роль в метаболизме. Биохимические показатели функции печени, их клиническое значение. Нормы билирубина в крови. Гемолитическая болезнь новорожденных. Дефицит липотропных веществ. Гипоонкотические отеки.
презентация [1,3 M], добавлен 22.06.2015Задачи ферментов как веществ биологического происхождения, ускоряющих химические реакции. Организованная последовательность процессов обмена веществ. Особенности ферментативного катализа. Лекарственные препараты: ингибиторы и активаторы ферментов.
презентация [2,9 M], добавлен 27.10.2014Рассмотрение понятия и структуры органа зрения. Изучение строения зрительного анализатора, глазного яблока, роговицы, склеры, сосудистой оболочки. Кровоснабжение и иннервация тканей. Анатомия хрусталика и зрительного нерва. Веки, слезные органы.
презентация [11,0 M], добавлен 08.09.2015Рассмотрение классификации ядовитых веществ по происхождению (ботаническая, зоологическая, химическая систематика), общности основного симптома, локализации токсического процесса. Изучение основных лечебно-профилактических мероприятий при отравлении.
реферат [26,0 K], добавлен 26.04.2010Направления создания новых лекарственных веществ. Фракции каменноугольной смолы. Получение лекарственных веществ из растительного и животного сырья, биологического синтеза. Методы выделения биологически активных веществ. Микробиологический синтез.
реферат [43,7 K], добавлен 19.09.2010Ознакомление с историей открытия и свойствами лазеров; примеры использования в медицине. Рассмотрение строения глаза и его функций. Заболевания органов зрения и методы их диагностики. Изучение современных методов коррекции зрения с помощью лазеров.
курсовая работа [4,3 M], добавлен 18.07.2014Изучение химиотерапевтических веществ, объединённых в группу антибиотиков. Действие лекарств, образуемых при биосинтезе микроорганизмов. Исследование стратегии антибактериальной терапии и путей преодоления резистентности микроорганизмов к антибиотикам.
презентация [5,7 M], добавлен 08.06.2017