Исследовательское поведение: стратегии познания, помощь, противодействие, конфликт

Анализ методологии и стратегий исследовательского поведения, его взаимодействия с интеллектом, творчеством, игрой. Роль исследовательской деятельности в познавательном, социальном, личностном развитии ребенка. Методы обучения исследовательскому поведению.

Рубрика Психология
Вид монография
Язык русский
Дата добавления 17.12.2013
Размер файла 512,4 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Алгоритмическая неразрешимость массовой проблемы не означает неразрешимости той или иной единичной проблемы данного класса. Та или иная конкретная проблема может иметь решение, причем даже вполне очевидное, а для другой проблемы может существовать простое и очевидное доказательство отсутствия решения (доказательство того, что множество решений пусто). Но в целом данный класс проблем не имеет ни общего универсального алгоритма решения, применимого ко всем проблемам этого класса, ни ветвящегося алгоритма разбиения класса на подклассы, к каждому из которых был бы применим свой специфический алгоритм. Для решения отдельных подклассов задач нужно разрабатывать свои алгоритмы; для некоторых отдельных задач требуется разработка методов, вынужденно ограниченных, уникальных.

Алгоритмически неразрешимыми являются, например, проблема распознавания: остановится или нет произвольно выбранная машина Тьюринга (идеальная теоретическая модель любого программируемого устройства, на которой может быть реализован любой алгоритм) и вообще любая программа алгоритмического типа; проблема эквивалентности программ; тождества двух математических выражений; проблема распознавания того, можно ли из имеющихся автоматов собрать заданный автомат; а также множество других проблем, относящихся к топологии, теории групп и другим областям [Плесневич, 1974, с. 87-89].

Мы выдвигаем следующее положение: алгоритмическая неразрешимость как невозможность обобщенной системы точных предписаний по решению задач одного и того же типа имеет принципиальное значение для психологии и педагогики. Она означает наложение ряда принципиальных ограничений на основные компоненты деятельности человека или деятельности любой другой системы, обладающей психикой. Это ограничения на планирование деятельности, на ее осуществление, на контроль результатов, коррекцию.

Речь идет о невозможности эффективной универсальности, о невозможности эффективной инвариантности. В.Ф. Венда [1990] показал, что универсальность и эффективность методов связаны обратной зависимостью: чем метод более универсален, тем он менее эффективен. (Один из параметров эффективности метода - способность с его помощью либо решить задачу, либо доказать отсутствие решения за определенное число шагов.) Наиболее эффективны самые частные, самые специализированные методы - алгоритмы [Ивлев, 1998, с. 28]. За определенное число шагов такой специализированный метод всегда приводит к решению любой задачи того класса, который он покрывает. Но при этом он не может быть использован без той или иной переделки для решения задач даже соседних классов.

Неэффективная универсальность и инвариантность - возможна. Например, рекомендация "Если не получилось решить задачу одним способом, попробуй другим" может считаться универсальной, поскольку относится к решению задач в самых разных областях. Но вряд ли она достаточно эффективна, поскольку указывает лишь на возможность смены способа, но не на сам способ.

Возникает вопрос: как же люди решают конкретные задачи, относящиеся к классу алгоритмически неразрешимых? А ведь они их решают - и задачи на доказательства тождеств, и задачи на конструирование автоматов из имеющегося набора, и многие другие.

Решения алгоритмически неразрешимых задач и доказательства их правильности возможны и осуществляются очень часто. Но для каждого такого решения приходится каждый раз особым образом комбинировать различные элементы знания. С одной стороны, это элементы декларативного знания: аксиомы, постулаты, теоремы, описывающие некоторые свойства и связи изучаемой области. С другой стороны, это элементы процедурного знания: знания методов, стратегий, приемов. Сюда входят и общелогические, и предметно-специфические (domain-specific) методы, стратегии, приемы, которые "привязаны" к особенностям конкретной области. Все эти элементы вполне надежны в качестве "кирпичиков", из которых конструируется "здание" решения. Их можно и необходимо использовать, без них поиск решения станет значительно менее эффективным или вообще невозможным. Но проблема алгоритмической неразрешимости состоит в том, что нет общих универсальных правил, точных предписаний, как выбрать «кирпичики», нужные для конкретной задачи, и как сложить из них решение этой задачи. Построение "здания" решения задачи, относящейся к классу алгоритмически неразрешимых, с неизбежностью требует эвристических приемов и творчества: способ решения не выводится из более общего известного типового метода, а изобретается. А.Н.Кричевец пишет, что эти эвристические приемы невозможно описать точно, а можно только сказать, что тот, кто владеет ими, каждый раз вновь или даже впервые самостоятельно конструирует новый прием, нужный для конкретной ситуации - "вспомним, что всякий прием когда-то был создан впервые" [Кричевец, 1999(а), с. 39].

При этом достижимость решения не может быть гарантирована на 100% никакими методами - в отличие от ситуации с алгоритмически разрешимыми задачами. Здесь неизбежно начинают играть роль индивидуальные творческие возможности решающего. Инвариантный подход оставляет за бортом проблемы конструирования таких решений и проблему алгоритмической неразрешимости вообще.

Для наглядности мы использовали в этом описании решения сложных задач метафору "строительства из кирпичиков", но возможны и другие. Например, Д.Дернер использует компьютерную метафору: "можно сказать, что у нас в голове хранится множество фрагментов отдельных программ, которые в конкретной ситуации комбинируются для решения той или иной проблемы" [Дернер, 1997, с. 215]. Системное мышление - это умение настроить комплекс своих способностей на условия конкретной ситуации, которые всегда различны (там же, с. 236).

При этом было бы бессмысленным отрицать возможность и необходимость построения тех или иных относительно общих и достаточно эффективных методов в определенных областях. Эти методы уже оказали огромное влияние на развитие цивилизации. Общие алгоритмические методы лежат в основе современного автоматизированного промышленного производства и бурно развивающихся информационных компьютерных технологий. И скорее всего, еще будут открыты такие гениальные методы обобщенного инвариантного типа и гениальные алгоритмы, которые приведут к новым технологическим переворотам. Однако необходимо задуматься о том, что в ряде важных отношений границы применимости инвариантных методов ощущаются уже сейчас.

Мы утверждаем, что фундаментальное значение имеет ранее упомянутая проблема распознавания, остановится или нет (не попадет ли в бесконечный цикл) произвольно выбранная программа, являющаяся предписанием алгоритмического типа. Алгоритмическая неразрешимость этой проблемы является примером того, что для работы со многими алгоритмами не существует алгоритмов (нет алгоритмов использования алгоритмов). Принципиальное следствие этой проблемы таково. Ни один алгоритм, ни один план действий не может быть проверен каким-либо общим, универсальным, инвариантным способом на предмет того, закончится ли когда-либо выполнение данного плана или же это выполнение будет продолжаться бесконечно. (Еще раз заметим, что тот или иной конкретный план, алгоритм может быть совершенно "прозрачным" в отношении того, завершится ли его выполнение. Но нет общего метода проверки любого плана на это принципиально важное свойство - выполнимость. Необходимо искать, создавать, изобретать конкретные методы, пригодные для проверки именно анализируемых планов, а не некоего плана вообще). Таким образом, эффективный универсальный метод планирования, построенный на инвариантной, обобщенной и неизменной основе, невозможен.

Невозможен также универсальный инвариантный метод сравнения различных планов, направленных на достижение одной цели. Это следует из доказанной алгоритмической неразрешимости проблемы эквивалентности двух программ. Эта неразрешимость означает, что не существует общего, универсального метода определения того, всегда ли сравниваемые программы действий будут приводить к одинаковым результатам при одинаковых исходных данных (начальных условиях). Иначе говоря, если мы имеем две или более различных системы точных общепонятных предписаний по достижению одной и той же цели (например, представленные на конкурс), мы не имеем возможности сравнить их на основе какого-либо общего универсального метода. Если мы хотим их сравнить, то должны для этого искать, разрабатывать, изобретать те или иные конкретные методы, пригодные для данной области, подобласти или даже только для данной конкретной уникальной задачи.

Установление эквивалентности является основой измерения. Если нельзя установить эквивалентность выбранному стандарту (единице измерения), то измерение невозможно. Соответственно, не существует общего метода измерения того, насколько та или иная программа, план, схема действий "справляется" со своими функциями. Для такого измерения не может существовать стандарта, инварианта; здесь также необходимы конкретные методы.

Рассмотрим следующий за планированием этап - выполнение деятельности. На этом этапе нередко обнаруживаются какие-либо ошибки и сбои (например, вышеупомянутое сверхдлительное выполнение без признаков завершения). Различные ошибки всегда возможны, что объясняется, в том числе невозможностью предварительного эффективного универсального планирования. Здесь возникают следующие вопросы. Возможен ли универсальный, инвариантный метод обнаружения ошибок и метод их исправления? Если речь идет об орудийной деятельности, возможен ли универсальный, инвариантный метод проверки орудий, технических устройств на предмет установления неисправностей и инвариантный метод их устранения?

Для реальных устройств справедливы вышеприведенные положения об ограничениях возможностей познания любых реальных систем. Объективное бесконечное разнообразие мира создает бесконечные возможности для возникновения таких типов неисправностей, которые не могут быть предсказаны, а в случае возникновения - не могут быть описаны и объяснены имеющимися моделями [Яних, 1996]. В реальную систему всегда возможно вторжение иносистемного. Оно принципиально, именно в силу своей иносистемности, не может быть описано на языке, предназначенном для описания исходной системы [Лотман, 1992].

Кроме этого, как показывает П.Яних [1996], имеются принципиально неразрешимые внутренние проблемы рассуждений при поиске ошибок, неисправностей, отказов и способов их устранения. Всякая неисправность является - по определению - отклонением от запланированной, желаемой и предвиденной функции. Неисправность есть отклонение от правила. Если же человек берется перечислить и описать возможные неисправности в какой-либо системе, объяснить их причины и дать предписания по их устранению, то тем самым он изменяет их квалификацию в модели системы. Он переводит их из разряда собственно неисправностей (неисправностей в истинном смысле слова) в другой разряд - разряд закономерных, хотя и нежелательных с определенной точки зрения, вариантов структуры и функционирования системы. Тем самым строится более широкая, общая, инвариантная модель системы. В ней все многообразие известных вариантов классифицируется в соответствии с установленными правилами, подразделяясь на варианты желательные (целевые) и нежелательные, с указанием правил появления каждого варианта (указанием генетически исходного отношения, детерминирующего его возникновение и развитие), а также с указанием возможности и правил перехода между целевыми и нецелевыми состояниями, и обратно. Здесь мы приходим к необходимости использования теоремы Геделя о неполноте, на которую П.Яних не ссылается, но которая вносит важный вклад в эти рассуждения. Никакой метод обнаружения неисправностей в той или иной системе не может содержать метода полной проверки своей собственной исправности. (Более общая модель, позволяющая выявлять неисправности, не описанные предшествующей моделью и в этом смысле являющиеся для этой предшествующей модели истинными неисправностями, не может содержать внутри себя алгоритма выявления своих собственных истинных неисправностей.) Требуется построение более общего метода и т.д. - до бесконечности. Таким образом, эффективный универсальный метод поиска и устранения ошибок и неисправностей не может быть построен.

Помимо этого формального обоснования, необходимо привести содержательные доводы в пользу невозможности такого универсального метода. П.Яних подчеркивает, что понятие ошибки, неисправности, отказа имеет смысл лишь относительно заданных целей и норм. Машины и алгоритмы строятся для строго определенных функциональных целей, или их вообще нельзя построить. Сами они "не способны ставить ни целей, ни норм, ни преследовать намерений - они функционируют" [там же, с. 30]. Вопрос о том, достигнута ли цель, соблюдена ли норма, ставится и решается в конечном счете только человеком. Но решение этого вопроса самим человеком "состоит не в достижении заданных значений в регулирующем контуре... в процессе решения будут придуманы иные интерпретации целей и средств, которые не могут ни выполняться, ни имитироваться автоматом..." [там же, с. 30]. Этот процесс нельзя подчинить каким-либо заранее сформулированным точным предписаниям. (Поэтому, как показывает П.Яних, принципиально невозможно заменить человека - например, на космической орбите - какими-либо техническими устройствами сколь угодно высокого уровня, предназначенными для устранения неисправностей. Принципиально невозможны сами эти устройства.)

А.Н. Кричевец строго доказал невозможность построения универсального "обучающегося" алгоритма, способного научиться распознавать произвольные образы или формировать понятия на основе анализа выборки объектов. "Надежды на то, что существует общий для всех задач естественный способ редукции данных, не сбылись. Новые проблемные области требуют во всех случаях не только профессионального отбора информативных признаков, в пространстве которых следует искать решение задачи, но нередко еще и совершенно новых методов решения" (Д.А. Поспелов, цит. по [Кричевец, 1998, с. 129]).

Итак, в рамках предложенной нами системы положений о решении комплексных задач мы можем сформулировать следующий вывод. В деятельностях со сложными динамическими системами не могут быть построены на универсальной инвариантной (неизменной) основе, в виде обобщенных и одновременно точных общепонятных предписаний следующие принципиально важные компоненты практической и познавательной деятельности человека: постановка целей; планирование; установление критериев достижения цели; оценка отклонения полученного результата от ранее выбранных критериев; выявление причин рассогласования и их устранение. В деятельностях со сложными динамическими системами таких инвариантов не существует. На универсальной инвариантной основе не может быть построено и обучение всем вышеназванным компонентам - ведь такое обучение требовало бы передачи учащимся инвариантных, универсальных и одновременно эффективных методов, которых в комплексных динамических ситуациях нет. Инварианты могут быть выделены лишь для отдельных областей или только подобластей - и чем сложнее область, тем больше в ней "дыр", которые не могут быть закрыты инвариантными методами. Их надо закрывать другими средствами.

Так с помощью каких же познавательных средств человек может справляться с комплексными, динамичными, неопределенными ситуациями?

Средства познания комплексных динамических систем

Одним из основных средств познания сложных динамично изменяющихся систем, где высока степень неопределенности исходов, должна быть соответствующая система динамично изменяющихся, гибких, нежестких, а значит не вполне определенных, неоднозначных, а в ряде случаев даже противоречивых средств познавательной деятельности. Использование этих средств ведет к неоднозначным результатам, в том числе может и должно вести не только к уменьшению, но и к увеличению неопределенности. Как показал Ю.М.Лотман, неопределенность информативна, поскольку расширяет множество потенциальных возможностей; она является источником творчества, источником открытия и изобретения нового, неизвестного, оригинального. В культуре существует специальные механизмы увеличения неопределенности, повышающие ее творческий потенциал [Лотман, 1992, 1993, 1996].

А.М. Матюшкин и Н.Е. Веракса [1999] пишут, что одним из первых в отечественной психологии проблему неопределенности и противоречивости познавательных средств как источника творчества поставил Н.Н.Поддьяков. Он показал, что не только точные, определенные, устоявшиеся знания, но и неопределенные психические образования с противоречивым содержанием играют, как ни парадоксально, чрезвычайно важную роль в умственном развитии. Хотя гибкость и пластичность свойственна в той или иной степени всем психическим процессам на стадии развития, но неопределенные, неустойчивые образования обладают этим качеством в такой мере, что это позволяет говорить об их "сверхгибкости", "сверхподвижности", "сверхчувствительности" [Поддьяков Н.Н., 1994, с. 30-31]. Эти неопределенные и противоречивые знания позволяют выделять самые неожиданные свойства и связи познаваемого объекта, а также создают готовность к получению любой информации и перестройке имеющихся представлений. Одно из основных требований к разработке познавательных средств состоит в том, что "преодоление неопределенности в одних зонах когнитивной сферы должно сопровождаться возрастанием неопределенности в других ее зонах... Подлежащая усвоению система знаний должна включать в себя несколько подсистем, находящихся между собой в противоречивых отношениях". Это принципиальное условие самодвижения, саморазвития мышления [Поддьяков Н.Н., 1981(б), с. 130]. Важнейшую роль в развивающем противоречии между определенными и неопределенными, неясными знаниями играет экспериментирование (исследовательское поведение). Поисковые, исследовательские пробы, с одной стороны, уточняют представления об объекте, а с другой - ведут к появлению новых неясных представлений о других его связях и отношениях. Таким образом, в ходе экспериментирования рост отчетливых знаний осуществляется в неразрывной связи с развитием неясных знаний, догадок, предположений. Это позволяет говорить о постоянно изменяющемся и расширяющемся "неясном горизонте знаний" [Поддьяков Н.Н., 1973, с. 17; 1981(а), с. 210]. Данные идеи получили дальнейшее развитие в его последующих исследованиях по психологии творчества и проблемному обучению, а также в наших работах.

Рассмотрим роль различных познавательных средств - понятий, образов, исследовательских стратегий, эмоциональных регуляторов и т.д. - при работе с комплексными динамическими системами.

Понятия

Как известно, при классификации видов мышления на самое высокое место нередко ставят понятийное мышление (это еще один пример жесткой инвариантной классификации с однозначным указанием вершины пирамиды). Против рассмотрения теоретического мышления как вершины познавательного развития выступал, как известно, выдающийся отечественный психолог Б.М.Теплов. Однако до сих пор нередко считается, что чем выше уровень теоретичности понятий, тем лучше результаты познания объекта, тем полнее раскрывается его сущность и конкретные проявления. Но можно ли считать понятия самым адекватным средством познания комплексных динамических систем? Или же все-таки только понятий принципиально недостаточно - пусть даже они построены на основе сколь угодно развитой, строгой и точной теории?

Г.М. Андреева подчеркивает, что при познании быстро изменяющейся реальности роль мышления в понятиях и категориях изменяется. Категории "выступают в процессе познания как порождение стабильного мира; они фиксируют устоявшееся, прочное. Когда сам реальный мир становится нестабильным, ... категории как бы разрушаются, утрачивают свои границы", а обозначаемые ими объекты размывают свои границы или вообще исчезают [Андреева, 1998, с. 363-364]. И.И.Ивин отмечает, что затруднения с понятийными классификациями коренятся не столько в недостаточной проницательности человеческого ума, сколько в сложности самого мира, в отсутствии в нем жестких границ и ясно очерченных классов, во всеобщей изменчивости, "текучести" вещей. "Тот кто постоянно нацелен на проведение ясных разграничительных линий, постоянно рискует оказаться в искусственном, им самим созданном мире, имеющем мало общего с динамичным, полном оттенков и переходов реальным миром" [Ивин, 1998, с. 103-104].

Одним из средств сделать понятия более соответствующими сложной, динамичной, неопределенной реальности, которую они призваны отражать, является переход от четких, определенных понятий к менее четким. Анализируя эту проблему, И.И.Ивин пишет, что долгое время точность считалась основным требованием к понятиям, а все расплывчатое рассматривалось как недостойное серьезного интереса. Однако в настоящее время ситуация изменилась: построены логические теории рассуждений на основе неточных, размытых понятий, нечетких отношений и нечетких множеств [Ивин, 1998, с. 211; Заде, 1976; Нечеткие множества.., 1986]. Подчеркнем, что речь идет не о попытке моделирования человеческих рассуждений с их якобы недостатками в виде недостаточной строгости и точности, а о моделях, призванных более адекватно отразить объективную сложность реального мира.

Как показали М.С.Шехтер, А.Я.Потапова [1999], даже при изучении геометрии (предмета, традиционно считающегося образцом использования точных понятий, суждений и умозаключений) нецелесообразно формирование одних только строгих, жестких понятий, в которых нет никакой приблизительности, размытости. Такие понятия требуют, чтобы при любом, даже малом отклонении от эталона предъявленный объект квалифицировался как "не то". Объектами изучения учащихся должны становиться не только строгие абстракты, но также прототипы. Прототипы позволяют работать по другим, нерациональным принципам с объектами, лишь близкими, "похожими" и не подпадающими под строгое определение того или иного класса.

Почему нужны нечеткие понятия?

Четкое, точное понятие строго разделяет признаки на существенные и несущественные. Чем точнее понятие, тем более строго оно их разграничивает, делая взаимопереходы все менее вероятными или вообще невозможными. Но фундаментальная особенность психики человека - гибкая переключаемость с отражения одних свойств объекта на другие, лишь потенциально существенные [Моросанова, 1998, с. 140]. Д.Н.Завалишина назвала это принципом потенциальной существенности любого компонента действия (условие, несущественное в одной ситуации, может стать существенным в другой). Она справедливо противопоставляет этот принцип как более широкий другому принципу - принципу неизменности, инвариантности существенных признаков [Завалишина, 1985, с. 33-34, 191].

Принцип потенциальной существенности любого компонента деятельности относится и к признакам, не вошедшим в точное понятие. Поэтому наряду со строгими понятиями, необходимость которых огромна и не подлежит сомнению, нужны также нечеткие понятия с "размытым" набором признаков. Эти признаки в свою очередь тоже должны быть в большей или меньшей степени "размыты". Это позволяет осуществлять разнообразные взаимопереходы, "играть" существенностью признаков и повышать тем самым эвристичность познания. Размытое, не вполне определенное понятие имеет больше степеней свободы своего использования. Оно оставляет больше возможностей включения в него новых признаков, ставших существенными, и "помещения в архив" прежних признаков, утративших статус существенных.

Конечно, можно попытаться сформулировать точные понятия, отражающие строгие градации существенности тех или иных параметров. Но именно в силу точности и строгости эти понятия неизбежно будут ограниченны по множеству других параметров существенного, которое невозможно включить в точное понятие, сохраняя его точным.

Другим средством сделать понятия более адекватными сущности изменяющейся и противоречивой реальности является использование диалектических понятий - как самых общих (типа понятия изменения, развития, противоречия, противоположности), так и более конкретных, описывающих отдельную изучаемую область [Веракса, 1987, 1996].

Однако никакая, сколь угодно развитая и совершенная система понятий не способна отразить существенную новизну объектов и их изменений. Во-первых, любая понятийная система отражает не все потенциально существенное, а существенное лишь с определенной точки зрения. Все другие проявления новизны данной понятийной системой не фиксируются. Во-вторых, понятия отражают только устойчивое (неизменное, инвариантное) существенное. Устойчивость является необходимым признаком существенности в любой понятийной системе. Ситуативная существенность, сиюминутная важность того или иного объекта (свойства, связи) в понятии о нем не отражается - невозможно и нецелесообразно для каждой ситуации изобретать новое понятие. Однако своевременное обнаружение и использование этих ситуативно важных свойств, не отраженных в понятии, может оказаться делом жизни и смерти.

Образы

Итак, никакая, сколь угодно развитая понятийная система в принципе не способна описать все бесконечное разнообразие реального мира и способов деятельности в нем. И дело не только в бесконечности процесса познания, но и в специфических особенностях понятийного мышления. Поэтому одними из основных средств адекватного отражения особенностей комплексных динамических систем являются не только понятия, но и образы, комплексные динамические представления. В образе содержится несравненно больше информации о конкретном объекте, чем в обобщающем понятии, к которому этот объект может быть отнесен. Отражение в комплексном представлении многообразия свойств объекта позволяет производить переориентировку признаков и обобщать их по новому основанию, придавая мышлению гибкость [Ермакова, 1999].

В отличие от понятий, отражаемые в образе свойства могут не дифференцироваться на существенные и несущественные. Это является, по мнению Н.Н .Поддьякова, парадоксальным достоинством, поскольку устанавливается сам факт существования этих свойств. Отражение в образе самых различных характеристик, в том числе второстепенных может послужить основой переосмысления всей проблемной ситуации: стороны и свойства предмета, не существенные в системе одних отношений, могут оказаться существенными при рассмотрении этого предмета в системе других отношений [Поддьяков Н.Н., 1977, сс. 86, 136]. Именно образы обеспечивают эту гибкую переключаемость с отражения одних свойств объекта на другие, лишь потенциально существенные [Моросанова, 1998, с. 140].

Как пишет О.А. Конопкин, свойство оперативной гибкости и высокой адаптивности определяет эффективность целенаправленного регулирования деятельности в различных условиях ее осуществления, а также при их изменении. Это свойство обеспечивается совершенством используемых человеком психических средств ориентации в действительности, возможностью рационального использования огромных объемов информации и специфическими способами ее оценки и переработки [Конопкин, 1980].

Развивая принцип варьирующей существенности любого компонента деятельности, можно утверждать следующее. Образы в ряде случаев могут занимать в иерархии средств познавательной деятельности не менее высокое положение, чем понятия. С точки зрения обоснования необходимости исследовательского поведения, важно то, что образы стоят ближе к реальности. Ведь основным достоинством понятий справедливо считается возможность именно "отлета от реальности" путем идеализации и абстрагирования. Но этот "отлет", идеализация и абстрагирование вовсе не всегда хороши для познания конкретных, изменяющихся явлений "живой" реальности. Аналогично, образы тоже нельзя считать самым эффективным средством. (Например, как пишет Д.Дернер [1997], одним из недостатков ярких конкретных образов является то, что от них бывает трудно отделаться).

Таким образом, противопоставление образного и вербального описаний относительно: они дополняют друг друга и недостаточны по отдельности. Принципиально важно, что и для образной, и для вербальной семантики существует единый глубинный код [Петренко, 1997].

Сходство образов и понятий состоит также в том, что для тех и других одним из средств адекватного отражения сложного меняющегося мира может служить нечеткость, размытость. Образ, в котором все элементы четко и жестко фиксированы, оставляет меньше возможностей для его перестраивания в соответствии с неожиданными изменениями сложной ситуации. Например, как показывает Ю.К.Стрелков [1999, с. 184-186], в труде летчиков и штурманов при работе в сложных переменчивых условиях оказывается необходим неточный, нечеткий навигационный образ полета.

Метод теоретического восхождения от абстрактного к конкретному

Вышеизложенное заставляет переосмыслить роль метода теоретического восхождения от абстрактного к конкретному. Этот метод нередко представляется как самый правильный, эффективный и универсальный, поскольку он нацелен на выведение всего разнообразия частного и единичного из теоретически выделенного генетически исходного отношения (называемого также генетически исходной клеточкой). Однако многие авторы не согласны с подобной абсолютизацией. В.В.Рубцов критикует такое укоренившееся противопоставление эмпирического и теоретического мышления, в котором отличительной характеристикой последнего считается "способность человека выделять генетически исходное отношение, некоторую всеобщую основу, определяющую конкретные свойства и отношения вещей до всякого непосредственного действия с этими вещами" [Рубцов, 1996(б), с. 136]. Он доказывает, что разрывать на этой (или какой-либо другой) основе эмпирическое и теоретическое знание неправомерно. "И то, и то другое есть лишь этапы, выхваченные из процесса становления и взаимопроникновения хода вещей и хода идей", из системы противонаправленных и дополняющих друг друга "вещь - имя - понятие - идея" [там же, с. 137]. Неправомерно такое противопоставление образно-смыслового, эмпирического - понятийному, теоретическому, при котором первому отводится роль тормоза развивающего обучения, а второму - роль двигателя. Это ведет к ранней интеллектуализации в обучении ребенка и к отмиранию живой способности понимать и образно мыслить окружающий мир. Как подчеркивает В.В.Рубцов, это заставляет вновь обсудить вопрос о закономерностях обучения и развития. Выводы о недостатках ранней интеллектуализации подтверждаются красноречивыми фактами. Например, младшие школьники, прошедшие обучение по принципам теоретического обобщения, демонстрируют умение действовать с теоретическими объектами - решать алгебраические уравнения, чего их ровесники делать обычно не умеют. Но при этом они не могут решить задачи с реальными объектами - задачи Пиаже на уравнивание реальных количеств, которые их ровесники решают уже без труда [Рубцов, 1998]. Одним из способов объединения пространства идеального и реального в обучении является разрабатываемый в течение многих лет В.В.Рубцовым и его сотрудниками подход, в котором специальная организация совместной деятельности учащихся по исследованию реальных и абстрактных объектов в различных областях обеспечивает вышеназванную систему взаимопереходов "вещь - имя - понятие - идея" [Рубцов, 1996(а)].

А.В. Петровский и М.Г. Ярошевский тоже критикуют попытки воссоздать все богатство реальности путем его выведения из какой-либо одной генетически исходной клеточки. Они пишут о бесперспективности такого подхода и доказывают это на материале психологии, что особенно важно для организации обучения. По А.В. Петровскому и М.Г. Ярошевскому, охватить и отразить психический мир человека (а значит, добавим, отразить и обучение как часть этого психического мира) способна "не клеточка даже в своем вершинном развитии, а сложная, многоступенчатая, динамическая система несводимых друг к другу категорий" [1998, с. 521-522]. Итак - не клеточка, но сложная динамическая система.

Вопрос о соотношении теоретического и эмпирического в обучении являлся одним из основных на протяжении примерно 40 последних лет. Мы придерживаемся в этом вопросе следующих позиций. Необходимо полностью согласиться с общим философским положением о диалектическом единстве чувственного и рационального, эмпирического и теоретического уровней познания при признании ведущей роли практики как критерия истины [Копнин, 1974; Теоретическое и эмпирическое.., 1984]. Мы также согласны с положениями о невозможности строгого разграничения чувственного и рационального, эмпирического и теоретического и об ограниченности любой их типологии из-за неизбежного несоответствия такой типологии многообразию уровней развивающейся познавательной деятельности, в которой представлено это их диалектическое единство [там же].

Несмотря на признание этого единства большинством психологов и педагогов, в психолого-педагогических работах в течение последних 30-40 лет основное внимание уделялось изучению и формированию у учащихся способностей к познанию путем осознанной, рефлексивной, разумной работы с абстрактными теоретическими моделями различных областей реальности. Это имеет принципиальное значение для психического развития, и на этом пути в последние десятилетия получены чрезвычайно важные результаты в области развивающего обучения [Давыдов, 1986, 1996].

В то же время имеется значительно меньше психолого-педагогических работ, исследующих другую сторону вышеназванного диалектического единства и само это единство. Незаслуженно малое внимание уделяется изучению и формированию способностей к познанию мира путем реального взаимодействия с ним (а не путем преимущественно теоретической работы с его абстрактными моделями).

Но метод теоретического восхождения от абстрактного к конкретному, как и любой другой метод, имеет принципиальные ограничения и для познания действительности, и при использовании в обучении. Для нас важно то, что он оставляет принципиально недоступной существенную часть разнообразия изучаемой системы, хотя призван воспроизводить это разнообразие как раз целиком и полностью. Остановимся на этих проблемах подробнее.

При исследовании комплексных систем метод теоретического выведения имеет следующие принципиальные ограничения. В силу сетевых межсистемных взаимодействий при генезисе систем невозможно выделение генетически исходной клеточки, генетически исходных отношений в достаточно "чистом" виде. В каждую из систем происходят вторжения иносистемного - происходят взаимодействия отношений, генетически исходных для разных систем. Поэтому, развивая идеи Д.Дернера [1997], можно утверждать, что не только в уже сложившейся структуре сложной динамической системы центральный пункт не один, а их много. Это положение относится и к предшествующему развитию межсистемных взаимодействий: развитие здесь идет сразу из нескольких различающихся между собой пунктов (клеточек, отношений). В связи с этим заметим, что используемая в методе восхождения от абстрактного к конкретному метафора самой первой, центральной, генетически исходной клеточки должна быть дополнена. Клеточки, принадлежащие не простейшим, а сложным, высокоразвитым организмам возникают из не полностью предсказуемого взаимодействия различающихся между собой клеток, принадлежащих различным особям (система возникает в результате взаимодействий нескольких систем). Чтобы не углубиться в бесконечный спор о монизме - дуализме, моноцентризме или полицентризме, о первенстве происхождения яйца или же курицы с петухом и т.п., напомним сказанное ранее. Межсистемные взаимодействия физического, биологического и социального мира находятся на таком уровне развития, который не позволяет однозначным и исчерпывающим образом реконструировать историю "населяющих" этот мир реальных конкретных систем, оценивать их актуальное состояние и прогнозировать будущее. В комплексных динамических системах навсегда исчезла и не может быть однозначным образом восстановлена некоторая часть информации об их предшествующей истории, недоступна в принципе часть информации о нынешнем состоянии, а также еще не сложились условия для однозначного выбора пути дальнейшего развития. Таким образом, объективные законы реального мира не позволяют выделить генетически исходные отношения в настолько исчерпывающем виде, чтобы вывести из них все разнообразие частного и единичного.

При анализе комплексных динамических систем имеет смысл говорить не просто о частном и единичном, как это делается при использовании метода теоретического выведения, а об уникальном. Единицы рядоположны и тождественны друг другу, различий между ними нет или они не существенны, уникальность же неповторимо индивидуальна, невоспроизводима. Это положение имеет особое значение при изучении человеческой индивидуальности [Яковлева, 1997, с. 24]. Но и вообще для любой сложной системы всегда характерна та или иная степень уникальности. В такой системе наряду с общими имеют место уникальные, неповторимые закономерности, возникают уникальные ситуации и задачи, и в целом ряде случаев должны применяться не общие, а уникальные методы. "Сложность задачи тем выше, чем больше одиночных, уникальных подзадач содержится в ней" [Стрелков, 1999, с. 64].

Исходя из различия между единичным и уникальным, можно утверждать, что общие методы теоретического выведения единичного возможны, а общие методы порождения уникального не могут существовать в принципе. Порождение уникального требует уникальных методов.

Итак, любая комплексная динамическая система уникальна. И даже если у нее есть близнецы в прямом, биологическом (если речь идет о биологических особях) или же переносном смысле (заводы-близнецы, построенные по типовому проекту в разных концах страны, супермаркеты в разных городах), эти близнецы всегда имеют существенные специфические, уникальные особенности. Данные особенности отличают эти сложные системы друг от друга и могут кардинально изменить их судьбу друг относительно друга. (Бесконечно малые различия могут вести к бесконечно большим).

Кроме того, как отмечалось выше, помимо объективных законов реального мира имеются также ограничения, связанные с самим методом теоретического выведения. Если мы признаем, что изучаемая реальная система не является абсолютно замкнутой и что по отношению к ней существует иносистемное, с которым она может взаимодействовать хотя бы в приграничных областях, то это означает следующее. Для исчерпывающего теоретического описания изучаемой системы - вплоть до описания всех ее единичных проявлений - недостаточно языка (модели), разработанного только для этой системы. (Ведь хоть какие-то ее единичные проявления будут связаны со взаимодействием этих двух систем - иначе нет и смысла говорить о существовании иной системы в контексте обсуждения первой системы). Отсюда следует, что из теоретической модели изучаемой системы невозможно выведение всего разнообразия ее проявлений. Если же мы находим общую модель, пригодную и для изучаемой системы, и иной, второй, то тем самым отказываемся признать для данного случая проблему иносистемности: обе системы начинают рассматриваться как части или варианты одной, более общей, инвариантной системы.

Наконец, метод теоретического выведения имеет чисто внутренние ограничения в отношении воссоздания разнообразия системы - это непреодолимая неполнота и неразрешимость массовых проблем общими методами. Из генетически исходного отношения невозможно ни выведение части истинных утверждений и опровержение части ложных (выведение декларативного знания, "знаю-что"), ни выведение методов решения ряда задач (процедурного знания, "знаю-как").

В сложных видах деятельности теоретическое мышление стоит отнюдь не выше мышления практического [Теплов, 1985; Акимова, Козлова, Ференс, 1999]. Теоретическое обобщение как отражение закономерных устойчивых свойств постепенно уступает свое место эмпирическим обобщениям как отражению многоаспектности, многокачественности и динамики изучаемых объектов. Эмпирические, комплексные обобщения позволяют осуществлять синтез уникальных существенных характеристик, присущих разным сторонам объекта и условий деятельности [Завалишина, 1985, с. 201]. Практические эмпирические обобщения, в отличие от теоретических, отражают не только свойства исследуемого объекта. Они также отражают характеристики взаимодействия исследователя с ситуацией, куда включаются условия и средства действия, а также некоторые характеристики самого субъекта [Мазилов, 1999]. Это значительно больше соответствует современному фундаментальному общенаучному положению о неустранимом влиянии исследователя на объект изучения, чем представления о возможности и необходимости выделения теоретической сущности объекта в "чистом виде".

Из вышеизложенного можно сделать вывод, что метод теоретического восхождения от абстрактного к конкретному наиболее эффективен при исследовании устойчивых, стабильных, относительно закрытых реальных систем и при анализе идеальных систем с относительно простым набором допустимых операций. То есть речь идет о моносистемах, не превышающих определенного уровня сложности. Но для комплексных динамических систем вступает в силу принцип варьирующей существенности свойств реального мира и методов его познания, вследствие чего метод восхождения от абстрактного к конкретному теряет эффективность (исходная абстракция вынужденно "тощает") и перестает занимать однозначное первое место.

Возвратимся к идее приближения познавательных средств к свойствам неоднозначного, меняющегося мира.

Идея использования нечеткости, "размытости" относится не только к понятиям и образам, но и к другим классам средств познавательной деятельности: вводятся нечеткие меры, нечеткие модели, нечеткие алгоритмы и т.д. Например, нечеткий алгоритм определяется как упорядоченное множество нечетких инструкций, содержащих нечеткие понятия [Нечеткие множества.., 1986, с. 198]. Г.А.Балл [1990] использует близкий по смыслу термин "квазиалгоритм" и сравнивает свойства четких алгоритмов, квазиалгоритмов и эвристик, используемых в учебном процессе. Эвристики, в отличие от алгоритмов, не приводят к однозначному успеху, но они управляют пространством поиска, то сужая, то расширяя его. Они предлагают относительно узкие или широкие направления, предположительно ведущие к решению. Иначе говоря, эвристики - это недостаточно точные, "размытые" рекомендации, стоящие в этом смысле ближе к неоднозначности реального мира, чем однозначные точные предписания. Насколько нам известно, наиболее полную классификацию эвристических приемов решения задач и их обобщение в виде целостной системы дал И.И.Ильясов [1992].

Метод проб

Если сам мир динамичен, неопределенен и неоднозначен, и его познание с необходимостью включает неоднозначные средства, то можем ли мы рассчитывать на такое проектирование и осуществление сложной деятельности, которое бы позволило однозначно достигать поставленной цели? Достигать сразу, без практических проб, без неточностей и ошибок? Можем ли мы действовать в комплексной изменяющейся ситуации лишь на основе предварительной ориентировки и предварительного проигрывания в уме (на бумаге, на компьютере)? Ведь эта ориентировка должна быть настолько полной и исчерпывающей, чтобы сделать совершенно излишним сколько-нибудь значительное изменение предварительных представлений об объекте в ходе последующего реального взаимодействия с ним.

Исходя из принципов неполноты, неопределенности, "горизонта прогноза" и учитывая отсутствие универсальных однозначных методов, следует признать, что существование такой достаточно полной ориентировки в комплексных динамических ситуациях невозможно. В этих ситуациях объективно не содержится полной априорной информации, необходимой для организации деятельности без проб и ошибок, без реального эксперимента. А.Т.Шумилин [1989] подчеркивает, что пробы - это универсальные орудия поиска, неизбежные при решении любых нестандартных задач и отражающие процесс выдвижения и проверки гипотез. Как показал Ю.К.Стрелков [1999, с. 162], попытки исполнения действия в соответствии с правилами в процессе овладения сложной деятельностью обязательно влекут за собой ошибки. Ошибка здесь - результат активности по освоению границ, пределов, внутри которых действует правило и где результат может считаться нормальным.

Заметим, что в то же время полная ориентировка без проб и ошибок возможна для стабильных, инвариантных моносистем. Для них адекватно понятие полной ориентировочной основы деятельности, "обеспечивающей систематически безошибочное выполнение действия в заданном диапазоне ситуаций" [Краткий психологический словарь, 1998, с. 239]. В этом диапазоне метод проб справедливо оценивается как ненужный. Если же он все-таки применяется, то оценивается как неэффективный. Считается, что он требует самой примитивной организации деятельности или даже не требует ее вовсе - в случае так называемых "слепых проб". Иначе говоря, метод проб и ошибок представляет здесь "низ" оппозиции, где "верх" принадлежит полной безошибочной ориентировке, осуществляемой сразу в уме.

Интересно, что в соответствии с принципом варьирующей существенности этот "верх" и "низ" изменяют свое положение при решении комплексных динамических задач. Адекватная ориентировка в комплексной динамической ситуации требует проб - реального взаимодействия с изучаемой системой, в ходе которого будут качественно изменяться предварительные заведомо неполные представления. Отказ от этого реального опробования в надежде спрогнозировать все заранее является здесь свидетельством менее адекватной, а значит, более "слепой" организации деятельности.

Итак, при познании комплексных динамических систем необходимы пробы - реальные взаимодействия с системой без точного прогнозирования их результатов. Их цель - выявить скрытые свойства системы, не выводимые теоретически.

Одно из важнейших требований к пробам сформулировано в положении теории систем, имеющем общенаучное значение: степень изученности системы определяется разнообразием воздействий на нее [Мельников, 1983; Раскин, 1976]. Разнообразие методов является необходимым условием успешного обследования.

Подчеркнем, что из принципа дополнительности и необходимости разнотипных описаний сложной системы следует вывод, что экспериментальные пробы должны быть не просто разнообразны. Они должны направляться множеством принципиально разнотипных описаний разных уровней разработанности. В том числе такими описаниями, которые лишь зарождаются и не достигли уровня сколько-нибудь четких формулировок. Это может быть лишь смутная догадка и предвосхищение, реализуемые в максимально далекой от уже разработанной области пробе. Ее смысл и возможные результаты крайне неопределенны, "темны" для субъекта, однако именно благодаря ей может возникнуть новое направление поиска, которое станет основным - до новой смены доминирующего типа описания (парадигмы).

Здесь возникает важный вопрос о систематичности - случайности опробования. Должны ли пробы, эксперименты осуществляться только упорядоченно, систематически, в строгом соответствии с определенным методом или же необходимы также и случайные пробы?

Безусловно, определенная часть экспериментов должна проводиться по строго определенным планам, и теория планирования эксперимента предлагает их в достаточном количестве. Однако даже в этих строгих планах в целом ряде случаев обосновывается необходимость методов случайного поиска. Эти методы считаются хорошим стартовым ускорителем в задачах с большой размерностью, где переменных много, и при этом они не сходны между собой [Первозванский, 1970, с. 129-130]. Эта характеристика, безусловно, относится к комплексным задачам с сетевым строением.

Как показывает А.А.Первозванский, даже планы экспериментов, выглядящие абсолютно детерминированными и предопределенными, содержат в скрытом виде элемент случайности. Например, в них может указываться, что вначале надо перебирать по порядку значения X, затем значения Y, Z и т.д. Совершенно очевидно, что эта дань конкретному алфавитному порядку латиницы никак не связана с общей сущностью систематического перебора. С точки зрения этой сущности, точно также можно использовать и порядок перебора Z, Y, X или Z, X, Y и т.д. Приписывание этим условным буквенным обозначениям и осям координат тех или иных конкретных наименований (например, "температура", "давление", "скорость", "расстояние" в физике) также носит характер случайного предпочтения, не имеющего обоснования. А.А.Первозванский ставит вопросы типа "Почему значения температуры расположили по оси X, а давления - по Y, хотя оба варьируются экспериментатором и в этом смысле равноправны? Почему объекты пронумеровали в таком порядке, а не в ином?" и показывает, что эти выборы делаются в силу причин, имеющих случайное отношение к принципам планирования эксперимента. Но порядок перебора конкретных экспериментальных воздействий может сказаться на результатах. Если начать "не с того конца", то можно не успеть найти искомое за отведенное для поиска время.

Таким образом, даже в корректно поставленных задачах поиска случайность используется либо в явном и обоснованном виде, либо в виде неявном. Однако здесь случайный выбор всегда осуществляется только внутри системы выбранных и поименованных параметров. Выход за пределы заданного множества этих параметров невозможен. (Строгое доказательство невозможности такого выхода дано А.Н. Кричевцом [1998].) В строгом экспериментальном плане, предполагающем случайные испытания, жестко оговаривается, какие характеристики будут неизменны, какие будут варьироваться детерминированным образом, а какие - случайным. Все остальное бесконечное разнообразие свойств, связей, отношений реального мира не учитывается в модели, ложащейся в основу строгого экспериментального плана. (Это следствие принципиальной ограниченности любой строгой модели, как было показано выше).

Но имеем ли мы право в комплексных динамических ситуациях, характеризующихся множественными межсистемными взаимодействиями, ограничиваться строго заданным набором исследуемых параметров, пусть даже и очень большим? Представляется разумным, что он должен быть не жестко ограниченным, а открытым для включения новых потенциально важных параметров и пересмотра роли и "веса" уже исследованных. Это расширение зоны поиска за ранее выявленные пределы должно с необходимостью включать элемент случайности. Случайные, свободные пробы, метод проб и ошибок - это "мутационный фермент", "дрожжи", расширяющие пространство поиска" [Дернер, 1997, с. 188].

Почему использование максимально свободных и случайных проб необходимо не менее, чем поиск упорядоченный и систематический?

...

Подобные документы

  • Обзор корреляционных исследований связи исследовательского поведения ребенка, его любознательности и интеллекта, проведенных разными авторами. Определение взаимосвязи исследовательского поведения и детского творчества, их влияние и провоцирующие факторы.

    реферат [23,4 K], добавлен 11.08.2010

  • Конфликт как психологический феномен, его сущность и причины. Стратегии конфликтного взаимодействия. Двухмерная модель стратегий поведения личности в конфликтном взаимодействии. Влияние психологических особенностей личности на поведение в конфликте.

    презентация [897,9 K], добавлен 23.04.2015

  • Понятие конфликта в психологии и особенности конфликтного взаимодействия подростков. Конфликт как одна из сторон взаимодействия подростков с окружающими людьми. Основные структурно-динамические характеристики конфликта. Стратегии поведения в конфликте.

    курсовая работа [94,6 K], добавлен 02.10.2013

  • Конфликт как социально-психологический феномен: сущность, основные виды, причины. Стратегии конфликтного взаимодействия. Акцентуации характера: понятие, типологии. Влияние индивидуально-психологических особенностей личности на поведение в конфликте.

    дипломная работа [597,9 K], добавлен 12.01.2014

  • Определение понятия конфликта, его видов и причин, выявление основных стратегий поведения участников. Возникновение и развитие конфликтной ситуации. Стратегия уступки, ее направленность на межличностные отношения. Компромиссная стратегия поведения.

    реферат [219,7 K], добавлен 01.11.2013

  • Современное состояние изучения психологии конфликта. Связь темперамента и деятельности. Психологические теории темперамента. Стратегии поведения в конфликте. Исследование влияния особенностей темперамента на поведение личности в конфликтной ситуации.

    курсовая работа [928,2 K], добавлен 26.06.2015

  • Становление родительского поведения при рождении ребенка; роль семьи в его личностном развитии, возрастная динамика отношений. Любовь как основа психического развития младенца. Формирование достоинства и самоуважения у ребенка: правила для родителей.

    реферат [29,1 K], добавлен 16.02.2011

  • Анализ сущности и содержания межличностного конфликта в ходе учебной деятельности как специфического социально-психологического феномена. Характеристика воспитания культуры эмоционального поведения посредством обучения правилам поведения в конфликте.

    курсовая работа [53,5 K], добавлен 23.02.2012

  • Теоретические аспекты исследования проблемы конфликта в отечественной и зарубежной психологии. Анализ и оценка различий выраженности показателей личностных характеристик, уровня эмоционального выгорания и выбора стратегий поведения в конфликтной ситуации.

    дипломная работа [211,0 K], добавлен 22.08.2010

  • Проблема взаимосвязи стратегий поведения в конфликте и аддитивного поведения в подростковом возрасте в психологии. Стремление подростков уйти от реальности путем изменения своего психического состояния. Эмпирическое изучение поведения в конфликте.

    дипломная работа [1,4 M], добавлен 29.05.2013

  • Столкновение противоположно направленных целей, интересов, позиций, мнений или взглядов оппонентов или субъектов взаимодействия. Психологический подход к изучению конфликта. Современные конфликтологические теории. Стратегии поведения в конфликте.

    реферат [20,4 K], добавлен 20.11.2011

  • Определение сущности и содержания конфликта. Анализ поведения личности в конфликтной ситуации. Анализ особенностей конфликтных ситуаций в классном коллективе. Изучение различных стратегий поведения, результаты проведенной опытно-экспериментальной работы.

    курсовая работа [208,8 K], добавлен 08.05.2011

  • Факторы и стиль семейного воспитания; их влияние на развитие личности ребенка. Его роль в семье и позиция родителей по отношению к детям. Возникающие деформации в личностном развитии ребенка и его эмоционально-волевой сфере, методы их коррекции.

    дипломная работа [129,1 K], добавлен 31.01.2015

  • Понятие об операциях и видах мышления. Совокупность психической деятельности человека: познавательной, эмоциональной и волевой. Мышление как вид познания, соотношение мышления с интеллектом, творчеством и речью. Связи между психическими явлениями.

    контрольная работа [34,3 K], добавлен 14.03.2014

  • Понятие и психологическое обоснование конфликта, его разновидности по определенным признакам. Особенности зарождения и протекания конфликтных ситуаций в организации, типы поведения в них. Регулирование поведения участников конфликтного взаимодействия.

    курсовая работа [206,4 K], добавлен 22.12.2010

  • Теоретические основы изучения стратегий поведения в конфликтной ситуации подростков, воспитывающихся в семьях с различными стилями воспитания. Эмпирическое исследование стратегий поведения в конфликтных ситуациях; анализ и интерпретация результатов.

    дипломная работа [362,5 K], добавлен 24.02.2015

  • Виды и задачи консультативной психологической помощи семье. Методы психологической работы с будущими родителями. Природа непослушного и оппозиционного поведения ребенка. Психологическая и социально-педагогическая помощь родителям в воспитании ребенка.

    реферат [45,7 K], добавлен 27.03.2015

  • Анализ поведения подростков в конфликте. Гендер как биосоциальный феномен. Механизмы формирования гендерных ролей у детей. Половозрастные особенности подростков. Взаимосвязь поведения с уровнем невротизации, степенью вовлеченности в интернет-сообщества.

    курсовая работа [40,0 K], добавлен 29.03.2015

  • Теоретическое исследование стратегий поведения в конфликтной ситуации и эмпатических способностей у психологов. Организация и методы эмпирического исследования поведения в конфликтной ситуации. Количественный и качественный анализ полученных результатов.

    курсовая работа [83,4 K], добавлен 30.05.2015

  • Определение конфликта. Основные типы конфликтов. Поведение в конфликтах. Методы преодоления конфликтов. Стресс и его особенности. Диагностика предрасположенности менеджеров к конфликтному поведению (по К. Томасу).

    дипломная работа [59,0 K], добавлен 06.01.2004

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.