Закономерности развития, строение и функции тканей и органов
Сущность и задачи гистологии, цитологии, эмбриологии. Описание скелетной и мышечной ткани, орган слуха и равновесия. Центральные органы эндокринной системы, иммунологическая защита. Развитие и строение зубов, кожа и ее производные, эмбриогенез человека.
Рубрика | Биология и естествознание |
Вид | курс лекций |
Язык | русский |
Дата добавления | 28.05.2015 |
Размер файла | 609,0 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Цитоплазма эозинофильных гранулоцитов окрашивается слабо базофильно, содержит слабо развитые органеллы общего значения.
Ядра эозинофильных гранулоцитов имеют различную форму: сегментированную, палочковидную и бобовидную. Сегментоядерные эозинофилы чаще всего состоят из двух, реже -- из трех сегментов.
Функция эозинофилов: участвуют в ограничении местных воспалительных реакций, способны к слабо выраженному фагоцитозу; при фагоцитозе выделяют биологические окислители. Эозинофилы активно участвуют в аллергических и анафилактических реакциях при поступлении в организм чужеродных белков. Участие эозинофилов в аллергических реакциях заключается в борьбе с гистамином. Эозинофилы ведут борьбу с гистамином 4 способами:
1) уничтожают гистамин при помощи гистоминазы;
2) выделяют фактор, блокирующий выход гистамина из базофильных гранулоцитов;
3) фагоцитируют гистамин;
4) захватывают гистамин при помощи рецепторов и удерживают его на своей поверхности.
На цитолемме имеются Fc-рецепторы, способные захватывать IgE, IgG, IgM. Есть рецепторы СЗ и рецепторы С4.
Активное участие эозинофилов в анафилактических реакциях осуществляется за счет арилсульфатазы, которая, выделившись из мелких гранул, разрушает анафилаксии, который выделяется базофильными лейкоцитами.
Продолжительность жизни эозинофильных гранулоцитов составляет несколько суток, в периферической крови они циркулируют 4-8 часов.
Увеличение количества эозинофилов в периферической крови называется эозинофилией, уменьшение -- эозинопенией. Эозинофилия возникает при появлении в организме чужеродных белков, очагов воспаления, комплексов антиген-антитело. Эозинопения наблюдается под влиянием адреналина, адренокортикотропного гормона (АКТГ), кортикостероидов.
Базофильные гранулоциты. В периферической крови составляют 0,5-1 %; в капле крови имеют диаметр 7-8 мкм, в мазке крови -- 11-12 мкм. В их цитоплазме содержатся базофильные гранулы, обладающие метахромазией. Метахромазия -- это свойство структур окрашиваться в цвет, не характерный для красителя. Так, например, азур окрашивает структуры в фиолетовый цвет, а гранулы базофилов окрашиваются им в пурпурный цвет. В состав гранул входят гепарин, гистамин, серотонин, хондроитинсульфаты, гиалуроновая кислота. В цитоплазме содержатся пероксидаза, кислая фосфатаза, гистидиндекарбоксилаза, анафилаксии. Гистидин-декарбоксилаза является маркерным ферментом для базофилов.
Ядра базофилов слабо окрашиваются, имеют слабодольчатую или овальную форму, их контуры слабо выражены.
В цитоплазме базофилов органеллы общего значения слабо выражены, окрашивается она слабо базофильно.
Функции базофильных гранулоцитов проявляются в слабо выраженном фагоцитозе. На поверхности базофилов имеются рецепторы класса Е, которые способны удерживать иммуноглобулины. Основная функция базофилов связана с гепарином и гистамином, содержащимися в их гранулах. Благодаря им базофилы участвуют в регуляции местного гомеостаза. При выделении гистамина повышается проницаемость основного межклеточного вещества и стенки капилляра, повышается свертываемость крови, усиливается воспалительная реакция. При выделении гепарина снижается свертываемость крови, проницаемость капиллярной стенки и воспалительная реакция. Базофилы реагируют на присутствие антигенов, при этом усиливается их дегрануляция, т. е. выделение гистамина из гранул, при этом усиливается отечность ткани за счет повышения проницаемости стенки сосудов. Базофилы играют основную роль в развитии аллергических и анафилактических реакций. На их поверхности есть IgE-рецепторы к IgE.
Агранулоцнты. Лимфоциты составляют 19-37 %. В зависимости от размеров лимфоциты подразделяются на малые (диаметр менее 7 мкм), средние (диаметр 8-10 мкм) и большие (диаметр более 10 мкм). Ядра лимфоцитов чаще круглые, реже вогнутые. Цитоплазма слабо базофильна, содержит небольшое количество органелл общего значения, имеются азурофильные гранулы, т. е. лизосомы.
При электронно-микроскопическом исследовании было установлено 4 разновидности лимфоцитов:
1) малые светлые, составляют 75 %, их диаметр равен 7 мкм, вокруг ядра располагается тонкий слой слабо выраженной цитоплазмы, в которой содержатся слабо развитые органеллы общего значения (митохондрии, комплекс Гольджи, гранулярная ЭПС, лизосомы);
2) малые темные лимфоциты, составляют 12,5%, их диаметр 6-7 мкм, ядерно-цитоплазматическое отношение смещено в сторону ядра, вокруг которого еще более тонкий слой резко базофильной цитоплазмы, в которой содержится значительное количество РНК, рибосом, митохондрий; другие органеллы отсутствуют;
3) средние составляют 10-12 %, их диаметр около 10 мкм, цитоплазма слабо базофильна, в ней содержатся рибосомы, ЭПС, комплекс Гольджи, азурофильные гранулы, ядро имеет круглую форму, иногда имеет вогнутость, содержит ядрышки, имеется рыхлый хроматин;
4) плазмоциты, составляют 2 %, их диаметр 7-8 мкм, цитоплазма окрашивается слабо базофильно, около ядра имеется неокрашиваемый участок -- так называемый дворик, в котором содержится комплекс Гольджи и клеточный центр, в цитоплазме хорошо развита гранулярная ЭПС, в виде цепочки опоясывающая ядро. Функция плазмоцитов -- выработка антител.
Функционально лимфоциты делятся на В-, Т- и О-лимфоциты. В-лимфоциты вырабатываются в красном костном мозге, антигеннезависимой дифференцировке подвергаются в аналоге бурсы Фабрициуса.
Функция В-лимфоцитов -- выработка антител, т. е. иммуноглобулинов. Иммуноглобулины В-лимфоцитов являются их рецепторами, которые могут быть сконцентрированы в определенных местах, могут быть диффузно рассеяны по поверхности цитолеммы, могут перемещаться по поверхности клетки. В-лимфоциты имеют рецепторы к антигенам и эритроцитам барана.
Т-лимфоциты подразделяются на Т-хелперы, Т-супрессоры и Т-киллеры. Т-хелперы и Т-супрессоры регулируют гуморальный иммунитет. В частности, под влиянием Т-хелперов повышается пролиферация и дифференцировка В-лимфоцитов и синтез антител в В-лимфоцитах. Под влиянием лимфокинов, выделяемых Т-супрессорами, пролиферация В-лимфоцитов и синтез антител подавляются. Т-киллеры участвуют в клеточном иммунитете, т. е. они уничтожают генетически чужеродные клетки. К киллерам относятся К-клетки, которые убивают чужеродные клетки, но только при наличии к ним антител. На поверхности Т-лимфоцитов имеются рецепторы к эритроцитам мыши.
О-лимфоциты недифференцированы и относятся к резервным лимфоцитам.
Морфологически различить В- и Т-лимфоциты не всегда возможно. В то же время в В-лимфоцитах лучше развита гранулярная ЭПС, в ядре имеются рыхлый хроматин и ядрышки. Лучше всего Т- и В-лимфоциты можно различить при помощи иммунных и иммуноморфологических реакций.
Продолжительность жизни Т-лимфоцитов составляет от нескольких месяцев до нескольких лет, В-лимфоцитов -- от нескольких недель до нескольких месяцев.
Стволовые клетки крови (СКК) морфологически не отличимы от малых темных лимфоцитов. Если СКК попадают в соединительную ткань, то они дифференцируются в тучные клетки, фибробласты и др.
Моноциты. Составляют 3-11 %, их диаметр в капле крови равен 14 мкм, в мазке крови на стекле -- 18 мкм, цитоплазма слабо базофильна, содержит органеллы общего значения, в том числе хорошо развитые лизосомы, или азурофильные гранулы. Ядро чаще всего имеет бобовидную форму, реже -- подковообразную или овальную. Функция -- фагоцитарная. Моноциты циркулируют в крови 36-104 часов, затем мигрируют через стенку капилляров в окружающую ткань и там дифференцируются в макрофаги -- глиальные макрофаги нервной ткани, звездчатые клетки печени, альвеолярные макрофаги легких, остеокласты костной ткани, внутриэпидермальные макрофаги эпидермиса кожи и др. При фагоцитозе макрофаги выделяют биологические окислители. Макрофаги стимулируют процессы пролиферации и дифференцировки В- и Т-лимфоцитов, участвуют в иммунологических реакциях.
Тромбоциты (trombocytus). Составляют в 1л крови 250-300 х 1012, представляют собой частицы цитоплазмы, отщепляющиеся от гигантских клеток красного костного мозга -- мегакариоцитов. Диаметр тромбоцитов 2-3 мкм. Тромбоциты состоят из гиаломера, являющегося их основой, и хромомера, или грануломера.
Плазмолемма плазмоцитов покрыта толстым (15-20 нм) гликокаликсом, образует инвагинации в виде канальцев, отходящих от цитолеммы. Это открытая система канальцев, через которые из тромбоцитов выделяется их содержимое, а из плазмы крови поступают различные вещества. В плазмолемме имеются гликопротеины -- рецепторы. Гпикопротеин PIb захватывает из плазмы фактор фон Виллебранда (vWF). Это один из основных факторов, обеспечивающих свертывание крови. Второй гликопротеин, PIIb-IIIa, является рецептором фибриногена и принимает участие в агрегации тромбоцитов.
Гиаломер -- цитоскелет тромбоцита представлен актиновыми филаментами, расположенными под цитолеммой, и пучками микротубул, прилежащих к цитолемме и расположенных циркулярно. Актиновые филаменты принимают участие в сокращении объема тромба.
Плотная тубулярная система тромбоцита состоит из трубочек, сходных с гладкой ЭПС. На поверхности этой системы синтезируются циклооксигеназы и простагландины, в этих трубочках связываются двухвалентные катионы и депонируются ионы Са2+. Кальций способствует адгезии и агрегации тромбоцитов. Под влиянием циклооксигеназ арахидоновая кислота распадается на простагландины и тромбоксан А-2, которые стимулируют агрегацию тромбоцитов.
Грануломер включает органеллы (рибосомы, лизосомы, микропероксисомы, митохондрии), компоненты органелл (ЭПС, комплекса Гольджи), гликоген, ферритин и специальные гранулы.
Специальные гранулы представлены следующими 3 типами:
1-й тип-- альфа-гранулы, имеют диаметр 350-500 нм, содержат белки (тромбопластин), гликопротеины (тромбоспон- дин, фибронектин), фактор роста и литические ферменты (катепсин).
2-й тип -- бета-гранулы, имеют диаметр 250-300 нм, представляют собой плотные тельца, содержат серотонин, поступающий из плазмы крови, гистамин, адреналин, кальций, АДФ, АТФ.
3-й тип-- гранулы диаметром 200-250 нм, представленные лизосомами, содержащими лизосомальные ферменты, и микропероксисомами, содержащими пероксидазу.
Различают 5 разновидностей тромбоцитов: 1) юные; 2) зрелые; 3) старые; 4) дегенеративные; 5) гигантские. Функция тромбоцитов -- участие в образовании тромбов при повреждении кровеносных сосудов.
При образовании тромба происходит: 1) выделение тканями внешнего фактора свертывания крови и адгезии тромбоцитов; 2) агрегация тромбоцитов и выделение внутреннего фактора свертывания крови и 3) под влиянием тромбопластина протромбин превращается в тромбин, под действием которого фибриноген выпадает в нити фибрина и образуется тромб, который, закупоривая сосуд, прекращает кровотечение.
При введении в организм аспирина подавляется тромбообразование.
Гемограмма. Это количество форменных элементов крови в единице ее объема (в 1л). Кроме того, определяют количество гемоглобина и СОЭ, выражаемую в миллиметрах за 1 час.
Лейкоцитарная формула. Это процентное содержание лейкоцитов. В частности, сегментоядерных нейтрофильных лейкоцитов содержится 47-72 %, палочкоядерных -- 3-5 %, юных -- 0,5 %; базофильных гранулоцитов -- 0,5-1 %, эозинофильных гранулоцитов -- 1-6 %; моноцитов 3-11 %; лимфоцитов -- 19-37 %. При патологических состояниях организма увеличивается количество юных и палочкоядерных нейтрофильных гранулоцитов -- это называется «сдвиг формулы влево».
Возрастные изменения содержания форменных элементов крови. В организме новорожденного в 1 л крови содержится 6-7Ч1012 эритроцитов; к 14-м суткам -- столько же, сколько у взрослого, к 6 месяцам количество эритроцитов уменьшается (физиологическая анемия), к периоду полового созревания достигает уровня у взрослого человека.
Существенные возрастные изменения претерпевает содержание нейтрофильных гранулоцитов и лимфоцитов. В организме новорожденного их количество соответствует количеству у взрослого человека. После этого количество нейтрофилов начинает уменьшаться, лимфоцитов -- увеличиваться, и к 4-м суткам содержание тех и других становится одинаковым (первый физиологический перекрест). Затем количество нейтрофилов продолжает уменьшаться, лимфоцитов -- возрастать, и к 1-2 годам количество нейтрофильных гранулоцитов снижается до минимального (20-30 %), а лимфоцитов -- увеличивается до 60-70 %. После этого содержание лимфоцитов начинает уменьшаться, нейтрофилов -- увеличиваться, и к 4 годам количество тех и других уравнивается (второй физиологический перекрест). Затем количество нейтрофилов продолжает увеличиваться, лимфоцитов -- уменьшаться, и к периоду полового созревания содержание этих форменных элементов такое же, как и у взрослого человека.
Лимфа состоит из лимфоплазмы и форменных элементов крови. Лимфоплазма включает воду, органические вещества и минеральные соли. Форменные элементы крови на 98 % состоят из лимфоцитов, 2 % -- остальные форменные элементы крови. Значение лимфы заключается в обновлении основного межклеточного вещества ткани и очищение его от бактерий, бактериальных токсинов и других вредных веществ. Таким образом, лимфа отличается от крови меньшим содержанием белков в лимфоплазме и большим количеством лимфоцитов.
Лекция 6. Соединительные ткани
Соединительные ткани относятся к тканям внутренней среды и классифицируются на собственно соединительную ткань и скелетную ткань (хрящевая и костная). Собственно соединительная ткань делится на: 1) волокнистую, включающую рыхлую и плотную, которая подразделяется на оформленную и неоформленную; 2) ткани со специальными свойствами (жировая, слизистая, ретикулярная и пигментная).
В состав рыхлой и плотной соединительной ткани входят клетки и межклеточное вещество. В рыхлой соединительной ткани много клеток и основного межклеточного вещества, в плотной -- мало клеток и основного межклеточного вещества и много волокон. В зависимости от соотношения клеток и межклеточного вещества эти ткани выполняют различные функции. В частности, рыхлая соединительная ткань в большей степени выполняет трофическую функцию и в меньшей -- опорно-механическую, а плотная соединительная ткань в большей степени -- опорно-механическую функцию.
Общие функции соединительной ткани:
1) трофическая;
2) функция механической защиты (кости черепа);
3) опорно-механическая (костная, хрящевая ткани, сухожилия, апоневрозы);
4) формообразующая (склера глаза придает глазу определенную форму);
5) защитная (фагоцитоз и иммунологическая защита);
6) пластическая (способность адаптироваться к новым условиям внешней среды, участие в заживлении ран);
7) участие в поддержании гомеостаза организма.
Рыхлая соединительная ткань (textus connectivus collagenosus laxus). Включает клетки и межклеточное вещество, которое состоит из основного межклеточного вещества и волокон: коллагеновых, эластических и ретикулярных. Рыхлая соединительная ткань располагается под базальными бранами эпителия, сопровождает кровеносные и лимфат ские сосуды, образует строму органов.
Клетки:
1) фибробласты,
2) макрофаги,
3) плазмой
4) тканевые базофилы (тучные клетки, лаброциты),
5) адипоциты (жировые клетки),
6) пигментные клетки (пигментоциты, меланоциты),
7) адвентициальные клетки,
8) ретикулярные клетки
9) лейкоциты крови.
Таким образом, в состав соединительной ткани входят несколько дифферонов клеток.
Дифферон фибробластов: стволовая клетка, полустволовая, клетка-предшественник, малодифференцированные фибробласты, дифференцированные фибробласты и фиброциты. Из малодифференцированных фибробластов могут развиваться миофибробласты и фиброкласты. В эмбриогенезе фибробласты развиваются из мезенхимных клеток, а в постнатальном периоде -- из стволовых и адвентициальных клеток.
Малодифференцированные фибробласты имеют удлиненную форму, их длина около 25 мкм, содержат мало отростков; цитоплазма окрашивается базофильно, так как в ней имеется много РНК и рибосом. Ядро овальное, содержит глыбки хроматина и ядрышко. Функция этих фибробластов заключается в их способности к митотическому делению и дальнейшей дифференцировке, в результате которой они превращаются в дифференцированные фибробласты. Среди фибробластов есть долгоживущие и короткоживущие.
Дифференцированные фибробласты (fibroblastocytus) имеют вытянутую, уплощенную форму, их длина около 50 мкм, содержат много отростков, слабо базофильную цитоплазму, хорошо развитую гранулярную ЭПС, имеют лизосомы. В цитоплазме обнаружена коллагеназа. Ядро овальное, слабо базофильное, содержит рыхлый хроматин и ядрышки. По периферии цитоплазмы имеются тонкие филаменты, благодаря которым фибробласты способны передвигаться в межклеточном веществе.
Функции фибробластов:
1) секретируют молекулы коллагена, эластина и ретикулина, из которых полимеризуются соответственно коллагеновые, эластические и ретикулярные волокна; секреция белков осуществляется всей поверхностью плазмолеммы, которая участвует в сборке коллагеновых волокон;
2) секретируют гликозаминогликаны, входящие в состав основного межклеточного вещества (кератансульфаты, гепарансульфаты, хондроитинсульфаты, дерматансульфаты и гиалуроновую кислоту);
3) секретируют фибронектин (склеивающее вещество);
4) белки, соединенные с гликозаминогликанами (протеогликаны).
Кроме того, фибробласты выполняют слабо выраженную фагоцитарную функцию.
Таким образом, дифференцированные фибробласты являются клетками, которые фактически формируют соединительную ткань. Там, где нет фибробластов, не может быть соединительной ткани.
Фибробласты активно функционируют при наличии в организме витамина С, соединений Fe, Си и Сг. При гиповитаминозе функция фибробластов ослабевает, т. е. прекращается обновление волокон соединительной ткани, не вырабатываются гликозаминогликаны, входящие в состав основного межклеточного вещества, что приводит к ослаблению и разрушению связочного аппарата организма, например зубных связок. Зубы при этом разрушаются и выпадают. В результате прекращения выработки гиалуроновой кислоты повышается проницаемость капиллярных стенок и окружающей соединительной ткани, что приводит к мелкоточечным кровоизлияниям. Такое заболевание называется цингой.
Фиброциты образуются в результате дальнейшей дифференцировки дифференцированных фибробластов. Они содержат ядра с грубыми глыбками хроматина, ядрышки в них отсутствуют. Фиброциты уменьшены в размерах, в цитоплазме -- малочисленные слабо развитые органеллы, функциональная активность снижена.
Миофибробласты развиваются из малодифференцированных фибробластов. В их цитоплазме хорошо развиты миофиламенты, поэтому они способны выполнять сократительную функцию. Миофибробласты имеются в стенке матки при наступлении беременности. За счет миофибробластов происходит, в значительной степени, нарастание массы гладкомышечной ткани стенки матки в ходе беременности.
Фиброкласты также развиваются из малодифференцированных фибробластов. В этих клетках хорошо развиты лизосомы, содержащие протеолитические ферменты, принимающие участие в лизисе межклеточного вещества и клеточных элементов. Фиброкласты принимают участие в рассасывании мышечной ткани стенки матки после родов. Фиброкласты встречаются в заживающих ранах, где принимают участие в очищении ран от некротизированных структур тканей.
Макрофаги (macrophagocytus) развиваются из СКК, моноцитов, они находятся везде в соединительной ткани, особенно много их там, где богато развита кровеносная и лимфатическая сеть сосудов. Форма макрофагов может быть овальной, округлой, вытянутой, размеры -- до 20-25 мкм в диаметре. На поверхности макрофагов имеются псевдоподии. Поверхность макрофагов резко очерчена, на их цитолемме имеются рецепторы к антигенам, иммуноглобулинам, лимфоцитам и другим структурам.
Ядра макрофагов имеют овальную, круглую или вытянутую форму, содержат грубые глыбки хроматина. Встречаются многоядерные макрофаги (гигантские клетки инородных тел, остеокласты). Цитоплазма макрофагов слабо базофильна, содержит много лизосом, фагосом, вакуолей. Органеллы общего значения развиты умеренно.
Функции макрофагов многочисленны. Основная функция -- фагоцитарная. При помощи псевдоподий макрофаги захватывают антигены, бактерии, чужеродные белки, токсины и другие вещества и при помощи ферментов лизосом переваривают их, осуществляя внутриклеточное пищеварение. Кроме того, макрофаги выполняют секреторную функцию. Они выделяют лизоцим, разрушающий оболочку бактерий; пироген, повышающий температуру тела; интерферон, тормозящий развитие вирусов; секретируют интерлейкин-1 (ИЛ-1), под влиянием которого повышается синтез ДНК в В- и Т-лимфоцитах; фактор, стимулирующий образование антител в В-лимфоцитах; фактор, стимулирующий дифференцировку Т- и В-лимфоцитов; фактор, стимулирующий хемотаксис Т-лимфоцитов и активность Т-хелперов; цитотоксический фактор, разрушающий клетки злокачественных опухолей. Макрофаги принимают участие в иммунных реакциях. Они представляют антигены лимфоцитам.
В общей сложности макрофаги способны к прямому фагоцитозу, фагоцитозу, опосредованному антителами, секреции биологически активных веществ, представлению антигенов лимфоцитам.
Макрофагическая система включает все клетки организма, обладающие 3 основными признаками:
1) выполняют фагоцитарную функцию;
2) на поверхности их цитолеммы имеются рецепторы к антигенам, лимфоцитам, иммуноглобулинам и т. д.;
3) все они развиваются из моноцитов.
Примером таких макрофагов являются:
1) макрофаги (гистиоциты) рыхлой соединительной ткани;
2) купферовские клетки печени;
3) легочные макрофаги;
4) гигантские клетки инородных тел;
5) остеокласты костной ткани;
6) ретроперитонеальные макрофаги;
7) глиальные макрофаги нервной ткани.
Основоположником теории о системе макрофагов в организме является И. И. Мечников. Он впервые понял роль макрофагической системы в защите организма от бактерий, вирусов и других вредных факторов.
Тканевые базофилы (тучные клетки, лаброциты), вероятно, развиваются из СКК, но точно это не установлено. Форма лаброцитов овальная, круглая, вытянутая и т. д. Ядра компактные, содержат грубые глыбки хроматина. Цитоплазма слабо базофильна, содержит базофильные гранулы диаметром до 1,2 мкм.
В гранулах содержатся: 1) кристаллоидные, пластинчатые, сетчатые и смешанные структуры; 2) гистамин; 3) гепарин; 4) серотонин; 5) хондроитинсерные кислоты; 6) гиалуроновая кислота.
В цитоплазме содержатся ферменты: 1) липаза; 2) кислая фосфатаза; 3) ЩФ; 4) АТФаза; 5) цитохромоксидаза и 6) гистидиндекарбоксилаза, являющаяся маркерным ферментом для лаброцитов.
Функции тканевых базофилов заключаются в том, что они, выделяя гепарин, снижают проницаемость капиллярной стенки и процессы воспаления, выделяя гистамин, повышают проницаемость капиллярной стенки и основного межклеточного вещества соединительной ткани, т. е. регулируют местный гомеостаз, усиливают воспалительные процессы и вызывают аллергические реакции. Взаимодействие лаброцитов с аллергеном приводит к их дегрануляции, так как на их плазмолемме есть рецепторы к иммуноглобулинам типа Е. Лаброциты играют ведущую роль в развитии аллергических реакций.
Плазмоциты развиваются в процессе дифференцировки В-лимфоцитов, имеют круглую или овальную форму, диаметр 8-9 мкм; цитоплазма окрашивается базофильно. Однако около ядра имеется участок, который не окрашивается и называется «перинуклеарный дворик», в котором находятся комплекс Гольджи и клеточный центр. Ядро -- круглое или овальное, перинуклеарным двориком смещено к периферии, содержит грубые глыбки хроматина, располагающиеся в виде спиц в колесе. В цитоплазме хорошо развита гранулярная ЭПС, много рибосом. Остальные органеллы развиты умеренно. Функция плазмоцитов -- выработка иммуноглобулинов, или антител.
Адипоциты (жировые клетки) располагаются в рыхлой соединительной ткани в виде отдельных клеток или группами. Одиночные адипоциты имеют круглую форму, всю клетку занимает капля нейтрального жира, состоящая из глицерина и жирных кислот. Кроме того, там имеются холестерин, фосфолипиды, свободные жирные кислоты. Цитоплазма клетки вместе с уплощенным ядром оттеснена к цитолемме. В цитоплазме имеются малочисленные митохондрии, пиноцитоз- ные пузырьки и фермент глицеролкиназа.
Функциональное значение адипоцитов заключается в том, что они являются источниками энергии и воды.
Развиваются адипоциты чаще всего из малодифференцированных адвентициальных клеток, в цитоплазме которых начинают накапливаться капельки липидов. Всосавшиеся из кишечника в лимфатические капилляры, капельки липидов, называемые хиломикронами, транспортируются в те места, где находятся адипоциты и адвентициальные клетки. Под влиянием липопротеидлипаз, выделяемых эндотелиоцитами капилляров, хиломикроны расщепляются на глицерин и жирные кислоты, которые поступают либо в адвентициальную, либо в жировую клетку. Внутри клетки глицерин и жирные кислоты соединяются в нейтральный жир под действием глицеролкиназы.
В том случае, если в организме возникла необходимость в энергии, из мозгового вещества надпочечников выделяется адреналин, который захватывается рецептором адипоцита. Адреналин стимулирует аденилатциклазу, под действием которой синтезируется сигнальная молекула, т. е. цАМФ. цАМФ стимулирует липазу адипоцита, под влиянием которой нейтральный жир расщепляется на глицерин и жирные кислоты, которые выделяются адипоцитом в просвет капилляра, где они соединяются с белком и затем в виде липопротеида транспортируются в те места, где необходима энергия.
Инсулин стимулирует отложение липидов в адипоцитах и препятствует выходу их из этих клеток. Поэтому если в организме недостаточно инсулина (диабет), то адипоциты теряют липиды, при этом больные худеют.
Пигментные клетки (меланоциты) находятся в соединительной ткани, хотя они не являются собственно соединительнотканными клетками, развиваются из нервного гребня. Меланоциты имеют отростчатую форму, светлую цитоплазму, бедную органеллами, содержащую гранулы пигмента меланина.
Адвентициалъные клетки располагаются вдоль кровеносных сосудов, имеют веретеновидную форму, слабо базофильную цитоплазму, содержащую рибосомы и РНК.
Функциональное значение адвентициальных клеток заключается в том, что они являются малодифференцированными клетками, способными к митотическому делению и дифференцировке в фибробласты, миофибробласты, адипоциты в процессе накопления в них капелек липидов.
В соединительной ткани много лейкоцитов, которые, циркулируя в крови несколько часов, затем мигрируют в соединительную ткань, где выполняют свои функции.
Перициты входят в состав стенки капилляров, имеют отростчатую форму. В отростках перицитов имеются сократительные филаменты, при сокращении которых суживается просвет капилляра.
Межклеточное вещество рыхлой соединительной ткани. Межклеточное вещество рыхлой соединительной ткани включает коллагеновые, эластические и ретикулярные волокна и основное (аморфное) вещество.
Коллагеновые волокна (fibra collagenica) состоят из белка коллагена, имеют толщину 1-10 мкм, неопределенной величины длину, извилистый ход. Коллагеновые белки имеют 14 разновидностей (типов). Коллаген I типа имеется в волокнах костной ткани, сетчатом слое дермы. Коллаген II типа входит в состав гиалинового и волокнистого хрящей и в стекловидное тело глаза. Коллаген III типа входит в состав ретикулярных волокон. Коллаген IV типа имеется в волокнах базальных мембран, капсулы хрусталика. Коллаген V типа располагается вокруг тех клеток, которые его вырабатывают (гладкие миоциты, эндотелиоциты), образуя вокругклеточный, или перицеллюлярный, скелет. Остальные типы коллагена мало изучены.
Формирование коллагеновых волокон осуществляется в процессе 4 уровней организации.
I уровень -- молекулярный, или внутриклеточный;
II уровень -- надмолекулярный, или внеклеточный;
III уровень -- фибриллярный;
IV уровень -- волоконный.
I уровень (молекулярный) характеризуется тем, что на гранулярной ЭПС фибрРазмещено на http://www.allbest.ru/
областов синтезируются молекулы коллагена (тропоколлаген) длиной 280 нм и диаметром 1,4 нм. Состоят молекулы из 3 цепочек аминокислот, чередующихся в определенном порядке. Эти молекулы выделяются из фибробластов всей поверхностью их цитолеммы.
II Размещено на http://www.allbest.ru/
уровень (надмолекулярный) характеризуется тем, что молекулы коллагена (тропоколлаген) соединяются своими концами, в результате чего образуются протофибриллы. 5-6 протофибрилл соединяются своими боковыми поверхностями, и в результате образуются фибриллы диаметром около 10 нм.
III Размещено на http://www.allbest.ru/
уровень (фибриллярный) характеризуется тем, что образовавшиеся фибриллы соединяются своими боковыми поверхностями, в результате чего образуются микрофибриллы диаметром 50-100 нм. В этих фибриллах видны светлые и темные полосы (поперечная исчерченность) шириной около 64 нм.
IV Размещено на http://www.allbest.ru/
уровень (волоконный) заключается в том, что микрофибриллы соединяются своими боковыми поверхностями, в результате чего образуются коллагеновые волокна диаметром 1-10 мкм.
Функциональное значение коллагеновых волокон состоит в том, что они придают механическую прочность соединительной ткани. Например, на коллагеновой нити диаметром 1 мм можно подвесить массу, равную 70 кг. Коллагеновые волокна набухают в растворах кислот и щелочей. Они анастомозируют друг с другом.
Эластические волокна более тонкие, имеют прямой ход; соединяясь друг с другом, они образуют широкопетлистую сеть, состоят из белка эластина. Формирование эластических волокон претерпевает 4 уровня организации: I уровень -- молекулярный, или внутриклеточный; II уровень -- надмолекулярный, или внеклеточный; III уровень -- фибриллярный; IV уровень -- волоконный.
1 уровеньРазмещено на http://www.allbest.ru/
(молекулярный) характеризуется образованием на гранулярной ЭПС фибробластов шаров, или глобул диаметром около 2,8 нм, которые выделяются из клетки.
2 уРазмещено на http://www.allbest.ru/
ровень (надмолекулярный) характеризуется соединением глобул в цепочки (протофибриллы) диаметром около 3,5 нм.
3 уровеньРазмещено на http://www.allbest.ru/
(фибриллярный), в результате которого глико- протеины наслаиваются на протофибриллы в виде оболочки и образуются фибриллы диаметром 10 нм.
4 уровеньРазмещено на http://www.allbest.ru/
(волоконный), в результате которого фибриллы, соединяясь, образуют пучок, или трубочку. Эти трубочки называются окситалановыми волокнами. Затем в просвет этих трубочек внедряется аморфное вещество.
Когда количество аморфного вещества в формирующихся волокнах увеличится до 50 % по отношению к фибриллам, эти волокна превратятся в элауниновые; когда количество аморфного вещества достигнет 90 %, эти волокна и есть зрелые, эластические волокна. Окситалановые и элауниновые -- незрелые эластические волокна.
Функциональное значение эластических волокон заключается в том, что они придают эластичность соединительной ткани. Эластические волокна менее прочны на разрыв по сравнению с коллагеновыми волокнами, но зато более растяжимы.
Ретикулярные волокна состоят из белка коллагена III типа. Эти белки также вырабатываются фибробластами. Формирование ретикулярных волокон тоже претерпевает 4 уровня организации, точно так же, как и коллагеновых волокон. В фибриллах ретикулярных волокон имеется ис- черченность в виде светлых и темных полос шириной 64--67 нм (как и в коллагеновых волокнах). Ретикулярные волокна менее прочны, но более растяжимы, чем коллагеновые волокна, но зато более прочны и менее растяжимы, чем эластические волокна. Ретикулярные волокна, переплетаясь, образуют сеть.
Основное (аморфное) межклеточное вещество (substantia fundamentalis) имеет полужидкую консистенцию. Оно формируется частично за счет плазмы крови, из которой поступают вода, минеральные соли, альбумины, глобулины и другие вещества, и частично за счет функциональной деятельности фибробластов и тканевых базофилов. В частности, фибробласты выделяют в межклеточное вещество гликозаминогликаны сульфатированные (хондроитинсульфаты, кератансульфаты, гепарансульфаты, дерматансульфаты) и несульфатированные (гиалуроновую кислоту); гликопротеины (белки, соединенные с короткими сахаридными цепями). От количества гиалуроновой кислоты, в основном, зависит консистенция и проницаемость основного межклеточного вещества. Наиболее жидкое основное межклеточное вещество располагается около кровеносных и лимфатических сосудов. На границе с эпителиальной тканью основное межклеточное вещество более плотное и находится в большем количестве.
Функциональное значение основного межклеточного вещества заключается в том, что через него происходит обмен веществ между кровеносным руслом капилляров и паренхимными клетками. В основном межклеточном веществе происходит полимеризация коллагеновых, эластических и ретикулярных волокон. Основное вещество обеспечивает жизнедеятельность клеток соединительной ткани.
Интенсивность обмена веществ зависит от проницаемости основного межклеточного вещества. Проницаемость зависит от количества свободной воды, гиалуроновой кислоты, активности гиалуронидазы, концентрации гликозаминогликанов и гистамина. Чем больше гликозаминогликанов (гиалуроновой кислоты), тем меньше проницаемость. Гиалуронидаза разрушает гиалуроновую кислоту, тем самым повышая проницаемость. Гистамин также повышает проницаемость основного межклеточного вещества. В рефляции проницаемости основного вещества соединительной ткани принимают участие базофильные гранулоциты и тучные клетки, выделяя то гепарин, то гистамин, а также эозинофильные гранулоциты, разрушающие гистамин при помощи фермента гистаминазы.
Гиалуронидаза содержится в бактериях и вирусах. Благодаря гиалуронидазе эти микроорганизмы повышают проницаемость базальных мембран, основного межклеточного вещества и стенок капилляров и проникают во внутреннюю среду организма, вызывая различные заболевания.
Плотная соединительная ткань. Характеризуется наименьшим количеством клеточных элементов и основного межклеточного вещества, в ней преобладают волокна, в основном коллагеновые.
Плотная соединительная ткань подразделяется на неоформленную и оформленную. Примером неоформленной соединительной ткани является сетчатый слой дермы.
Плотная оформленная соединительная ткань представлена сухожилиями, связками, апоневрозами мышц, капсулами суставов, оболочками некоторых органов, белочными оболочками глаза, мужской и женской половых желез, твердой мозговой оболочкой, надкостницами и надхрящницами.
Сухожилие (tendo) состоит из параллельно расположенных волокон, образующих пучки I, II и III порядков. Пучки I порядка отделены друг от друга сухожильными клетками, или фиброцитами, несколько пучков I порядка складываются в пучки II порядка, которые отделены друг от друга прослойкой рыхлой соединительной ткани, называемой эндотенонием (endotendium); несколько пучков II порядка складываются в пучки III порядка. Пучком III порядка может быть само сухожилие. Пучки III порядка окружены прослойкой рыхлой соединительной ткани, называемой перитенонием (peritendium). В прослойках рыхлой соединительной ткани эндотенония и перитенония проходят кровеносные и лимфатические сосуды и нервные волокна, заканчивающиеся в нервно-сухо- жильных веретенах, т. е. чувствительных нервных окончаниях сухожилий.
Функциональное значение сухожилий заключается в том, что с их помощью мышцы прикрепляются к костному скелету.
Соединительнотканные пластинки (фасции, апоневрозы, сухожильные центры и др.) характеризуются параллельным послойным расположением коллагеновых волокон. Коллагеновые волокна одного слоя пластинки располагаются под углом по отношению к волокнам другого слоя. Волокна из одного слоя могут переходить в соседний слой. Поэтому слои апоневрозов, фасций и т. д. разделить довольно трудно. Таким образом, соединительнотканные пластинки отличаются от сухожилий тем, что коллагеновые волокна располагаются в них не пучками, а слоями. Между слоями коллагеновых волокон располагаются фиброциты и фибробласты.
Связки (ligamentum) по своему строению похожи на сухожилия, но отличаются от них менее строгим расположением волокон. Среди связок выделяется выйная связка (ligamentum nuchae), которая отличается тем, что вместо коллагеновых волокон содержит эластические волокна.
В капсулах, белочных оболочках, надкостницах, надхрящницах, твердой мозговой оболочке в отличие от фасций и апоневрозов отсутствует строгое расположение коллагеновых волокон.
Плотная неоформленная соединительная ткань, расположенная в сетчатом слое кожи, отличается неправильным (разнонаправленным) расположением коллагеновых и эластических волокон, развивается из дерматома мезодермальных сомитов.
Функциональное значение этой ткани заключается в обеспечении механической прочности кожи.
Соединительные ткани со специальными свойствами. К тканям со специальными свойствами относятся жировая, ретикулярная, слизистая и пигментная. Особенностью этих тканей является преобладание какого-то одного вида клеток. Так, например, в жировой ткани преобладают адипоциты, в пигментной -- меланоциты, и т. д.
Ретикулярная ткань (textus reticularis) является стро- мой органов кроветворения, за исключением тимуса, в котором стромой является эпителиальная ткань. Ретикулярная ткань состоит из ретикулярных клеток и тесно связанных с ними ретикулярных волокон и основного межклеточного вещества. Ретикулярные клетки подразделяются на 3 разновидности: 1) фибробластоподобные клетки, выполняющие такую же функцию, как и фибробласты рыхлой соединительной ткани, т. е. вырабатывают коллаген III типа, из которого состоят ретикулярные волокна, и секретируют основное межклеточное вещество; 2) макрофагические ретикулоциты, выполняющие фагоцитарную функцию; 3) малодифференцированные клетки, которые в процессе дифференцировки превращаются в фибробластоподобные ретикулоциты.
Ретикулярные волокна вплетаются в отростки фибробластоподобных ретикулоцитов и вместе с ними образуют сеть (reticulum), в петлях которой располагаются гемопоэтические клетки. Ретикулярные волокна окрашиваются серебром, поэтому называются аргентофильными. Преколлагеновые (незрелые коллагеновые) волокна тоже окрашиваются серебром и тоже называются аргентофильными, но к ретикулярным волокнам они никакого отношения не имеют.
Жировая ткань делится на белую и бурую жировую ткани. Белая жировая ткань находится в подкожной жировой клетчатке. Ее особенно много в области кожи живота, бедер, ягодиц, в малом и большом сальниках, ретроперитонеально (забрюшинно). Она состоит из жировых клеток -- адипоцитов, цитоплазма которых заполнена каплей нейтрального жира. Адипоциты в жировой ткани образуют дольки, окруженные прослойками рыхлой соединительной ткани, в которых проходят кровеносные и лимфатические капилляры и нервные волокна.
При длительном голодании липиды выделяются из адипоцитов, которые приобретают звездчатую форму, и человек при этом худеет. При возобновлении питания в адипоцитах появляются сначала включения гликогена, затем -- капли липидов, которые соединяются в одну большую каплю, оттесняющую ядро с цитоплазмой на периферию клетки.
Однако не во всех местах тела при голодании быстро исчезают липиды из адипоцитов. Ткк, например, жировая ткань подкожно-жировой клетчатки ладонной поверхности кистей рук, подошв стоп ног, а также орбит глаза сохраняется и после длительного голодания, потому что эта ткань выполняет опорно-механическую (амортизационную) функцию.
Бурая жировая ткань в организме новорожденных располагается в подкожно-жировой клетчатке в области шеи, лопаток, вдоль позвоночного столба и за грудиной. Адипоциты этой ткани характеризуются тем, что имеют полигональную форму, сравнительно небольшие размеры, их круглые ядра располагаются в центре, капельки липидов диффузно рассеяны в цитоплазме. В последней много митохондрий, в которых имеются железосодержащие бурые пигменты -- цитохромы.
Функциональное значение бурой жировой ткани заключается в том, что она обладает высокой окислительной способностью, при этом выделяется много тепловой энергии, согревающей тело грудного ребенка. При воздействии адреналина и норадреналина на адипоциты жировой ткани происходит расщепление липидов. При голодании организма бурая жировая ткань изменяется менее значительно, чем белая. Между адипоцитами бурой жировой ткани проходят многочисленные капилляры.
Слизистая соединительная ткань находится в пупочном канатике плода. В ее состав входят мукоциты (фибробластоподобные клетки): коллагеновых волокон сравнительно мало, много основного межклеточного вещества, содержащего большое количество гиалуроновой кислоты. Функция мукоцитов -- вырабатывают много гиалуроновой кислоты и мало молекул коллагена. Благодаря богатому содержанию гиалуроновой кислоты, слизистая ткань (textus mucosus) обладает высокой упругостью. Функциональное значение слизистой ткани заключается в том, что, благодаря ее упругости, не сдавливаются кровеносные сосуды пупочного канатика при его сжатии или сгибе.
Пигментная ткань у представителей белой расы выражена слабо. Она находится в радужной оболочке, вокруг сосков молочных желез, анального отверстия и в мошонке. Основными клетками этой ткани являются пигментоциты, развивающиеся из нервного гребня.
Лекция 7. Скелетные (хрящевая и костная) ткани
Хрящевая и костная ткани развиваются из склеротомной мезенхимы, относятся к тканям внутренней среды и, как и все другие ткани внутренней среды, состоят из клеток и межклеточного вещества. Межклеточное вещество здесь плотное, поэтому эти ткани выполняют опорно-механическую функцию.
Хрящевые ткани (textus cartilagineus). Классифицируются на гиалиновую, эластическую и волокнистую. В основу классификации положены особенности организации межклеточного вещества. В состав хрящевой ткани входит 80 % воды, 10-15 % органических веществ и 5-7 % неорганических веществ.
Развитие хрящевой ткани, или хондрогенез, складывается из 3 стадий: 1) образование хондрогенных островков; 2) образование первичной хрящевой ткани: 3) дифференцировка хрящевой ткани.
Во время 1-й стадии мезенхимные клетки соединяются в хондрогенные островки, клетки которых размножаются, дифференцируются в хондробласты. В образовавшихся хондробластах имеются гранулярная ЭПС, комплекс Гольджи, митохондрии. Хондробласты затем дифференцируются в хондроциты.
Во время 2-й стадии в хондроцитах хорошо развиты гранулярная ЭПС, комплекс Гольджи, митохондрии. Хондроциты активно синтезируют фибриллярный белок (коллаген II типа), из которого формируется межклеточное вещество, окрашивающееся оксифильно.
При наступлении 3-й стадии в хондроцитах более интенсивно развивается гранулярная ЭПС, на которой вырабатываются и фибриллярные белки, и хондроитинсульфаты (хондроитинсерная кислота), которые окрашиваются основными красителями. Поэтому основное межклеточное вещество хрящевой ткани вокруг этих хондроцитов окрашено базофильно.
Вокруг хрящевого зачатка из мезенхимных клеток формируется надхрящница, состоящая из 2 слоев: 1) наружного, более плотного, или волокнистого, и 2) внутреннего, более рыхлого, или хондрогенного, в котором содержатся прехон- дробласты и хондробласты.
Аппозиционный рост хряща, или рост путем наложения, характеризуется тем, что из надхрящницы выделяются хондробласты, которые накладываются на основное вещество хряща, дифференцируются в хондроциты и начинают вырабатывать межклеточное вещество хрящевой ткани.
Интерстициальный рост хрящевой ткани осуществляется за счет хондроцитов, расположенных внутри хряща, которые, во-первых, делятся путем митоза и, во-вторых, вырабатывают межклеточное вещество, за счет чего увеличивается объем хрящевой ткани.
Клетки хрящевой ткани (chondrocytus). Составляют дифферон хондроцитов: стволовая клетка, полустволовая клетка (прехондробласт), хондробласт, хондроцит.
Хондробласты (chondroblastus) находятся во внутреннем слое надхрящницы, имеют органеллы общего значения: гранулярную ЭПС, комплекс Гольджи, митохондрии. Функции хондробластов:
1) секретируют межклеточное вещество (фибриллярные белки);
2) в процессе дифференцировки превращаются в хондроциты;
3) обладают способностью к митотическому делению.
Хондроциты располагаются в хрящевых лакунах. В лакуне вначале находится 1 хондроцит, потом, в процессе его митотического деления, образуется 2, 4, 6 и т. д. клеток. Все они находятся в одной лакуне и образуют изогенную группу хондроцитов.
Хондроциты изогенной группы делятся на 3 типа: I, II, III.
Хондроциты I типа обладают способностью к митотическому делению, содержат комплекс Гольджи, митохондрии, гранулярную ЭПС и свободные рибосомы, имеют крупное ядро и небольшое количество цитоплазмы (большое ядерно-цитоплазматическое отношение). Эти хондроциты располагаются в молодом хряще.
Хондроциты II типа располагаются в зрелом хряще, ядерно-цитоплазматическое отношение их несколько уменыпается, так как увеличивается объем цитоплазмы; они утрачивают способность к митозу. В их цитоплазме хорошо развита гранулярная ЭПС; они секретируют белки и гликозаминогликаны (хондроитинсульфаты), поэтому основное межклеточное вещество вокруг них окрашивается базофильно.
Хондроциты III типа находятся в старом хряще, утрачивают способность к синтезу гликозаминогликанов и вырабатывают только белки, поэтому межклеточное вещество вокруг них окрашивается оксифильно. Следовательно, вокруг такой изогенной группы видно кольцо, окрашенное оксифильно (белки выделены хондроцитами III типа), снаружи от этого кольца видно базофильно окрашенное кольцо (гликозаминогликаны секретированы хондроцитами II типа) и само наружное кольцо снова окрашено оксифильно (белки выделены в то время, когда в хряще были только молодые хондроциты I типа). Таким образом, эти 3 разноокрашенных кольца вокруг изогенных групп характеризуют процесс образования и функции хондроцитов 3 типов.
Межклеточное вещество хрящевой ткани. Содержит органические вещества (преимущественно коллаген II типа), гликозаминогликаны, протеогликаны и белки неколлагено- вого типа. Чем больше протеогликанов, тем более гидрофильно межклеточное вещество, тем оно более упруго и более проницаемо. Через основное вещество со стороны надхрящницы диффузно проникают газы, молекулы воды, ионы солей и микромолекулы. Однако макромолекулы не проникают. Макромолекулы обладают антигенными свойствами, но, поскольку они не проникают в хрящ, пересаженный от одного человека другому хрящ хорошо приживается (не возникает иммунной реакции отторжения).
В основном веществе хряща имеются коллагеновые волокна, состоящие из коллагена II типа. Ориентировка этих волокон зависит от силовых линий, а направление последних зависит от механического воздействия на хрящ. В межклеточном веществе хрящевой ткани отсутствуют кровеносные и лимфатические сосуды, поэтому питание хрящевой ткани осуществляется путем диффузного поступления веществ со стороны сосудов надхрящницы.
Гиалиновая хрящевая ткань. Имеет голубовато-беловатый цвет, полупрозрачная, хрупкая, в организме находится в местах соединения ребер с грудиной, в стенках трахеи и бронхов, гортани, на суставных поверхностях. В зависимости от того, где находится гиалиновый хрящ, он имеет различное строение. При нарушении питания гиалиновый хрящ подвергается обызвествлению.
Шалиновый хрящ на концах ребер покрыт надхрящницей, под которой располагается зона молодого хряща. Здесь находятся молодые хондроциты веретеновидной формы, расположенные в хрящевых лакунах и способные вырабатывать только фибриллярные белки. Поэтому межклеточное вещество вокруг них окрашено оксифильно. Птубже хондроциты округляются. Еще глубже образуются изогенные группы хондроцитов, способные вырабатывать белки и хондроитинсерную кислоту, окрашивающуюся базофильно. Поэтому межклеточное вещество вокруг них окрашивается основными красителями. Еще глубже находятся изогенные группы, содержащие еще более зрелые хондроциты, секретирующие только белки. Поэтому основное вещество вокруг них окрашивается оксифильно.
Гиалиновый хрящ суставных поверхностей не имеет надхрящницы и состоит из 3 нечетко отграниченных друг от друга зон. Наружная зона включает хондроциты веретеновидной формы, расположенные в лакунах параллельно поверхности хряща. Птубже располагается столбчатая зона, клетки которой непрерывно делятся и образуют столбики; внутренняя зона делится базофильной линией на необызвествленную и обызвествленную части. Обызвествленная часть, прилежащая к костной ткани, содержит матриксные везикулы и кровеносные сосуды.
Питание этого хряща осуществляется из 2 источников: 1) за счет питательных веществ, находящихся в синевиальной жидкости сустава, и 2) за счет кровеносных сосудов, проходящих в обызвествленном хряще.
Эластическая хрящевая ткань. Имеет беловато-желтоватую окраску, располагается в ушной раковине, стенке наружного слухового прохода, черпаловидном и рожковидном хрящах гортани, надгортаннике, в бронхах среднего калибра. От гиалинового хряща отличается тем, что эластический хрящ, во-первых, эластичный, так как в нем, кроме коллагеновых, содержатся эластические волокна, идущие в различных направлениях и вплетающиеся в надхрящницу и окрашивающиеся орсеином в коричневый цвет; во-вторых, меньше содержит хондроитинсерной кислоты, липидов и гликогена; в-третьих, никогда не подвергается обызвествлению. В то же время общий план строения эластической хрящевой ткани сходен с гиалиновым хрящом.
...Подобные документы
Изучение видов и функций различных тканей человека. Задачи науки гистологии, которая изучает строение тканей живых организмов. Особенности строения эпителиальной, нервной, мышечной ткани и тканей внутренней среды (соединительной, скелетной и жидкой).
презентация [309,1 K], добавлен 08.11.2013Внутреннее строение мужских половых органов: предстательной железы, мошонки и полового члена. Строение внутренних половых органов женщины. Вены, несущие кровь от промежности. Функции органа слуха. Слуховые восприятия в процессе развития человека.
реферат [518,0 K], добавлен 16.10.2013Класификация тканей, виды эпителиальных тканей, их строение и функции. Опорная, трофическая и защитная функция соединительных тканей. Функции нервной и мышечной тканей. Понятие об органах и системах органов, их индивидуальные, половые, возрастные отличия.
реферат [6,0 M], добавлен 11.09.2009Особенности строения, физиологии и химического состава клетки. Типы и свойства тканей. Характеристика системы органов - частей организма, имеющих только их свойственные форму и строение и выполняющих определенную функцию. Регуляция функций в организме.
реферат [21,9 K], добавлен 03.07.2010Клетка как основная структурная единица организма. Описание ее строения, жизненных и химических свойств. Строение и функции эпителиальной и соединительной, мышечной и нервной тканей. Органы и перечень системы органов человека, их назначение и функции.
презентация [1,1 M], добавлен 19.04.2012История гистологии - раздела биологии, изучающего строение тканей живых организмов. Методы исследования в гистологии, приготовление гистологического препарата. Гистология ткани - филогенетически сложившейся системы клеток и неклеточных структур.
реферат [24,3 K], добавлен 07.01.2012Эмбриогенез как часть индивидуального развития человека. Эмбриогенез мышц, строение боковой стенки живота. Развитие исчерченной мускулатуры из миотом. Паховые канал, промежуток и кольца. Образование паховой грыжи. Процесс опускания яичек: основные этапы.
презентация [1,1 M], добавлен 28.02.2011Гистология - учение о развитии, строении, жизнедеятельности и регенерации тканей животных организмов и организма человека. Методы ее исследования, этапы развития, задачи. Основы сравнительной эмбриологии, науки о развитии и строении зародыша человека.
реферат [9,9 K], добавлен 01.12.2011Человеческий организм как очень сложная живая биологическая система. Строение и функции паренхиматозных органов человека. Анатомия и функции печени, поджелудочной железы, легких и почек. Взаимодействие специфически функционирующих структур (органов).
контрольная работа [52,6 K], добавлен 16.03.2015Основные органы мочевыделительной системы, их функции. Строение мочеполового аппарата мужчины и женщины. Структура почечного нефрона. Мочевые канальцы и кровеносные сосуды в почке. Строение половой системы человека, мужские и женские половые органы.
презентация [2,9 M], добавлен 30.05.2013Изучение органов нервной системы как целостной морфологической совокупности взаимосвязанных нервных структур, обеспечивающих деятельность всех систем организма. Строение механизмов зрительного анализатора, органов обоняния, вкуса, слуха и равновесия.
реферат [23,5 K], добавлен 21.01.2012Основные элементы и химический состав мышечной ткани. Виды белков саркоплазмы и миофибрилл, их содержание к общему количеству белков, молекулярная масса, распределение в структурных элементах мышцы. Их функции и роль организме. Строение молекулы миозина.
презентация [368,2 K], добавлен 14.12.2014Общая характеристика тканей человека: эпителиальная, нервная, соединительная, мышечная. Репаративная регенерация как процесс восстановления тканей при их повреждении. Нейрон как функциональная единица нервной системы. Роль и значение мышечной ткани.
презентация [5,9 M], добавлен 18.05.2014Общая характеристика мышечной ткани, морфологические признаки и основные свойства. Виды белков и их функции. Разновидности мышечной ткани. Общая характеристика и функции нервной ткани. Характеристика нейронов. Классификация нейроглий. Эмбриогенез.
презентация [2,2 M], добавлен 10.04.2016Общая характеристика женских половых органов, строение и функции матки и ее придатков. Особенности слизистой и мышечной оболочек. Отношение матки к брюшине и ее связочный аппарат. Кровоток, лимфоток и иннервация органа. Строение и функции яичников.
реферат [39,0 K], добавлен 04.09.2011Восприятие раздражения из внешней и внутренней среды. Понятие об анализаторах. Строение глаза и слезного аппарата. Орган слуха и равновесия. Колебания барабанной перепонки. Воздушная и костная проводимость звука. Основные анализаторы обоняния и вкуса.
презентация [6,9 M], добавлен 03.05.2016Гистология — наука о строении, развитии и жизнедеятельности тканей животных организмов и общих закономерностях тканевой организации; понятие цитологии и эмбриологии. Основные методы гистологического исследования; приготовление гистологического препарата.
презентация [1,5 M], добавлен 23.03.2013Понятие процесса пищеварения и его основные функции. Эмбриогенез органов пищеварительной системы, строение и функциональное значение ее органов: полость рта, глотка, пищевод, желудок, тонкая и толстая кишка, печень, желчный пузырь, поджелудочная железа.
курсовая работа [1,6 M], добавлен 05.06.2011Покровная, пучковая и основная ткани растений. Ткани и локальные структуры, выполняющее одинаковые структуры функции. Клеточное строение ассимиляционного участка листа. Внутреннее строение стебля. Отличие однодольных растений от двудольных растений.
презентация [15,3 M], добавлен 27.03.2016Разнообразие живого мира как результат развития живых организмов. Способность к восприятию звуковых частот у позвоночных. Основные закономерности развития органов слуха. Органы слуха у представителей классов рыб, амфибий, рептилий, птиц и млекопитающих.
реферат [29,2 K], добавлен 27.05.2015