Закономерности развития, строение и функции тканей и органов

Сущность и задачи гистологии, цитологии, эмбриологии. Описание скелетной и мышечной ткани, орган слуха и равновесия. Центральные органы эндокринной системы, иммунологическая защита. Развитие и строение зубов, кожа и ее производные, эмбриогенез человека.

Рубрика Биология и естествознание
Вид курс лекций
Язык русский
Дата добавления 28.05.2015
Размер файла 609,0 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Ядра переднего гипоталамуса представлены 2 парами: 1) супраоптические (nucleus supraopticus) и 2) паравентрикулярные (nucleus paraventricularis). В состав этих двух ядер входят крупные, холинергические, нейросекреторные клетки, способные синтезировать пептиды и ацетилхолины. Кроме того, в состав паравентрикулярных ядер входят мелкие, адренергические, нейросекреторные клетки. Крупные, холинергические, и мелкие, адренергические, нейросекреторные клетки способны не только вырабатывать нейрогормоны, но и генерировать и проводить нервный импульс.

Крупные, холинергические, нейроны способны к пролиферации, содержат плотные секреторные гранулы, секретируют 2 гормона: вазопрессин (антидиуретический гормон) и окситоцин. Окситоцин вырабатывается преимущественно в паравентрикулярных ядрах.

Действие вазопрессина:

1) сужение кровеносных сосудов и повышение артериального давления;

2) повышение реабсорбции (обратного всасывания) воды из почечных канальцев, т. е. уменьшение диуреза.

Действие окситоцина:

1) сокращение миоэпителиальных клеток концевых отделов молочных желез, в результате чего усиливается выделение молока;

2) сокращение мускулатуры матки;

3) сокращение гладкой мускулатуры мужских семявыносящих путей.

Вазопрессин и окситоцин в виде плотных гранул содержатся в теле и аксонах нейросекреторных клеток супраоптического и паравентрикулярного ядер. По аксонам эти два гормона транспортируются в нейрогемальный орган -- заднюю долю гипофиза и откладываются около кровеносных сосудов в виде накопительных телец Херринга.

Ядра медиобазалъного (среднего) гипоталамуса представлены 6 нейросекреторными ядрами:

1) аркуатное (nucleus arcuatus) или инфундибулярное (nucleus infundibularis);

2) вентрамедиальное (nucleus ventromedialis);

3) дорсомедиальное (nucleus dorsomedialis);

4) супрахиазматическое (nucleus suprachiasmaticus);

5) серое перивентрикулярное вещество (substantia periventricularis grisea);

6) преоптическая зона (zona preoptica).

Наиболее крупными ядрами являются инфундибулярное и вентрамедиальное. В каждом из этих 6 ядер содержатся мелкие, адренергические, нейросекреторные клетки, способные к активной пролиферации, выработке и проведению нервного импульса и содержащие плотные гранулы, заполненные аденогипофизотропными гормонами: либеринами и статинами (рилизинг-гормонами).

Аденогипофизотропные гормоны воздействуют на аденогипофиз: либерины стимулируют его функцию, статины -- угнетают. Либерины и статины отличаются по своему действию друг от друга. В частности, тиролиберины стимулируют выделение гипофизом тиротропина, гонадолиберины -- выделение гонадотропина, кортиколиберины -- выделение кортикотропина (или АКТГ); статины угнетают выделение гормонов: тиростатин -- тиротропина, гонадостатин -- гонадотропина, кортикостатин -- АКТГ и т. д.

Регуляция гипоталамусом функции периферических эндокринных желез. Существует 2 пути регуляции: 1) через гипофиз (трансгипофизарный путь); 2) минуя гипофиз (парагипофизарный путь).

Гипофизарный путь характеризуется тем, что в медиобазальном гипоталамусе вырабатываются аденогипофизотропные гормоны (либерины и статины), которые с кровью доносятся до передней доли гипофиза. Под влиянием либеринов вырабатываются и выделяются тропные гормоны гипофиза (гонадотропные, тиротропные, кортикотропные и др.), которые с током крови доносятся до соответствующих желез (кортикотропный до коры надпочечника и т. д.) и стимулируют их функцию.

Парагипофизарный путь регуляции осуществляется 3 способами.

Первый способ -- симпатическая и парасимпатическая регуляция периферических желез. Гипоталамус является высшим центром регуляции симпатической и парасимпатической нервных систем, а через симпатические и парасимпатические нервные волокна он осуществляет регуляцию функции всех желез. Пример вегетативной нервной регуляции: нейрон паравентрикулярного ядра -» нервная клетка дорсального ядра вагуса -» поджелудочная железа -- выделение инсулина; одновременно с этим осуществляется нейрогуморальная рефляция. Пример: мелкоклеточный нейрон паравентрикулярного ядра -» передняя доля гипофиза -» секреция АКТГ -» кора надпочечников -» секреция глюкокортикоидов -» торможение секреции инсулина. Пример с участием иммунной системы: макрофаг -» секреция ИЛ-1 -» паравентрикулярное ядро -» секреция корти- колиберина -» передняя доля гипофиза -» секреция АКТГ -» кора надпочечников -» секреция глюкокортикоидов -» макрофаг -» торможение секреции ИЛ-1.

Второй способ -- регуляция осуществляется обратной отрицательной связи. Этот способ подразделяется еще на 2 способа: а) если в крови высокий уровень гормона данной железы, то подавляется секреция этого гормона, а если его уровень в крови низкий -- стимулируется; б) если повышается эффект, вызванный гормоном, то подавляется выделение этого гормона. Например: повышено выделение паратирина паращитовидной железой, в результате чего повышается уровень содержания кальция в крови -- это эффект, вызванный паратирином. Высокий уровень кальция в крови подавляет выделение паратирина, а если уровень кальция в крови низкий, то секреция паратирина повышается.

Третий способ заключается в том, что иногда в организме вырабатываются тиротропные (стимулирующие функцию щитовидной железы) иммуноглобулины или аутоантитела, которые захватываются рецепторами клеток щитовидной железы и стимулируют их функцию в течение длительного времени.

Гипофиз. Гипофиз состоит из передней доли (lobus anterior), промежуточной части (pars intermedia) и задней доли, или нейрогипофиза (lobus posterior).

Развитие гипофиза. Гипофиз развивается из: 1) эпителия крыши ротовой полости, который сам развивается из эктодермы, и 2) дистального конца воронки дна 3-го желудочка. Из эпителия ротовой полости (эктодермы) развивается аденогипофиз на 4-5-й неделе эмбриогенеза. В результате выпячивания эпителия ротовой полости в сторону дна 3-го желудочка образуется гипофизарный карман. Навстречу гипофизарному карману растет воронка из дна 3-го желудочка. Когда дистальный конец воронки совмещается с гипофизарным карманом, передняя стенка этого кармана утолщается и превращается в переднюю долю, задняя -- в промежуточную часть, а дистальный конец воронки -- в заднюю долю гипофиза.

Аденогипофиз (adenohypophysis) включает переднюю долю, промежуточную часть и туборальную часть, т. е. все то, что развивается из гипофизарного кармана (кармана Ратке - выпячивание крыши ротовой полости).

Передняя доля (lobus anterior) покрыта соединительнотканной капсулой, от которой вглубь отходят прослойки рыхлой соединительной ткани, образующие строму доли. В прослойках проходят кровеносные и лимфатические сосуды. Между прослойками располагаются тяжи эпителиальных клеток (аденоцитов), образующих паренхиму доли.

Классификация аденоцитов. Клетки передней доли делятся на: 1) хромофильные и 2) хромофобные (главные). Хромофильными называются потому, что в их цитоплазме содержатся гранулы, способные окрашиваться красителями; хромофобные клетки таких гранул не содержат, поэтому их цитоплазма не окрашивается. В передней доле есть клетки, которые не относятся ни к хромофильным, ни к хромофобным -- это кортикотропные аденоциты.

Хромофильные аденоциты (endocrinocytus chromophilus) делятся на:

1) базофильные, в цитоплазме которых имеются гранулы, окрашивающиеся основными красителями,

2) ацидофильные (окси-), гранулы которых окрашиваются кислыми красителями.

Базофильные эндокриноциты (аденоциты) составляют 10 %. Они подразделяются на 2 подгруппы: 1) гонадотропные и 2) тиротропные.

Гонадотропные эндокриноциты -- наиболее крупные клетки, имеют круглую, иногда угловатую форму, овальное или круглое ядро, смещенное к периферии, так как в центре клетки находится макула (пятно), в которой располагаются комплекс Гольджи и клеточный центр. В цитоплазме хорошо развиты гранулярная ЭПС, митохондрии и комплекс Гольджи, а также базофильные гранулы диаметром 200-300 нм, состоящие из гликопротеидов и окрашивающиеся альдегид-фуксином.

Гонадотропные эндокриноциты вырабатывают 2 гонадотропных гормона: 1) лютеинизирующий, или лютеотропный, гормон (лютропин) и 2) фолликулостимулирующий, или фолликулотропный, гормон (фоллитропин).

Фолликулотропный гормон (фоллитропин) в мужском организме действует на начальный этап сперматогенеза, в женском -- на рост фолликулов и выделение эстрогенов в половых железах.

Лютропин стимулирует секрецию тестостерона в мужских половых железах и развитие и функцию желтого тела в женских половых железах.

Полагают, что существуют 2 разновидности гонадотропных эндокриноцитов, одни из которых выделяют фоллитропин, другие -- лютропин.

Клетки кастрации появляются в передней доле в тех случаях, когда половые железы вырабатывают недостаточное количество половых гормонов. Тогда в гонадотропных клетках увеличивается макула и оттесняет цитоплазму и ядро на периферию. Клетка при этом гипертрофируется, активно секретирует гонадотропный гормон, чтобы стимулировать выработку половых гормонов. Гонадотропный аденоцит в это время приобретает форму перстня.

Тиротропные эндокриноциты имеют овальную или вытянутую форму, овальное ядро. В их цитоплазме хорошо развиты комплекс Гольджи, гранулярная ЭПС и митохондрии, содержатся базофильные гранулы размером 80-150 нм, окрашивающиеся альдегидфуксином. Тиротропные эндокриноциты под влиянием тиролиберина вырабатывают тиротропный гормон, который стимулирует выделение тироксина щитовидной железой.

Клетки тироидэктомии появляются в гипофизе при понижении функции щитовидной железы. В этих клетках гипертрофируется гранулярная ЭПС, расширяются ее цистерны, повышается секреция тиротропного гормона. В результате расширения канальцев и цистерн ЭПС цитоплазма клеток приобретает ячеистый вид.

Кортикотропные эндокриноциты не относятся ни к ацидофильным, ни к базофильным, имеют неправильную форму, дольчатое ядро, в их цитоплазме содержатся мелкие гранулы. Под влиянием кортиколиберинов, вырабатываемых в ядрах медиобазального гипоталамуса, эти клетки секретируют кортикотропный или адренокортикотропный гормон (АКТГ), стимулирующий функцию коры надпочечников.

Ацидофильные эндокриноциты составляют 35-40 % и подразделяются на 2 разновидности: 1) соматотропные и 2) маммотропные эндокриноциты (лактотропный гормон). Обе разновидности имеют обычно круглую форму, овальное или круглое ядро, расположенное в центре. В клетках хорошо развит синтетический аппарат, т. е. комплекс Гольджи, гранулярная ЭПС, митохондрии; в цитоплазме содержатся ацидофильные гранулы.

Соматотропные эндокриноциты содержат гранулы овальной или круглой формы диаметром 400-500 нм, вырабатывают соматотропный гормон, который стимулирует рост тела в детском и юношеском возрасте. При гиперфункции соматотропных клеток после завершения роста развивается акромегалия -- заболевание, характеризующееся появлением горба, увеличением размеров языка, нижней челюсти, кистей рук и стоп ног.

Маммотропные эндокриноциты содержат удлиненные гранулы, достигающие размеров 500-600 нм у рожениц и беременных женщин. У некормящих матерей гранулы уменьшаются до 200 нм. Эти аденоциты выделяют маммотропный гормон, или пролактин. Функции: 1) стимулирует синтез молока в молочных железах; 2) стимулирует развитие желтого тела в яичниках и секрецию прогестерона.

Хромофобные (главные) эндокриноциты составляют около 60 %, имеют меньшие размеры, не содержат окрашиваемых гранул, поэтому их цитоплазма не окрашивается. В состав хромофобных аденоцитов входит 4 группы:

1) недифференцированные (выполняют регенераторную функцию);

2) дифференцирующиеся, т. е. начали дифференцироваться, но дифференцировка не закончилась, в цитоплазме появились лишь единичные гранулы, поэтому цитоплазма слабо окрашивается;

3) хромофильные зрелые клетки, которые только что выделили свои секреторные гранулы, поэтому уменьшились в размере, а цитоплазма утратила способность к окрашиванию;

4) звездчато-фолликулярные клетки, характеризующиеся длинными отростками, распространяющимися между эндокриноцитами.

Группа таких клеток, обращенных апикальными поверхностями друг к другу, выделяет секрет, в результате чего образуются псевдофолликулы, заполненные коллоидом.

Промежуточная часть аденогипофиза представлена эпителием, расположенным в несколько слоев, локализованных между передней и задней долями гипофиза. В промежуточной части есть псевдофолликулы, содержащие коллоидоподобную массу. Функции: 1) секреция меланотропного (меланоцитостимулирующего) гормона, регулирующего обмен пигмента меланина; 2) липотропного гормона, регулирующего обмен липидов.

Туберальная часть аденогипофиза (pars tuberalis) располагается рядом с гипофизарной ножкой, состоит из переплетающихся тяжей эпителиальных клеток кубической формы, богато васкуляризирована. Функция мало изучена.

Гипоталамо-гипофизарная система кровообращения (портальная система). Эта система начинается от гипофизарных артерий, которые разветвляются на первичную капиллярную сеть в области срединного возвышения (нейрогемального органа гипоталамоаденогипофизарной системы). Капилляры этой сети впадают в 10-12 портальных вен, идущих в гипофизарной ножке. Портальные вены достигают передней доли и разветвляются на вторичную капиллярную сеть. Капилляры вторичной сети впадают в выносящие вены гипофиза, т. е. эти капилляры расположены между венами (портальными и выносящими) и поэтому формируют чудесную сеть.

Роль портальной системы в регуляции функции аденогипофиза. Аксоны нейросекреторных клеток, вырабатывающих либерины и статины, из медиобазального гипоталамуса направляются в срединное возвышение и заканчиваются аксовазальными синапсами на капиллярах первичной сети. Через эти синапсы либерины или статины поступают в кровеносное русло этих капилляров и далее транспортируются через портальные вены во вторичную капиллярную сеть. Через стенку капилляров либерины или статины поступают в паренхиму передней доли и захватываются рецепторами эндокринных клеток (тиролиберины захватываются тиротропными аденоцитами, гонадолиберины -- гонадотропными аденоцитами и т. д.). В результате этого из аденоцитов выделяются тропные гормоны, которые поступают в капилляры вторичной сети и транспортируются с током крови к соответствующим железам.

Задняя доля гипофиза (нейрогипофиз) представлена в основном эпендимной глией. Клетки нейроглии называются питуицитами. В нейрогипофизе гормоны не вырабатываются (это нейрогемальный орган). В заднюю долю поступают аксоны нейросекреторных клеток супраоптического и паравентрикулярного ядер. По этим аксонам в заднюю долю транспортируются вазопрессин и окситоцин и накапливаются на терминалях аксонов около кровеносных сосудов (является депо-резервуаром данных гормонов). Эти накопления называются накопительными тельцами, или тельцами Херринга. По мере надобности из этих телец гормоны поступают в кровеносные сосуды.

Эпифиз. Эпифиз, или шишковидная железа (epiphysis cerebri), развивается из дна 3-го мозгового пузыря из двух выпячиваний. Одно выпячивание называется эпифизарным, второе -- субкомиссуральным органом. Затем оба выпячивания сливаются, и из них формируется паренхима эпифиза.

Эпифиз покрыт соединительнотканной капсулой, от которой вглубь отходят прослойки, разделяющие паренхиму на дольки и образующие строму железы. В состав паренхимы долек входят 2 вида клеток: 1) поддерживающие глиоциты (gliocytus centralis) и 2) пинеалоциты (endocrinocytus pinealis). Пинеалоциты делятся на: 1) светлые (endocrinocytus lucidus) и 2) темные (endocrinocytus densus). В обоих видах пинеалоцитов ядра крупные, круглые, хорошо развиты митохондрии, гранулярная ЭПС, комплекс Гольджи. От тел пинеалоцитов отходят отростки, заканчивающиеся утолщениями на капиллярах по периферии дольки. В отростках и в теле имеются секреторные гранулы.

Функции эпифиза:

1) регулирует ритмические процессы, связанные с темным и светлым периодами суток (циркадные, или суточные, ритмы), а также половой цикл в женском организме. Световые импульсы поступают в эпифиз следующим образом. В тот момент, когда световой импульс проходит через зрительный перекрест (chiasma opticum), в супрахиазматическом ядре меняется характер разрядов, что влияет на кровоток в капиллярах. Отсюда гуморальным путем оказывается влияние на супраоптическое ядро, откуда импульсы поступают на латерально-промежуточное ядро шейной части спинного мозга, а оттуда по волокнам к верхнему шейному симпатическому ганглию аксоны нейронов этого симпатического ганглия несут импульс к эпифизу;

2) антигонадотропная функция, т. е. эпифиз угнетает преждевременное развитие половой системы. Осуществляется это следующим образом. Днем в пинеалоцитах вырабатывается серотонин, который превращается в мелатонин, оказывающий антигонадотропное действие, т. е. он угнетает секрецию люлиберина в гипоталамусе и лютропина в гипофизе. Кроме того, в эпифизе вырабатывается специальный антигонадотропный гормон, угнетающий гонадотропную функцию передней доли гипофиза;

3) в эпифизе вырабатывается гормон, регулирующий содержание калия в крови;

4) секретирует аргинин-вазотоцин, суживающий кровеносные сосуды;

5) секретирует люлиберин, тиролиберин и тиротропин;

6) выделяет адреногломерулотропин, стимулирующий секрецию альдостерона в клубочковой зоне коры надпочечников. Всего в эпифизе вырабатывается около 40 гормонов.

Возрастные изменения эпифиза характеризуются тем, что к 6 годам жизни он полностью развивается и сохраняется в таком состоянии до 20-30 лет, а затем подвергается инволюции. В дольках эпифиза откладываются соли карбоната кальция и соли фосфора, наслаиваясь друг на друга. В результате образуется мозговой песок, имеющий слоистое строение.

ПЕРИФЕРИЧЕСКИЕ ЭНДОКРИННЫЕ ЖЕЛЕЗЫ

В организме человека имеются следующие периферические железы:

1) щитовидная железа (glandula thyroidea):

2) паращитовидные железы (glandula parathyroidea);

3) надпочечные железы (glandula suprarenalis).

Щитовидная железа

Развитие. Закладывается на 4-й неделе эмбриогенеза в виде выпячивания вентральной стенки глотки на уровне I и II жаберных карманов. В процессе роста дистальный конец выпячивания достигает уровня III и IV жаберных карманов, утолщается и раздваивается. В это время зачаток напоминает экзокринную железу: дистальный конец соответствует концевому отделу, тяж (ductus thyreoglossus) -- выводному протоку. В дальнейшем тяж рассасывается, остается только участок, соединяющий правую и левую половины щитовидной железы, и слепое отверстие в корне языка (foramen cecum). Однако в некоторых случаях тяж не рассасывается и остается после рождения. Для исправления этого дефекта необходимо вмешательство квалифицированного врача.

В дистальной части зачатка щитовидной железы образуются эпителиальные тяжи, из которых формируются фолликулы. В зачаток внедряются клетки нервного гребня, которые дифференцируются в кальцитониноциты (парафолликулярные клетки). Из окружающей мезенхимы формируется соединительнотканная капсула, от которой в глубь паренхимы отходят прослойки, образующие строму щитовидной железы. Вместе с прослойками соединительной ткани в железу проникают кровеносные сосуды и нервы.

Строение. Щитовидная железа состоит из 2 долей, соединенных перешейком. Железа покрыта соединительно-тканной капсулой (capsula fibrosa). От этой капсулы отходят соединительнотканные трабекулы, разделяющие железу на дольки. Строма железы представлена рыхлой соединительной тканью.

Фолликул является структурной и функциональной единицей щитовидной железы. Форма фолликула круглая или овальная, реже звездчатая. Между фолликулами располагаются прослойки рыхлой соединительной ткани, содержащие коллагеновые и эластические волокна, основное межклеточное вещество, фибробласты, макрофаги, тканевые базофилы, плазмоциты. В прослойках проходят многочисленные капилляры, окружающие фолликулы со всех сторон, и нервные волокна. Между фолликулами имеются скопления железистых клеток -- тироцитов. Эти скопления называются межфолликулярными островками (insulae interfollicularis).

Стенка фолликула состоит из железистых клеток, называемых фолликулярными эндокриноцитами (endocrinocytus follicularis), или тироцитами. Полость фолликула заполнена коллоидом, имеющим жидкую, полужидкую, иногда густую консистенцию.

Фолликулярные эндокриноциты располагаются в один слой и выстилают стенку фолликула. Их апикальные концы обращены в просвет фолликула, а базальные лежат на базальной мембране.

Строение фолликулярных эндокриноцитов зависит от функционального состояния щитовидной железы: нормального, гиперфункции, гипофункции.

Фолликулярные эндокриноциты при нормальном функциональном состоянии имеют кубическую форму, на их апикальной поверхности есть незначительное количество микроворсинок. Своими боковыми поверхностями эндокриноциты соединяются при помощи десмосом и интердигитаций, вблизи апикальной части -- при помощи замыкательных (терминальных) пластинок, которые закрывают межклеточные щели. В цитоплазме тироцитов хорошо развиты гранулярная ЭПС, комплекс ГЬльджи, митохондрии, лизосомы и пероксисомы, в которых содержится тиропероксидаза, участвующая в катализации синтеза молекул тироглобулина, модификации тироглобулина в комплексе Гольджи и окислении йодидов в атомарный йод. Ядра тироцитов круглые, расположены в центре клетки. Коллоид имеет полужидкую консистенцию.

Фолликулярные эндокриноциты при гиперфункции имеют призматическую форму. На их апикальной поверхности увеличивается количество микроворсинок и появляются псевдоподии. Коллоид приобретает жидкую консистенцию, в нем появляются резобционные вакуоли.

Фолликулярные эндокриноциты при гипофункции уплощаются, их ядра сплющиваются. Коллоид густой, размеры фолликулов увеличиваются.

Секреторный цикл фолликулов складывается из 2 фаз: 1) фазы продукции и 2) фазы выведения секрета.

Фаза продукции характеризуется поступлением в тироциты воды, ионов йода, аминокислоты тирозина, углеводов и других продуктов. Аминокислоты и другие вещества поступают на гранулярную ЭПС, где происходит синтез крупных молекул тироглобулина. Молекулы тироглобулина транспортируются к комплексу Гольджи, где к ним присоединяются углеводы, т. е. происходит модификация тироглобулина, образуются гранулы. Гранулы транспортируются к цитолемме и путем экзоцитоза выделяются на апикальную поверхность тироцита.

Одновременно с этим ионы йода транспортируются на апикальную поверхность фолликулярных эндокриноцитов, окисляются в атомарный йод при помощи фермента перок- сидазы. С этого момента начинается синтез гормона щитовидной железы. В это время атом йода присоединяется к аминокислоте тирозин, входящей в состав тироглобулина, в результате чего образуется монойодтирозин. Затем к монойодтирозину присоединяется еще 1 атом йода, и образуется дийодтирозин. При соединении двух молекул дийодтирозина образуется тетрайодтиронин, или тироксин. Если к молекуле дийодтирозина присоединяется 1 атом йода, то образуется трийодтиронин -- это гормон более активный, чем тетрайодтиронин. При избытке в организме этих двух гормонов повышается основной обмен организма.

Фаза выведения секрета протекает по-разному, в зависимости от функционального состояния и продолжительности активации железы.

При нормальном или длительное время повышенном функциональном состоянии железы на апикальной поверхности фолликулярных эндокриноцитов происходит распад молекул тироглобулина с освобождением трийодтиронина, тироксина. Эти гормоны путем пиноцитоза поступают в тироциты и далее транспортируются в капиллярное русло.

При кратковременной гиперфункции щитовидной железы на апикальной поверхности тироцитов увеличивается количество микроворсинок, появляются псевдоподии. Коллоид фолликулов разжижается, его частицы захватываются и фагоцитируются фолликулярными эндокриноцитами. В цитоплазме клеток ферменты лизосом расщепляют тироглобулин с освобождением трийодтиронина, тироксина, дийодтирозина и монойодтирозина. Тироксин и трийодтиронин транспортируются в капиллярное русло и разносятся по всему организму. Монойодтирозин и дийодтирозин расщепляются, при этом йод освобождается и используется для синтеза йодсодержащих гормонов.

Парафолликулярные клетки (кальцитониноциты) располагаются в стенке фолликулов рядом с тироцитами и в межфолликулярных островках и развиваются из нервного гребня. Парафолликулярные клетки в стенке фолликулов имеют треугольную форму, они крупнее тироцитов, но их апикальные концы не выходят на поверхность эпителия. В парафолликулярных клетках содержатся гранулы, выявляемые серебром или осмием, поэтому гранулы называются осмиофильными или аргентофильными. В клетках хорошо развиты гранулярная ЭПС, комплекс Гольджи, митохондрии.

Среди парафолликулярных клеток есть 2 разновидности:

1) содержат мелкие хорошо окрашиваемые осмием гранулы, секретируют кальцитонин, под влиянием которого снижается уровень кальция в крови;

2) содержат крупные слабо окрашиваемые осмием гранулы, секретируют соматостатин, угнетающий синтез белков в клетках. Кроме того, парафолликулярные клетки способны вырабатывать норадреналин и серотонин.

Регуляция функции фолликулярных эндокриноцитов щитовидной железы осуществляется при помощи:

1) гипоталамуса и гипофиза (трансгипофизарно);

2) по принципу обратной отрицательной связи:

3) вегетативной нервной системой;

4) при помощи эпифиза, секретирующего тиролиберин и тиротропин.

Трансгипофизарная регуляция: в гипоталамусе вырабатываются тиролиберины, поступающие в переднюю долю гипофиза, где вырабатывается тиротропный гормон, который захватывается рецепторами тироцитов и стимулирует секрецию тироксина и трийодтиронина. Если в гипоталамусе вырабатываются тиростатины, которые подавляют функцию тиротропных аденоцитов гипофиза, то прекращается секреция тиротропного гормона, а без этого гормона не синтезируются йодсодержащие гормоны.

Регуляция по принципу обратной отрицательной связи: при сниженном уровне тироксина и трийодтиронина в периферической крови секреция этих гормонов щитовидной железы повышается, а при высоком уровне тироксина и трийодтиронина -- уменьшается.

Регуляция со стороны вегетативной нервной системы осуществляется при помощи симпатических и парасимпатических нервных волокон, заканчивающихся эффекторными нервными окончаниями. При возбуждении симпатических волокон происходит слабое повышение секреции, при возбуждении парасимпатических волокон -- незначительное снижение секреции, т. е. вегетативная нервная система оказывает слабое влияние на фолликулярные эндокриноциты.

Регуляция функции парафолликулярных клеток осуществляется только при помощи вегетативной нервной системы. При возбуждении симпатических волокон секреция кальцитонина повышается, при раздражении парасимпатических волокон -- снижается.

Кровоснабжение щитовидной железы отличается богатой сетью гемокапилляров и лимфокапилляров, густо оплетающих каждый фолликул.

При длительной гиперфункции щитовидной железы развивается Базедова болезнь (гипертиреоз), характеризующаяся повышением основного обмена веществ, повышенной потливостью, сердцебиением и пучеглазием.

Длительная гипофункция щитовидной железы у детей -- микседема -- характеризуется задержкой роста, умственного развития, снижением общего обмена веществ, огрубением кожи, увеличением объема языка, слюнотечением.

При гипофункции щитовидной железы у взрослого могут наблюдаться психические расстройства.

Регенерация щитовидной железы осуществляется за счет деления тироцитов фолликулов и может быть интрафолликулярной и экстрафолликулярной.

Интрафолликулярная регенерация характеризуется тем, что пролиферирующие тироциты образуют складки, впячивающиеся в полость фолликула, который при этом приобретает звездчатую форму.

Экстрафолликулярная регенерация характеризуется тем, что делящиеся тироциты выпячиваются кнаружи и выпячивают базальную мембрану. Затем эти выпячивания отделяются от фолликула и превращаются в микрофолликул.

За счет секреторной функции тироцитов микрофолликул наполняется коллоидом и увеличивается в размерах.

Резекция - удаление части железы. Большие возможности регенерации в оставшихся фолликулах.

Паращитовидные (околощитовидные) железы

Развитие. Паращитовидные железы (glandula раrathyroidea) развиваются на 5-й неделе эмбриогенеза из выпячиваний эпителия III и IV пар жаберных карманов. Выпячивания отшнуровываются от карманов и из каждого из них развивается паренхима околощитовидной железы, а капсула и строма развиваются из мезенхимы. Таким образом формируется 4 оклощитовидных железы, которые анатомически тесно связаны со щитовидной железой.

Строение. Каждая железа покрыта соединительнотканной капсулой, от которой вглубь отходят прослойки соединительной ткани, формирующие строму железы. Между прослойками соединительной ткани располагаются эпителиальные тяжи, состоящие из эндокриноцитов (endocrinocytus parathyroideus). Эти клетки имеют округлую форму, слабо базофильную цитоплазму, соединяются друг с другом при помощи десмосом и интердигитаций; в них хорошо развиты гранулярная ЭПС, комплекс Гольджи и митохондрии. Среди них различают 2 разновидности: 1) главные (endocrinocytus principalis) и 2) ацидофильные (endocrinocytus acidophilicus), появляются на 6-м году жизни, отличаются большим содержанием митохондрий и способностью цитоплазмы окрашиваться кислыми красителями.

Главные эндокриноцшпы разделяются на темные (endocrinocytus principalis densus) и светлые (endocrinocytus principalis lucidus).

Функция околощитовидных желез -- секреция паратирина, рецепторы к которому имеются в остеокластах. При повышенном содержании паратирина в крови остеокласты захватывают его своими рецепторами, функция остеокластов повышается, начинается разрушение межклеточного вещества костной ткани и освобождаются соли кальция. Кроме того, паратгормон (паратирин) стимулирует всасывание кальция в кишечнике. Одновременно с этим паратирин снижает реабсорбцию фосфора из почечных канальцев, что вызывает снижение уровня фосфора в крови. Таким образом, паратирин повышает уровень кальция в крови и является антагонистом кальцитонина щитовидной железы.

При нечаянном удалении паращитовидных желез во время операции на щитовидной железе у больного начинаются судороги и наступает смерть. Судороги обусловлены уменьшением уровня кальция в крови и в латеральных цистернах гладкой ЭПС кардиомиоцитов сердечной мышцы и скелетной мускулатуры.

Регуляция функции околощитовидных желез осуществляется при помощи: 1) вегетативной нервной системы и 2) по принципу обратной отрицательной связи. При возбуждении симпатических волокон наблюдается слабая активация этих желез, при возбуждении парасимпатических волокон -- снижение секреторной активности. Однако наиболее эффективным путем регуляции является принцип обратной отрицательной связи. При повышении уровня паратирина в периферической крови в ней повышается содержание кальция. Повышение уровня кальция -- это эффект, вызванный паратирином. При повышении содержания кальция в крови подавляется секреция паратирина.

Надпочечные железы (glandula suprarenalis).

Каждая надпочечная железа фактически состоит из 2 желез: коркового вещества и мозгового вещества, каждое из которых имеет различное происхождение и секретирует свои гормоны.

Развитие коркового вещества начинается на 5-й неделе эмбриогенеза в виде двух закладок целомического эпителия в области корня брыжейки. Эти закладки, называемые интерреналовыми телами, состоят из ацидофильных клеток. Из них развивается фетальная, или плодная, кора надпочечников, которая в конце первого года жизни ребенка обычно рассасывается, но иногда остается в виде тонкой прослойки между мозговым и корковым веществом дефинитивной коры. В фетальной коре вырабатывается дегидроэпиандростерон, из которого в печени образуются 16-альфа-производные, а из них в плаценте синтезируются эстрогены.

На 10-й неделе эмбриогенеза на поверхности интерреналовых тел появляются клетки целомического эпителия с базофильной цитоплазмой. Из этих клеток развивается Дефинитивная (окончательная) кора надпочечников.

Мозговое вещество надпочечников развивается из нервного гребня. Клетки нервного гребня дифференцируются в симпатобласты, которые мигрируют к аорте и накапливаются там. Затем симпатобласты в виде мозговых шаров мигрируют в интерреналовые тела. Из мозговых шаров дифференцируется мозговое вещество надпочечников.

Общий план строения. Надпочечники покрыты соединительнотканной капсулой (capsula fibrosa), состоящей из внутреннего рыхлого и наружного плотного слоев.

В рыхлом слое имеются венозное и артериальное капсулярные сплетения.

Под капсулой находятся мелкие эпителиальные клетки -- субкапсулярная бластема, являющаяся источником регенерации клеток коркового вещества надпочечников. Кнутри от бластемы расположено корковое вещество, а в центре надпочечника -- мозговое вещество.

Кора надпочечников состоит из тяжей эпителиальных клеток -- кортикальных эндокриноцитов (endocrinocytus согticalis). Между эпителиальными тяжами располагаются прослойки рыхлой соединительной ткани, в которых проходят фенестрированные капилляры, окруженные перикапиллярным пространством. Кортикальные эндокриноциты вырабатывают кортикостероиды. Источником синтеза кортикостероидов являются липиды, поэтому в железистых клетках коры надпочечников содержатся липидные включения.

В зависимости от расположения и формы эпителиальных тяжей, в коре надпочечников различают 3 зоны:

1) клубочковую, толщина которой составляет 15 %;

2) пучковую, составляющую 75 %;

3) сетчатую, толщина которой составляет 10 % от толщины всей коры;

4) подкапсулярные зоны.

Клубочковая зона (zona glomerulosa). Эпителиальные тяжи этой зоны свернуты в клубочки. Кортикальные эндокриноциты клубочковой зоны мелкие, чаще всего имеют кубическую или коническую форму, содержат незначительное количество включений липидов. В их цитоплазме хорошо развит синтетический аппарат: гладкая ЭПС, комплекс Гольджи и митохондрии, содержащие ламеллярные кристы. Ядра имеют округлую или овальную форму.

Функция клубочковой зоны -- секреция альдостерона, под влиянием которого 1) происходит реабсорбция (обратное всасывание) ионов Na+, хлора и карбонатов из почечных канальцев в капиллярное русло и 2) усиливаются воспалительные процессы.

Суданофобный слой располагается кнутри от клубочковой зоны и состоит из 3--4 рядов клеток кубической формы. В этих клетках нет липидных включений, поэтому они не окрашиваются Суданом, а их слой называется суданофобным. Значение суданофобного слоя: его клетки являются источником регенерации для кортикальных эндокриноцитов пучковой и сетчатой зон.

Пучковая зона (zona fasciculata) располагается под суданофобным слоем, состоит из кортикальных эндокриноцитов кубической или призматической формы, больших размеров и образуют параллельно расположенные тяжи, которые ориентированы перпендикулярно поверхности надпочечника. В цитоплазме кортикальных эндокриноцитов содержится большое количество липидных включений, хорошо развиты гладкая ЭПС, комплекс Гольджи, митохондрии, характеризующиеся наличием трубчатых (везикулярных) крист.

Среди эндокриноцитов пучковой зоны различают светлые и темные, причем темных меньше, чем светлых. Темные клетки отличаются отсутствием липидных включений и наличием рибосом и гранулярной ЭПС. Предполагается, что темные и светлые эндокриноциты представляют собой различные фазы секреторного цикла. На гранулярной ЭПС темных клеток синтезируются ферменты, участвующие в синтезе гормонов.

Функции пучковой зоны: синтез кортикостероидов, называемых глюкокортикоидами. Количество метаболитов глюкокортикоидов достигает 40. Активных глюкокортикоидов 3: кортизол (гидрокортизон), кортизон, кортикостерон. Кортизол -- самый активный из трех глюкокортикоидов. Действие глюкокортикоидов:

1) регуляция обмена углеводов, белков, липидов;

2) обеспечение глюконеогенеза (образование углеводов за счет белков и липидов);

3) ослабление воспалительной реакции;

4) при избыточном количестве глюкокортикоидов происходит гибель эозинофилов (эозинопения) и лимфоцитов в периферической крови (лимфопения) и в органах кроветворения;

5) регуляция процессов фосфорилирования в клетках, за счет чего накапливается энергия;

6) снижение уровня фагоцитоза;

7) снижение образования коллагена;

8) участие в реакциях напряжения (стресс-реакциях), которые включают 3 стадии:

а) реакция тревоги, характеризующаяся неопределенностью возникшей угрозы;

б) стадия резистентности, характеризующаяся выбросом глюкокортикоидов в кровь, лимфопенией и эозинопенией;

в) стадия истощения, за которой может последовать гибель организма.

Стресс-реакция может наступить при различных неблагоприятных ситуациях (утрата близких, утрата материальных ценностей и т. д.).

Кортикостероиды являются ядерными гормонами, т. е. они захватываются рецепторами ядер и воздействуют непосредственно на гены хромосом.

Сетчатая зона (zona reticularis) характеризуется тем, что нарушается параллельность расположения тяжей эндокриноцитов. Тяжи переплетаются и образуют сеть. Эндокриноциты этой зоны имеют кубическую, овальную, коническую форму, малые размеры, содержат мало липидных включений. В этой зоне много темных клеток. В клетках хорошо развит синтетический аппарат: гладкая ЭПС, комплекс Гольджи, митохондрии, характеризующиеся наличием везикулярных крист.

Функция сетчатой зоны -- секреция тестостерона (мужской половой гормон) и эстрогена и прогестерона (женские половые гормоны). В том случае, если имеет место гиперфункция сетчатой зоны у женщины, то наблюдается вирилизм (рост усов, бороды, огрубение голоса) в результате избыточного количества тестостерона.

Мозговое вещество надпочечников расположено в центральной части железы. Его строма состоит из рыхлой соединительной ткани. Паренхимные клетки имеют более светлую цитоплазму по сравнению с кортикоцитами. Клетки мозгового вещества имеют круглую, овальную или полигональную форму и называются мозговыми эндокриноцитами (endocrinocytus medullaris). В их цитоплазме хорошо развиты комплекс Гольджи, митохондрии и гранулярная ЭПС, содержатся гранулы диаметром от 100 до 500 нм. В гранулах накапливаются адреналин и норадреналин (катехоламины).

Мозговые эндокриноциты делятся на светлые (endocrinocytus lucidus), которые секретируют адреналин или эпинефрин и поэтому называются еще эпинефроцитами (epinephrocytus), и темные (endocrinocytus densus), которые выделяют норадреналин или норэпинефрин и поэтому называются норэпинефроцитами (norepinephrocytus).

Мозговые эндокриноциты выявляются при обработке надпочечников: солями хрома, отчего их называют хромаффинными; азотнокислым серебром, в связи с чем их называют аргирофилъными; четырехокисью осмия, почему их еще называют осмиефильными.

Иннервация надпочечников. Эфферентные (симпатические и парасимпатические) волокна в корковом веществе надпочечников заканчиваются эффекторными окончаниями на сосудах и поэтому оказывают слабое влияние на секрецию глюкокортикоидов. Симпатическая иннервация мозгового вещества этих желез отличается тем, что симпатические волокна являются аксонами нейронов латерально-промежуточного ядра спинного мозга, возбуждение которых стимулирует секрецию катехоламинов (адреналина и норадреналина).

Регуляция функции коркового вещества надпочечников осуществляется с участием гуморальных механизмов. Синтез гормонов пучковой и сетчатой зон стимулируется АКТГ -- кортикотропным гормоном передней доли гипофиза. Начальный этап синтеза альдостерона осуществляется кортикотропным гормоном, т. е. под влиянием АКТГ синтезируется кортикостерон, а при воздействии на кортикостерон ренина, выделяемого почками, в клубочковой зоне образуется альдостерон. Кроме того, синтез альдостерона стимулируется андрогломерулотропином эпифиза, а подавляется -- ПНФ, вырабатываемым эндокринными кардиомиоцитами.

Кровоснабжение надпочечников отличается тем, что к ним подходит не одна, а несколько десятков мелких артерий, которые образуют артериальное сплетение во внутреннем слое капсулы. От этого сплетения в глубь коркового вещества отходят капилляры, которые оплетают тяжи кортикальных эндокриноцитов и впадают в синусы мозгового вещества. Мелкие синусы мозгового вещества сливаются в более крупные синусоиды, из которых формируется центральная вена надпочечника, впадающая в почечную или в нижнюю полую вену. В стенке центральной вены надпочечников и крупных синусоидов имеются сфинктеры, регулирующие отток венозной крови из этих органов.

Кровоснабжение мозгового вещества отличается тем, что от артериального сплетения капсулы отходят артериолы, которые проходят через корковое вещество и, достигнув мозгового вещества, разветвляются на капилляры, оплетающие базальные концы мозговых эндокриноцитов и впадающие в синусоиды. Апикальные концы мозговых эндокриноцитов прилежат к синусоидам, поэтому из капилляров в базальный конец эндокриноцитов поступают исходные продукты для синтеза гормонов, а через апикальные концы готовые гормоны поступают в синусоиды.

Венозная кровь, богатая катехоламинами и кортикостероидами, может транспортироваться из синусоидов мозгового вещества не только по центральной вене надпочечников в нижнюю полую вену, но и по системе анастомозов -- в воротную вену. Это происходит в случае, когда закрываются сфинктеры центральной вены и крупных синусоидов. В таком случае венозная кровь поступает в анастомозы, связывающие синусоиды мозгового вещества с венозным капсулярным сплетением. От этого сплетения отходят несколько вен, впадающих в селезеночную, нижнюю брыжеечную и другие вены, несущие кровь в воротную вену печени. По этому (второму) пути оттока венозная кровь, содержащая гормоны коркового и мозгового вещества надпочечников, транспортируется в необычных (экстремальных) условиях, когда адреналин используется для расщепления гликогена печени и повышения уровня сахара в крови, а избытки кортикостероидов подвергаются дезаминированию.

При исследовании надпочечников на нашей кафедре было установлено, что при общем перегревании организма отток венозной крови от мозгового вещества надпочечников осуществляется по второму пути.

Возрастные изменения надпочечников. Окончательное развитие надпочечников завершается к 20-25 годам. В это время клубочковая зона составляет 1 часть, пучковая -- 9 частей, а сетчатая -- 3 части. В пожилом возрасте истончается клубочковая, а особенно сетчатая зона. В связи с этим пучковая зона относительно расширяется. При этом в кортикальных эндокриноцитах уменьшается количество липидных включений и снижается синтез кортикостероидов.

Мозговое вещество надпочечников не претерпевает существенных изменений. Только в глубокой старости наблюдаются атрофические процессы, связанные со склерозом кровеносных сосудов надпочечных желез.

ДИФФУЗНАЯ ЭНДОКРИННАЯ СИСТЕМА

ДЭС представлена отдельными эндокринными клетками нейрогенного (APUD) и ненейрогенного происхождения, рассеянными в различных органах. Большую часть отдельных эндокринных клеток составляют эндокриноциты, имеющие нейрогенное происхождение, т. е. развиваются из нервного гребня. Они имеются в эпителии дыхательных и мочевыделительных путей, особенно много их в эпителиальных слоях желудочно-кишечного тракта, в некоторых эндокринных железах (парафолликулярные клетки щитовидной железы, клетки мозгового вещества надпочечников, мозгового эпифиза). APUD-систему впервые описал английский ученый Пирс. Аббревиатура APUD расшифровывается так: Amine Precursors Uptake and Decarboxylation, или по-русски, ПОД-ПА (поглощение и декарбоксилирование предшественников аминов). Эти эндокринные клетки:

1) содержат нейроамины и олигопептидные гормоны;

2) содержат плотные секреторные гранулы;

3) способны окрашиваться солями тяжелых металлов;

4) способны поглощать предшественников аминов.

Пять источников развития эндокриноцитов APUD-системы.

1 -- нейроэктодерма (гипоталамус, эпифиз, мозговое вещество надпочечника, пептидерские нейроны центральной и периферической нервной системы);

2 -- кожная эктодерма (аденогипофиз, клетки Меркеля);

3 -- энтодерма (эндокриноциты желудочно-кишечного тракта);

4 -- мезодерма (предсердные эндокринные кардиомиоциты);

5 -- мезенхима (лаброциты).

Эндокринные клетки ненейрогенного происхождения составляют меньшинство. Они представлены клетками Лейдига в мужских половых железах и фолликулярными клетками в яичниках. Выделяют стероидные гормоны и развиваются из целомического эпителия.

Одиночные гормонопродуцирующие клетки обладают паракринным и дистантным воздействием. Паракринное -- это воздействие на рядом расположенные клетки. Дистантное воздействие заключается в том, что гормоны клетки выделяются в кровь и транспортируются к тем органам, клетки которых имеют рецепторы к данному гормону.

Лекция 17. Органы кроветворения и иммунологической защиты

Органы кроветворения делятся на центральные и периферические. К центральным относятся красный костный мозг, тимус и сумка Фабрициуса. У птиц есть сумка Фабрициуса, у человека нет, но имеется ее аналог. ГДе находится этот аналог, до сих пор никто точно не знает. К периферическим органам кроветворения относятся селезенка, лимфатические узлы и лимфатические узелки различных органов (желудочно-кишечного тракта, дыхательных путей, мочевыделительных органов и т. д.).

Источником развития органов кроветворения является мезенхима, за исключением тимуса, который развивается из эпителия III пары жаберных карманов.

Все органы кроветворения построены по единому плану. Они состоят из гемопоэтических клеток и стромы. Строма всех органов кроветворения, кроме тимуса, представлена ретикулярной тканью, состоящей из переплетения ретикулярных волокон и ретикулярных клеток. Строма тимуса состоит из эпителиальной (ретикулоэпителиальной) ткани.

Миелоидные органы кроветворения представлены миелоидной тканью. К ним относится красный костный мозг, в котором развиваются все форменные элементы крови (эритроциты, лейкоциты, тромбоциты).

Лимфоидные органы кроветворения представлены лимфоидной тканью. К ним относятся тимус, селезенка, лимфатические узлы и лимфатические узелки (фолликулы), в которых развиваются только лимфоциты.

Функции органов кроветворения:

1) кроветворная;

2) кроверазрушающая (в селезенке разрушаются эритроциты, закончившие свой жизненный цикл);

3) защитная (иммунная защита, фагоцитоз);

4) депонирование крови или лимфы (в лимфатических узлах).

Регуляция функции кроветворной системы обеспечивается ЦНС. эндокринной системой и микроокружением. Благодаря регулирующему действию этих систем обеспечивается сбалансированная деятельность всех органов кроветворения.

Микроокружение в органах кроветворения представлено клетками стромы, макрофагами, которые выполняют фагоцитарную функцию и стимулируют развитие клеток крови. После созревания форменные элементы крови поступают в кровоток. Одни форменные элементы крови (эритроциты и тромбоциты) циркулируют в крови до своей гибели, другие (лейкоциты) -- несколько часов, после чего мигрируют в соединительную ткань, где выполняют свои функции.

Три этапа кроветворения:

1) мезобластическое кроветворение, осуществляющееся в желточном мешке в эмбриональном периоде;

2) гепатолиенальное кроветворение в печени и селезенке (в печени происходит до конца эмбриогенеза, а в селезенке к концу эмбриогенеза усиливается и продолжается в течение всей жизни);

3) медуллярное кроветворение, осуществляющееся в красном костном мозге в эмбриональном периоде и продолжающееся с рождения до конца жизни.

КРАСНЫЙ КОСТНЫЙ МОЗГ. МИЕЛОПОЭЗ

Красный костный мозг -- это центральный орган кроветворения, в котором из СКК развиваются эритроциты, нейтрофильные, эозинофильные и базофильные гранулоциты, моноциты, В-лимфоциты, предшественники Т-лимфоцитов и тромбоциты. В красном костном мозге происходит антигеннезависимая дифференцировка В-лимфоцитов.

Клетки микроокружения красного костного мозга представлены ретикулоцитами, макрофагами, остеогенными клетками и адипоцитами. Все клетки микроокружения редко делятся.

Источником развития стромы красного костного мозга является мезенхима, форменных элементов крови -- СКК, которые сами развиваются из мезенхимы и редко делятся. Первый красный костный мозг появляется на 2-м месяце эмбриогенеза в ключицах, на 3-м месяце -- в плоских костях и на 4-м -- в диафизах трубчатых костей. На 5-6-м месяце окончательно формируется костномозговая полость в диафизах трубчатых костей, и с этого момента красный костный мозг становится основным органом кроветворения. гистология ткань орган эндокринный

У детей до 12-18 лет красный костный мозг локализуется в диафизах и эпифизах трубчатых костей и в плоских костях. После этого он остается только в эпифизах трубчатых костей и в плоских костях.

Общая масса красного костного мозга составляет 4-5 % от массы тела человека, цвет его красный, консистенция полужидкая. Кроветворение в красном костном мозге осуществляется по периферии, так как здесь сконцентрирована основная масса СКК.

В петлях ретикулярной стромы красного костного мозга гемопоэтические клетки располагаются группами. В частности, эритробласты располагаются вокруг макрофагов, от которых получают молекулы железа, необходимые для синтеза гемоглобина. По мере созревания эритробласты превращаются в эритроциты и через стенку синусоидных капилляров мигрируют в общий ток крови. Незначительная часть эритроцитов депонируется в красном костном мозге. Молодые эритроциты -- ретикулоциты дозревают либо в синусоидных капиллярах мозгового вещества, либо в периферических капиллярах кровеносной системы.

Гранулоциты также располагаются группами, по мере созревания они поступают в общий ток крови, значительная часть их депонируется в красном костном мозге. В любой момент депонированные гранулоциты могут быть выброшены в общий ток крови. Этим можно объяснить быстрое увеличение количества гранулоцитов в периферической крови при заболеваниях.

...

Подобные документы

  • Изучение видов и функций различных тканей человека. Задачи науки гистологии, которая изучает строение тканей живых организмов. Особенности строения эпителиальной, нервной, мышечной ткани и тканей внутренней среды (соединительной, скелетной и жидкой).

    презентация [309,1 K], добавлен 08.11.2013

  • Внутреннее строение мужских половых органов: предстательной железы, мошонки и полового члена. Строение внутренних половых органов женщины. Вены, несущие кровь от промежности. Функции органа слуха. Слуховые восприятия в процессе развития человека.

    реферат [518,0 K], добавлен 16.10.2013

  • Класификация тканей, виды эпителиальных тканей, их строение и функции. Опорная, трофическая и защитная функция соединительных тканей. Функции нервной и мышечной тканей. Понятие об органах и системах органов, их индивидуальные, половые, возрастные отличия.

    реферат [6,0 M], добавлен 11.09.2009

  • Особенности строения, физиологии и химического состава клетки. Типы и свойства тканей. Характеристика системы органов - частей организма, имеющих только их свойственные форму и строение и выполняющих определенную функцию. Регуляция функций в организме.

    реферат [21,9 K], добавлен 03.07.2010

  • Клетка как основная структурная единица организма. Описание ее строения, жизненных и химических свойств. Строение и функции эпителиальной и соединительной, мышечной и нервной тканей. Органы и перечень системы органов человека, их назначение и функции.

    презентация [1,1 M], добавлен 19.04.2012

  • История гистологии - раздела биологии, изучающего строение тканей живых организмов. Методы исследования в гистологии, приготовление гистологического препарата. Гистология ткани - филогенетически сложившейся системы клеток и неклеточных структур.

    реферат [24,3 K], добавлен 07.01.2012

  • Эмбриогенез как часть индивидуального развития человека. Эмбриогенез мышц, строение боковой стенки живота. Развитие исчерченной мускулатуры из миотом. Паховые канал, промежуток и кольца. Образование паховой грыжи. Процесс опускания яичек: основные этапы.

    презентация [1,1 M], добавлен 28.02.2011

  • Гистология - учение о развитии, строении, жизнедеятельности и регенерации тканей животных организмов и организма человека. Методы ее исследования, этапы развития, задачи. Основы сравнительной эмбриологии, науки о развитии и строении зародыша человека.

    реферат [9,9 K], добавлен 01.12.2011

  • Человеческий организм как очень сложная живая биологическая система. Строение и функции паренхиматозных органов человека. Анатомия и функции печени, поджелудочной железы, легких и почек. Взаимодействие специфически функционирующих структур (органов).

    контрольная работа [52,6 K], добавлен 16.03.2015

  • Основные органы мочевыделительной системы, их функции. Строение мочеполового аппарата мужчины и женщины. Структура почечного нефрона. Мочевые канальцы и кровеносные сосуды в почке. Строение половой системы человека, мужские и женские половые органы.

    презентация [2,9 M], добавлен 30.05.2013

  • Изучение органов нервной системы как целостной морфологической совокупности взаимосвязанных нервных структур, обеспечивающих деятельность всех систем организма. Строение механизмов зрительного анализатора, органов обоняния, вкуса, слуха и равновесия.

    реферат [23,5 K], добавлен 21.01.2012

  • Основные элементы и химический состав мышечной ткани. Виды белков саркоплазмы и миофибрилл, их содержание к общему количеству белков, молекулярная масса, распределение в структурных элементах мышцы. Их функции и роль организме. Строение молекулы миозина.

    презентация [368,2 K], добавлен 14.12.2014

  • Общая характеристика тканей человека: эпителиальная, нервная, соединительная, мышечная. Репаративная регенерация как процесс восстановления тканей при их повреждении. Нейрон как функциональная единица нервной системы. Роль и значение мышечной ткани.

    презентация [5,9 M], добавлен 18.05.2014

  • Общая характеристика мышечной ткани, морфологические признаки и основные свойства. Виды белков и их функции. Разновидности мышечной ткани. Общая характеристика и функции нервной ткани. Характеристика нейронов. Классификация нейроглий. Эмбриогенез.

    презентация [2,2 M], добавлен 10.04.2016

  • Общая характеристика женских половых органов, строение и функции матки и ее придатков. Особенности слизистой и мышечной оболочек. Отношение матки к брюшине и ее связочный аппарат. Кровоток, лимфоток и иннервация органа. Строение и функции яичников.

    реферат [39,0 K], добавлен 04.09.2011

  • Восприятие раздражения из внешней и внутренней среды. Понятие об анализаторах. Строение глаза и слезного аппарата. Орган слуха и равновесия. Колебания барабанной перепонки. Воздушная и костная проводимость звука. Основные анализаторы обоняния и вкуса.

    презентация [6,9 M], добавлен 03.05.2016

  • Гистология — наука о строении, развитии и жизнедеятельности тканей животных организмов и общих закономерностях тканевой организации; понятие цитологии и эмбриологии. Основные методы гистологического исследования; приготовление гистологического препарата.

    презентация [1,5 M], добавлен 23.03.2013

  • Понятие процесса пищеварения и его основные функции. Эмбриогенез органов пищеварительной системы, строение и функциональное значение ее органов: полость рта, глотка, пищевод, желудок, тонкая и толстая кишка, печень, желчный пузырь, поджелудочная железа.

    курсовая работа [1,6 M], добавлен 05.06.2011

  • Покровная, пучковая и основная ткани растений. Ткани и локальные структуры, выполняющее одинаковые структуры функции. Клеточное строение ассимиляционного участка листа. Внутреннее строение стебля. Отличие однодольных растений от двудольных растений.

    презентация [15,3 M], добавлен 27.03.2016

  • Разнообразие живого мира как результат развития живых организмов. Способность к восприятию звуковых частот у позвоночных. Основные закономерности развития органов слуха. Органы слуха у представителей классов рыб, амфибий, рептилий, птиц и млекопитающих.

    реферат [29,2 K], добавлен 27.05.2015

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.