Закономерности развития, строение и функции тканей и органов
Сущность и задачи гистологии, цитологии, эмбриологии. Описание скелетной и мышечной ткани, орган слуха и равновесия. Центральные органы эндокринной системы, иммунологическая защита. Развитие и строение зубов, кожа и ее производные, эмбриогенез человека.
Рубрика | Биология и естествознание |
Вид | курс лекций |
Язык | русский |
Дата добавления | 28.05.2015 |
Размер файла | 609,0 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Внутренняя оболочка этих артерий включает 3 слоя: 1) эндотелий; 2) субэндотелий (рыхлая соединительная ткань); 3) внутреннюю эластическую мембрану, которая очень четко выражена на фоне ткани стенки артерии.
Средняя оболочка представлена в основном пучками гладких миоцитов, расположенных спирально (циркулярно). Между миоцитами имеется рыхлая соединительная ткань, а также коллагеновые и эластические волокна. Эластические волокна вплетаются во внутреннюю эластическую мембрану и переходят в наружную оболочку, образуя эластический каркас артерии. Благодаря каркасу артерии не спадаются, что обусловливает их постоянное зияние и непрерывность тока крови.
Между средней и наружной оболочкой имеется наружная эластическая мембрана, которая выражена слабее, чем внутренняя эластическая мембрана.
Наружная оболочка представлена рыхлой соединительной тканью.
Микроциркуляторное русло. Включает артериолы, капилляры, венулы, ABA и лимфатические капилляры.
Функциями микроциркуляторного русла являются:
1) обмен веществ и газов;
2) регулировка кровотока;
3) депонирование крови;
4)дренаж тканевой жидкости.
I. Прекапиллярное звено (артериолы и прекапилляры)
Артериолы по своему строению схожи с артериями мышечного типа.
Внутренняя оболочка артериол представлена эндотелием, субэндотелием и внутренней эластической мембраной, имеющей отверстия, или перфорации, так как через эти отверстия контактируют миоциты средней оболочки с эндотелиоцитами внутренней оболочки. Через эти контакты адреналин крови воздействует на гладкие миоциты средней оболочки, вызывая их сокращение и сужение артериол. Кроме того, сокращение/расслабление гладких миоцитов регулируется нервными окончаниями. Все три слоя внутренней оболочки артериол резко истончены.
Средняя оболочка артериолы представлена циркулярно направленными миоцитами, расположенными в 1-2 слоя.
Наружная оболочка артериол состоит из тонкого слоя рыхлой соединительной ткани.
Среди артериол имеются более крупные и менее крупные -- прекапилляры, отходящие от крупных артериол. Диаметр артериол 50-100 мкм, диаметр прекапилляров 50 мкм и менее. В том месте, где от артериол отходят прекапилляры и от прекапилляров отходят капилляры, имеются пучки циркулярно расположенных миоцитов, которые являются сфинктерами, регулирующими кровоток в этих сосудах.
Функция артериол:
1) регуляция кровотока в органах и тканях;
2) регуляция кровяного давления.
По выражению И. М. Сеченова, «артериолы являются кранами сосудистой системы» - большое количество сфинктеров.
II. Капилляры
Марчелло Мальпиги (итальянский биолог и врач) открыл капилляры в 1678 году, тем самым завершил описание замкнутой сосудистой системы.
Гемокапилляры, в зависимости от того, в каких органах они находятся, могут иметь различный диаметр.
Самые мелкие капилляры (диаметр 4-7 мкм) находятся в поперечно-полосатых мышцах, легких, нервах;
более широкие капилляры (диаметр 8-11 мкм) -- в коже и слизистых оболочках;
еще более широкие капилляры -- синусоиды (диаметр 20-30 мкм) располагаются в органах кроветворения, эндокринных железах, печени;
самые широкие капилляры -- лакуны (диаметр более 30 мкм) располагаются в столбчатой зоне прямой кишки и в пещеристых телах полового члена.
Капилляры, переплетаясь друг с другом, образуют сеть. Кроме того, они могут иметь форму петли (в ворсинках кишечника, сосочках кожи, ворсинках капсул суставов). Конец капилляра, который отходит от артериолы, называется артериальным, а который впадает в венулу -- венозным. Артериальный конец всегда уже, а венозный -- шире, иногда в 2-2,5 раза. В эндотелиоцитах венозного конца больше митохондрий и микроворсинок.
Капилляры могут образовывать клубочки (в почках). Капилляры могут отходить от артериолы и впадать в артериолу (приносящая и выносящая артериолы почек) или отходить от венулы и впадать в венулу (портальная система гипофиза). Если капилляры располагаются между двумя артериолами или двумя венулами, то это называется чудесной сетью (rete mirabile).
Количество капилляров на единицу объема в разных тканях может быть различным. Так, например, в скелетной мышечной ткани на площади сечения в 1 мм2 встречается до 2000 срезов капилляров, в коже -- около 40.
В каждой ткани есть примерно 50 % капилляров, находящихся в резерве. Эти капилляры называются нефункционирующими; они находятся в спавшемся состоянии, через них проходит только плазма крови. При повышении функциональной нагрузки на орган часть нефункционирующих капилляров превращается в функционирующие.
Стенка капилляров состоит из 3 слоев:
1) эндотелия, 2) слоя перицитов и 3) слоя адвентициальных клеток.
Слой эндотелия состоит из уплощенных клеток полигональной формы различных размеров (длиной от 5 до 75 мкм). На люминальной поверхности (поверхности, обращенной в просвет сосуда), покрытой плазмолеммальным слоем (гликокаликсом), имеются микроворсинки, увеличивающие поверхность клеток. Цитолемма эндотелиоцитов образует множество кавеол, в цитоплазме -- множество пиноцитозных пузырьков. Микроворсинки и пиноцитозные пузырьки являются морфологическим признаком интенсивного обмена веществ. В то же время цитоплазма бедна органеллами общего значения, имеются микрофиламенты, образующие цитоскелет клетки, на цитолемме есть рецепторы. Эндотелиоциты соединяются друг с другом при помощи интердигитаций и зон слипания. Среди эндотелиоцитов имеются фенестрированные, т. е. эндотелиоциты, у которых есть фенестры. Фенестрированные капилляры имеются в гипофизе и клубочках почек. В цитоплазме эндотелиоцитов встречаются ЩФ и АТФаза. Эндотелиоциты венозного конца капилляра образуют складки в виде клапанов, регулирующих кровоток.
Функции эндотелия многочисленны:
1) атромбогенная (отрицательный заряд гликокаликса и синтез ингибиторов-- простагландинов, препятствующих агрегации тромбоцитов);
2) участие в образовании базальной мембраны;
3) барьерная, благодаря наличию цитоскелета и рецепторов;
4) участие в регуляции сосудистого тонуса, благодаря наличию рецепторов и синтезу факторов, расслабляющих/сокращающих миоциты сосудов;
5) сосудообразующая, благодаря синтезу факторов, ускоряющих пролиферацию и миграцию эндотелиоцитов;
6) секреция липопротеидлипазы и других веществ.
Базальная мембрана капилляров имеет толщину около 30 нм, в ней содержится АТФаза. Функция базальной мембраны -- обеспечение избирательной проницаемости (обменная), барьерная. В некоторых капиллярах в базальной мембране имеются отверстия или щели.
Перициты располагаются в расщелинах базальной мембраны, имеют отростчатую форму. Их цитоплазма способна к осмотическому набуханию - сдавливают просвет. В отростках есть сократительные филаменты. Отростки перицитов охватывают капилляр, на них заканчиваются эфферентные нервные окончания. Между перицитами и эндотелиоцитами имеются контакты. В том месте, где находится контакт, в базальной мембране есть отверстие.
Функции перицитов:
1) сократительная, благодаря наличию сократительных филаментов;
2) опорная, благодаря наличию цитоскелета;
3) участие в регенерации, благодаря способности дифференцироваться в гладкие миоциты;
4) контроль митоза эндотелиоцитов, благодаря контактам между перицитами и эндотелиоцитами;
5) участие в синтезе компонентов базальной мембраны, благодаря наличию гранулярной ЭПС.
Адвентициалъный слой представлен адвентициальными клетками, погруженными в аморфный матрикс вокруг капилляра, в котором проходят тонкие коллагеновые и эластические волокна.
Классификация капилляров в зависимости от строения их стенки. В настоящее время различают 3 типа капилляров:
1-й тип -- капилляры с непрерывной выстилкой, соматические, характеризуются отсутствием фенестр в эндотелии и отверстий в базальной мембране -- это капилляры скелетной мускулатуры, легких, нервных стволов, слизистых оболочек;
2-й тип -- капилляры фенестрированного типа, характеризуются наличием фенестр в эндотелии и отсутствием отверстий в базальной мембране -- это капилляры клубочков почек и ворсин кишечника;
3-й тип -- капилляры синусоидного типа, перфорированные, характеризуются наличием фенестр в эндотелии и отверстий в базальной мембране-- это синусоидные капилляры печени и органов кроветворения, благодаря большой ширине которых (диаметр до 130-150 мкм), повышенной проницаемости стенки и замедленному току крови в органах кроветворения осуществляется миграция зрелых форменных элементов в просвет синусоидов.
Функция капилляров -- обмен веществ и газов между просветом капилляров и окружающими тканями. Этому способствуют 4 фактора:
1) тонкая стенка капилляров;
2) медленный ток крови (0,5 мм/с);
3) большая площадь соприкосновения с окружающими тканями (6000 м2);
4) низкое внутрикапиллярное давление (20-30 мм рт. ст.).
Кроме этих четырех факторов интенсивность обмена веществ зависит от проницаемости базальной мембраны капилляров и основного вещества окружающей соединительной ткани. Проницаемость повышается при воздействии гистамина и гиалуронидазы, разрушающей гиалуроновую кислоту, что способствует повышению обмена веществ. В змеином яде и яде ядовитых пауков содержится много гиалуронидазы, поэтому эти яды легко проникают в организм. Витамин С и ионы Са2+ повышают плотность базальных мембран и основного межклеточного вещества.
II. ВЕНОЗНОЕ ЗВЕНО
Венулы классифицируются на 3 разновидности:
1) посткапиллярные венулы (диаметр 8-30 мкм);
2) собирательные венулы (диаметр 30-50 мкм);
3) мышечные венулы (диаметр 50-100 мкм).
Стенка посткапиллярных венул мало чем отличается от венозного конца капилляра. Разница заключается в том, что в стенке посткапиллярных венул больше перицитов, т. е. в посткапиллярных венулах есть эндотелий и перициты, но нет миоцитов.
Стенка собирательных венул отличается появлением в средней оболочке гладких миоцитов и лучше выраженной адвентициальной оболочкой.
Стенка мышечных венул характеризуется содержанием в средней оболочке 1-2 слоев гладких миоцитов.
Функции венул:
1) дренажная (поступление из соединительной ткани в просвет венулы продуктов обмена);
2) из венул в окружающую ткань мигрируют форменные элементы крови.
Aртериоловенулярные анастамозы -- это соединения сосудов, по которым кровь из артериол оттекает в венулы, минуя капилляры. Длина ABA достигает 4 мм, диаметр -- более 30 мкм.
ABA открываются и закрываются 4-12 раз в минуту.
Классификация ABA:
I. АТИПИЧНЫЕ (ПОЛУШУНТЫ) - (смешанная кровь) соединение через короткий капилляр артериолы с венулой. По этим анастомозам в венулу поступает смешанная кровь, так как при движении крови по полушунту происходит обмен веществ и газов между кровью и окружающими тканями. Функции полушунтов -- дренажная, обменная. |
||||
II. ИСТИННЫЕ (ШУНТЫ) - (чисто артериальная кровь) прямые короткие, петлеобразные Шунты подразделяются на: |
||||
1) анастомозы без специальных сократительных устройств, в их артериальном конце есть циркулярно расположенные гладкие миоциты; как и в артериоле, эти миоциты, сокращаясь, закрывают просвет и, расслабляясь, открывают его; |
2) анастомозы со специальными сократительными устройствами делятся на 2 типа: |
|||
а) ABA типа замыкательных артерий, характеризуются наличием в их подэндотелиальном слое продольно расположенных одного или нескольких пучков гладких миоцитов, которые при сокращении утолщаются и закрывают просвет анастомоза (ABA запирательного типа); |
б) ABA эпителиоидного типа, миоциты которых, расположенные продольно в средней оболочке, приближаясь к венозному концу, превращаются в клетки Е, напоминающие эпителиальные. При всасывании воды эти клетки утолщаются и закрывают анастомоз. Анастомозы эпителиоидного типа делятся на простые и сложные. |
|||
Простые - в средней оболочке артериолы имеются специальные эпителиоидные клетки, способные к набуханию и отбуханию, от артериолы к венуле отходит 1 ствол |
Сложные - приносящая артериола разделяется на 2-4 ветви, которые лежат в одной соединительно-тканной оболочке, в этом месте и артериолах есть эпителиоидные клетки, и за этими клетками начинается венозный сегмент анастамоза, от артериолы к венуле отходят несколько стволов, покрытых общей оболочкой. |
Функции ABA:
1) регуляция кровотока в капиллярах;
2) артериолизация венозной крови;
3) при сжатии капилляров патологическим процессом кровь из артериол сразу поступает в венулы;
4) повышение внутривенулярного давления.
Вены - это сосуды, несущие кровь к сердцу.
Вена включает 3 оболочки: внутреннюю, среднюю и наружную.
По гистологическому строению вены классифицируются на вены безмышечного типа (vena fibrotypica) и вены мышечного типа (vena myotypica).
Вены мышечного типа, в свою очередь, подразделяются на:
1) вены со слабым развитием миоцитов;
2) вены со средним развитием миоцитов;
3) вены с сильным развитием миоцитов.
Степень развития миоцитов зависит от того, в какой части тела находятся вены: если в верхней части -- миоциты развиты слабо, в нижней части или нижних конечностях -- развиты хорошо. В стенке вен имеются клапаны (valvulae venosae), которые сформированы за счет внутренней оболочки. Однако вены мозговых оболочек, головного мозга, подвздошные, подчревные, полые, безымянные и вены внутренних органов клапанов не имеют.
Вены безмышечного, или волокнистого типа - это вены, по которым кровь течет сверху вниз под действием силы тяжести. Они расположены в мозговых оболочках, головном мозге, сетчатке глаза, плаценте, селезенке, костной ткани. Вены мозговых оболочек, головного мозга и сетчатки глаза расположены в краниальном конце тела, поэтому кровь оттекает к сердцу под влиянием собственной силы тяжести, а следовательно, нет необходимости в проталкивании крови при помощи сокращения мускулатуры.
Вены мышечного типа с сильным развитием миоцитов располагаются в нижней части тела и в нижних конечностях. Типичным представителем вен этого типа является бедренная вена. В ее внутренней оболочке имеется 3 слоя: эндотелий, субэндотелий и сплетение эластических волокон. За счет внутренней оболочки образуются выпячивания - клапаны. Основой клапана является соединительнотканная пластинка, покрытая эндотелием. Клапаны расположены таким образом, что при движении крови в сторону сердца их створки прижимаются к стенке, пропуская кровь дальше, а при движении крови в обратном направлении клапаны закрываются. Гладкие миоциты способствуют поддержанию тонуса клапанов.
Функции клапанов:
1) обеспечение движения крови в сторону сердца;
2) гашение колебательных движений в столбике крови, содержащейся в вене.
Субэндотелий внутренней оболочки развит хорошо, в нем содержатся многочисленные пучки гладких миоцитов, расположенные продольно.
Сплетение эластических волокон внутренней оболочки соответствует внутренней эластической мембране артерий.
Средняя оболочка бедренной вены представлена пучками гладких миоцитов, расположенных циркулярно. Между миоцитами имеются коллагеновые и эластические волокна (РВСТ), за счет которых формируется эластический каркас стенки вены. Толщина средней оболочки намного меньше, чем в артериях.
Наружная оболочка состоит из рыхлой соединительной ткани и многочисленных пучков гладких миоцитов, расположенных продольно. Хорошо развитая мускулатура бедренной вены способствует продвижению крови в сторону сердца.
Нижняя полая вена (vena cava inferior) отличается тем, что строение внутренней и средней оболочек соответствует строению таковых в венах со слабым или средним развитием миоцитов, а строение наружной оболочки -- в венах с сильным развитием миоцитов. Поэтому эту вену можно отнести к венам с сильным развитием миоцитов. Наружная оболочка нижней полой вены в 6-7 раз толще внутренней и средней оболочек, вместе взятых.
При сокращении продольных пучков гладких миоцитов наружной оболочки образуются складки в стенке вены, которые способствуют продвижению крови в сторону сердца.
Сосуды сосудов в венах доходят до внутренних слоев средней оболочки. Склеротические изменения в венах практически не происходят, но из-за того, что кровь движется против силы тяжести и гладкая мышечная ткань развита слабо - возникает варикозное расширение вен.
Лимфатические сосуды
Лимфатические сосуды делятся на:
1) лимфатические капилляры;
2) выносящие интраорганные и экстраорганные лимфатические сосуды;
3) крупные лимфатические стволы (грудной лимфатический проток и правый лимфатический проток).
Кроме того, лимфатические сосуды подразделяются на:
1) сосуды безмышечного (волокнистого) типа и 2) сосуды мышечного типа. Гемодинамические условия (скорость лимфотока и давление) близки к условиям в венозном русле. В лимфатических сосудах хорошо развита наружная оболочка, за счет внутренней оболочки образуются клапаны.
Лимфатические капилляры начинаются слепо, располагаются рядом с кровеносными капиллярами и входят в состав микроциркуляторного русла, поэтому между лимфокапиллярами и гемокапиллярами имеется тесная анатомическая и функциональная связь. Из гемокапилляров в основное межклеточное вещество поступают необходимые компоненты основного вещества, а из основного вещества в лимфатические капилляры поступают продукты обмена веществ, компоненты распада веществ при патологических процессах, раковые клетки.
Отличия лимфатических капилляров от кровеносных:
1) имеют больший диаметр;
2) их эндотелиоциты в 3-4 раза больше;
3) не имеют базальной мембраны и перицитов, лежат на выростах коллагеновых волокон;
4) заканчиваются слепо.
Лимфатические капилляры образуют сеть, впадают в мелкие интраорганные или экстраорганные лимфатические сосуды.
Функции лимфатических капилляров:
1) из межтканевой жидкости в лимфокапилляры поступают ее компоненты, которые, оказавшись в просвете капилляра, в совокупности составляют лимфу;
2) дренируются продукты метаболизма;
3) оступают раковые клетки, которые затем транспортируются в кровь и разносятся по всему организму.
Внутриорганные выносящие лимфатические сосуды являются волокнистыми (безмышечными), их диаметр -- около 40 мкм. Эндотелиоциты этих сосудов лежат на слабо выраженной мембране, под которой располагаются коллагеновые и эластические волокна, переходящие в наружную оболочку. Эти сосуды еще называют лимфатическими посткапиллярами, в них есть клапаны. Посткапилляры выполняют дренажную функцию.
Экстраорганные выносящие лимфатические сосуды более крупные, относятся к сосудам мышечного типа. Если эти сосуды располагаются в области лица, шеи и в верхней части туловища, то мышечные элементы в их стенке содержатся в малом количестве; если в нижней части тела и нижних конечностях -- миоцитов больше.
Лимфатические сосуды среднего калибра также относятся к сосудам мышечного типа. В их стенке лучше выражены все 3 оболочки: внутренняя, средняя и наружная. Внутренняя оболочка состоит из эндотелия, лежащего на слабо выраженной мембране; субэндотелия, в котором содержатся разнонаправленные коллагеновые и эластические волокна; сплетения эластических волокон.
Клапаны лимфатических сосудов образованы за счет внутренней оболочки. Основой клапанов является фиброзная пластинка, в центре которой есть гладкие миоциты. Эта пластинка покрыта эндотелием.
Средняя оболочка сосудов среднего калибра представлена пучками гладких миоцитов, направленных циркулярно и косо, и прослойками рыхлой соединительной ткани.
Наружная оболочка сосудов среднего калибра представлена рыхлой соединительной тканью, волокна которой переходят в окружающую ткань.
Лимфангион -- это участок, расположенный между двумя соседними клапанами лимфатического сосуда. Он включает мышечную манжетку, стенку клапанного синуса и место прикрепления клапана.
Крупные лимфатические стволы представлены правым лимфатическим протоком и грудным лимфатическим протоком. В крупных лимфатических сосудах миоциты расположены во всех трех оболочках.
Грудной лимфатический проток имеет стенку, строение которой схоже со строением нижней полой вены. Внутренняя оболочка состоит из эндотелия, субэндотелия и сплетения эластических волокон. Эндотелий лежит на слабо выраженной прерывистой базальной мембране, в субэндотелии имеются малодифференцированные клетки, гладкие миоциты, коллагеновые и эластические волокна, ориентированные в различных направлениях.
За счет внутренней оболочки образованы 9 клапанов, которые способствуют продвижению лимфы в сторону вен шеи.
Средняя оболочка представлена гладкими миоцитами, имеющими циркулярное и косое направления, разнонаправленными коллагеновыми и эластическими волокнами.
Наружная оболочка на уровне диафрагмы в 4 раза толще внутренней и средней оболочек, вместе взятых; состоит из рыхлой соединительной ткани и продольно расположенных пучков гладких миоцитов. Проток вливается в вену шеи. Стенка лимфатического протока около устья в 2 раза тоньше, чем на уровне диафрагмы.
Функции лимфатической системы:
1) дренажная -- в лимфатические капилляры поступают продукты обмена, вредные вещества, бактерии;
2) фильтрация лимфы, т. е. очищение от бактерий, токсинов и других вредных веществ в лимфатических узлах, куда поступает лимфа;
3) обогащение лимфы лимфоцитами в тот момент, когда лимфа протекает по лимфатическим узлам.
Очищенная и обогащенная лимфа поступает в кровеносное русло, т. е. лимфатическая система выполняет функцию обновления основного межклеточного вещества и внутренней среды организма.
Кровоснабжение стенок кровеносных и лимфатических сосудов. В адвентиции кровеносных и лимфатических сосудов имеются сосуды сосудов (vasa vasorum) -- это мелкие артериальные ветви, которые разветвляются в наружной и средней оболочках стенки артерий и всех трех оболочках вен. Из стенок артерий кровь капилляров собирается в венулы и вены, которые располагаются рядом с артериями. Из капилляров внутренней оболочки вен кровь поступает в просвет вены.
Кровоснабжение крупных лимфатических стволов отличается тем, что артериальные ветви стенок не сопровождаются венозными, которые идут отдельно от соответствующих артериальных. В артериолах и венулах сосуды сосудов отсутствуют.
Репаративная регенерация кровеносных сосудов. При повреждении стенки кровеносных сосудов через 24 часа быстро делящиеся эндотелиоциты закрывают дефект. Регенерация гладких миоцитов стенки сосудов протекает медленно, так как они реже делятся. Образование гладких миоцитов происходит за счет их деления, дифференцировки миофибробластов и перицитов в гладкие мышечные клетки.
При полном разрыве крупных и средних кровеносных сосудов их восстановление без оперативного вмешательства хирурга невозможно. Однако кровоснабжение тканей дистальнее разрыва частично восстанавливается за счет коллатералей и появления мелких кровеносных сосудов. В частности, из стенки артериол и венул происходит выпячивание делящихся эндотелиоцитов (эндотелиальные почки). Затем эти выпячивания (почки) приближаются друг к другу и соединяются. После этого тонкая перепонка между почками разрывается, и образуется новый капилляр.
Регуляция функции кровеносных сосудов. Нервная регуляция осуществляется эфферентными (симпатическими и парасимпатическими) и чувствительными нервными волокнами, являющимися дендритами чувствительных нейронов спинальных ганглиев и чувствительных ганглиев головы.
Эфферентные и чувствительные нервные волокна густо оплетают и сопровождают кровеносные сосуды, образуя нервные сплетения, в состав которых входят отдельные нейроны и интрамуральные ганглии.
Чувствительные волокна заканчиваются рецепторами, имеющими сложное строение, т. е. являются поливалентными. Это значит, что один и тот же рецептор одновременно контактирует с артериолой, венулой и анастомозом или со стенкой сосуда и соединительнотканными элементами. В адвентиции крупных сосудов могут быть самые разнообразные рецепторы (инкапсулированные и неинкапсулированные), которые часто образуют целые рецепторные поля.
Эфферентные нервные волокна заканчиваются эффекторами (моторными нервными окончаниями).
Симпатические нервные волокна являются аксонами эфферентных нейронов симпатических ганглиев, они заканчиваются адренергическими нервными окончаниями.
Парасимпатические нервные волокна являются аксонами эфферентных нейронов (клеток Догеля I типа) интрамуральных ганглиев, они являются холинергическими нервными волокнами и заканчиваются холинергическими моторными нервными окончаниями.
При возбуждении симпатических волокон сосуды суживаются, парасимпатических -- расширяются.
Нейропарсисринная регуляция характеризуется тем, что в одиночные эндокринные клетки по нервным волокнам поступают нервные импульсы. Этими клетками выделяются биологически активные вещества, которые воздействуют на кровеносные сосуды.
Эндотелиалъная, или интималъная, регуляция характеризуется тем, что эндотелиоциты выделяют факторы, регулирующие сократимость миоцитов сосудистой стенки. Кроме того, эндотелиоциты вырабатывают вещества, препятствующие свертыванию крови, и вещества, способствующие свертыванию крови.
Возрастные изменения артерий. Артерии окончательно развиваются к 30-летнему возрасту человека. После этого в течение десяти лет наблюдается их стабильное состояние.
При наступлении 40-летнего возраста начинается их обратное развитие. В стенке артерий, особенно крупных, разрушаются эластические волокна и гладкие миоциты, разрастаются коллагеновые волокна. В результате очагового разрастания коллагеновых волокон в субэндотелии крупных сосудов, накопления холестерина и сульфатированных гликозаминогликанов субэндотелий резко утолщается, стенка сосудов уплотняется, в ней откладываются соли, развивается склероз, нарушается кровоснабжение органов. У лиц старше 60-70 лет в наружной оболочке появляются продольные пучки гладких миоцитов.
Возрастные изменения вен аналогичны изменениям артерий. Однако в венах имеют место более ранние изменения. В субэндотелии бедренной вены новорожденных и грудных детей отсутствуют продольные пучки гладких миоцитов, они появляются только тогда, когда ребенок начинает ходить. У маленьких детей диаметр вен такой же, как и диаметр артерий. У взрослых диаметр вен в 2 раза больше диаметра артерий. Это связано с тем, что кровь в венах течет медленнее, чем в артериях, а чтобы при медленном токе крови был баланс крови в сердце, т. е. сколько уйдет из сердца артериальной крови, столько же поступит венозной, вены должны быть более широкие.
Стенка вен тоньше стенки артерий. Это объясняется особенностью гемодинамики в венах, т. е. низким внутривенным давлением и медленным током крови.
Сердце
Развитие. Сердце начинает развиваться на 17-е сутки из двух зачатков: 1)мезенхимы и 2) миоэпикардиальных пластинок висцерального листка спланхнотома в краниальном конце эмбриона.
Из мезенхимы справа и слева образуются трубочки, которые впячиваются в висцеральные листки спланхнотомов. Та часть висцеральных листков, которая прилежит к мезенхимным трубочкам, превращается в миоэпикардиальную пластинку. В дальнейшем с участием туловищной складки происходит сближение правого и левого зачатков сердца и затем соединение этих зачатков впереди передней кишки. Из слившихся мезенхимных трубочек формируется эндокард сердца. Клетки миоэпикардиальных пластинок дифференцируются в 2 направлениях: из наружной части образуется мезотелий, выстилающий эпикард, а клетки внутренней части дифференцируются в трех направлениях. Из них образуются: 1) сократительные кардиомиоциты; 2) проводящие кардиомиоциты; 3) эндокринные кардиомиоциты.
В процессе дифференцировки сократительных кардиомиоцитов клетки приобретают цилиндрическую форму, соединяются своими концами при помощи десмосом, где в дальнейшем формируются вставочные диски (discus intercalates). В формирующихся кардиомиоцитах появляются миофибриллы, расположенные продольно, канальцы гладкой ЭПС, за счет впячивания сарколеммы образуются Т-каналы, формируются митохондрии.
Проводящая система сердца начинает развиваться на 2-м месяце эмбриогенеза и заканчивается на 4-м месяце.
Клапаны сердца развиваются из эндокарда. Левый атриовентрикулярный клапан закладывается на 2-м месяце эмбриогенеза в виде складки, которая называется эндокардиалъным валиком. В валик врастает соединительная ткань из эпикарда, из которой образуется соединительнотканная основа створок клапана, прикрепляющаяся к фиброзному кольцу.
Правый клапан закладывается в виде миоэндокардиального валика, в состав которого входит гладкая мышечная ткань. В створки клапана врастает соединительная ткань миокарда и эпикарда, при этом количество гладких миоцитов уменьшается, они сохраняются лишь у основания створок клапана.
На 7-й неделе эмбриогенеза формируются интрамуральные ганглии, включающие мультиполярные нейроны, между которыми устанавливаются синапсы.
СТЕНКА СЕРДЦА
ЭНДОКАРД (полость сердца) 1. эндотелий (на толстой базальной мембране) 2. подэнтотелиальный слой (РСТ с малодифференцированными клетками) 3. мышечно-эластический слой 4. наружный соединительно-тканный слой (РСТ с толстыми эластическими волокнами, имеются коллагеновые и ретикулярные волокна) (миокард) |
ЭПИКАРД (полость перикарда) 1. мезотелий на базальной мембране 2. поверхностный слой коллагеновых волокон 3. слой эластических волокон 4. глубокий слой коллегеновых волокон 5. глубокий коллагеново-эластический слой (миокард) |
|
ПЕРИКАРД мезотелий на базальной мембране + тонкая прослойка РСТ, с большим содержанием эластических волокон |
||
МИОКАРД сократительные кардиомиоциты, проводящие (атипичные) кардиомиоциты + межмышечная рыхлая соединительная ткань |
Стенка сердца состоит из 3 оболочек: 1) эндокарда (endocardium), 2) миокарда (myocardium) и 3) эпикарда (epicardium).
Эндокард выстилает предсердия и желудочки, в разных местах имеет различную толщину, состоит из 4 слоев: 1) эндотелия; 2) субэндотелия; 3) мышечно-эластического слоя; 4) наружного соединительнотканного слоя.
Таким образом, строение стенки эндокарда соответствует строению вены мышечного типа: эндотелию эндокарда соответствует эндотелий вены, субэндотелию эндокарда -- субэндотелий вены, мышечно-эластическому слою -- сплетение эластических волокон и средняя оболочка вены, наружному соединительнотканному слою -- наружная оболочка вены. В эндокарде отсутствуют кровеносные сосуды. За счет эндокарда сформированы атриовентрикулярные клапаны и клапаны аорты и легочной артерии.
Левый атриовентрикулярный клапан включает 2 створки. Основой створки клапана является соединительнотканная пластинка, состоящая из коллагеновых и эластических волокон, незначительного количества клеток и основного межклеточного вещества. Пластинка прикрепляется к фиброзному кольцу, окружающему клапан, и покрыта эндотелиоцитами, под которыми находится субэндотелий.
Правый атриовентрикулярный клапан состоит из 3 створок. Поверхность клапанов, обращенных к предсердию, гладкая, к желудочку -- неровная, так как к этой поверхности прикрепляются сухожилия сосочковых мышц.
Клапаны аорты и легочной артерии называются полулунными. Они состоят из 3 слоев: 1) внутреннего; 2) среднего и 3) наружного.
Внутренний слой сформирован за счет эндокарда, включает эндотелий, субэндотелий, содержащий фибробласты с консолями, поддерживающими эндотелиальные клетки. Глубже располагаются слои коллагеновых и эластических волокон.
Средний слой представлен рыхлой соединительной тканью.
Наружный слой состоит из эндотелия, сформированного за счет эндотелия сосуда, и коллагеновых волокон, проникающих в субэндотелий клапана из фиброзного кольца.
Миокард состоит из функциональных волокон, которые образуются при соединении концов кардиомиоцитов. Кардиомиоциты имеют цилиндрическую форму, их длина -- до 120 мкм, диаметр 15-20 мкм. Места соединения концов кардиомиоцитов называются вставочными дисками (discus intercalates). В состав дисков входят десмосомы, места прикрепления актиновых филаментов, интердигитации и нексусы. В центре кардиомиоцита располагается 1-2 овальных, обычно полиплоидных, ядра.
В кардиомиоцитах хорошо развиты митохондрии, гладкая ЭПС, миофибриллы, слабо развиты гранулярная ЭПС, комплекс Гольджи, лизосомы. В оксифильной цитоплазме имеются включения гликогена, липидов и миоглобина.
Миофибриллы состоят из актиновых и миозиновых филаментов. За счет актиновых филаментов образуются светлые (изотропные) диски, разделенные телофрагмами. За счет миозиновых филаментов и заходящих между ними концов актиновых филаментов образуются анизотропные диски (диски А), разделенные мезофрагмой. Между двумя телофрагмами располагается саркомер, являющийся структурной и функциональной единицей миофибриллы.
Напротив каждого диска имеется система L-канальцев, включающих 2 латеральные цистерны (канальца), соединенные продольными канальцами. Система L-канальцев окружает миофибриллы. На границе между дисками со стороны сарколеммы отходит впячивание -- Т-канал, который располагается между латеральными цистернами двух соседних L-систем. Структура, состоящая из Т-канала и двух латеральных цистерн, между которыми проходит этот канал, называется триадой.
От боковой поверхности кардиомиоцитов отходят отростки -- мышечные анастомозы, которые соединяются с боковыми поверхностями кардиомиоцитов соседнего функционального волокна. Благодаря мышечным анастомозам сердечная мышца представляет собой единое целое. Сердечная мышца прикрепляется к скелету сердца. Скелетом сердца являются фиброзные кольца вокруг атриовентрикулярных клапанов и клапанов легочной артерии и аорты.
Секреторные кардиомиоциты (эндокриноциты) находятся в предсердии, содержат много отростков. В этих клетках слабо развиты миофибриллы, гладкая ЭПС, Т-каналы, вставочные диски; хорошо развиты комплекс Гольджи, гранулярная ЭПС и митохондрии, в цитоплазме содержатся секреторные гранулы. Функция: вырабатывают гормон -- ПНФ. ПНФ воздействует на те клетки, которые имеют специальные рецепторы к нему. Такие рецепторы имеются на поверхности сократительных кардиомиоцитов, миоцитов кровеносных сосудов, эндокриноцитах клубочковой зоны коры надпочечников, клетках эндокринной системы почек. Таким образом, ПНФ стимулирует сокращение сердечной мышцы, регулирует артериальное давление, водно-солевой обмен, мочевыделение.
Механизм воздействия ПНФ на клетки-мишени. Рецептор клетки-мишени захватывает ПНФ, и образуется гормонально-рецепторный комплекс. Под влиянием этого комплекса активируется гуанилатциклаза, под воздействием которой синтезируется циклический гуанинмонофосфат. Циклический гуанинмонофосфат активирует ферментную систему клетки.
Проводящая система сердца (systema conducens cardiacum) - мышечные клетки, формирующие и проводящие импульсы к сократительным клеткам сердца.
Проводящая система сердца представлена синусно-предсердным узлом, атриовентрикулярным узлом, предсердно-желудочковым пучком (пучком Гиса) и ножками пучка Гиса.
Синусно-предсердный узел представлен пейсмекерными клетками (Р-клетками), расположенными в центре узла, диаметр которых 8-10 мкм. Форма Р-клеток овальная, их миофибриллы развиты слабо, имеют различное направление. Гладкая ЭПС Р-клеток развита слабо, в цитоплазме имеется включение гликогена, митохондрии, отсутствуют вставочные диски и Т-каналы. В цитоплазме Р-клеток много свободного кальция, благодаря чему они способны ритмично вырабатывать сократительные импульсы.
Снаружи от пейсмекерных клеток располагаются проводящие кардиомиоциты II типа. Это узкие, удлиненные клетки, малочисленные миофибриллы которых расположены чаще всего параллельно. В клетках слабо развиты вставочные диски и Т-каналы. Функция -- проведение импульса к проводящим кардиомиоцитам III типа или к сократительным кардиомиоцитам. Проводящие кардиомиоциты II типа иначе называются переходными.
Атриовентрикулярный узел состоит из небольшого количества пейсмекерных клеток, расположенных в центре узла, и многочисленных проводящих кардиомиоцитов II типа. Функции атриовентрикулярного узла: 1) вырабатывает импульс с частотой 30-40 в минуту; 2) кратковременно задерживает прохождение импульса, идущего от синусно-предсердного узла на желудочки, благодаря чему сначала сокращаются предсердия, потом -- желудочки.
В том случае, если прекращается поступление импульсов от синусно-предсердного узла к атриовентрикулярному (поперечная блокада сердца), то предсердия сокращаются в обычном ритме (60-80 сокращений в минуту), а желудочки -- в 2 раза реже. Это опасное для жизни состояние.
Проводящие кардиомиоциты III типа расположены в пучке Гиса и его ножках. Их длина 50-120 мкм, ширина -- около 50 мкм. Цитоплазма этих кардиомиоцитов светлая, разнонаправленные миофибриллы, вставочные диски и Т-каналы развиты слабо. Их функция -- передача импульса от кардиомиоцитов II типа на сократительные кардиомиоциты. Кардиомиоциты III типа образуют пучки (волокна Пуркинье), которые чаще всего располагаются между эндокардом и миокардом, встречаются в миокарде. Волокна Пуркинье подходят и к сосочковым мышцам, благодаря чему к моменту сокращения желудочков напрягаются сосочковые мышцы, что препятствует выворачиванию клапанов в предсердия.
ПРОВОДЯЩИЕ (АТИПИЧНЫЕ) КАРДИОМИОЦИТЫ
название |
локализация |
строение |
функции |
|
Пейсмекерные клетки (Р-клетки) |
В центре синоатриального узла, немного в АВ-узле |
Округлой или овальной формы, ядро в центре, органелл мало |
Водители ритма, спонтанно генерируют потенциалы действия |
|
Переходные клетки |
По периферии синоатриального узла, в АВ-узле |
Вытянутые уплощенные клетки, имеется немного миофибрилл |
Передают возбуждение с Р-клеток на клетки пучков и волокон |
|
Клетки пучков Гса и волон Пуркинье |
Образуют пучки Гиса и волокна Пуркинье в предсердиях и желудочках, располагаются в основном под эндокардом |
Длинные уплощенные клетки, похожие на сократительные кардиомиоциты, но они крупнее, в них меньше миофибрилл, митохондрий, рибосом; более активны - аэробные |
Проводят и передают возбуждение к сократительным кардиомиоцитам |
Иннервация сердца. Сердце иннервируется и чувствительными, и эфферентными нервными волокнами. Чувствительные (сенсорные) нервные волокна поступают из 3 источников: 1) дендриты нейронов спинномозговых (спинальных) ганглиев верхнегрудного отдела спинного мозга; 2) дендриты чувствительных нейронов узла блуждающего нерва; 3) дендриты чувствительных нейронов интрамуральных ганглиев. Эти волокна заканчиваются рецепторами.
Эфферентными волокнами являются симпатические и парасимпатические нервные волокна, относящиеся к вегетативной (автономной) нервной системе.
Симпатическая рефлекторная дуга сердца включает цепь, состоящую из 3 нейронов. 1 -й нейрон заложен в спинальном ганглии, 2-й -- в латерально-промежуточном ядре спинного мозга, 3-й -- в периферическом симпатическом ганглии (верхнем шейном или зйездчатом).
Ход импульса по симпатической рефлекторной дуге: рецептор, дендрит 1-го нейрона, аксон 1-го нейрона, дендрит 2-го нейрона, аксон 2-го нейрона образует преганглионарное, миелиновое, холинергическое волокно, контактирующее с дендритом 3-го нейрона, аксон 3-го нейрона в виде постганглионарного, безмиелинового адренергического нервного волокна направляется в сердце и заканчивается эффектором, который непосредственно на сократительные кардиомиоциты не воздействует. При возбуждении симпатических волокон частота сокращений увеличивается.
Парасимпатическая рефлекторная дуга состоит из цепи 3 нейронов. 1-й нейрон заложен в чувствительном ганглии блуждающего нерва, 2-й -- в ядре блуждающего нерва, 3-й -- в интрамуральном ганглии.
Ход импульса по парасимпатической рефлекторной дуге: рецептор 1-го нейрона, дендрит 1-го нейрона, аксон 1-го нейрона, дендрит 2-го нейрона, аксон 2-го нейрона образует преганглионарное, миелиновое, холинергическое нервное волокно, которое передает импульс на дендрит 3-го нейрона, аксон 3-го нейрона в виде постганглионарного безмиелинового, холинергического нервного волокна направляется к проводящей системе сердца. При возбуждении парасимпатических нервных волокон частота и сила сердечных сокращений уменьшаются (брадикардия).
Эпикард представлен соединительнотканной основой, покрытой мезотелием (однослойный плоский эпителий целомического типа) -- это висцеральный листок, который переходит в париетальный листок -- перикард. Перикард тоже выстлан мезотелием. Между эпикардом и перикардом имеется щелевидная полость, заполненная небольшим количеством жидкости, выполняющей смазывающую функцию. Перикард развивается из париетального листка спланхнотома. В соединительной ткани эпикарда и перикарда имеются жировые клетки (адипоциты).
Возрастные изменения сердца. В процессе развития сердца имеют место 3 этапа: 1) дифференцировка; 2) стадия стабилизации; 3) стадия инволюции (обратного развития).
Дифференцировка начинается уже в эмбриогенезе и продолжается сразу после рождения, так как изменяется характер кровообращения. Сразу после рождения закрывается овальное окно между левым и правым предсердием, закрывается проток между аортой и легочной артерией. Это приводит к снижению нагрузки на правый желудочек, который подвергается физиологической атрофии, и к повышению нагрузки на левый желудочек, что сопровождается его физиологической гипертрофией. В это время происходит дифференцировка сократительных кардиомиоцитов, сопровождаемая гипертрофией их саркоплазмы за счет увеличения количества и толщины миофибрилл. Вокруг функциональных волокон сердечной мышцы есть тонкие прослойки рыхлой соединительной ткани.
Период стабилизации начинается примерно в 20-летнем возрасте и заканчивается в 40 лет. После этого начинается стадия инволюции, сопровождаемая уменьшением толщины кардиомиоцитов вследствие уменьшения толщины миофибрилл. Прослойки соединительной ткани утолщаются. Уменьшается количество симпатических нервных волокон, в то время как число парасимпатических практически не изменяется. Это приводит к снижению частоты и силы сокращений сердечной мышцы. К старости (70 лет) уменьшается и количество парасимпатических нервных волокон. Кровеносные сосуды сердца подвергаются склеротическим изменениям, что затрудняет кровоснабжение миокарда (мускулатуры сердца). Это называется ишемической болезнью. Ишемическая болезнь может привести к омертвению (некрозу) сердечной мышцы, что называется инфарктом миокарда.
Кровоснабжение сердца обеспечивается венечными артериями, которые отходят от аорты. Венечные артерии -- это типичные артерии мышечного типа. Особенность этих артерий заключается в том, что в субэндотелии и в наружной оболочке имеются пучки гладких миоцитов, расположенных продольно. Артерии разветвляются на более мелкие сосуды и капилляры, которые затем собираются в венулы и коронарные вены. Коронарные вены впадают в правое предсердие или венозный синус. Следует отметить, что в эндокарде капилляры отсутствуют, так как его трофика осуществляется за счет крови камер сердца.
Репаративаня регенерация возможна только в грудном или в раннем детском возрасте, когда кардиомиоциты способны к митотическому делению. При гибели мышечных волокон они не восстанавливаются, а замещаются соединительной тканью.
Лекция 15. Эндокринная система. Центральные органы эндокринной системы
Эндокринная система относится к числу регуляторно-интегрирующих систем (ССС, НС, иммунная и эндокринная).
Эндокринная и нервная системы регулируют все функции человеческого организма. Однако эндокринная система регулирует в основном более общие процессы: обмен веществ, рост тела, репродукцию (развитие) половых клеток. ЭС принимает участие в регуляции важнейших вегетативных функций, поддержание гомеостаза в организме.
Эндокринная система включает (классиф-ия по уровню структурной организации):
ь эндокринные железы (щитовидная, паращитовидные, надпочечные), выделяющие секрет (гормон) в кровь или лимфу (поэтому эндокринные железы лучше васкуляризированы, чем экзокринные, и, кроме того, в эндокринных железах нет выводных протоков);
ь эндокринные части неэндокринных органов (поджелудочная железа, плацента, половые железы);
ь одиночные гормонопродуцирующие клетки, расположенные диффузно в различных органах (желудке, кишечнике, головном мозге) - ДЭС или APUD-система, которая подразделяется на:
а) клетки, имеющие нейрогенное происхождение, характеризуются способностью поглощать и декарбоксилировать предшественников аминов, секретировать олигопептидные гормоны и нейроамины, окрашиваться солями тяжелых металлов, наличием в цитоплазме плотных секреторных гранул;
б) не имеющие нейрогенного происхождения -- интерстициальные клетки половых желез, способные вырабатывать стероидные гормоны.
Микроциркуляторное русло эндокринных желез характеризуется 3 особенностями:
1) наличием синусоидных капилляров;
2) наличием фенестрированных эндотелиоцитов;
3) наличием перикапиллярного пространства.
Принципы структурной организации эндокринных желез:
1. не имеют выводных протоков
2. очень богато васкуляризированы
3. капилляры имеют либо синусоидный, либо фенестрированный тип стенки капилляров
4. все паренхимного типа, ведущая ткань - эпителиальная
5. вырабатывают гормоны, которые дают эффект даже в очень малых количествах
Природа (состав) гормонов. Гормоны чаще всего являются белковыми веществами или производными аминокислот, реже -- стероидами, предшественниками которых служат липиды (холестерин). Стероиды вырабатываются лишь в надпочечниках и половых железах.
Некоторые гормоны вырабатываются только в одной железе, например тироксин -- в щитовидной железе, в то время как инсулин вырабатывается в поджелудочной железе, околоушной слюнной железе, тимусе и некоторых клетках головного мозга.
Есть отдельные эндокринные клетки, которые вырабатывают несколько гормонов. Например, G-клетки слизистой оболочки желудка вырабатывают гастрин и энкефалин.
Гормоны воздействуют не на все органы, а только на те, в клетках которых имеются рецепторы к данному гормону. Эти клетки (органы) называются клетками-мишенями или эффекторами.
Механизм воздействия гормонов на клетки-мишени.
При захватывании рецептором клетки-мишени гормона образуется рецепторно-гормональный комплекс, под влиянием которого активируется аденилатциклаза. Аденилатциклаза вызывает синтез цАМФ (сигнальной молекулы), который стимулирует ферментные системы клетки.
- на цитоплазму (через клеточную мембрану)
- на ядро клетки, изменяя активность генетического аппарата.
Взаимосвязь эндокринной и нервной систем проявляется в том, что
1) эндокринная система иннервируется нервной системой;
2) и нервные клетки, и эндокриноциты вырабатывают биологически активные вещества (эндокриноциты вырабатывают гормоны, нейроны -- медиаторы синапсов);
3) в гипоталамусе имеются нейросекреторные клетки, которые вырабатывают гормоны (вазопрессин, окситоцин, рилизинг-гормоны);
4) некоторые железы имеют нейрогенное происхождение (мозговой эпифиз и мозговое вещество надпочечников).
Классификация эндокринной системы.
Эндокринная система подразделяется по иерархическому принципу на:
I - центральные эндокринные органы (гипоталамус, эпифиз, гипофиз) - контроль за деятельностью периферических желез;
II - периферические эндокринные органы - контроль за функциями организма:
а) аденогипофиз-зависимые (щитовидная железа, кора надпочечников, гонады);
6) аденогипофиз-независимые железы - клетки С (паращитовидные, кальцитониноциты щитовидной железы, мозговое вещество надпочечников, островки Лангерганса, тимус, эндокр. клетки ДЭС).
По источнику развития (топографическая):
§ бронхогенные (энтодерма) - производные жаберных карманов (щитовидная и паращитовидная железы, островки Лангерганса, тимус, эндокр. клетки ДЭС);
§ мозговых придатков (нейроэктодерма) - гипоталамус, гипофиз, эпифиз, мозговое вещество надпочечников, клетки С щитовидной железы;
§ надпочечников (мезодерма, мезенхима) - корковое в-во надпочечников, гонады, секреторные кардиомиоциты, юкста-гломерулярный аппарат почек.
В зависимости от функциональных особенностей органы эндокринной системы делятся на:
1) нейроэндокринные трансдукторы (переключатели), выделяющие нейротрансмиттеры (посредники) -- либерины и статины;
2) нейрогемальные органы (медиальное возвышение гипоталамуса и задняя доля гипофиза), которые своих гормонов не вырабатывают, но к ним поступают гормоны из других отделов гипоталамуса и накапливаются здесь;
3) центральный орган (аденогипофиз), регулирующий функцию периферических эндокринных желез и неэндокринных органов;
4) периферические эндокринные железы и структуры, которые делятся на:
Гипоталамус. Гипоталамус развивается из базальной части среднего мозгового пузыря и делится на передний, средний (медиобазальный) и задний. Гипоталамус тесно связан с гипофизом при помощи 2 систем:
1) гипоталамоаденогипофизарной, при помощи которой гипоталамус связывается с передней и средней долями гипофиза;
2) гипоталамонейрогипофизарной, при помощи которой гипоталамус соединяется с задней долей гипофиза (нейрогипофизом).
В каждой из этих систем имеется свой нейрогемальный орган, т. е. орган, в котором не вырабатываются гормоны, но поступают в него из гипоталамуса и накапливаются здесь. Нейрогемальным органом гипоталамоаденогипофизарной системы является срединное возвышение (eminentia medialis), а гипоталамонейрогипофизарной -- задняя доля гипофиза.
Характерные признаки нейрогемального органа:
1) хорошо развита система капилляров;
2) имеются аксовазальные синапсы;
3) способны накапливать нейрогормоны;
4) в нем заканчиваются аксоны нейросекреторных клеток.
Нейросекреторные ядра гипоталамуса представлены 30 парами, однако мы рассмотрим только 8 пар ядер. В одних из них содержатся крупные, холинергические, в других -- мелкие, адренергические, нейросекреторные клетки, способные к пролиферации.
...Подобные документы
Изучение видов и функций различных тканей человека. Задачи науки гистологии, которая изучает строение тканей живых организмов. Особенности строения эпителиальной, нервной, мышечной ткани и тканей внутренней среды (соединительной, скелетной и жидкой).
презентация [309,1 K], добавлен 08.11.2013Внутреннее строение мужских половых органов: предстательной железы, мошонки и полового члена. Строение внутренних половых органов женщины. Вены, несущие кровь от промежности. Функции органа слуха. Слуховые восприятия в процессе развития человека.
реферат [518,0 K], добавлен 16.10.2013Класификация тканей, виды эпителиальных тканей, их строение и функции. Опорная, трофическая и защитная функция соединительных тканей. Функции нервной и мышечной тканей. Понятие об органах и системах органов, их индивидуальные, половые, возрастные отличия.
реферат [6,0 M], добавлен 11.09.2009Особенности строения, физиологии и химического состава клетки. Типы и свойства тканей. Характеристика системы органов - частей организма, имеющих только их свойственные форму и строение и выполняющих определенную функцию. Регуляция функций в организме.
реферат [21,9 K], добавлен 03.07.2010Клетка как основная структурная единица организма. Описание ее строения, жизненных и химических свойств. Строение и функции эпителиальной и соединительной, мышечной и нервной тканей. Органы и перечень системы органов человека, их назначение и функции.
презентация [1,1 M], добавлен 19.04.2012История гистологии - раздела биологии, изучающего строение тканей живых организмов. Методы исследования в гистологии, приготовление гистологического препарата. Гистология ткани - филогенетически сложившейся системы клеток и неклеточных структур.
реферат [24,3 K], добавлен 07.01.2012Эмбриогенез как часть индивидуального развития человека. Эмбриогенез мышц, строение боковой стенки живота. Развитие исчерченной мускулатуры из миотом. Паховые канал, промежуток и кольца. Образование паховой грыжи. Процесс опускания яичек: основные этапы.
презентация [1,1 M], добавлен 28.02.2011Гистология - учение о развитии, строении, жизнедеятельности и регенерации тканей животных организмов и организма человека. Методы ее исследования, этапы развития, задачи. Основы сравнительной эмбриологии, науки о развитии и строении зародыша человека.
реферат [9,9 K], добавлен 01.12.2011Человеческий организм как очень сложная живая биологическая система. Строение и функции паренхиматозных органов человека. Анатомия и функции печени, поджелудочной железы, легких и почек. Взаимодействие специфически функционирующих структур (органов).
контрольная работа [52,6 K], добавлен 16.03.2015Основные органы мочевыделительной системы, их функции. Строение мочеполового аппарата мужчины и женщины. Структура почечного нефрона. Мочевые канальцы и кровеносные сосуды в почке. Строение половой системы человека, мужские и женские половые органы.
презентация [2,9 M], добавлен 30.05.2013Изучение органов нервной системы как целостной морфологической совокупности взаимосвязанных нервных структур, обеспечивающих деятельность всех систем организма. Строение механизмов зрительного анализатора, органов обоняния, вкуса, слуха и равновесия.
реферат [23,5 K], добавлен 21.01.2012Основные элементы и химический состав мышечной ткани. Виды белков саркоплазмы и миофибрилл, их содержание к общему количеству белков, молекулярная масса, распределение в структурных элементах мышцы. Их функции и роль организме. Строение молекулы миозина.
презентация [368,2 K], добавлен 14.12.2014Общая характеристика тканей человека: эпителиальная, нервная, соединительная, мышечная. Репаративная регенерация как процесс восстановления тканей при их повреждении. Нейрон как функциональная единица нервной системы. Роль и значение мышечной ткани.
презентация [5,9 M], добавлен 18.05.2014Общая характеристика мышечной ткани, морфологические признаки и основные свойства. Виды белков и их функции. Разновидности мышечной ткани. Общая характеристика и функции нервной ткани. Характеристика нейронов. Классификация нейроглий. Эмбриогенез.
презентация [2,2 M], добавлен 10.04.2016Общая характеристика женских половых органов, строение и функции матки и ее придатков. Особенности слизистой и мышечной оболочек. Отношение матки к брюшине и ее связочный аппарат. Кровоток, лимфоток и иннервация органа. Строение и функции яичников.
реферат [39,0 K], добавлен 04.09.2011Восприятие раздражения из внешней и внутренней среды. Понятие об анализаторах. Строение глаза и слезного аппарата. Орган слуха и равновесия. Колебания барабанной перепонки. Воздушная и костная проводимость звука. Основные анализаторы обоняния и вкуса.
презентация [6,9 M], добавлен 03.05.2016Гистология — наука о строении, развитии и жизнедеятельности тканей животных организмов и общих закономерностях тканевой организации; понятие цитологии и эмбриологии. Основные методы гистологического исследования; приготовление гистологического препарата.
презентация [1,5 M], добавлен 23.03.2013Понятие процесса пищеварения и его основные функции. Эмбриогенез органов пищеварительной системы, строение и функциональное значение ее органов: полость рта, глотка, пищевод, желудок, тонкая и толстая кишка, печень, желчный пузырь, поджелудочная железа.
курсовая работа [1,6 M], добавлен 05.06.2011Покровная, пучковая и основная ткани растений. Ткани и локальные структуры, выполняющее одинаковые структуры функции. Клеточное строение ассимиляционного участка листа. Внутреннее строение стебля. Отличие однодольных растений от двудольных растений.
презентация [15,3 M], добавлен 27.03.2016Разнообразие живого мира как результат развития живых организмов. Способность к восприятию звуковых частот у позвоночных. Основные закономерности развития органов слуха. Органы слуха у представителей классов рыб, амфибий, рептилий, птиц и млекопитающих.
реферат [29,2 K], добавлен 27.05.2015