Предмет гистологии
Изучение строения органелл, участвующих в биосинтезе веществ в клетках. Анализ биологического значения оплодотворения. Ознакомление с современными представлениями о дифферонах, "тканевых мозаиках". Рассмотрение классификации эпителиальных тканей.
Рубрика | Медицина |
Вид | шпаргалка |
Язык | русский |
Дата добавления | 24.05.2021 |
Размер файла | 624,9 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Паравертебральные узлы расположены по обе стороны позвоночника и со своими соединительными стволами образуют симпатические цепочки.
Превертебральные узлы образуют кпереди от брюшной аорты и ее главных ветвей брюшное сплетение, в состав которого входят чревный, верхний брыжеечный и нижний брыжеечный ганглии.
Автономные узлы снаружи покрыты соединительнотканной капсулой. Прослойки соединительной ткани проникают внутрь узла, образуя его остов. Узлы состоят из мультиполярных нервных клеток, весьма разнообразных по форме и величине. Дендриты нейронов многочисленны и сильно ветвятся. Аксоны в составе постганглионарных (обычно безмиелиновых) волокон поступают в соответствующие внутренние органы. Каждый нейрон и его отростки окружены глиальной оболочкой. Наружная поверхность глиальной оболочки покрыта базальной мембраной, кнаружи от которой расположена тонкая соединительнотканная оболочка. Преганглионарные волокна, вступая в соответствующий ганглий, заканчиваются на дендритах или перикарионах нейронов аксодендритными либо аксосоматическими синапсами. Синапсы микроскопически выявляются в виде утолщений по ходу волокна или терминальных утолщений.
В составе симпатических ганглиев имеются небольшие группы гранулосодержащих, мелких интенсивно флюоресцирующих клеток (МИФ-клетки). Они характеризуются короткими отростками и обилием в цитоплазме гранулярных пузырьков, соответствующих по флюоресценции и электронно-микроскопической характеристике пузырькам клеток мозгового вещества надпочечника. МИФ-клетки окружены глиальной оболочкой. На телах МИФ-клеток, реже на их отростках, видны холинергические синапсы, образованные терминалями преганглионарных волокон. МИФ-клетки рассматриваются как внутриганглионарная тормозная система. Они, возбуждаясь преганглионарными холинергическими волокнами, выделяют катехоламины. Последние, распространяясь диффузно или по сосудам ганглия, оказывают тормозящее влияние на синаптическую передачу с преганглионарных волокон на периферические нейроны ганглия.
Узлы парасимпатического отдела автономной нервной системы лежат или вблизи иннервируемого органа, или в его интрамуральных нервных сплетениях. Преганглионарные волокна заканчиваются на телах нейронов, а чаще на их дендритах холинергическими синапсами. Аксоны этих клеток (постганглионарные волокна) следуют в мышечной ткани иннервируемых органов в виде варикозных терминалей и образуют нейромышечные холинергические синапсы.
Интрамуральные сплетения. Значительное количество нейронов автономной нервной системы сосредоточено в нервных сплетениях самих иннервируемых органов: в пищеварительном тракте, сердце, мочевом пузыре и др.
Узлы интрамуральных сплетений, как и другие автономные узлы, содержат, кроме эфферентных нейронов, рецепторные и ассоциативные клетки местных рефлекторных дуг. Морфологически в интрамуральных нервных сплетениях различают три типа клеток, описанных Догелем. Длинноаксонные эфферентные нейроны (клетки I типа) имеют много коротких ветвящихся дендритов и длинный нейрит, уходящий за пределы ганглия. Равноотростчатые (афферентные) нейроны (клетки II типа) содержат несколько отростков. Клетки III типа (ассоциативные) посылают свои отростки в соседние ганглии, где они заканчиваются на дендритах их нейронов.
Специфическими особенностями отличается интрамуральная система пищеварительного тракта (энтеральная система). В стенке пищеварительной трубки расположены три нервных сплетения: подсерозное, мышечно-кишечное и подслизистое, - содержащие скопления нервных клеток, связанные пучками нервных волокон. Наиболее массивное нервное сплетение - мышечно- кишечное - расположено между продольным и циркулярным мышечными слоями. В составе интрамуральных вегетативных ганглиев содержатся и пептидергические нейроны, выделяющие ряд гормонов (вазоинтестинальный пептид, вещество Р, соматостатин и др.). Считается, что эти нейроны осуществляют нервные и эндокринные функции, а также модулируют функциональную деятельность эндокринных аппаратов различных органов.
Постганглионарные волокна нейронов интрамуральных сплетений в мышечной ткани органа образуют терминальное сплетение, тонкие стволы которого содержат несколько варикозно-расширенных аксонов. Варикозные расширения (0,5-2 мкм в диаметре) содержат синаптические пузырьки и митохондрии. Межварикозные участки (шириной 0,1-0,5 мкм) заполнены нейротрубочками и нейрофиламентами. Синаптические пузырьки холинергических нейромышечных синапсов мелкие светлые (размером 30-60 нм), адренергических - мелкие гранулярные (размером 50-60 нм).
9.7 Кровеносные сосуды. Общий принцип строения, тканевой состав, классификация
Кровеносные сосуды представляют собой систему замкнутых трубок различного диаметра, осуществляющих транспортную функцию, регуляцию кровоснабжения органов и обмен веществ между кровью и окружающими тканями.
Классификация и общая характеристика сосудов. В кровеносной системе различают артерии, артериолы, капилляры, венулы, вены и артериоловенулярные анастомозы. Взаимосвязь между артериями и венами осуществляется системой сосудов микроциркуляторного русла.
По артериям кровь течет от сердца к органам. Как правило, эта кровь насыщена кислородом, за исключением легочной артерии, несущей венозную кровь. По венам кровь притекает к сердцу и содержит в отличие от крови легочных вен мало кислорода. Капилляры соединяют артериальное звено кровеносной системы с венозным, кроме так называемых чудесных сетей, в которых капилляры находятся между двумя одноименными сосудами (например, между артериями в клубочках почки). Стенка всех артерий, так же как и вен, состоит из трех оболочек: внутренней, средней и наружной. Их толщина, тканевый состав и функциональные особенности неодинаковы в сосудах разных типов.
9.8 Артерии. Классификация. Особенности строения и функции артерий различного типа: мышечного, мышечно-эластического и эластического. Органные особенности артерий
Классификация. По особенностям строения их стенки артерии бывают трех типов: эластического, мышечного и смешанного (мышечно-эластического). Классификация основывается на соотношении количества мышечных клеток и эластических элементов в средней оболочке артерий.
Артерии эластического типа
Артерии эластического типа характеризуются сильно выраженным развитием в их средней оболочке эластических структур (мембраны, волокна). К ним относятся сосуды крупного калибра, такие как аорта и легочная артерия, в которых кровь протекает под высоким давлением (120-130 мм рт. ст.) и с большой скоростью. В эти сосуды кровь поступает либо непосредственно из сердца, либо вблизи от него из дуги аорты. Артерии крупного калибра выполняют главным образом транспортную функцию. Наличие большого количества эластических элементов позволяет этим сосудам растягиваться при систоле сердца и возвращаться в исходное положение во время диастолы.
Внутренняя оболочка аорты включает эндотелий, субэндотелиальный слой и сплетение эластических волокон.
Эндотелий аорты человека состоит из клеток, различных по форме и размерам, расположенных на базальной мембране. По протяженности сосуда размеры и форма клеток неодинаковы. Чаще они бывают одноядерными, но встречаются и многоядерные. Размеры ядер также неодинаковы. В эндотелиальных клетках слабо развита эндоплазматическая сеть гранулярного типа. Митохондрии весьма многочислены, разнообразны по форме и величине, очень много микрофиламентов, образующих цитоскелет.
Субэндотелиальный слой составляет примерно 15-20% толщины стенки сосуда и состоит из рыхлой тонкофибриллярной соединительной ткани, богатой клетками звездчатой формы. В последних обнаруживается большое количество пиноцитозных пузырьков и микрофиламентов, а также эндоплазматическая сеть гранулярного типа. Эти клетки, как консоли, поддерживают эндотелий. В субэндотелиальном слое встречаются отдельные продольно направленные гладкие мышечные клетки (гладкие миоциты).
Глубже субэндотелиального слоя в составе внутренней оболочки расположено густое сплетение эластических волокон, соответствующее внутренней эластической мембране. В межклеточном веществе внутренней оболочки аорты содержится большое количество гликозаминогликанов, фосфолипиды. Основное аморфное вещество играет большую роль в трофике стенки сосуда. Физико-химическое состояние этого вещества обусловливает степень проницаемости стенки сосуда.
Внутренняя оболочка аорты в месте отхождения от сердца образует три карманоподобные створки («полулунные клапаны»).
Средняя оболочка аорты состоит из большого количества эластических окончатых мембран, связанных между собой эластическими волокнами и образующих единый эластический каркас вместе с эластическими элементами других оболочек.
Между мембранами средней оболочки артерии эластического типа залегают гладкие мышечные клетки, косо расположенные по отношению к мембранам.
Одной из особенностей структурной организации гладких миоцитов аорты является наличие в их цитоплазме многочисленных промежуточных филаментов, состоящих из белка виментина, в то время как промежуточные филаменты гладких миоцитов других сосудов, способных более сильно сокращаться, состоят из виментина и десмина. Помимо сократительной функции, гладкие миоциты выполняют секреторную функцию - синтезируют гликозаминогликаны, коллаген и эластин.
Окончатые эластические мембраны, эластические и коллагеновые волокна и гладкие миоциты погружены в аморфное вещество, богатое гликозаминогликанами. Такое строение средней оболочки делает аорту высокоэластичной и смягчает толчки крови, выбрасываемой в сосуд во время сокращения левого желудочка сердца, а также обеспечивает поддержание тонуса сосудистой стенки во время диастолы.
Наружная оболочка аорты построена из рыхлой волокнистой соединительной ткани с большим количеством толстых эластических и коллагеновых волокон, имеющих главным образом продольное направление. В наружной оболочке проходят питающие сосуды и нервные стволики. Наружная оболочка предохраняет сосуд от перерастяжения и разрывов.
Артерии мышечного типа
К артериям мышечного типа относятся преимущественно сосуды среднего и мелкого калибра, т. е. большинство артерий организма.
В стенках этих артерий имеется относительно большое количество гладких мышечных клеток, что обеспечивает дополнительную нагнетающую силу и регулирует приток крови к органам.
В состав внутренней оболочки входят эндотелий с базальной мембраной, субэндотелиальный слой и внутренняя эластическая мембрана. Эндотелиальные клетки, расположенные на базальной мембране, вытянуты вдоль продольной оси сосуда. Субэндотелиальный слой состоит из тонких эластических и коллагеновых волокон, преимущественно продольно направленных, а также малодифференцированных соединительнотканных клеток.
Во внутренней оболочке некоторых артерий - сердца, почек, яичников, матки, пупочной артерии, легких - обнаруживаются продольно расположенные гладкие миоциты.
В основном веществе субэндотелиального слоя находятся гликозаминогликаны. Субэндотелиальный слой лучше развит в артериях среднего и крупного калибра и слабее - в мелких артериях. Кнаружи от субэндотелиального слоя расположена тесно связанная с ним внутренняя эластическая мембрана. В мелких артериях она очень тонкая. В более крупных артериях мышечного типа эластическая мембрана отчетливо выражена.
Средняя оболочка артерии содержит гладкие мышечные клетки, расположенные по пологой спирали, между которыми находятся в небольшом числе соединительнотканные клетки и волокна (коллагеновые и эластические). Коллагеновые волокна образуют опорный каркас для гладких миоцитов. В артериях обнаружен коллаген I, II, IV, V типа. Спиральное расположение мышечных клеток обеспечивает при сокращении уменьшение объема сосуда и проталкивание крови.
Эластические волокна стенки артерии на границе с наружной и внутренней оболочками сливаются с эластическими мембранами. Таким образом, создается единый эластический каркас, который, с одной стороны, придает сосуду эластичность при растяжении, а с другой - упругость при сдавлении. Эластический каркас препятствует спадению артерий, что обусловливает их постоянное зияние и непрерывность в них тока крови.
Гладкие мышечные клетки средней оболочки артерий мышечного типа своими сокращениями поддерживают кровяное давление, регулируют приток крови в сосуды микроциркуляторного русла органов. На границе между средней и наружной оболочками располагается наружная эластическая мембрана. Она состоит из продольно идущих толстых, густо переплетающихся эластических волокон, которые иногда приобретают вид сплошной эластической пластинки.
Наружная оболочка состоит из рыхлой волокнистой соединительной ткани, в которой соединительнотканные волокна имеют преимущественно косое и продольное направление. В этой оболочке постоянно встречаются нервы, кровеносные сосуды, питающие стенку, а также тучные клетки. Последние участвуют в регуляции местного кровотока.
По мере уменьшения диаметра артерии и их приближения к артериолам все оболочки артерии истончаются. Во внутренней оболочке резко уменьшается толщина субэндотелиального слоя и внутренней эластической мембраны. Количество мышечных клеток и эластических волокон в средней оболочке также постепенно убывает. В наружной оболочке уменьшается количество эластических волокон, исчезает наружная эластическая мембрана.
Артерии мышечно-эластического типа
По строению и функциональным особенностям артерии мышечно-эластического, или смешанного, типа занимают промежуточное положение между сосудами мышечного и эластического типов. К ним относятся, в частности, сонная и подключичная артерии. Внутренняя оболочка этих сосудов состоит из эндотелия, расположенного на базальной мембране, субэндотелиального слоя и внутренней эластической мембраны. Эта мембрана располагается на границе внутренней и средней оболочек и характеризуется отчетливой выраженностью и четкой отграниченностью от других элементов сосудистой стенки.
Средняя оболочка артерий смешанного типа состоит из примерно равного количества гладких мышечных клеток, спирально ориентированных эластических волокон и окончатых эластических мембран. Между гладкими мышечными клетками и эластическими элементами обнаруживается небольшое количество фибробластов и коллагеновых волокон.
В наружной оболочке артерий можно выделить два слоя: внутренний, содержащий отдельные пучки гладких мышечных клеток, и наружный, состоящий преимущественно из продольно и косо расположенных пучков коллагеновых и эластических волокон и соединительнотканных клеток. В ее составе присутствуют сосуды сосудов и нервные волокна. Занимая промежуточное положение между сосудами мышечного и эластического типов, артерии смешанного типа (например, подключичные) не только могут сильно сокращаться, но и обладают высокими эластическими свойствами, что особенно отчетливо проявляется при повышении кровяного давления.
Некоторые отделы сосудистой системы имеют органные особенности строения артерий. Например, артерии черепа отличаются слабым развитием эластических элементов в средней и наружной оболочках; наружной эластической мембраны в них нет. Внутренняя эластическая мембрана, наоборот, выражена отчетливо. Такие же особенности существуют и у артерий головного мозга.
В пупочной артерии отсутствует внутренняя эластическая мембрана. В затылочной артерии сильно развиты пучки гладких мышечных клеток во внутренней оболочке. В почечной, брыжеечной, селезеночной и венечной артериях пучки продольно расположенных гладких мышечных клеток хорошо выражены в наружной оболочке. В артериях матки, полового члена, артериях сосочковых мышц сердца и пупочного канатика, особенно в месте его перехода в плаценту, пучки гладких мышечных клеток находятся и во внутренней, и в наружной оболочках.
9.9 Вены. Классификация. Особенности строения вен различного типа (мышечного и безмышечного). Строение венозных клапанов. Органные особенности вен
Вены большого круга кровообращения осуществляют отток крови от органов, участвуют в обменной и депонирующей функциях. Различают поверхностные и глубокие вены, причем последние в двойном количестве сопровождают артерии. Вены широко анастомозируют, образуя в органах сплетения.
Во многих венах (в подкожных и других) имеются клапаны, являющиеся производными внутренней оболочки. Вены головного мозга и его оболочек, внутренних органов, подчревные, подвздошные, полые и безымянные клапанов не имеют.
Клапаны в венах способствуют току венозной крови к сердцу, препятствуя ее обратному движению. Одновременно клапаны предохраняют сердце от излишней затраты энергии на преодоление колебательных движений крови, постоянно возникающих в венах под влиянием различных внешних воздействий (изменение атмосферного давления, мышечное сжатие и др.).
Одна из отличительных особенностей гистологической структуры вены - относительно слаборазвитый эластический каркас. Как правило, в венах отсутствуют внутренняя и наружная эластические мембраны. Эластические волокна, располагающиеся преимущественно в продольном направлении, немногочисленны. Низкое давление и слаборазвитый эластический каркас приводят к спадению стенки вен и возрастанию сопротивления току крови.
Классификация. По степени развития мышечных элементов в стенках вен они могут быть разделены на две группы: вены фиброзного (безмышечного) и вены мышечного типа. Вены мышечного типа в свою очередь подразделяются на вены со слабым, средним и сильным развитием мышечных элементов.
В венах, так же как и в артериях, различают три оболочки: внутреннюю, среднюю и наружную. Выраженность и строение этих оболочек в различных венах существенно различаются.
Вены фиброзного типа
Вены фиброзного типа отличаются тонкостью стенок и отсутствием средней оболочки, в связи с чем их называют еще венами безмышечного типа. К венам этого типа относят безмышечные вены твердой и мягкой мозговых оболочек, вены сетчатки глаза, костей, селезенки и плаценты.
Вены мозговых оболочек и сетчатки глаза податливы при изменении кровяного давления, могут сильно растягиваться, но скопившаяся в них кровь сравнительно легко под действием собственной силы тяжести оттекает в более крупные венозные стволы. Вены костей, селезенки и плаценты также пассивны в продвижении по ним крови. Это объясняется тем, что все они сращены с плотными элементами соответствующих органов и не спадаются, поэтому отток крови по ним совершается легко. Эндотелиальные клетки, выстилающие эти вены, имеют более извилистые границы, чем в артериях. Снаружи к ним прилежит базальная мембрана, а затем тонкий слой рыхлой волокнистой соединительной ткани, срастающийся с окружающими тканями.
Вены мышечного типа
Вены мышечного типа характеризуются наличием в их оболочках гладких мышечных клеток, количество и расположение которых в стенке вены обусловлены гемодинамическими факторами.
Выделяют вены со слабым, средним и сильным развитием мышечных элементов. Вены со слабым развитием мышечных элементов различны по диаметру. К ним относятся вены мелкого и среднего калибра (до 1-2 мм), сопровождающие артерии мышечного типа в верхней части туловища, шеи и лица, а также такие крупные, как, например, верхняя полая вена. В этих сосудах кровь в значительной мере продвигается пассивно вследствие своей тяжести. К этому же типу вен можно отнести и вены верхних конечностей. Стенки таких вен несколько тоньше соответствующих по калибру артерий, содержат меньше мышечных элементов и на препаратах находятся обычно в спавшемся состоянии.
Вены мелкого и среднего калибра со слабым развитием мышечных элементов имеют плохо выраженный субэндотелиальный слой, а в средней оболочке содержится небольшое количество мышечных клеток. В некоторых мелких венах, например в венах пищеварительного тракта, гладкие мышечные клетки в средней оболочке образуют отдельные «пояски», располагающиеся далеко друг от друга. Благодаря такому строению вены могут сильно расширяться и выполнять депонирующую функцию. В наружной оболочке мелких вен встречаются единичные продольно направленные гладкие мышечные клетки.
Среди вен крупного калибра, в которых слабо развиты мышечные элементы, наиболее типична верхняя полая вена, в средней оболочке стенки которой отмечается небольшое количество гладких мышечных клеток. Это обусловлено отчасти прямохождением человека, в силу чего кровь по этой вене стекает к сердцу благодаря собственной тяжести, а также дыхательным движениям грудной клетки. В начале диастолы (расслабление мускулатуры) желудочков сердца в предсердиях появляется даже небольшое отрицательное кровяное давление, которое как бы подсасывает кровь из полых вен.
Некоторые вены, как и артерии, имеют ярко выраженные органные особенности строения. Так, в легочной и пупочной венах, в отличие от всех других вен, очень хорошо развит циркулярный мышечный слой в средней оболочке, вследствие чего они напоминают по своему строению артерии. Вены сердца в средней оболочке содержат продольно направленные пучки гладких мышечных клеток. В воротной вене средняя оболочка состоит из двух слоев: внутреннего - кольцевого и наружного - продольного. В некоторых венах, например сердечных, обнаруживаются эластические мембраны, которые способствуют большей упругости и эластичности этих сосудов, расположенных в постоянно сокращающемся органе. В стенках глубоких вен желудочков сердца нет ни мышечных клеток, ни эластических мембран. Эти вены построены по типу синусоидов, имеющих на дистальном конце вместо клапанов сфинктеры. Стенки вен наружной оболочки сердца содержат продольно направленные пучки гладких мышечных клеток. В надпочечниках есть вены, которые имеют продольные мышечные пучки во внутренней оболочке, выступающие в виде подушечек в просвет вены, особенно в устье. Вены печени, подслизистой основы кишечника, слизистой оболочки носа, вены полового члена и другие снабжены сфинктерами, регулирующими отток крови.
9.10 Сосуды микроциркуляторного русла. Артериолы, венулы, гемокапилляры, их классификация, функции, строение
Этим термином в ангиологии обозначается система мелких сосудов, включающая артериолы, капилляры, венулы, а также артериоловенулярные анастомозы. Этот функциональный комплекс кровеносных сосудов, окруженный лимфатическими капиллярами и лимфатическими сосудами, вместе с окружающей соединительной тканью обеспечивает регуляцию кровенаполнения органов, транскапиллярный обмен и дренажно-депонирующую функцию.
Сосуды микроциркуляторного русла пластичны при изменении кровотока. Они могут депонировать форменные элементы или быть спазмированы и пропускать лишь плазму, изменять проницаемость для тканевой жидкости.
Артериолы
Это наиболее мелкие артериальные сосуды мышечного типа диаметром не более 50-100 мкм, которые, с одной стороны, связаны с артериями, а с другой - постепенно переходят в капилляры. В артериолах сохраняются три оболочки, характерные для артерий вообще, однако выражены они очень слабо.
Внутренняя оболочка этих сосудов состоит из эндотелиальных клеток с базальной мембраной, тонкого субэндотелиального слоя и тонкой внутренней эластической мембраны. Средняя оболочка образована 1- 2 слоями гладких мышечных клеток, имеющих спиралевидное направление. В прекапиллярных артериолах (прекапиллярах) гладкие мышечные клетки располагаются поодиночке. Расстояние между ними увеличивается в дистальных отделах, однако они обязательно присутствуют в месте отхождения прекапилляров от артериолы и в месте разделения прекапилляра на капилляры. В артериолах обнаруживаются перфорации в базальной мембране эндотелия и внутренней эластической мембране, благодаря которым осуществляется непосредственный тесный контакт эндотелиоцитов и гладких мышечных клеток. Между мышечными клетками артериол обнаруживается небольшое количество эластических волокон. Наружная эластическая мембрана отсутствует. Наружная оболочка представлена рыхлой волокнистой соединительной тканью.
В функциональном отношении артериолы являются, по выражению И. М. Сеченова, «кранами сосудистой системы», которые регулируют приток крови к органам благодаря сокращению спирально направленных гладких мышечных клеток, иннервируемых эфферентными нервными волокнами. В месте отхождения капилляра от прекапиллярных артериол имеется сужение, обусловленное циркулярно расположенными гладкими мышечными клетками в устье капилляров, выполняющих роль прекапиллярных сфинктеров.
Капилляры
Кровеносные капилляры наиболее многочисленные и самые тонкие сосуды, имеющие, однако, различный просвет. Это обусловлено как органными особенностями капилляров, так и функциональным состоянием сосудистой системы.
Например, наиболее узкие капилляры (4,5-6 мкм) находятся в поперечнополосатых мышцах, нервах, легких и т. п., более широкие капилляры (8-11 мкм) - в коже и слизистых оболочках. В кроветворных органах, некоторых железах внутренней секреции, печени встречаются капилляры с широким, но меняющимся на протяжении сосуда диаметром (20-30 мкм и более). Такие капилляры называются синусоидными. Специфические вместилища крови капиллярного типа - лакуны - имеются в пещеристых телах полового члена.
В большинстве случаев капилляры формируют сеть, однако они могут образовывать петли (в сосочках кожи, ворсинках кишки, синовиальных ворсинках суставов и др.), а также клубочки (сосудистые клубочки в почке). В капиллярах, образующих петли, выделяют артериальный и венозный отделы. Ширина артериального отдела в среднем равна диаметру эритроцита, а венозного - несколько больше.
В стенке капилляров различают три тонких слоя . Внутренний слой представлен эндотелиальными клетками, расположенными на базальной мембране, средний состоит из перицитов, заключенных в базальную мембрану, а наружный - из редко расположенных адвентициальных клеток и тонких коллагеновых волокон, погруженных в аморфное вещество.
Эндотелиальный слой. Внутренняя выстилка капилляра представляет собой пласт лежащих на базальной мембране вытянутых, полигональной формы эндотелиальных клеток с извилистыми границами, которые хорошо выявляются при импрегнации серебром.
Ядра эндотелиальных клеток обычно уплощенные, овальной формы. Ядросодержащие части эндотелиоцитов, как правило, выбухают в просвет капилляра, располагаясь в шахматном порядке (I тип) или напротив друг друга (II тип).
Толщина эндотелиальных клеток неодинакова. Клетки эндотелия обычно тесно прилежат друг к другу, часто обнаруживаются плотные и щелевые контакты. Поверхность эндотелиальных клеток, обращенная к току крови, покрыта слоем гликопротеидов, с которым связаны атромбогенная и барьерная функция эндотелия, а также участие эндотелия в регуляции сосудистого тонуса. Вдоль внутренней и наружной поверхностей эндотелиальных клеток располагаются пиноцитозные пузырьки и кавеолы, отображающие трансэндотелиальный транспорт различных веществ и метаболитов. В венозном отделе капилляра их больше, чем в артериальном. Органеллы, как правило, немногочисленны и расположены в околоядерной зоне.
Внутренняя поверхность эндотелия капилляра, обращенная к току крови, может иметь ультрамикроскопические выступы в виде отдельных микроворсинок, особенно в венозном отделе капилляра. В этих отделах капилляров цитоплазма эндотелиоцитов образует клапанообразные структуры. Эти цитоплазматические выросты увеличивают поверхность эндотелия и в зависимости от активности транспорта жидкости через эндотелий изменяют свои размеры.
Эндотелий участвует в образовании базальной мембраны. Одна из функций эндотелия - сосудообразующая. Эндотелиоциты синтезируют и выделяют факторы, активирующие систему свертывания крови (тромбопластин, тромбоксан), и антикоагулянты. Базальная мембрана эндотелия капилляров - это тонкофибриллярная, пористая, полупроницаемая пластина толщиной 30-35 нм, в состав которой входят коллаген IV и V типов, гликопротеины, а также фибронектин, ламинин и сульфатосодержащие протеогликаны. Базальная мембрана выполняет опорную, разграничительную и барьерную функции. Между эндотелиальными клетками и перицитами базальная мембрана местами истончается и прерывается, а сами клетки здесь связаны между собой посредством плотных контактов плазмолеммы.
Перициты. Эти соединительнотканные клетки имеют отростчатую форму и окружают кровеносные капилляры, располагаясь в расщеплениях базальной мембраны эндотелия.
Адвентициальные клетки. Это малодифференцированные клетки, расположенные снаружи от перицитов. Они окружены аморфным веществом соединительной ткани, в котором находятся тонкие коллагеновые волокна. Адвентициальные клетки являются камбиальными полипотентными предшественниками фибробластов, остеобластов и адипоцитов и др.
Классификация капилляров. Различают три типа капилляров. Наиболее распространенный тип капилляров - соматический, описанный выше (к этому типу относятся капилляры со сплошными эндотелиальной выстилкой и базальной мембраной); второй тип - фенестрированные капилляры с порами в эндотелиоцитах, затянутых диафрагмой (фенестрами), и третий тип - капилляры перфорированного типа со сквозными отверстиями в эндотелии и базальной мембране. Капилляры соматического типа находятся в сердечной и скелетной мышцах, в легких и других органах. Фенестрированные капилляры встречаются в эндокринных органах, в собственной пластинке слизистой оболочки тонкой кишки, в бурой жировой ткани, в почке. Перфорированные капилляры характерны для органов кроветворения, в частности для селезенки, а также для печени.
Кровеносные капилляры осуществляют основные обменные процессы между кровью и тканями, а в некоторых органах (легкие) участвуют в обеспечении газообмена между кровью и воздухом. Тонкость стенок капилляров, огромная площадь их соприкосновения с тканями, медленный кровоток, низкое кровяное давление обеспечивают наилучшие условия для обменных процессов.
Отводящий отдел микроциркуляторного русла начинается венозной частью капилляров, для которых характерны более крупные микроворсинки на люминальной поверхности эндотелия и складки, напоминающие створки клапанов, относительно большое число митохондрий и пиноцитозных пузырьков. В эндотелии отводящего отдела чаще обнаруживаются фенестры. Диаметр венозного отдела капилляра может быть шире артериального в 1,5-2 раза.
Венулы
Различают три разновидности венул: посткапиллярные, собирательные и мышечные. Посткапиллярные венулы (8-30 мкм) по своему строению напоминают венозный отдел капилляра, но в стенке этих венул отмечается больше перицитов, чем в капиллярах. Посткапиллярные венулы с высоким эндотелием служат местом выхода лимфоцитов из сосудов (в органах иммунной системы). В собирательных венулах (30-50 мкм) появляются отдельные гладкие мышечные клетки и более отчетливо выражена наружная оболочка. Мышечные венулы (50-100 мкм) имеют один-два слоя гладких мышечных клеток в средней оболочке и сравнительно хорошо развитую наружную оболочку.
Венозный отдел микроциркуляторного русла вместе с лимфатическими капиллярами выполняет дренажную функцию, регулируя гематолимфатическое равновесие между кровью и внесосудистой жидкостью, удаляя продукты метаболизма тканей. Через стенки венул, так же как через капилляры, мигрируют лейкоциты. Медленный кровоток и низкое кровяное давление, а также растяжимость этих сосудов создают условия для депонирования крови.
9.11 Лимфатические сосуды. Классификация и строение. Лимфатические капилляры, их строение. Участие лимфатических капилляров в системе микроциркуляции
Лимфатические сосуды - часть лимфатической системы, включающей еще и лимфатические узлы. В функциональном отношении лимфатические сосуды тесно связаны с кровеносными, особенно в области расположения сосудов микроциркуляторного русла. Именно здесь происходят образование тканевой жидкости и проникновение ее в лимфатическое русло. Через мелкие лимфоносные пути осуществляются постоянная миграция лимфоцитов из кровотока и их рециркуляция из лимфатических узлов в кровь.
Классификация. Среди лимфатических сосудов различают лимфатические капилляры, интра- и экстраорганные лимфатические сосуды, отводящие лимфу от органов, и главные лимфатические стволы тела - грудной проток и правый лимфатический проток, впадающие в крупные вены шеи. По строению различают лимфатические сосуды безмышечного и мышечного типов.
Лимфатические капилляры. Лимфатические капилляры - начальные отделы лимфатической системы, в которые из тканей поступает тканевая жидкость вместе с продуктами обмена веществ, а в патологических случаях - инородные частицы и микроорганизмы. По лимфатическому руслу могут распространяться и клетки злокачественных опухолей.
Лимфатические капилляры представляют собой систему замкнутых с одного конца, уплощенных эндотелиальных трубок, анастомозирующих друг с другом и пронизывающих органы. Диаметр лимфатических капилляров в несколько раз больше, чем кровеносных. В лимфатической системе, как и в кровеносной, почти всегда имеются резервные капилляры, наполняющиеся лишь при усилении лимфообразования.
Стенка лимфатических капилляров состоит из эндотелиальных клеток, которые в 3-4 раза крупнее, чем клетки кровеносных капилляров. Базальная мембрана и перициты в лимфатических капиллярах отсутствуют. Эндотелиальная выстилка лимфатического капилляра тесно связана с окружающей соединительной тканью с помощью так называемых стропных, или фиксирующих, филаментов, которые вплетаются в коллагеновые волокна, расположенные вдоль лимфатических капилляров.
Отводящие лимфатические сосуды. Основной отличительной особенностью строения лимфатических сосудов является наличие в них клапанов и хорошо развитой наружной оболочки. В местах расположения клапанов лимфатические сосуды колбовидно расширяются. В строении стенок лимфатические сосуды имеют много общего с венами. Это объясняется сходством лимфо- и гемодинамических условий этих сосудов: наличием низкого давления и направлением тока жидкости от органов к сердцу.
Лимфатические сосуды в зависимости от диаметра подразделяются на мелкие, средние и крупные. Как и вены, эти сосуды по своему строению могут быть безмышечными и мышечными. В мелких сосудах диаметром 30-40 мкм, которые являются главным образом внутриорганными лимфатическими сосудами, мышечные элементы отсутствуют и их стенка состоит из эндотелия и соединительнотканной оболочки.
Средние и крупные лимфатические сосуды (более 0,2 мм) имеют три хорошо развитые оболочки: внутреннюю, среднюю и наружную. Во внутренней оболочке под эндотелием находятся продольно и косо ориентированные пучки коллагеновых и эластических волокон. Дупликатура внутренней оболочки формирует многочисленные клапаны. Участки, расположенные между двумя соседними клапанами, называются клапанным сегментом, или лимфангионом. В лимфангионе выделяют мышечную манжетку, стенку клапанного синуса и область прикрепления клапана. На границе внутренней и средней оболочек лежит не всегда хорошо выраженная внутренняя эластическая мембрана.
Средняя оболочка лимфатических сосудов слабо развита в сосудах головы, верхней части туловища и верхних конечностей. В лимфатических сосудах нижних конечностей она, наоборот, выражена отчетливо. В стенке этих сосудов находятся пучки гладких мышечных клеток, имеющие циркулярное и косое направление. Большого развития достигает мышечный слой в средней оболочке коллекторов подвздошного лимфатического сплетения, околоаортальных лимфатических сосудов и шейных лимфатических стволов, сопровождающих яремные вены. Эластические волокна в средней оболочке могут различаться по количеству, толщине и направлению.
Наружная оболочка лимфатических сосудов образована рыхлой соединительной тканью, которая без резкой границы переходит в окружающую соединительную ткань. Иногда в наружной оболочке встречаются отдельные продольно направленные гладкие мышечные клетки.
9.12 Сердце. Строение стенки сердца, его оболочек, их тканевой состав. Особенности кровоснабжения и регенерации сердца. Сердечные клапаны
В стенке сердца различают три оболочки: внутреннюю - эндокард, среднюю, или мышечную, - миокард, и наружную, или серозную, - эпикард.
Эндокард
Эндокард выстилает изнутри камеры сердца, сосочковые мышцы, сухожильные нити, а также клапаны сердца. Толщина эндокарда в различных участках неодинакова. Он толще в левых камерах сердца, особенно на межжелудочковой перегородке и у устья крупных артериальных стволов - аорты и легочной артерии, а на сухожильных нитях значительно тоньше. Поверхность эндокарда, обращенная в полость сердца, выстлана эндотелием, состоящим из полигональных клеток, лежащих на толстой базальной мембране. За ним следует субэндотелиальный слой, образованный соединительной тканью, богатой малодифференцированными соединительнотканными клетками. Глубже располагается мышечно-эластический слой, в котором эластические волокна переплетаются с гладкими мышечными клетками. Эластические волокна гораздо лучше выражены в эндокарде предсердий, чем в эндокарде желудочек. Гладкие мышечные клетки сильнее всего развиты в эндокарде у места выхода аорты и могут иметь многоотростчатую форму. Самый глубокий слой эндокарда - наружный соединительнотканный - лежит на границе с миокардом. Он состоит из соединительной ткани, содержащей толстые эластические, коллагеновые и ретикулярные волокна.
Питание эндокарда осуществляется главным образом диффузно за счет крови, находящейся в камерах сердца. Кровеносные сосуды имеются лишь в наружном соединительнотканном слое эндокарда.
Клапаны
Между предсердиями и желудочками сердца, а также желудочками и крупными сосудами располагаются клапаны. Предсердно-желудочковый (атриовентрикулярный) клапан в левой половине сердца двустворчатый, в правой - трехстворчатый. Они представляют собой покрытые эндотелием тонкие фиброзные пластинки из плотной волокнистой соединительной ткани с небольшим количеством клеток. Эндотелиальные клетки, покрывающие клапан, частично перекрывают друг друга в виде черепицы или образуют пальцевидные вдавливания цитоплазмы одной клетки в другую. Кровеносных сосудов створки клапанов не имеют. В субэндотелиальном слое выявлены тонкие кол-лагеновые волокна, которые постепенно переходят в фиброзную пластинку створки клапана, а в месте прикрепления дву- и трехстворчатого клапанов - в фиброзные кольца. В основном веществе створок клапанов обнаружено большое количество гликозаминогликанов.
Строение предсердных и желудочковых частей створок клапанов неодинаково.
Предсердная сторона их имеет гладкую поверхность, здесь в субэндотелиальном слое располагаются густое сплетение эластических волокон и пучки гладких мышечных клеток. Количество мышечных пучков увеличивается в основании клапана. Желудочковая сторона имеет неровную поверхность. Она снабжена выростами, от которых начинаются сухожильные нити. В этой области под эндотелием располагается лишь небольшое количество эластических волокон. На границе между восходящей частью дуги аорты и левым желудочком сердца локализуются аортальные клапаны. По своему строению они имеют много общего с предсердно- желудочковыми клапанами и клапанами легочной артерии. На вертикальном разрезе в створке клапана можно различить три слоя: внутренний, средний и наружный. Внутренний слой, обращенный к желудочку сердца, представляет собой продолжение эндокарда. Эндотелий этого слоя характеризуется наличием пучков филаментов толщиной 5-8 нм и многочисленных пиноцитозных пузырьков. В субэндотелиальном слое содержатся фибробласты с длинными тонкими отростками, которые в виде консолей поддерживают эндотелиальные клетки. К субэндотелиальному слою прилежат плотные пучки коллагеновых фибрилл, идущих продольно и поперечно, за которым следует смешанная эластикоколлагеновая прослойка. Средний слой тонкий, состоит из рыхлой волокнистой соединительной ткани, богатой клеточными элементами.
Наружный слой, обращенный к аорте, кроме эндотелия, содержит коллагеновые волокна, которые берут начало от фиброзного кольца вокруг аорты. Опорный скелет сердца образован фиброзными кольцами между предсердиями и желудочками и плотной соединительной тканью в устьях крупных сосудов. Кроме плотных пучков коллагеновых волокон, в составе «скелета» сердца имеются эластические волокна, а иногда бывают даже хрящевые пластинки.
Миокард
Многотканевая мышечная оболочка сердца состоит из тесно связанных между собой поперечнополосатых мышечных клеток - кардиомиоцитов. Между мышечными элементами располагаются прослойки рыхлой соединительной ткани, сосуды, нервы. Различают сократительные (рабочие) сердечные миоциты, проводящие сердечные миоциты, входящие в состав так называемой проводящей системы сердца, и секреторные предсердные кардиомиоциты.
Сердечные сократительные (рабочие) миоциты характеризуются рядом структурных и цитохимических особенностей. На продольных срезах они почти прямоугольной формы, длина колеблется от 50 до 120 мкм, ширина составляет 15-20 мкм. Клетки покрыты сарколеммой, состоящей из плазмолеммы и базальной мембраны, в которую вплетаются тонкие коллагеновые и эластические волокна, образующие «наружный скелет» кардиомиоцитов. Базальная мембрана кардиомиоцитов, содержащая большое количество гликопротеинов, способных связывать Са2+, может принимать участие наряду с саркотубулярной сетью и митохондриями в перераспределении Са2+ в цикле сокращение - расслабление. Базальная мембрана латеральных сторон - кардиомиоцитов инвагинирует в канальцы Т-системы (в отличие от соматических мышечных волокон).
Кардиомиоциты желудочков значительно интенсивнее пронизаны канальцами Т-системы, чем соматические мышечные волокна. В центральной части миоцита расположены одно-два ядра овальной или удлиненной формы. Между миофибриллами находятся многочисленные митохондрии.
Кардиомиоциты сообщаются между собой в области вставочных дисков. Строение вставочного диска на его протяжении неодинаково. Различают десмосомы, места вплетения миофибрилл в плазмолемму (промежуточные контакты) и щелевые контакты -нексусы. Если первые два участка диска выполняют механическую функцию, то третий осуществляет электрическую связь кардиомиоцитов. Нексусы обеспечивают быстрое проведение импульсов от клетки к клетке. Зоны прикрепления миофибрилл всегда располагаются на уровне, соответствующем очередной Z-линии. С помощью вставочных дисков кардиомиоциты соединяются в мышечные «волокна». Продольные и боковые связи (анастомозы) кардиомиоцитов обеспечивают функциональное единство миокарда.
Между кардиомиоцитами находится интерстициальная соединительная ткань, содержащая большое количество кровеносных и лимфатических капилляров. Каждый миоцит контактирует с двумя-тремя капиллярами.
Васкуляризация. Венечные (коронарные) артерии имеют плотный эластический каркас, в котором четко выделяются внутренняя и наружная эластические мембраны. Гладкие мышечные клетки в артериях обнаруживаются в виде продольных пучков во внутренней и наружной оболочках. В основании клапанов сердца кровеносные сосуды у места прикрепления створок разветвляются на капилляры. Кровь из капилляров собирается в коронарные вены, впадающие в правое предсердие или венозный синус. Проводящая система, особенно ее узлы, обильно снабжена кровеносными сосудами. Лимфатические сосуды в эпикарде сопровождают кровеносные. В миокарде и эндокарде они проходят самостоятельно и образуют густые сети. Лимфатические капилляры обнаружены также в предсердно-желудочковых и аортальных клапанах. Из капилляров лимфа, оттекающая от сердца, направляется в парааортальные и парабронхиальные лимфатические узлы. В эпикарде и перикарде находятся сплетения сосудов микроциркуляторного русла.
Регенерация. У новорожденных, а возможно, и в раннем детском возрасте, когда способные к делению кардиомиоциты еще сохраняются, регенераторные процессы сопровождаются увеличением количества клеток.
У взрослых физиологическая регенерация кардиомиоцитов осуществляется главным образом путем внутриклеточной регенерации, без увеличения количества клеток. Клетки соединительной ткани всех оболочек пролиферируют, как в любом другом органе.
При повышенных систематических функциональных нагрузках общее количество клеток не возрастает, но в цитоплазме увеличиваются содержание органелл общего значения и миофибрилл, а также размер клеток (происходит функциональная гипертрофия кардиомиоцитов); соответственно возрастает и степень плоидности ядер.
9.13 Проводящая система сердца, морфофункциональная характеристика. Иннервация. Структурные основы эндокринной функции сердца
Проводящая система сердца - мышечные клетки, формирующие и проводящие импульсы к сократительным клеткам сердца. В состав проводящей системы входят синусно-предсердный узел, предсердно-желудочковый (атриовентрикулярный) узел, предсердно-желудочковый пучок (пучок Гиса) и их разветвления (волокна Пуркинье), передающие импульсы на сократительные мышечные клетки.
Клетки узла проводящей системы. Формирование импульса происходит в синусном узле, центральную часть которого занимают возбуждающие кардиомиоциты - водители ритма, или пейсмекерные клетки (Р-клетки), способные к самопроизвольным сокращениям. Они отличаются небольшими размерами, многоугольной формой с максимальным диаметром 8-10 мкм, небольшим количеством миофибрилл, не имеющих упорядоченной ориентировки.
По периферии узла располагаются переходные кардиомиоциты. Это тонкие, вытянутые клетки, поперечное сечение которых меньше поперечного сечения типичных сократительных кардиомиоцитов. Переходные клетки сообщаются между собой как с помощью простых контактов, так и путем образования более сложных соединений типа вставочных дисков. Функциональное значение этих клеток состоит в передаче возбуждения от Р-клеток к клеткам пучка и рабочему миокарду.
Кардиомиоциты предсердно-желудочкового пучка проводящей системы (пучка Гиса) и его ножек (волокон Пуркинье) содержат относительно длинные миофибриллы, имеющие спиралевидный ход. В функциональном отношении они являются передатчиками возбуждения от переходных клеток к клеткам рабочего миокарда желудочков.
По строению кардиомиоциты пучка отличаются большим диаметром (15 мкм и более), почти полным отсутствием Т-систем, тонкостью миофибрилл, которые без определенного порядка располагаются главным образом по периферии клетки. Ядра, как правило, расположены эксцентрично. Эти клетки в совокупности образуют предсердно-желудочковый пучок и ножки пучка (волокна Пуркинье). Кардиомиоциты в составе этих волокон самые крупные не только в проводящей системе, но и во всем миокарде. В них много гликогена, редкая сеть миофибрилл, нет Т-трубочек. Клетки связаны между собой нексусами и десмосомами.
В миокарде много афферентных и эфферентных нервных волокон. Типичных нервно-мышечных синапсов здесь нет. Раздражение нервных волокон, окружающих проводящую систему, а также нервов, подходящих к сердцу, вызывает изменение ритма сердечных сокращений. Это указывает на решающую роль нервной системы в ритме сердечной деятельности, а следовательно, и в передаче импульсов по проводящей системе.
Эпикард и перикард
Наружная оболочка сердца, или эпикард, представляет собой висцеральный листок перикарда.Эпикард образован тонкой (не более 0,3-0,4 мм) пластинкой соединительной ткани, плотно срастающейся с миокардом. Свободная поверхность ее покрыта мезотелием.
В соединительнотканной основе эпикарда различают поверхностный слой коллагеновых волокон, слой эластических волокон, глубокий слой коллагеновых волокон и глубокий коллагеново-эластический слой, который составляет до 50% всей толщи эпикарда. На предсердиях и некоторых участках желудочков последний слой отсутствует или сильно разрыхлен. Здесь же иногда отсутствует и поверхностный коллагеновый слой.
В париетальном листке перикарда соединительнотканная основа развита сильнее, чем в эпикарде. В ней много эластических волокон, особенно в глубоком его слое. Поверхность перикарда, обращенная к перикардиальной полости, тоже покрыта мезотелием. По ходу кровеносных сосудов встречаются скопления жировых клеток. Перикард имеет многочисленные нервные окончания, преимущественно свободного типа.
Иннервация. В стенке сердца обнаруживается несколько нервных сплетений и ганглиев. Наибольшая плотность расположения нервных сплетений отмечается в стенке правого предсердия и синусно-предсердного узла проводящей системы. Рецепторные окончания в стенке сердца образованы нейронами ганглиев блуждающих нервов и нейронами спинномозговых узлов и, кроме того, ветвлениями дендритов равноотростчатых нейронов внутриорганных ганглиев (афферентные нейроны). Эффекторная часть рефлекторной дуги в стенке сердца представлена расположенными среди кардиомиоцитов и по ходу сосудов органа нервными волокнами холинергической природы, образованными аксонами находящихся в сердечных ганглиях длинноаксонных нейронов (эфферентные нейроны). Последние получают импульсы по пре-ганглионарным волокнам из нейронов ядер продолговатого мозга, приходящих сюда в составе блуждающих нервов. Эффекторные адренергические нервные волокна образованы ветвлениями аксонов нейронов ганглиев симпатической нервной цепочки. На этих нейронах также синапсами заканчиваются преганглионарные волокна - аксоны нейронов симпатических ядер боковых рогов спинного мозга. Эффекторы представляют собой варикозные утолщения по ходу адренергических нервных волокон, содержащие синаптические пузырьки. В состав нервных ганглиев сердца входят богатые катехоламинами так называемые малые интенсивно флюоресцирующие клетки - МИФ-клетки. Это небольшие клетки (длиной 10-20 мкм), содержащие в цитоплазме много крупных гранулярных пузырьков (до 200 нм) с катехоламинами. Эндоплазматическая сеть в них развита слабо. На плазмолемме этих клеток обнаруживаются нервные окончания адренергических и холинергических нервов. Они рассматриваются как вставочные нейроны, выделяющие свои медиаторы в кровеносное русло.
Предсердные миоциты чаще отростчатые, их размеры меньше. В миоцитах предсердий меньше митохондрий, миофибрилл саркоплазматической сети. В предсердных кардиомиоцитах менее выражена активность сукцинатдегидрогеназы, но более высока активность ферментов, связанных с метаболизмом гликогена (фосфо-рилаза, гликогенсинтетаза и др.). Отличительными особенностями этих кардиомио-цитов являются относительно хорошо развитая гранулярная эндоплазматическая сеть и значительное развитие комплекса Гольджи. Указанные выше морфологические признаки связаны с наличием в предсердных кардиомиоцитах специфических предсердных гранул, содержащих гормоноподобные пептиды (атриопептин, натрийуретический фактор типа С). Секреторные сократительные предсердные миоциты (эндокринные предсердные миоциты) располагаются преимущественно в правом предсердии и ушках сердца. При растяжении предсердий секрет поступает в кровь и воздействует на собирательные трубочки почки, клетки клубочковой зоны коры надпочечников, участвующие в регуляции объема внеклеточной жидкости и уровня артериального давления.
...Подобные документы
Основные типы тканей. Разделы гистологии как учебной дисциплины. Этапы развития гистологии: домикроскопический, микроскопический и современный. Ш. Бонне как теоретик преформизма, учение о рекапитуляции. Вклад П.П. Иванова в развитие эмбриологии.
презентация [1,4 M], добавлен 15.05.2012Патологические изменения клеток эпителиальных тканей шейки матки под влиянием вируса папилломы человека. Структура генома вируса, его роль в механизмах стимулирования пролиферации и индукции неопластической трансформации. Изменения клеток эпителия.
дипломная работа [4,9 M], добавлен 31.01.2018Ознакомление с понятием, сущностью и процессами метаболизма. Рассмотрение особенностей создания молекул аминокислот, углеводов, липидов и нуклеиновых кислот. Образование всех клеток и тканей, выделение энергии в процессе обмена веществ в организме.
презентация [507,1 K], добавлен 02.06.2015Уровни организации живой материи. Понятие и предмет гистологии (учения о тканях). Периоды развития науки. Практическое значение эмбриологии для медицины. Первые представления о внутриутробном развитии плода. Использование световой микроскопии в цитологии.
презентация [470,9 K], добавлен 10.05.2014Цитокины - группа полипептидных медиаторов межклеточного взаимодействия, участвующих в формировании и регуляции защитных реакций организма, а также регенерации тканей; их свойства и функции. Рассмотрение классификации по биологическим свойствам.
презентация [344,9 K], добавлен 13.11.2014Рассмотрение роли нервной системы в регуляции функций организма. Характеристика строения и классификации (афферентные, эффекторные, ассоциативные) нейронов. Ознакомление с глиальными клетками (формирование миелиовой оболочки). Изучение состава синапса.
контрольная работа [4,2 M], добавлен 26.02.2010Изолированные иммунокомпетентные клетки. Изучение строения первичных и вторичных лимфатических органов, перемещение клеток между ними. Клиническое значение строения лимфоидных тканей для иммунотерапии. Изучение расположения селезенки, вилочковой железы.
презентация [717,0 K], добавлен 20.11.2014Рассмотрение понятия ткани как системы клеток и неклеточных структур, обладающих общностью развития, строения и функции. Пространственная организация микроворсинки в апикальной части каемчатой клетки. Классификация и морфология эпителиальных пластов.
реферат [2,2 M], добавлен 09.09.2012Предмет и задачи медицинской генетики. Рассмотрение вопроса искусственного оплодотворения. Изучение основных положений биоэтики, "Основ законодательства по охране здоровья". Повышение информированности населения, касающейся проблем генетики и технологий.
презентация [954,7 K], добавлен 15.04.2015История открытия витамина A и его химической структуры. Механизм образования зрительного сигнала. Участие витамина в антиоксидантной защите организма. Поддержание и восстановление эпителиальных тканей. Изучение антиоксидантного действия каротина.
презентация [711,1 K], добавлен 29.02.2016Анализ исторического развития знаний о заболевании. Отражены основные этапы развития научных представлений о подагре и причинах её возникновения. Приведены теории патогенеза, начиная со времен Гиппократа и заканчивая современными представлениями.
статья [21,5 K], добавлен 06.09.2017Ознакомление с клетками крови, которые в основном представлены эритроцитами и лейкоцитами. Определение и анализ особенностей обмена веществ эритроцитов. Изучение системы антиоксидантной защиты организма. Рассмотрение схематического изображения почки.
презентация [3,3 M], добавлен 09.04.2018Понятие о соединительных тканях в организме, их особые виды, функции и классификация. Важнейшее отличие хрящевой ткани от костной и большинства других типов тканей. Общая схема строения. Изучение соединительной ткани как в норме, так и при патологии.
презентация [2,0 M], добавлен 15.09.2013Изучение анатомии, цитологии и гистологии печени, ее роль в метаболизме. Биохимические показатели функции печени, их клиническое значение. Нормы билирубина в крови. Гемолитическая болезнь новорожденных. Дефицит липотропных веществ. Гипоонкотические отеки.
презентация [1,3 M], добавлен 22.06.2015Задачи ферментов как веществ биологического происхождения, ускоряющих химические реакции. Организованная последовательность процессов обмена веществ. Особенности ферментативного катализа. Лекарственные препараты: ингибиторы и активаторы ферментов.
презентация [2,9 M], добавлен 27.10.2014Рассмотрение понятия и структуры органа зрения. Изучение строения зрительного анализатора, глазного яблока, роговицы, склеры, сосудистой оболочки. Кровоснабжение и иннервация тканей. Анатомия хрусталика и зрительного нерва. Веки, слезные органы.
презентация [11,0 M], добавлен 08.09.2015Рассмотрение классификации ядовитых веществ по происхождению (ботаническая, зоологическая, химическая систематика), общности основного симптома, локализации токсического процесса. Изучение основных лечебно-профилактических мероприятий при отравлении.
реферат [26,0 K], добавлен 26.04.2010Направления создания новых лекарственных веществ. Фракции каменноугольной смолы. Получение лекарственных веществ из растительного и животного сырья, биологического синтеза. Методы выделения биологически активных веществ. Микробиологический синтез.
реферат [43,7 K], добавлен 19.09.2010Ознакомление с историей открытия и свойствами лазеров; примеры использования в медицине. Рассмотрение строения глаза и его функций. Заболевания органов зрения и методы их диагностики. Изучение современных методов коррекции зрения с помощью лазеров.
курсовая работа [4,3 M], добавлен 18.07.2014Изучение химиотерапевтических веществ, объединённых в группу антибиотиков. Действие лекарств, образуемых при биосинтезе микроорганизмов. Исследование стратегии антибактериальной терапии и путей преодоления резистентности микроорганизмов к антибиотикам.
презентация [5,7 M], добавлен 08.06.2017