Предмет гистологии

Изучение строения органелл, участвующих в биосинтезе веществ в клетках. Анализ биологического значения оплодотворения. Ознакомление с современными представлениями о дифферонах, "тканевых мозаиках". Рассмотрение классификации эпителиальных тканей.

Рубрика Медицина
Вид шпаргалка
Язык русский
Дата добавления 24.05.2021
Размер файла 624,9 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Зрелые функционирующие и стареющие клетки завершают гистогенетический ряд, или дифферон. Соотношение клеток различной степени зрелости в дифферонах зрелых тканей организма неодинаково и зависит от основных закономерных процессов физиологической регенерации, присущих конкретному виду ткани. Так, в обновляющихся тканях обнаруживаются все части клеточного дифферона -- от стволовой до высокодифференцированной и гибнущей. В типе растущих тканей преобладают процессы роста. Одновременно в ткани присутствуют клетки средней и конечной частей дифферона. В гистогенезе митотическая активность клеток постепенно снижается до низкой или крайне низкой, наличие стволовых клеток подразумевается только в составе эмбриональных зачатков. Потомки стволовых клеток некоторое время существуют как пролиферативный пул ткани, но их популяция быстро расходуется в постнатальном онтогенезе. В стабильном типе тканей имеются лишь клетки высокодифференцированной и гибнущей частей дифферона, стволовые клетки обнаруживаются лишь в составе эмбриональных зачатков и полностью расходуются в эмбриогенезе.

5.13 Эритроцитопоэз, тромбоцитопоэз

Родоначальником эритроидных клеток человека, как и других клеток крови, является полипотентная стволовая клетка крови, способная формировать в культуре костного мозга колонии. Полипотентная СКК в результате дивергентной дифференцировки дает два типа мультипотентных частично коммитированных кроветворных клеток: 1) коммитированные к лимфоидному типу дифференцировки (Лск, КОЕ-Л); 2) КОЕ-ГЭММ - единицы, образующие смешанные колонии, состоящие из гранулоцитов, эритроцитов, моноцитов и мегакариоцитов. Из второго типа мультипотентных кроветворных клеток дифференцируются унипотентные единицы: бурстобразующая (БОЕ-Э) и колониеобразующая (КОЕ-Э) эритроидные клетки, которые являются коммитированными родоначальными клетками эритропоэза.

БОЕ-Э - взрывообразующая, или бурстобразующая, единица по сравнению с КОЕ-Э является менее дифференцированной. БОЕ-Э может при интенсивном размножении быстро образовать крупную колонию клеток. БОЕ-Э в течение 10 сут осуществляет 12 делений и образует колонию из 5000 эритроцитарных клеток с незрелым фетальным гемоглобином (HbF). БОЕ-Э малочувствительна к эритропоэтину и вступает в фазу размножения под влиянием интерлейкина-3 (бурстпромоторная активность), вырабатываемого моноцитами - макрофагами и Т-лимфоцитами. Интерлейкин-3 (ИЛ-3) является гликопротеином с молекулярной массой 20-30 килодальтон. Он активирует ранние полипотентные СКК, обеспечивая их самоподдержание, а также запускает дифференцировку полипотентных клеток в коммитированные клетки. ИЛ-3 способствует образованию клеток (КОЕ-Э), чувствительных к эритропоэтину.

КОЕ-Э по сравнению с БОЕ-Э - более зрелая клетка. Она чувствительна к эритропоэтину, под влиянием которого размножается (в течение 3 сут делает 6 делений), формирует более мелкие колонии, состоящие примерно из 60 эритроцитарных элементов. Количество эритроидных клеток, образуемых в сутки из КОЕ-Э, в 5 раз меньше аналогичных клеток, образуемых из БОЕ-Э.

Эритропоэтин - гликопротеиновый гормон, образующийся в юкста-гломерулярном аппарате (ЮГА) почки (90 %) и печени (10 %) в ответ на снижение парциального давления кислорода в крови (гипоксия) и запускающий эритропоэз из КОЕ-Э. Под его влиянием КОЕ-Э дифференцируются в проэритробласты, из которых образуются эритробласты (базофильные, полихроматофильные, ацидофильные), ретикулоциты и эритроциты. Образующиеся из КОЕ-Э эритроидные клетки морфологически идентифицируются (рис. 7.16). Сначала образуется проэритробласт.

Проэритробласт - клетка диаметром 14-18 мкм, имеющая большое круглое ядро с мелкозернистым хроматином, одно-два ядрышка, слабобазофильную цитоплазму, в которой содержатся свободные рибосомы и полисомы, слаборазвитые комплекс Гольджи и гранулярная эндоплазматическая сеть. Базофильный эритробласт - клетка меньшего размера (13-16 мкм). Его ядро содержит больше гетерохроматина. Цитоплазма клетки обладает хорошо выраженной базофильностью в связи с накоплением в ней рибосом, в которых начинается синтез Нb. Полихроматофильный эритробласт - клетка размером 10-12 мкм. Ее ядро содержит много гетерохроматина. В цитоплазме клетки накапливается синтезируемый на рибосомах НЬ, окрашивающийся эозином, благодаря чему она приобретает серовато-фиолетовый цвет. Проэритробласты, базофильные и полихроматофильные эритробласты способны размножаться путем митоза, поэтому в них часто видны фигуры деления.

Следующая стадия дифференцировки - образование ацидофильного (оксифилия) эритробласта (нормобласта). Это клетка небольшого размера (8-10 мкм), имеющая маленькое пикнотичное ядро. В цитоплазме эритробласта содержится много НЬ, обеспечивающего ее ацидофилию (оксифилию) - окрашивание эозином в ярко-розовый цвет. Пикнотическое ядро выталкивается из клетки, в цитоплазме сохраняются лишь единичные органеллы (рибосомы, митохондрии). Клетка утрачивает способность к делению.

Ретикулоцит - постклеточная структура (безъядерная клетка) с небольшим содержанием рибосом, обусловливающих наличие участков базофилии, и преобладанием НЬ, что в целом дает многоцветную окраску. При выходе в кровь ретикулоцит созревает в эритроцит в течение 1-2 сут. Эритроцит - это клетка, образующаяся на конечной стадии дифференцировки клеток эритроидного ряда. Период образования эритроцита, начиная со стадии проэритробласта, занимает 7 сут.

Эритропоэз у млекопитающих и человека протекает в костном мозге в особых морфофункциональных ассоциациях, получивших название эритробластических островков, впервые описанных французским гематологом М. Бесси (1958). Эритробластический островок состоит из макрофага, окруженного одним или несколькими слоями эритроидных клеток, развивающихся из унипотентной КОЕ-Э, вступившей в контакт с макрофагом КОЕ-Э.

В норме из костного мозга в кровь поступают только эритроциты и ретикулоциты. Мегакариоцитопоэз. Тромбоцитопоэз.

Кровяные пластинки образуются в костном мозге из мегакариоцитов - гигантских по величине клеток, которые дифференцируются из СКК, проходя ряд стадий. Последовательные стадии развития можно представить следующим клеточным диффероном: СКК > КОЕ-ГЭММ > КОЕ-МГЦ > мегакариобласт > промегакариоцит > мегакариоцит > тромбоциты. Весь период образования пластинок составляет около 10 сут.

Мегакариобласт - клетка диаметром 15-25 мкм, имеет ядро с инвагинациями и относительно небольшой ободок базофильной цитоплазмы. Клетка способна к делению митозом, иногда содержит два ядра. При дальнейшей дифференцировке утрачивает способность к митозу и делится путем эндомитоза, при этом увеличиваются плоидность и размер ядра.

Промегакариоцит - клетка диаметром 30-40 мкм, содержит полиплоидные ядра - тетраплоидные, октаплоидные, несколько пар центриолей. Объем цитоплазмы возрастает, в ней начинают накапливаться азурофильные гранулы. Клетка также способна к эндомитозу и дальнейшему увеличению плоидности ядер.

Мегакариоцит - дифференцированная форма. Среди мегакариоцитов различают резервные клетки, не образующие пластинок, и зрелые активированные клетки, образующие кровяные пластинки. Резервные мегакариоциты диаметром 50-70 мкм, имеют очень большое, дольчатое ядро с набором хромосом 16-32 n; в их цитоплазме имеются две зоны - околоядерная, содержащая органеллы и мелкие азурофильные гранулы, и наружная (эктоплазма) - слабобазофильная, в которой хорошо развиты элементы цитоскелета. Зрелый, активированный мегакариоцит - крупная клетка диаметром 50-70 мкм. Содержит очень крупное, сильно дольчатое полиплоидное ядро (до 64 n). В ее цитоплазме накапливается много азурофильных гранул, которые объединяются в группы. При уменьшении числа кровяных пластинок в крови (тромбоцитопения), например после кровопотери, отмечается усиление мегакариоцитопоэза, приводящее к увеличению количества мегакариоцитов в 3-4 раза с последующей нормализацией числа тромбоцитов в крови.

5.14 Лейкоцитопоэз (гранулоцитопоэз). Морфофункциональная характеристика клеток в дифферонах гранулоцитов

Источниками гранулоцитопоэза являются также СКК и мультипотентные КОЕ-ГЭММ. В результате дивергентной дифференцировки через ряд промежуточных стадий в трех различных направлениях образуются гранулоциты трех видов: нейтрофилы, эозинофилы и базофилы. Клеточные диффероны для гранулоцитов представлены следующими формами: СКК > КОЕ-ГЭММ > КОЕ-ГМ

> унипотентные предшественники (КОЕ-Б, КОЕ-Эо, КОЕ-Гн) > миелобласт > промиелоцит > миелоцит > метамиелоцит > палочкоядерный гранулоцит > сегментоядерный гранулоцит.

По мере созревания гранулоцитов клетки уменьшаются в размерах, изменяется форма их ядер от округлой до сегментированной, в цитоплазме накапливается специфическая зернистость .

Миелобласты, дифференцируясь в направлении того или иного гранулоцита, дают начало промиелоцитам. Это крупные клетки, содержащие овальное или круглое светлое ядро, в котором имеется несколько ядрышек. Около ядра располагается ясно выраженная центросома, хорошо развиты комплекс Гольджи, лизосомы. Цитоплазма слегка базофильна. В ней накапливаются первичные (азурофильные) гранулы, которые характеризуются высокой активностью миелопероксидазы, а также кислой фосфатазы, т. е. относятся к лизосомам. Промиелоциты делятся митотически. Специфическая зернистость отсутствует.

Нейтрофильные миелоциты имеют размер от 12 до 18 мкм. Эти клетки размножаются митозом. Цитоплазма их становится диффузно ацидофильной, в ней появляются наряду с первичными вторичные (специфические) гранулы, характеризующиеся меньшей электронной плотностью. В миелоцитах обнаруживаются все органеллы. Количество митохондрий невелико. Эндоплазматическая сеть состоит из пузырьков. Рибосомы располагаются на поверхности мембранных пузырьков, а также диффузно в цитоплазме. По мере размножения нейтрофильных миелоцитов круглое или овальное ядро становится бобовидным, начинает окрашиваться темнее, хроматиновые глыбки становятся грубыми, ядрышки исчезают.

Такие клетки уже не делятся. Это метамиелоциты. В цитоплазме увеличивается число специфических гранул. Если метамиелоциты встречаются в периферической крови, то их называют юными формами. При дальнейшем созревании их ядро приобретает вид изогнутой палочки. Подобные формы получили название палочкоядерных гранулоцитов. Затем ядро сегментируется, и клетка становится сегментоядерным нейтрофильным гранулоцитом. Полный период развития нейтрофильного гранулоцита составляет около 14 сут, при этом период пролиферации продолжается около 7,5 сут, а постмитотический период дифференцировки - около 6,5 сут.

Эозинофильные миелоциты представляют собой клетки округлой формы диаметром (на мазке) около 14-16 мкм. По характеру строения ядра они мало отличаются от нейтрофильных миелоцитов. Цитоплазма их заполнена характерной эозинофильной зернистостью. В процессе созревания миелоциты митотически делятся, а ядро приобретает подковообразную форму. Такие клетки называются ацидофильными метамиелоцитами. Постепенно в средней части ядро истончается и становится двудольчатым, в цитоплазме увеличивается количество специфических гранул. Клетка утрачивает способность к делению.

Среди зрелых форм различают палочкоядерные и сегментоядерные эозинофильные гранулоциты с двудольчатым ядром.

Базофильные миелоциты встречаются в меньшем количестве, чем нейтрофильные или эозинофильные миелоциты. Размеры их примерно такие же, как и эозинофильных миелоцитов; ядро округлой формы, без ядрышек, с рыхлым расположением хроматина. Цитоплазма базофильных миелоцитов содержит в широко варьирующих количествах специфические базофильные зерна неодинаковых размеров, которые проявляют метахромазию при окрашивании азуром и легко растворяются в воде. По мере созревания базофильный миелоцит превращается в базофильный метамиелоцит, а затем в зрелый базофильный гранулоцит.

Все миелоциты, особенно нейтрофильные, обладают способностью фагоцитировать, а начиная с метамиелоцита, приобретают подвижность.

5.15 Лейкоцитопоэз (лимфоцитопоэз и моноцитопоэз). Морфофункциональная характеристика клеток в дифферонах Т- и В-лимфоцитов, моноцитов

Образование моноцитов происходит из стволовых клеток костного мозга по схеме: СКК > КОЕ-ГЭММ > КОЕ-ГМ > унипотентный предшественник моноцита (КОЕ-М) > монобласт > промоноцит > моноцит.Моноциты из крови поступают в ткани, где являются источником развития различных видов макрофагов.Л

Лимфоцитопоэз и иммуноцитопоэз.

Лимфоцитопоэз проходит следующие стадии: СКК > КОЕ-Л (лимфоидная родоначальная мультипотентная клетка) > унипотентные предшественники лимфоцитов (пре-Т-клетки и пре-В-клетки)> лимфобласт > пролимфоцит > лимфоцит. Особенность лимфоцитопоэза - способность дифференцированных клеток (лимфоцитов) дедифференцироваться в бластные формы.

Процесс дифференцировки Т-лимфоцитов в тимусе приводит к образованию из унипотентных предшественников Т-бластов, из которых формируются эффекторные лимфоциты - киллеры, хелперы, супрессоры. Дифференцировка унипотентных предшественников В-лимфоцитов в лимфоидной ткани ведет к образованию плазмобластов, затем проплазмоцитов, плазмоцитов.

6. Ткани внутренней среды

6.1 Морфофункциональная характеристика и классификация соединительных тканей. Источники развития. Гистогенез. Вклад отечественных и зарубежных учёных в изучение соединительных тканей (А. А. Максимов, А. А. Заварзин, А. В. Румянцев, Г. К. Хрущёв, В. Г. Елисеев)

Гистогенез соединительных тканей. Источником развития соединительных тканей является мезенхима. Это один из эмбриональных зачатков, представляющий собой разрыхленную честь среднего зародышевого листка. Клеточные элементы мезенхимы образуются в процессе дифференцировки дерматома, склеротома, висцерального и париетального листков спланхнотома. Кроме того, существует эктомезенхима (нейромезенхима), развивающаяся из нервного гребня. По мере развития зародыша в мезенхиму мигрируют клетки иного происхождения из других эмбриональных зачатков, например клетки нейробластического дифферона, миобласты из закладки скелетных мышц, пигментоциты и др.

Различают эмбриональный и постэмбриональный гистогенез соединительных тканей. В процессе эмбрионального гистогенеза мезенхима приобретает черты тканевого строения раньше закладки других тканей. Этот процесс в различных органах и системах происходит неодинаково и зависит от их неодинаковой физиологической значимости на различных этапах эмбриогенеза. В дифференцировке мезенхимы отмечаются топографическая асинхронность как в зародыше, так и во внезародышевых органах, высокие темпы размножения клеток и волокнообразования. Постэмбриональный гистогенез в нормальных физиологических условиях происходит медленнее и направлен на поддержание тканевого гомеостаза, пролиферацию малодифференцированных клеток и замену ими отмирающих клеток. Существенную роль в этих процессах играют межклеточные внутритканевые взаимодействия, индуцирующие и ингибирующие факторы (интегрины, межклеточные адгезивные факторы, функциональные нагрузки, гормоны, оксигенация, наличие мало-дифференцированных клеток).

Общие принципы организации соединительных тканей. Главными компонентами соединительных тканей являются производные клеток - волокнистые структуры коллагенового и эластического типов, основное (аморфное) вещество, играющее роль интегративно-буферной метаболической среды, и клеточные элементы, создающие и поддерживающие количественное и качественное соотношение состава неклеточных компонентов.

Александр Александрович Максимов (1874- 1928 гг.) -- выдающийся российский учёный, гистолог и эмбриолог, основатель экспериментальной морфологии соединительной ткани и крови. Он впервые высказал идею о существовании стволовой клетки, единой для кроветворных, а возможно, и для других элементов тканей внутренней среды в постнатальном онтогенезе. Введенные им в науку понятия о стволовых клетках лежат в основе современной клеточной биологии и регенеративной медицины. Именно А. А. Максимов дал экспериментальное и научное обоснование унитарной теории кроветворения, основные положения которой он изложил в своем программном докладе «Лимфоцит как общая стволовая клетка различных элементов крови в эмбриональном развитии и постфетальной жизни млекопитающих».

В изучение функций и структуры соединительной ткани большой вклад внёс Алексей Алексеевич Заварзин. В своих сочинениях (Очерки эволюционной гистологии крови и соединительной ткани (1945-1947г.г.), Руководство по гистологии (в соавторстве с С. И. Щелкуновым- 1954 г.) он справедливо считал, что рассматривать гистогенез соединительной ткани необходимо в неразрывном единстве с гистогенезом крови. Григорий Константинович Хрущёв (1897-1962). Развивая идеи И. И. Мечникова об эволюции защитных сил организма в борьбе с инфекциями и повреждениями тканей, разрабатывал вопросы о стимулирующей роли лейкоцитов крови в восстановительных процессах.

В 1975 г. вышла в свет монография Н. Г. Хрущова «Гистогенез соединительной ткани», не большая по объему, но очень ёмкая по глубине изложенной в ней мысли о том, что в постнатальном онтогенезе млекопитающих существуют две популяции фибробластов, имеющих разное биологическое предназначение. Автор обобщил результаты собственных многолетних исследований и многочисленные данные, уже существовавшие на тот момент, о том, что в очаг асептического воспаления и в заживающие раны на самых ранних стадиях репаративного процесса из костного мозга мигрируют клетки. Они дифференцируются в типичные фибробласты, синтезирующие коллаген и межклеточное вещество соединительной ткани и замещаются затем фибробластами местной соединительной ткани. Было высказано предположение, что мигрирующие фибробласты дифференцируются из стволовых кроветворных клеток (СКК).

6.2 Морфофункциональная характеристика клеток рыхлой волокнистой соединительной ткани

Рыхлая соединительная ткань обнаруживается во всех органах, так как она сопровождает кровеносные и лимфатические сосуды и образует строму многих органов. Несмотря на наличие органных особенностей, строение рыхлой соединительной ткани в различных органах имеет сходство. Она состоит из клеток различной гистогенетической детерминации и межклеточного вещества.

Основными клетками соединительной ткани являются фибробласты (семейство фибриллообразующих клеток), макрофаги (семейство), тучные клетки, адвентициальные клетки, плазматические клетки, перициты, жировые клетки, а также лейкоциты, мигрирующие из крови; иногда пигментные клетки.

Фибробласты - клетки, синтезирующие компоненты межклеточного вещества: белки (коллаген, эластин), протеогликаны, гликопротеины.

С главной функцией фибробластов связаны образование основного вещества и волокон, заживление ран, развитие грануляционной ткани, образование соединительнотканной капсулы вокруг инородного тела и др.

Фиброциты - дефинитивные формы развития фибробластов. Эти клетки веретенообразные с крыловидными отростками. Они содержат небольшое число органелл, вакуолей, липидов и гликогена. Синтез коллагена и других веществ в фиброцитах резко снижен.

Миофибробласты - клетки, морфологически сходные с фибробластами, сочетающие в себе способность к синтезу не только коллагена, но и сократительных белков в значительном количестве. Установлено, что фибробласты могут развиваться в миофибробласты, функционально сходные с гладкими мышечными клетками, но в отличие от последних имеют хорошо развитую эндоплазматическую сеть. Такие клетки наблюдаются в грануляционной ткани в условиях регенерации раневого процесса и в матке при развитии беременности.

Фиброкласты - клетки с высокой фагоцитарной и гидролитической активностью, принимают участие в «рассасывании» межклеточного вещества в период инволюции органов (например, матки после окончания беременности). Они сочетают в себе структурные признаки фибриллообразующих клеток (развитую гранулярную эндоплазматическую сеть, комплекс Гольджи, относительно крупные, но немногочисленные митохондрии), а также лизосомы с характерными для них гидролитическими ферментами. Выделяемый ими за пределы клетки комплекс ферментов расщепляет цементирующую субстанцию коллагеновых волокон, после чего происходят фагоцитоз и внутриклеточное переваривание коллагена кислыми протеазами лизосом.

Макрофаги - это гетерогенная специализированная клеточная популяция защитной системы организма. Различают две группы макрофагов - свободные и фиксированные. К свободным макрофагам относятся макрофаги рыхлой соединительной ткани, или гистиоциты; макрофаги серозных полостей; макрофаги воспалительных экссудатов; альвеолярные макрофаги легких. Макрофаги способны перемещаться в организме. Группу фиксированных макрофагов составляют макрофаги костного мозга, костной и хрящевой тканей (остеокласты, хондрокласты), селезенки, лимфатических узлов (дендритные макрофаги), внутриэпидермальные макрофаги (клетки Лангерганса), макрофаги ворсин плаценты (клетки Хофбауэра), макрофаги ЦНС (микроглия).

Тучные клетки. Этими терминами называют клетки, в цитоплазме которых находится специфическая зернистость, напоминающая гранулы базофильных гранулоцитов. Тучные клетки принимают участие в понижении свертывания крови, повышении проницаемости гематотканевого барьера, в процессе воспаления, иммуногенеза и др. У человека тучные клетки обнаруживаются всюду, где имеются прослойки рыхлой соединительной ткани. Особенно много тучных клеток в стенке органов пищеварительного тракта, матке, молочной железе, тимусе, миндалинах. Клетки могут быть неправильной формы, овальными. Иногда эти клетки имеют короткие широкие отростки, что обусловлено способностью их к амебоидным движениям. Ядра клеток сравнительно невелики, обычно круглой или овальной формы с плотно расположенным хроматином. В цитоплазме имеются многочисленные гранулы.

Органеллы тучных клеток (митохондрии, комплекс Гольджи, эндоплазматическая сеть) развиты слабо. В цитоплазме обнаружены различные ферменты: протеазы, липазы, кислая и щелочная фосфатазы, пероксидаза, цитохромоксидаза, АТФ-аза и др. Однако маркерным ферментом следует считать гистидиндекарбоксилазу, с помощью которой осуществляется синтез гистамина из гистидина.

Тучные клетки способны к секреции и выбросу своих гранул. Дегрануляция тучных клеток может происходить в ответ на любое изменение физиологических условий и действие патогенов.

Плазматические клетки (плазмоциты). Эти клетки обеспечивают выработку антител - гамма-глобулинов (белки) при появлении в организме антигена. Они образуются в лимфоидных органах из В-лимфоцитов, обычно встречаются в рыхлой соединительной ткани собственной пластинки слизистых оболочек полых органов, сальнике, интерстициальной соединительной ткани различных желез (молочных, слюнных и др.), лимфатических узлах, селезенке, костном мозге и др.

Величина плазмоцитов колеблется от 7 до 10 мкм. Форма клеток круглая или овальная. Ядра относительно небольшие, круглой или овальной формы, расположены эксцентрично. Цитоплазма резко базофильна, содержит хорошо развитую концентрически расположенную гранулярную эндоплазматическую сеть, в которой синтезируются белки (антитела). Базофилия отсутствует только в небольшой светлой зоне цитоплазмы около ядра, образующей так называемую сферу или дворик. Здесь располагаются центриоли и комплекс Гольджи. Иногда обнаруживаются скопления иммуноглобулинов в виде оксифильных телец Русселя.

Адипоциты (жировые клетки). Так называют клетки, которые обладают способностью накапливать в больших количествах резервный жир, принимающий участие в трофике, энергообразовании и метаболизме воды. Адипоциты располагаются группами, реже поодиночке и, как правило, около кровеносных сосудов. Накапливаясь в больших количествах, эти клетки образуют жировую ткань (белую или бурую).

Функции адипоцитов - трофическая, связанная с обеспечением энергии и резерва воды в организме, а также участие в процессе терморегуляции.

Адвентициальные клетки. Это малодифференцированные клетки, сопровождающие мелкие кровеносные сосуды. Они имеют уплощенную или веретенообразную форму со слабобазофильной цитоплазмой, овальным ядром и небольшим числом органелл. Эти клетки путем дивергентной дифференцировки дают начало различным клеточным дифферонам (фибробластическому, миофибробластическому, адипоцитарному и др.).

Перициты - клетки, окружающие кровеносные капилляры и входящие в состав их стенки.

Пигментоциты (пигментные клетки, меланоциты). Эти клетки содержат в своей цитоплазме пигмент меланин. Их много в родимых пятнах, а также в соединительной ткани людей черной и желтой рас. Пигментоциты имеют короткие, непостоянной формы отростки, большое количество меланосом (гранул меланина) размером 15-25 нм и рибосом. Часть меланосом из меланоцитов мигрируют в кератиноциты шиповатого и базального слоев эпидермиса.

В цитоплазме меланоцитов содержатся также биологически активные амины, которые могут принимать участие вместе с тучными клетками в регуляции тонуса стенок сосудов.

6.3 Межклеточное вещество соединительной ткани. Общая характеристика и строение. Фибробласты и их роль в образовании межклеточного вещества

Межклеточное вещество, или матрикс, соединительной ткани состоит из коллагеновых и эластических волокон, а также из основного (аморфного) вещества. Межклеточное вещество как у зародышей, так и у взрослых образуется, с одной стороны, путем секреции, осуществляемой соединительнотканными клетками, а с другой - из плазмы крови, поступающей в межклеточные пространства.

У зародышей человека образование межклеточного вещества происходит, начиная с 1-2-го мес внутриутробного развития. В течение жизни межклеточное вещество постоянно обновляется.

Коллагеновые структуры, входящие в состав соединительных тканей организмов человека и животных, являются наиболее представительными ее компонентами, образующими сложную организационную иерархию. Основу всей группы коллагеновых структур составляет волокнис тый белок - коллаген, который определяет свойства коллагеновых структур.

Коллагеновые волокна в составе разных видов соединительной ткани определяют их прочность. В рыхлой неоформленной соединительной ткани они располагаются в различных направлениях в виде волнообразно изогнутых, спиралевидно скрученных, округлых или уплощенных в сечении тяжей толщиной 1-3 мкм и более. Длина их различна. Внутренняя структура коллагенового волокна определяется фибриллярным белком - коллагеном, который синтезируется на рибосомах гранулярной эндоплазматической сети фибробластов.

Различают около 20 типов коллагена, отличающихся молекулярной организацией, органной и тканевой принадлежностью.

В организме человека наиболее распространены следующие: коллаген I типа встречается главным образом в соединительной ткани кожи, сухожилиях, кости, роговице глаза, склере, стенке артерий; коллаген II типа входит в состав гиалиновых и фиброзных хрящей, стекловидного тела, роговицы; коллаген III типа находится в дерме кожи плода, в стенках крупных кровеносных сосудов, в ретикулярных волокнах органов кроветворения; IV типа - в базальных мембранах, капсуле хрусталика; V тип коллагена присутствует в хорионе, амнионе, эндомизии, пери-мизии, коже, вокруг клеток (фибробластов, эндотелиальных, гладкомышечных), синтезирующих коллаген.

Это первый, молекулярный, уровень организации коллагенового волокна. Проколлаген секретируется в межклеточное вещество.

Второй, надмолекулярный, уровень - внеклеточной организации коллагенового волокна - представляют собой агрегированные в длину и поперечно связанные с помощью водородных связей молекулы тропоколлагена, образующиеся путем отщепления концевых пептидов проколлагена.

При участии гликозаминогликанов, также секретируемых фибробластами, формируется третий, фибриллярный, уровень организации коллагенового волокна. Коллагеновые фибриллы представляют собой поперечно исчерченные структуры толщиной в среднем 20-100 нм.

Четвертый, волоконный, уровень организации. Коллагеновое волокно, образующееся путем агрегации фибрилл, имеет толщину 1-10 мкм.

Коллагеновые волокна отличаются малой растяжимостью и большой прочностью на разрыв.

Разновидностью коллагеновых волокон являются ретикулярные и преколлагеновые волокна. Последние представляют собой начальную форму образования коллагеновых волокон в эмбриогенезе и при регенерации. В их состав входят коллаген III типа и повышенное количество углеводов, которые синтезируются ретикулярными клетками органов кроветворения. Они образуют трехмерную сеть - ретикулум, что и обусловило их название.

Эластические волокна. Наличие эластических волокон в соединительной ткани определяет ее эластичность и растяжимость. По прочности эластические волокна уступают коллагеновым. Форма поперечного разреза волокон округлая и уплощенная. В рыхлой соединительной ткани они широко анастомозируют друг с другом. Толщина эластических волокон обычно меньше коллагеновых (0,2-1 мкм), но может достигать нескольких микрометров (например, в выйной связке). В составе эластических волокон различают микрофибриллярный и аморфный компоненты.

Основой эластических волокон является глобулярный гликопротеин - эластин, синтезируемый фибробластами и гладкими мышечными клетками (первый, молекулярный, уровень организации). Для эластина характерны большое содержание пролина и глицина и наличие двух производных аминокислот - десмозина и изодесмозина, которые участвуют в стабилизации молекулярной структуры эластина и придании ему способности к растяжению, эластичности. Молекулы эластина, имеющие глобулы диаметром 2,8 нм, вне клетки соединяются в цепочки - эластиновые протофибриллы толщиной 3-3,5 нм (второй, надмолекулярный, уровень организации). Эластиновые протофибриллы в сочетании с гликопротеином (фибриллином) образуют микрофибриллы толщиной 8-19 нм (третий, фибриллярный, уровень организации). Четвертый уровень организации - волоконный. Наиболее зрелые эластические волокна содержат около 90 % аморфного компонента эластического белка (эластина) в центре, а по периферии - микрофибриллы. В эластических волокнах в отличие от коллагеновых нет структур с поперечной исчерченностью на их протяжении.

Кроме зрелых эластических волокон, различают элауниновые и окситалановые волокна. В элауниновых волокнах соотношение микрофибрилл и аморфного компонента примерно равное, а окситалановые волокна состоят только из микрофибрилл.

Аморфный компонент межклеточного вещества. Клетки и волокна соединительной ткани заключены в аморфный компонент, или основное веществ. Эта гелеобразная субстанция представляет собой метаболическую, интегративно-буферную многокомпонентную среду, которая окружает клеточные и волокнистые структуры соединительной ткани, нервы и сосуды. В состав компонентов основного вещества входят белки плазмы крови, вода, неорганические ионы, продукты метаболизма клеток, растворимые предшественники коллагена и эластина, протеогликаны, гликопротеины и комплексы, образованные ими. Все эти вещества находятся в постоянном движении и обновлении.

Протеогликаны (ПГ) - белково-углеводные соединения, содержащие 90-95 % углеводов.

Гликозаминогликаны (ГАГ) - полисахаридные соединения, содержащие обычно гексуроновую кислоту с аминосахарами (N- ацетилгликозамин, N-ацетилгалактозамин).

Гепарин - ГАГ, состоящий из глюкуроновой кислоты и гликозамина. В организме человека и животных он вырабатывается тучными клетками, является естественным противосвертывающим фактором крови.

Гликопротеины (ГП) - класс соединений белков с олигосахаридами, входящими в состав как волокон, так и аморфного вещества. К ним относятся растворимые ГП, связанные с протеогликанами; ГП кальцинированных тканей; ГП, связанные с коллагеном. ГП играют большую роль в формировании структуры межклеточного вещества соединительной ткани и определяют его функциональные особенности.

Фибронектин - главный поверхностный ГП фибробласта. В межклеточном пространстве он связан главным образом с интерстициальным коллагеном. Полагают, что фибронектин обусловливает липкость, подвижность, рост и специализацию клеток и др.

Фибриллин формирует микрофибриллы, усиливает связь между внеклеточными компонентами.

Ламинин - компонент базальной мембраны, состоящий из трех полипептидных цепочек, связанных между собой дисульфидными соединениями, а также с коллагеном V типа и поверхностными рецепторами клеток.

6.4 Плотные волокнистые соединительные ткани, разновидности, строение и функции. Строение сухожилий и связок. Плотные соединительные ткани

Плотные соединительные ткани характеризуются относительно большим количеством плотно расположенных волокон и незначительным количеством клеточных элементов и основного аморфного вещества между ними. В зависимости от характера расположения волокнистых структур различают неоформленный, оформленный и смешанный типы плотной соединительной ткани.

Неоформленный тип ткани характеризуется неупорядоченным расположением волокон (например, дерма кожи). В оформленном типе ткани расположение волокон строго упорядочено и в каждом случае соответствует тем условиям, в каких функционирует данный орган (сухожилия, связки, фиброзные мембраны). Смешанный тип, как правило, имеет слоистое строение (роговица, склера) с чередованием направлений волокнистых элементов плотной соединительной ткани.

Сухожилие. Оно состоит из толстых, плотно лежащих параллельных пучков коллагеновых волокон, организованных параллельно. Между этими пучками располагаются фиброциты, называемые сухожильными клетками, и небольшое количество фибробластов и основного аморфного вещества. Тонкие пластинчатые отростки фиброцитов входят в промежутки между пучками волокон и тесно соприкасаются с ними. Каждый пучок коллагеновых волокон, отделенный от соседнего слоем фиброцитов, называется пучком первого порядка. Несколько пучков первого порядка, окруженных тонкими прослойками рыхлой соединительной ткани, составляют пучки второго порядка. Прослойки рыхлой соединительной ткани, разделяющие пучки второго порядка, называются эндотенонием. Из пучков второго порядка слагаются пучки третьего порядка, разделенные более толстыми прослойками рыхлой соединительной ткани - перитенонием. Иногда пучком третьего порядка является само сухожилие. В крупных сухожилиях могут быть и пучки четвертого порядка.

В перитенонии и эндотенонии проходят кровеносные сосуды, питающие сухожилие, нервы и находятся проприоцептивные нервные окончания, посылающие ЦНС сигналы о состоянии натяжения ткани сухожилий.

К оформленному типу плотной соединительной ткани относится и выйная связка, только она образуется из толстых эластических волокон.

Некоторые сухожилия в местах прикрепления к костям заключены во влагалища, построенные из двух волокнистых соединительнотканных оболочек, между которыми находится жидкость (смазка), богатая гиалуроновой кислотой.

Фиброзные мембраны. К этим структурам, построенным из плотной соединительной ткани, относят фасции, апоневрозы, сухожильные центры диафрагмы, капсулы некоторых органов, твердую мозговую оболочку, склеру, надхрящницу, надкостницу, а также белочную оболочку яичника и яичка и др. Фиброзные мембраны этой разновидности ткани трудно растяжимы вследствие того, что пучки коллагеновых волокон и лежащие между ними фибробласты и фиброциты располагаются в определенном порядке в несколько слоев друг над другом. В каждом слое волнообразно изогнутые пучки коллагеновых волокон идут параллельно друг другу в одном направлении, не совпадающем с направлением в соседних слоях (соединительная ткань, организованная параллельно в разных направлениях). Отдельные пучки волокон переходят из одного слоя в другой, связывая их между собой. Кроме пучков коллагеновых волокон, в фиброзных мембранах есть эластические волокна. Такие фиброзные структуры, как надкостница, склера, белочная оболочка яичка, капсулы суставов и другие, характеризуются менее правильным расположением пучков коллагеновых волокон и большим количеством эластических волокон по сравнению с апоневрозами.

6.5 Макрофаги. Понятие о системе мононуклеарных фагоцитов

Макрофаги (макрофагоциты) - это гетерогенная специализированная клеточная популяция защитной системы организма. Различают две группы макрофагов - свободные и фиксированные. К свободным макрофагам относятся макрофаги рыхлой соединительной ткани, или гистиоциты; макрофаги серозных полостей; макрофаги воспалительных экссудатов; альвеолярные макрофаги легких. Макрофаги способны перемещаться в организме. Группу фиксированных (резидентных) макрофагов составляют макрофаги костного мозга, костной и хрящевой тканей (остеокласты, хондрокласты), селезенки, лимфатических узлов (дендритные макрофаги), внутриэпидермальные макрофаги (клетки Лангерганса), макрофаги ворсин плаценты (клетки Хофбауэра), макрофаги ЦНС (микроглия).

Размер и форма макрофагов варьируют в зависимости от их функционального состояния. Обычно макрофаги, за исключением некоторых их видов (гигантские клетки инородных тел, хондро- и остеокласты), имеют одно ядро. Ядра макрофагов небольшого размера, округлые, бобовидные или неправильной формы. В них содержатся крупные глыбки хроматина. Цитоплазма базофильна, богата лизосомами, фагосомами (отличительные признаки) и пиноцитозными пузырьками, содержит умеренное количество митохондрий, гранулярную эндоплазматическую сеть, комплекс Гольджи, включения гликогена, липидов и другие. В цитоплазме макрофагов выделяют «клеточную периферию», обеспечивающую макрофагу способность передвигаться, втягивать микровыросты цитоплазмы, осуществлять эндо- и экзоци-тоз. Непосредственно под плазмолеммой находится сеть актиновых филамен-тов диаметром 5-6 нм. Через эту сеть проходят микротрубочки диаметром 20 нм, которые прикрепляются к плазмолемме. Микротрубочки направлены радиально от клеточного центра к периферии клетки и играют важную роль во внутриклеточных перемещениях лизосом, микропиноцитозных везикул и других структур. На поверхности плазмолеммы имеются рецепторы для опухолевых клеток и эритроцитов, Т- и В-лимфоцитов, антигенов, иммуноглобулинов, гормонов. Наличие рецепторов иммуноглобулинов обусловливает участие макрофагов в иммунных реакциях.

Формы проявления защитной функции макрофагов: 1) поглощение и дальнейшее расщепление или изоляция чужеродного материала; 2) обезвреживание его при непосредственном контакте; 3) передача информации о чужеродном материале иммунокомпетентным клеткам, способным его нейтрализовать; 4) оказание стимулирующего воздействия на другую клеточную популяцию защитной системы организма. Макрофаги имеют органеллы, синтезирующие ферменты для внутриклеточного и внеклеточного расщепления чужеродного материала, антибактериальные и другие биологически активные вещества (протеазы, кислые гидролазы, пироген, интерферон, лизоцим и др.).

Количество макрофагов и их активность особенно возрастают при воспалительных процессах. Макрофаги вырабатывают хемотаксические факторы для лейкоцитов. Секретируемый макрофагами ИЛ-1 способен повышать адгезию лейкоцитов к эндотелию, секрецию лизосомных ферментов ней-трофилами и их цитотоксичность, активирует синтез ДНК в лимфоцитах. Макрофаги вырабатывают факторы, активирующие выработку иммуноглобулинов В-лимфоцитами, дифференцировку Т- и В-лимфоцитов; цитоли- тические противоопухолевые факторы, а также факторы роста, влияющие на размножение и дифференцировку клеток собственной популяции, стимулируют функцию фибробластов.

Контакт макрофагов с антигенами резко усиливает расход глюкозы, липидный обмен и фагоцитарную активность.

Макрофаги образуются из СКК, а также из промоноцита и моноцита. Полное обновление макрофагов рыхлой волокнистой соединительной ткани у экспериментальных животных осуществляется примерно в 10 раз быстрее, чем фибробластов.

Одной из разновидностей макрофагов являются многоядерные гигантские клетки, которые раньше называли «гигантскими клетками инородных тел», так как они могут формироваться, в частности, в присутствии инородного тела. Многоядерные гигантские клетки содержат 10-20 ядер и более, возникают либо путем слияния одноядерных макрофагов, либо путем эндомитоза без цитотомии. По данным электронной микроскопии, в многоядерных гигантских клетках присутствуют синтетический и секреторный аппарат и большое количество лизосом. Плазмолемма образует многочисленные складки.

Понятие о макрофагической системе. К этой системе относятся макрофаги (гистиоциты) рыхлой волокнистой соединительной ткани, звездчатые клетки синусоидных сосудов печени, свободные и фиксированные макрофаги кроветворных органов (костного мозга, селезенки, лимфатических узлов), макрофаги легкого, воспалительных экссудатов (перитонеальные макрофаги), остеокласты, гигантские клетки инородных тел и глиальные макрофаги нервной ткани (микроглия). Все они активные фагоциты. Фагоцитированный материал подвергается внутри клетки ферментативному расщеплению («завершенный фагоцитоз»), благодаря чему ликвидируются вредные для организма агенты, возникающие местно или проникающие извне. Клетки имеют на своей поверхности рецепторы иммуноглобулинов и возникают из промоноцитов костного мозга и моноцитов крови. В отличие от таких «профессиональных» фагоцитов способностью к факультативному поглощению обладают фибробласты, ретикулярные клетки, эндотелиоциты, нейтрофильные гранулоциты и др. Но эти клетки не входят в состав макро-фагической системы.

И. И. Мечников первым пришел к мысли о том, что фагоцитоз, возникающий в процессе эволюции как форма внутриклеточного пищеварения и закрепившийся за многими клетками, одновременно является важным защитным механизмом. Он обосновал целесообразность объединения их в одну систему и предложил назвать ее макрофагической. Макрофагическая система представляет собой мощный защитный аппарат, принимающий участие как в общих, так и в местных защитных реакциях организма. В целостном организме макрофагическая система регулируется как местными механизмами, так и нервной и эндокринной системами.

В 1930-1940-х гг. эту защитную систему называли ретикулоэндотелиальной. В последнее время ее называют системой мононуклеарных фагоцитов, что, однако, неточно характеризует ее в связи с тем, что среди клеток, входящих в эту систему, есть и многоядерные (остеокласты).

6.6 Соединительные ткани со специальными свойствами (ретикулярная, жировая, пигментная, слизистая)

Ретикулярная ткань является разновидностью соединительной ткани, имеет сетевидное строение и состоит из отростчатых ретикулярных клеток и ретикулярных волокон. Большинство ретикулярных клеток связаны с ретикулярными волокнами и стыкуются друг с другом отростками, образуя трехмерную сеть. Ретикулярная ткань образует строму кроветворных органов и микроокружение для развивающихся в них клеток крови.

В группе аргирофильных волокон различают собственно ретикулярные и преколлагеновые волокна. Собственно ретикулярные волокна - дефинитивные, окончательные образования, содержащие коллаген III типа. Ретикулярные волокна по сравнению с коллагеновыми содержат в высокой концентрации серу, липиды и углеводы. По растяжимости эти волокна занимают промежуточное положение между коллагеновыми и эластическими. Преколлагеновые волокна представляют собой начальную форму образования коллагеновых волокон в эмбриогенезе и при регенерации.

Жировая ткань

Жировая ткань - это скопления жировых клеток, встречающихся во многих органах. Различают две разновидности жировой ткани - белую и бурую. Белая жировая ткань широко распространена в организме человека, а бурая встречается главным образом у новорожденных и у некоторых животных (грызунов и зимоспящих) в течение всей жизни.

Белая жировая ткань у человека располагается под кожей, особенно в нижней части брюшной стенки, на ягодицах и бедрах, где она образует подкожный жировой слой, в сальнике, брыжейке и ретроперитонеальной области. Жировая ткань более или менее отчетливо делится прослойками рыхлой волокнистой соединительной ткани на дольки различных размеров и формы. Жировые клетки внутри долек довольно близко прилегают друг к другу. В узких пространствах между ними располагаются фибробласты, лимфоидные элементы, тучные клетки. Между жировыми клетками во всех направлениях ориентированы тонкие коллагеновые волокна. Кровеносные и лимфатические капилляры, располагаясь в прослойках рыхлой волокнистой соединительной ткани, тесно охватывают своими петлями группы жировых клеток или дольки жировой ткани. В жировой ткани происходят активные процессы обмена жирных кислот, углеводов и образование жира из углеводов.

При распаде жиров высвобождается большое количество воды и выделяется энергия, поэтому жировая ткань играет не только роль депо субстратов для синтеза макроэргических соединений, но косвенно и роль депо воды.

Во время голодания подкожная и околопочечная жировая ткань, жировая ткань сальника и брыжейки быстро теряют запасы жира. Капельки липидов внутри клеток измельчаются, и жировые клетки приобретают звездчатую или веретеновидную форму. В области орбиты глаз, в коже ладоней и подошв жировая ткань теряет лишь небольшое количество липидов даже во время продолжительного голодания. Здесь жировая ткань играет преимущественно механическую, а не обменную роль. В этих местах она разделена на мелкие дольки, окруженные соединительнотканными волокнами.

Бурая жировая ткань встречается у новорожденных детей и у некоторых животных на шее, около лопаток, за грудиной, вдоль позвоночника, под кожей и между мышцами. Она состоит из жировых клеток, густо оплетенных гемокапиллярами. Эти клетки принимают участие в процессах теплопродукции. Адипоциты бурой жировой ткани имеют множество мелких жировых включений в цитоплазме. По сравнению с клетками белой жировой ткани в них значительно больше митохондрий. Бурый цвет жировым клеткам придают железосодержащие пигменты - цитохромы митохондрий.

Окислительная способность бурых жировых клеток примерно в 20 раз выше белых и почти в 2 раза превышает окислительную способность мышцы сердца. При понижении температуры окружающей среды повышается активность окислительных процессов в бурой жировой ткани. При этом выделяется тепловая энергия, обогревающая кровь в кровеносных капиллярах. При голодании бурая жировая ткань изменяется меньше, чем белая.

Слизистая ткань

Слизистая ткань в норме встречается только у зародыша. Классическим объектом для ее изучения является пупочный канатик человеческого плода. Клеточные элементы здесь представлены гетерогенной группой клеток, дивергентно дифференцирующихся из мезенхимных клеток на протяжении внутриутробного периода. Среди них различают крупные звездчатой формы фибробласты, миофибробласты, гладкие мышечные клетки. Они отличаются способностью к синтезу виментина, десмина, актина, миозина. Фибробласты слизистой ткани пупочного канатика синтезируют коллаген IV типа, характерный для базальных мембран, ламинин, гепаринсульфат.

Между клетками этой ткани в первой половине беременности в большом количестве обнаруживается гиалуроновая кислота, что обусловливает желеобразную консистенцию основного вещества.

6.7 Хрящевые ткани. Общая характеристика. Виды хрящевых тканей. Строение клеток и межклеточного вещества. Возрастные изменения

Хрящевые ткани входят в состав органов дыхательной системы, суставов, межпозвонковых дисков и другого, состоят из клеток - хондроцитов и хондробластов и большого количества межклеточного гидрофильного вещества, отличающегося упругостью. Именно с этим связана опорная функция хрящевых тканей. В свежей хрящевой ткани содержится около 70-80 % воды, 10-15 % органических веществ и 4-7 % солей. От 50 до 70 % сухого вещества хрящевой ткани составляет коллаген. Собственно хрящевая ткань не имеет кровеносных сосудов, а питательные вещества диффундируют из окружающей ее надхрящницы.

Классификация. Различают три вида хрящевой ткани: гиалиновую, эластическую, волокнистую. Такое подразделение хрящевых тканей основано на структурно-функциональных особенностях строения их межклеточного вещества, степени содержания и соотношения коллагеновых и эластических волокон.

Хондробласты - это молодые уплощенные клетки, способные к пролиферации и синтезу межклеточного вещества хряща (протеогликанов). Цитоплазма хондробластов имеет хорошо развитую гранулярную и агранулярную эндоплазматическую сеть, комплекс Гольджи. Большое содержание РНК. Хондробласты синтезируют и секретируют фибриллярные белки (коллаген), возникает межклеточное вещество. Так образуется первичная хрящевая ткань. При участии хондробластов происходит периферический рост хряща. При дальнейшей дифференцировке хрящевой ткани хондробласты развиваются в хондроциты.

Хондроциты - основной вид клеток хрящевой ткани. Они бывают овальными, круглыми или полигональной формы - в зависимости от степени дифференцировки. Расположены в особых полостях (лакунах) в межклеточном веществе поодиночке или группами. Группы клеток, лежащие в общей полости, называются изогенными. Они образуются путем деления одной клетки. В изогенных группах различают три типа хондроцитов.

Первый тип хондроцитов характеризуется высоким ядерно-цитоплазматическим отношением, развитием вакуолярных элементов комплекса Гольджи, наличием митохондрий и свободных рибосом в цитоплазме. Хондроциты I типа преобладают в молодом, развивающемся хряще. Хондроциты II типа отличаются снижением ядерно-цитоплазматического отношения, ослаблением синтеза ДНК, сохранением высокого уровня РНК, интенсивным развитием гранулярной эндоплазматической сети и всех компонентов комплекса Гольджи, которые обеспечивают образование и секрецию гликозаминогликанов и протеогликанов в межклеточное вещество. Хондроциты III типа отличаются самым низким ядерно-цитоплазматическим отношением, сильным развитием и упорядоченным расположением гранулярной эндоплазматической сети. Эти клетки сохраняют способность к образованию и секреции белка, но в них снижается синтез гликозаминогликанов.

...

Подобные документы

  • Основные типы тканей. Разделы гистологии как учебной дисциплины. Этапы развития гистологии: домикроскопический, микроскопический и современный. Ш. Бонне как теоретик преформизма, учение о рекапитуляции. Вклад П.П. Иванова в развитие эмбриологии.

    презентация [1,4 M], добавлен 15.05.2012

  • Патологические изменения клеток эпителиальных тканей шейки матки под влиянием вируса папилломы человека. Структура генома вируса, его роль в механизмах стимулирования пролиферации и индукции неопластической трансформации. Изменения клеток эпителия.

    дипломная работа [4,9 M], добавлен 31.01.2018

  • Ознакомление с понятием, сущностью и процессами метаболизма. Рассмотрение особенностей создания молекул аминокислот, углеводов, липидов и нуклеиновых кислот. Образование всех клеток и тканей, выделение энергии в процессе обмена веществ в организме.

    презентация [507,1 K], добавлен 02.06.2015

  • Уровни организации живой материи. Понятие и предмет гистологии (учения о тканях). Периоды развития науки. Практическое значение эмбриологии для медицины. Первые представления о внутриутробном развитии плода. Использование световой микроскопии в цитологии.

    презентация [470,9 K], добавлен 10.05.2014

  • Цитокины - группа полипептидных медиаторов межклеточного взаимодействия, участвующих в формировании и регуляции защитных реакций организма, а также регенерации тканей; их свойства и функции. Рассмотрение классификации по биологическим свойствам.

    презентация [344,9 K], добавлен 13.11.2014

  • Рассмотрение роли нервной системы в регуляции функций организма. Характеристика строения и классификации (афферентные, эффекторные, ассоциативные) нейронов. Ознакомление с глиальными клетками (формирование миелиовой оболочки). Изучение состава синапса.

    контрольная работа [4,2 M], добавлен 26.02.2010

  • Изолированные иммунокомпетентные клетки. Изучение строения первичных и вторичных лимфатических органов, перемещение клеток между ними. Клиническое значение строения лимфоидных тканей для иммунотерапии. Изучение расположения селезенки, вилочковой железы.

    презентация [717,0 K], добавлен 20.11.2014

  • Рассмотрение понятия ткани как системы клеток и неклеточных структур, обладающих общностью развития, строения и функции. Пространственная организация микроворсинки в апикальной части каемчатой клетки. Классификация и морфология эпителиальных пластов.

    реферат [2,2 M], добавлен 09.09.2012

  • Предмет и задачи медицинской генетики. Рассмотрение вопроса искусственного оплодотворения. Изучение основных положений биоэтики, "Основ законодательства по охране здоровья". Повышение информированности населения, касающейся проблем генетики и технологий.

    презентация [954,7 K], добавлен 15.04.2015

  • История открытия витамина A и его химической структуры. Механизм образования зрительного сигнала. Участие витамина в антиоксидантной защите организма. Поддержание и восстановление эпителиальных тканей. Изучение антиоксидантного действия каротина.

    презентация [711,1 K], добавлен 29.02.2016

  • Анализ исторического развития знаний о заболевании. Отражены основные этапы развития научных представлений о подагре и причинах её возникновения. Приведены теории патогенеза, начиная со времен Гиппократа и заканчивая современными представлениями.

    статья [21,5 K], добавлен 06.09.2017

  • Ознакомление с клетками крови, которые в основном представлены эритроцитами и лейкоцитами. Определение и анализ особенностей обмена веществ эритроцитов. Изучение системы антиоксидантной защиты организма. Рассмотрение схематического изображения почки.

    презентация [3,3 M], добавлен 09.04.2018

  • Понятие о соединительных тканях в организме, их особые виды, функции и классификация. Важнейшее отличие хрящевой ткани от костной и большинства других типов тканей. Общая схема строения. Изучение соединительной ткани как в норме, так и при патологии.

    презентация [2,0 M], добавлен 15.09.2013

  • Изучение анатомии, цитологии и гистологии печени, ее роль в метаболизме. Биохимические показатели функции печени, их клиническое значение. Нормы билирубина в крови. Гемолитическая болезнь новорожденных. Дефицит липотропных веществ. Гипоонкотические отеки.

    презентация [1,3 M], добавлен 22.06.2015

  • Задачи ферментов как веществ биологического происхождения, ускоряющих химические реакции. Организованная последовательность процессов обмена веществ. Особенности ферментативного катализа. Лекарственные препараты: ингибиторы и активаторы ферментов.

    презентация [2,9 M], добавлен 27.10.2014

  • Рассмотрение понятия и структуры органа зрения. Изучение строения зрительного анализатора, глазного яблока, роговицы, склеры, сосудистой оболочки. Кровоснабжение и иннервация тканей. Анатомия хрусталика и зрительного нерва. Веки, слезные органы.

    презентация [11,0 M], добавлен 08.09.2015

  • Рассмотрение классификации ядовитых веществ по происхождению (ботаническая, зоологическая, химическая систематика), общности основного симптома, локализации токсического процесса. Изучение основных лечебно-профилактических мероприятий при отравлении.

    реферат [26,0 K], добавлен 26.04.2010

  • Направления создания новых лекарственных веществ. Фракции каменноугольной смолы. Получение лекарственных веществ из растительного и животного сырья, биологического синтеза. Методы выделения биологически активных веществ. Микробиологический синтез.

    реферат [43,7 K], добавлен 19.09.2010

  • Ознакомление с историей открытия и свойствами лазеров; примеры использования в медицине. Рассмотрение строения глаза и его функций. Заболевания органов зрения и методы их диагностики. Изучение современных методов коррекции зрения с помощью лазеров.

    курсовая работа [4,3 M], добавлен 18.07.2014

  • Изучение химиотерапевтических веществ, объединённых в группу антибиотиков. Действие лекарств, образуемых при биосинтезе микроорганизмов. Исследование стратегии антибактериальной терапии и путей преодоления резистентности микроорганизмов к антибиотикам.

    презентация [5,7 M], добавлен 08.06.2017

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.