Экологическая физиология

Адаптация организма человека к природно-климатическим и социальным условиям. Экологические аспекты хронобиологии. Влияние на организм вибраций, гравитации, излучения, звуковых нагрузок, катастроф. Гипоксия, гиперкапния и декомпрессионные расстройства.

Рубрика Биология и естествознание
Вид учебное пособие
Язык русский
Дата добавления 19.08.2017
Размер файла 616,8 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Корпускулярное излучение - ионизирующее излучение, состоящее из частиц с массой покоя, отличной от нуля. Выделяют две их разновидности. Заряженные частицы: -частицы (электроны), протоны (ядра водорода), дейтроны (ядра тяжелого водорода - дейтерия), -частицы (ядра гелия), тяжелые ионы - ядра других элементов, ускоренные до больших энергий. При прохождении через вещество заряженная частица, теряя свою энергию, вызывает ионизацию и возбуждение атомов. К незаряженным частицам относятся нейтроны, которые не взаимодействуют с электронной оболочкой атома, беспрепятственно проникают в глубь атомон, вступая в реакцию с ядрами. При этом испускаются -частицы или протоны. Протоны приобретают в среднем половину кинетической энергии нейтронов и вызывают на своем пути ионизацию. Плотность ионизации протонов велика, поэтому нейтроны следует рассматривать как частицы, косвенно вызывающие очень плотную ионизацию. В веществах, содержащих много атомов водорода (вода, парафин, графит), нейтроны быстро растрачивают свою энергию и замедляются, что используется в целях радиационной защиты.

Остановимся на основных источниках ионизирующих излучений. Различают два вида радиоактивности: естественную (природную) и искусственную. К естественным источникам излучений относятся внутренние (радиоактивные изотопы К40 и С14, отложившиеся в костях радий и торий, радон, растворенный в тканях организма) и внешние (космические лучи, излучения от радиоактивности в почве, воздухе и строительных материалах).

Общая доза фонового облучения, получаемая человеком в год, на уровне моря составляет примерно 0,14-0,7 сЗв. Учитывая, что современные самолеты летают на высотах более 10 км, необходимо кратко охарактеризовать радиационную обстановку в верхних слоях атмосферы и стратосфере. Основной вклад в дозу на этих высотах вносит галактическое космическое излучение (ГКИ). На уровне Земли доза от ГКИ составляет 287 мкГр за год. Считается, что в пределах до 10 км над уровнем моря доза ГКИ через каждые 1,5 км высоты удваивается. На высотах от 10 до 20 км она изменяется в диапазоне от 1,8 до 8 сГр в год (или от 50 до 220 мкГр/сут). На высоте около 25 км над уровнем моря ГКИ формирует максимум тканевой дозы - до 8,64 сГр/год (240 мкГр/сут). Этот максимум объясняется увеличением вклада вторичного излучения (электроны, позитроны, протоны и др.)- На высотах 25-30 км вклад вторичного излучения уменьшается и интегральная доза составляет величину порядка 5,4 сГр/год (150 мкГр/сут).

Наиболее реальную опасность представляют искусственные источники излучений. Совершенствование авиакосмической техники может привести к использованию в будущем бортовых радиоизотопных, ядерно-энергетических и ядерно-силовых установок, являющихся источниками ионизирующих излучений. Возникновение радиационной ситуации возможно при перевозках радионуклидов, а также еще в трех особых формах контакта с источниками облучения: взрыв ядерного оружия, аварийный выброс технологических продуктов атомного предприятия в окружающую среду и местное выпадение радиоактивных веществ, сопутствующее первым двум обстоятельствам. Примерами могут служить атомный взрыв над городами Японии в 1945 г., испытательный термоядерный взрыв на Маршалловых островах в 1954 г., авария в Уайдскелле в 1957 г. и др. Поток -излучения и нейтронов, сопровождающий атомный взрыв, обладает значительной проникающей способностью и достигает Земли даже при взрыве на значительной высоте.

Источником излучения в районе взрыва являются также осевшие радиоактивные продукты из облака взрыва, элементы почвы и местных предметов, приобретшие наведенную радиоактивность вследствие воздействия потоков нейтронов из эпицентра взрыва.

Как естественная, так и искусственная радиоактивность имеют сложный спектр излучения. Для оценки биологического эффекта воздействия излучения произвольного состава введено понятие эквивалентной дозы с. единицей измерения в СИ - зиверт (Зв). Зиверт - единица эквивалентной дозы любого вида излучения в биологической ткани, которое создает такой же биологический эффект, как и поглощенная доза в 1 Гр образцового рентгеновского или -излучения (энергия 100-1000 кэВ).

При одной и той же поглощенной дозе биологический эффект от воздействия различных видов излучения существенно различается. В связи с этим для прогнозирования биологического эффекта в поглощенную дозу излучения необходимо вносить поправочный коэффициент на его вид: этот коэффициент характеризует относительную биологическую эффективность (ОБЭ).

Пользуясь понятием о дозе излучения, ОБЭ можно определить как отношение биологически равноэффективных доз стандартного и сравниваемого излучений:

Биологическую эффективность ионизирующего излучения определяют в первую очередь линейной плотностью ионизации (ЛПИ), создаваемой этим излучением, т.е. количеством пар ионов, образуемых на единице пути ионизирующей частицы в веществе (ткани). Однако биологическую эффективность правильнее связывать не с ЛПИ, а с величиной энергии, передаваемой ионизирующей частицей ткани на единицу пути. Эта величина называется линейной передачей энергии (ЛПЭ). Значения ЛПИ, ЛПЭ и ОБЭ связаны между собой.

Регламентированные значения ОБЭ, установленные для контроля степени радиационной опасности в области малых величин доз при хроническом облучении, называют коэффициентом качества излучения Q,

Кроме единиц дозы излучения, в медицинской практике используют единицы активности радиоактивных изотопов. Единица активности в СИ - беккерель (Бк), равная одному распаду в секунду (расп/с).

Оценку дозы производят различными физическими и химическими методами. В настоящее время широко используют ионизационный метод, т.е. измеряется электрический ток, возникающий вследствие ионизации газовых смесей в специальных камерах с тканеэквивалентными стенками. Важное значение для оценки облучения всего тела и различных его частей имеют автономные дозиметры интегрального типа, в частности термолюминесцентные дозиметры, достоинствами которых являются малые размеры, устойчивость к механическим воздействиям и пониженному барометрическому давлению, хорошая сохранность информации, химическая инертность, вследствие чего возможно их употребление в любой газовой среде, при любой влажности. Находит применение метод измерения дозы с использованием фотопленок и ядерных фотоэмульсий. Применение ядерных фотоэмульсий позволяет, кроме того, проанализировать состав падающего на тело излучения.

Первичные радиационно-химические изменения при воздействии ионизирующих излучений раскрыты не полностью. В основе могут лежать два механизма: прямое действие (молекула биообъекта испытывает изменения непосредственно при прохождении через нее электрона) и косвенное (изменяемая молекула получает энергию путем передачи от другой молекулы). Все ткани организма способны поглощать энергию излучения, которая преобразуется в энергию химических реакций или тепло. Известно, что в тканях содержится 60-80% воды. Следовательно, большая часть энергии излучения поглощается водой, а меньшая - растворенными в ней веществами. Поэтому при облучении в организме появляются свободные радикалы - продукты разложения (радиолиза) воды, которые в химическом отношении очень активны, могут вступать в реакцию с белковыми и другими молекулами. Полагают, что В таких «плотноупакованных» структурах, как хромосомы, преобладают повреждения, обусловленные прямым действием излучения, тогда как в растворах и высокогидратированных системах существенную роль играют также продукты радиолиза воды.

При воздействии очень больших доз в результате первичного действия ионизирующего излучения наблюдаются изменения в любых биомолекулах. При умеренных же дозах лучевого воздействия первично страдают в основном только высоко молекулярные органические соединения: нуклеиновые кислоты, белки, липопротеиды и полимерные соединения углеводов. Нуклеиновые кислоты обладают чрезвычайно высокой радиочувствительностью. При прямом попадании достаточно 1-3 актов ионизации, чтобы молекула ДНК вследствие разрыва водородных связей распалась на две части и утратила свою биологическую активность. При воздействии ионизирующего излучения в белках происходят структурные изменения, приводящие к потере ферментативной и иммунной активности.

Нарушение структуры белков проявляется в изменении ряда их физических характеристик: показателей вязкости, преломления света, оптического вращения, спектров электронного парамагнитного резонанса и др. Обнаружение свободных амид-ных групп и фрагментов после раскручивания молекул облученных белков свидетельствует о наличии замаскированных разрывов полипептидных цепей. С увеличением дозы излучения число разрывов полилептидных связей нарастает и явления деградации белка становятся очевидными.

Повреждение ионизирующим излучением структуры жиров приводит к нарушению сложных ферментативных реакций, развитие которых обеспечивается упорядоченностью расположения ферментов на мембране, а также изменению процессов адсорбции и активного транспорта ряда веществ через мембрану вследствие нарушения ее проницаемости. Первичные изменения в жирах при воздействии ионизирующего излучения заключаются в образовании свободных радикалов, которые, взаимодействуя с кислородом, образуют перекисные соединения, обладающие высокой химической активностью. Первичные изменения в углеводах сводятся к окислению их с распадом углеводородной цепи и образованием кислот и формальдегида.

В результате этих процессов, протекающих практически мгновенно, образуются новые химические соединения (радиотоксины), несвойственные организму в норме. Все это приводит к нарушению сложных биохимических процессов обмена веществ и жизнедеятельности клеток и тканей, т.е. к развитию лучевой болезни.

Проблема радиочувствительности клеток, тканей, организмов занимает центральное место в радиобиологии. Наиболее чувствительны к этому фактору малодифференцированные, молодые и растущие клетки. Характеристикой радиочувствительности биообъектов является величина дозы облучения, вызывающей гибель 50% объектов. У человека средне-детальная доза равна 4-1 Гр. Ввиду различной радиочувствительности органов и тканевых систем существует строгая зависимость между поглощенной дозой в организме и средней продолжительностью жизни биологических объектов. Эти три характерных дозных участка кривой отражают основные клинические радиационные синдромы (формы лучевой болезни): костномозговой (1-10 Гр), желудочно-кишечный (10-50 Гр) и церебральный (более 50 Гр), развивающиеся вследствие необратимого поражения соответствующих критических систем организма: кроветворной, кишечника и дне.

Таким образом, критический орган - это орган, ткань или часть тела, которая первой выходит из строя в конкретном диапазоне доз и приводит организм к гибели, а в гигиеническом плане причиняет наибольший ущерб здоровью человека или его потомству.

Костномозговая форма лучевого поражения клинически может протекать в виде острой лучевой реакции и острой лучевой болезни. Эта форма возникает в результате однократного общего относительно равномерного облучения, когда критической является система кроветворения и в первую очередь костный мозг.

Острая лучевая реакция - это наиболее легкая степень тяжести острого лучевого поражения организма. Она наблюдается при небольших дозах облучения (порядка несколько десятых Гр). Самочувствие остается удовлетворительным; какие-либо выраженные клинические проявления у пораженных отсутствуют. При исследовании крови находят умеренно выраженное уменьшение содержания лимфоцитов, Гранулоцитов и тромбоцитов. Изменения в целом носят преходящий характер и через 3-4 недели исчезают. Смертельные исходы отсутствуют.

Острая лучевая болезнь (ОЛБ) является более тяжелым поражением организма. Она возникает при относительно больших дозах облучения - порядка нескольких грэй. Характерной чертой ОЛБ является волнообразпость клинического течения. Предлагается различать три периода в течении ОЛБ: формирование, восстановление и период исходов и последствий.

Период формирования ОЛБ, в свою очередь, четко разделяется на 4 фазы.

1. Фаза первичной общей реакции наиболее ранний симптомокомплекс радиационного поражения, возникающий в первые часы после облучения и характеризующийся следующими симптомами: общая слабость, утомляемость, апатия, головокружение, головная боль, парестезии конечностей, нарушение сна, тошнота, рвота, понос, Ясно, что в условиях полета указанные симптомы могут приобрести особую значимость. Бесспорно, перечисленные симптомы являются «поведенчески значимыми». Однако заранее невозможно однозначно прогнозировать, какое влияние окажут соматические и психосоматические эффекты облучения на операторскую деятельность, поскольку высокий уровень тренировки и мотивации позволяет выполнять сложные задачи управления в различных экстремальных условиях.

Фаза кажущегося клинического благополучия (скрытая, или латентная). Чем короче срок такого состояния, тем, как правило, тяжелее степень радиационного поражения. Несмотря на отсутствие видимых клинических проявлений, отмечаются функциональные нарушения в ЦНС, а также в сердечно-сосудистой, кроветворной и пищеварительной системах. Непродолжительный абсолютный нейтрофильный лейкоцитоз сменяется лейкопенией со сдвигом формулы вправо. С первых минут и часов после облучения обнаруживается лимфоцитопения, быстро снижается число нейтрофилов, затем тромбоцитов и позже эритроцитов. Продолжительный начальный лейкоцитоз (2-3 дня после облучения) является, как правило, благоприятным прогностическим признаком.

Фаза выраженных клинических проявлений (разгар заболевания) характеризуется появлением всего симптомокомплекса лучевой болезни.

Фаза непосредственного восстановления, переходящая в период восстановления. Процессы восстановления в облученном организме характеризуются периодом пол у вое становления, т.е. временем, необходимым для восстановления организма от лучевого поражения на 50%. У человека, согласно расчетам, он составляет 25-45 дней, считая от момента облучения. В среднем его принимают равным 28 сут. Восстановление происходит не во всех случаях облучения. Предлагается различать 4прогностические категории: 1) выживание невозможно, если доза облучения основной массы тканей тела достигает 6 Гр, несмотря на отличный медицинский уход и самую современную терапию; 2) выживание возможно при дозах 2-4,5 Гр, несмотря на тяжелое поражение, которое требует своевременного и квалифицированного лечения; 3) выживание вполне вероятно (1-2Гр); 4) выживание несомненно (при дозах менее 1 Гр), а имеющаяся клиническая симптоматика {только гематологические сдвиги) не требует медицинского вмешательства.

Период исходов и последствий облучения проявляется в изменениях крови, угнетении механизмов иммунитета, нарушении обмена веществ, а далее - укорочении продолжительности жизни (раннее старение), увеличении вероятности развития лейкоза и злокачественных новообразований, помутнения хрусталика (лучевая катаракта), нарушении функции сердечно-сосудистой системы, вегетативных расстройствах, а также в генетических изменениях.

При кишечном варианте лучевом болезни в результате массовой гибели клеток эпителия топкого кишечника развиваются тяжелые нарушения в желудочно-кишечном тракте. Резко нарушаются процессы всасывания и экскреции веществ. Организм теряет много жидкости, наступает его обезвоживание. Слизистая оболочка изъязвляется, иногда появляются перфорации, развиваются кишечные кровотечения, являющиеся нередко причиной смерти пораженных. Большую роль играют при этой форме поражения также инфекция и интоксикация организма продуктами жизнедеятельности кишечной микрофлоры. Глубокие патологические изменения в кроветворной ткани не успевают развиться, так как пораженные умирают в ближайшие 6-9 дней после облучения. Однако, несмотря на быстротечность заболеваний, и в этом случае можно отметить короткий период мнимого благополучия, длящийся от 1 до 2 сут.

Церебральная форма лучевого поражения характеризуется чрезвычайно быстрым и тяжелым течением. Продолжительность жизни пораженного измеряется часами. Уже вскоре после облучения появляются мышечный тремор, нистагм, расстройство равновесия и координации движений, тонические и кло-нические судороги. Развивается состояние децеребрационной ригидности мышц. Во время приступа останавливается дыхание. Может наступить паралич дыхательного центра. Кишечная и церебральная формы лучевой болезни клинически протекают в виде острейшей лучевой болезни.

При попадании радиоактивных веществ на открытые участки тела, одежду, снаряжение основная задача сводится к быстрому их удалению, чтобы воспрепятствовать попаданию радионуклидов в организм. Если радиоактивное вещество все же проникло внутрь, то пострадавшему сразу вводят адсорбенты в желудок, промывают его, дают рвотные, слабительные, отхаркивающие средства и внутривенно - комплексионы (например, динатриевая соль этилендиаминотетрауксусной кислоты - ЭДТУ), способные прочно связывать радиоактивные вещества и препятствовать отложению их в тканях.

Основным требованием при лечении ОЛБ является комплексность терапевтических мероприятий, при этом используют как патогенетические, так и симптоматические средства.

Описанные биологические эффекты могут значительно модифицироваться условиями облучения: время, локализация, сопутствующие факторы. Так, например, большое значение имеет мощность дозы, или интенсивность облучения, под которой понимают количество энергии излучения, поглощаемое а единицу времени - сутки, час, минуту, секунду и т.д. Если мощность дозы очень мала, то даже ежедневные облучения в течение всей жизни человека не смогут оказать заметно выраженного поражающего действия. Таким образом, фактор времени крайне значим в биологическом эффекте излучения. Это еще раз свидетельствует о том, что организм обладает способностью восстанавливать основную часть радиационного поражения. Многократное прерывистое (фракционированное) воздействие излучения также приводит к значительному снижению поражающего действия. Неравномерные лучевые воздействия, которые встречаются на практике в подавляющем большинстве случаев, переносятся в целом значительно легче, чем «классические» общие равномерные облучения, рассмотренные нами ранее.

Таким образом, в настоящее время достаточно хорошо изучены последствия, вызываемые воздействием на организм различного рода ионизирующих излучений. Однако физиологические реакции, возникающие под их влиянием, в сочетании с другими факторами нелучевой природы могут быть существенно иными.

В настоящее время разработаны эффективные меры и правила защиты людей, работающих с источниками ионизирующих излучений. Профилактика радиационных поражений осуществляется путем проведения комплекса санитарно-гигиенических, санитарно-технических и специальных медицинских мероприятий.

Строгое соблюдение правил и надлежащий дозиметрический контроль исключают вредное действие ионизирующих излучений.

Средства противохимической защиты (защитная одежда, противогазы или респираторы и т.п.) оказывают известный защитный эффект от воздействия радиоактивных веществ. В случаях, когда неизбежно облучение в дозах, превышающих ПДД, профилактика осуществляется методом фармакохимической защиты.

В результате многочисленных радиобиологических исследований обнаружены вещества, которые при введении в организм за определенное время до облучения снижают в той или иной степени радиационное поражение. Такие вещества называются радиозащитными или радиопротекторами. Большинство изученных в настоящее время радиопротекторов оказывают положительный эффект при введении их в организм сравнительно за короткое время до облучения. Они улучшают течение лучевой болезни, ускоряют восстановительные процессы, повышают эффективность терапии и увеличивают выживаемость.

Одним из основных механизмов модификации радиочувствительности, в том числе и при использовании радиопротекторов, является кислородный эффект - универсальное явление радиобиологии. Под ним обычно понимают явление усиления лучевого поражения при повышении концентрации кислорода в облучаемой среде во время облучения и, напротив, ослабление поражения при снижении его концентрации в биообъекте. Кислородный эффект продемонстрирован на молекулярном, клеточном, тканевом и организменном уровнях биологической интеграции. Применение кислорода после момента облучения может привести к качественно иным изменениям, в частности возможно улучшение и убыстрение восстановительных процессов.

Таким образом, было экспериментально установлено, что повышения радиорезистентности организма можно добиться, применяя фармакохимические средства (в том числе и дыхание гипоксическими газовыми смесями), которые способны тем или иным способом вызывать гипоксию в клетках и тканях облучаемого организма.

Среди механизмов защитного действия радиопротекторов можно выделить следующие процессы: конкуренция за сильные окислители и свободные радикалы, образовавшиеся в результате радиолиза воды; увеличение содержания в тканях эндогенных тиоловых соединений; образование временных, обратимых связей с чувствительными группами жизненно важных ферментов или другими белковыми молекулами, тем самым предохраняя их от повреждающего действия в момент облучения; торможение цепных реакций окисления с разветвленными цепями, связывающими активные радикалы и вызывающими обрыв реакции; образование прочных соединений с тяжелыми металлами, обеспечивающими ускоренное течение этих реакций; миграция избытка энергии с макромолекулы на радиопротектор; поглощение вторичного ультрафиолетового излучения, возбуждающего макромолекулы типа нуклеиновых кислот; замена составных частей жизненно важных молекул; повышение устойчивости и мобильности защитных механизмов организма; детоксицирование или ускоренное выведение из облученного организма токсических продуктов; снижение уровня обмена веществ; предупреждение нарушения взаимодействия процессов возбуждения и торможения в ЦНС.

Работы по созданию радиозащитных препаратов проводятся по двум путям. Первый путь предусматривает улучшение переносимости радиопротекторов с помощью физиологически активных веществ (витамины, стимуляторы ЦНС и т.д.), предотвращающих или ослабляющих побочные эффекты. Второй путь основан на использовании особенностей механизма действия радиопротекторов различного вида. В комплекс включают такие препараты, противолучевое действие которых при их совместном применении суммируется или потенцируется.

Кроме радиопротекторов, должное внимание следует уделять биологической защите, которая осуществляется с помощью адаптогенов. Эти вещества не обладают специфическим действием, но зато повышают общую сопротивляемость организма к различным неблагоприятным факторам, в том числе и к ионизирующим излучениям. Адаптогены назначают многократно за несколько дней или недель до облучения. К ним следует отнести препараты элеутерококка, женьшеня, лимонника китайского, витаминно-аминокислотные комплексы, некоторые микроэлементы, АТФ, дибазол, гутимин и др. Механизм действия этих препаратов необычайно широк. Так, например, они увеличивают способность кроветворных клеток к Пролиферации, повышают иммунологическую реактивность и т.п. В понятие биологической защиты входят и такие мероприятия, как акклиматизация к гипоксии, вакцинация, хорошее питание, занятие физической культурой и т.д. Все это безусловно повышает устойчивость организма. Напротив, злоупотребление алкоголем, никотином, наркотиками снижает устойчивость организма к облучению.

Эффективным способом противорадиационной защиты является локальное экранирование критических органов и систем.

3.12 Адаптация человека к последствиям чрезвычайных ситуаций (катастроф)

Чрезвычайной называют внезапно возникшую ситуацию, которая характеризуется значительным социально-экологическим и экономическим ущербом, необходимостью защиты населения от воздействия вредных для здоровья факторов (химические агрессивные вещества, радиоактивные вещества, микробы, вирусы, риккетсии, переохлаждение, перегревание, травмирующие и психогенные факторы), проведения спасательных, неотложных медицинских и эвакуационных работ, а также ликвидации негативных последствий случившегося.

Существует ряд классификаций чрезвычайных ситуаций, в зависимости от того, какие критерии положены в их основу. Так, А. Е. Дубицкий и др. (1993) подразделяют их на частные, объектовые, местные, региональные, глобальные и т.д.

Любая катастрофа угрожает человеку гибелью или потерей здоровья в результате травм, кровопотери, переохлаждения, перегревания, действия вредных веществ, инфекции, недостатка или отсутствия пищи, воды и т.д. Во всех этих ситуациях сохранение жизни человека и восстановление здоровья зависит от физиологических компенсаторных или защитных реакций. В результате катастроф человек часто остается длительное время без помощи, и поэтому развитие таких реакций до предела их физиологических возможностей - часто единственный шанс сохранения жизни. В настоящее время в мире все чаще возникают различные катастрофы, и связанные с ними проблемы давно начали изучать медики.

Аспектам физиологической адаптации к последствиям катастроф до сих пор внимания почти не уделялось. Вместе с тем, по мнению К.П. Иванова (1997), анализ механизмов адаптации к таким факторам, как падение объема крови, снижение кислородной емкости крови, гипоксия, острые переохлаждение или перегревание, которые имеют место при различных катастрофах, в определенной мере может восполнить этот пробел.

При очень резких изменениях условий существования, угрожающих жизни, понятие адаптации соприкасается с понятием биологической выживаемости, разделить которые бывает очень трудно, а порой невозможно. Так, например, снижение кислородной емкости крови человека до 5 об.% , с одной стороны, является границей выживаемости по данному признаку, а с другой - знаменует собой предел физиологической адаптации со стороны деятельности дыхания и сердечно-сосудистой системы. Термин «пределы адаптации» (Иванов К.П., 1997) подразумевает существование связи между двумя этими понятиями.

Травмы, кровопотери и как следствие уменьшение объема циркулирующей крови наиболее характерны для различных катастроф. Борьба с последствиями кровопотерь является важнейшей задачей неотложной медицины, чему посвящено огромное количество теоретических и практических исследований и разработок. Тем не менее, с точки зрения современной физиологии здесь имеется ряд нерешенных проблем.

Основные нарушения физиологических функций организма, связанные непосредственно с уменьшением объема циркулирующей крови, состоят в следующем: снижение артериального кровяного давления (АД), уменьшение венозного притока, к сердцу, уменьшение минутного объема кровообращения (МОК), замедление обращения крови. Важнейшим следствием всех этих нарушений является кислородная недостаточность организма и, в первую очередь, миокарда и мозга.

По данным Дэвиса, потеря 10% объема крови почти не отражается на АД, но ведет к уменьшению МОК на 20-25%. При потере 20% объема крови АД падает на 25-30 мм рт.ст., МОК на 35-40%, а потеря более 30-35% объема крови приводит к резкому падению АД я к уменьшению МОК на 60-70% . Оборот крови замедляется в 2-3 раза. Эти данные хорошо знакомы врачам, однако значительно менее известны физиологические механизмы компенсации снижения объема циркулирующей крови и эффективность соответствующих механизмов. В настоящее время полагают, что основным регулятором объема крови является работа почек, которые повышают или понижают секрецию натрия. Выведение или задержка натрия в крови регулируется специальными гормонами. Один из них, открытый недавно и называемый предсердным натряй-уретическим фактором (atrial natriuretic factor), образуется при увеличении объема крови, растяжении предсердий и включен в сложную систему гормональной регуляции функции почек. Считается, что у человека после острой кровопотери соответствующие механизмы регуляции объема крови могут обеспечить поступление в кровяное русло до 1 л жидкости в час. Это, однако, теоретическая величина, а фактически при потере 25% объема крови восстановление АД и объема крови происходит в течение 4-6 ч, а при потере 30-35% объема крови восстановления за счет чисто физиологической компенсации может не произойти и организм погибает.

Согласно биологическому закону симморфизма генетически у гомойотермных животных и человека сформирован функциональный резерв каждой жизненно важной функции. Это означает, что по сравнению с относительным покоем кровообращение, дыхание, органы выделения и др. могут повысить свою функциональную активность в 8-10 раз. Очевидно, физиологические механизмы, регулирующие постоянство объема крови, не подчиняются этому закону и настроены на сравнительно небольшие отклонения регулируемой величины, а при значительных и тем более массивных кровопотерях быстро достигают пределов компенсаторных (адаптивных) возможностей.

Массивная кровопотеря специфически нарушает тонкие механизмы регуляции гемодинамики. Как известно, в системе венул, особенно в мозге, существует тенденция к реагрегации эритроцитов и к массовой адгезии лейкоцитов к стенкам венул, через которые они путем диапедеза проникают в ткани, где превращаются в плазматические клетки, выполняющие иммунные функции. Двум этим процессам способствует резкое физиологическое замедление скорости кровотока в венулах (по сравнению с артериолами аналогичного калибра) и резкое уменьшение кровяного давления. Оба этих фактора способствуют как реагрегадии эритроцитов, так и массовой адгезии лейкоцитов. По данным К. П. Иванова (1993), в норме в физиологических условиях потоки эритроцитов из капилляров в венулы и из мельчайших венул в более крупные переходят не сливаясь, сохраняя свою динамическую структуру. Это препятствует реагрегации эритроцитов и смещению лейкоцитов к стенкам венул, Резкое замедление скорости обращения крови после массивной кровопотери приводит к деформации динамической структуры кровотока в венулах или к ревкому ее нарушению. В результате в ряде микрососудов венозной системы происходит агрегация эритроцитов, массовая адгезия лейкоцитов, коагуляция крови, что приводит к «закупорке» сосудов и к резкому ухудшению снабжения тканей кислородом. Такие явления составляют часть патогенетических механизмов геморрагического шока.

Сравнительно малая эффективность физиологических механизмов восстановления массы потерянной крови затрудняет разработки мер по спасению человека при массивной кровопотере.

Механическое восполнение потерянной крови сопряжено с определенным риском. Действительно, инфузия больших количеств донорской крови может усилить процесс микрокоагуляции крови в микрососудах и поэтому применяется редко. Инфузия больших количеств растворов кристаллоидов или коллоидных веществ нарушает физиологические отношения в гемодинамике и в обмене воды и ионов. Такие растворы приходится вводить в организм в объемах в 1,5-1,6 раза превышающих величину потерянной крови, что вызывает, в частности, неадекватную нагрузку на сердце.

При кровопотере уменьшение объема и кислородной емкости крови обычно происходят одновременно, однако физиологическая адаптация к этим нарушениям по механизмам и мощности существенно различается. Уменьшение объема циркулирующей крови на 30-35% самостоятельно, физиологически, у человека не восстанавливается, о чем говорилось выше. При нормоволемии кислородная емкость крови человека может уменьшиться в 3 и даже в 4 раза до 5-6 об% при сохранении сознания и основных физиологических функций. В этом отношении пределы физиологической адаптации у человека очень широки. Механизм адаптации заключается, главным образом, в повышении скорости кровотока. При резком уменьшении кислородной емкости крови МОК у человека может увеличиться в 3-4 раза, что может обеспечить общий объем потребления кислорода, близкий к норме. При этом наиболее важно сохранить достаточную доставку кислорода в миокарде и в мозге. Действительно, в миокарде при снижении кислородной емкости крови скорость кровотока в микрососудах резко возрастает. Кроме того, миокард в состоянии относительного покоя получает кислород в определенном « избытке». Этот резерв может эффективно использоваться при уменьшении содержания гемоглобина в крови. В мозге измерить скорость кровотока в микрососудах при гемоделюции (разведении крови) по техническим причинам очень трудно, однако К. П. Иванову удалось сделать такие измерения с помощью кино-телевизионной техники. Было показано, что в венулах коры мозга диаметром 8-12 мкм при уменьшении гематокрита на 1/2 от 44±1 до 22±1% скорость кровотока возросла от 2,0±0,1 до 3,4-1-0,1 мм/с., т.е. примерно в 1,5 раза. При снижении гематокрита до 17% скорость кровотока в ряде венул увеличивается в 2-2,5 раза.

Определенную роль в улучшении снабжения тканей кислородом в данной ситуации может играть и сдвиг кривой диссоциации оксигемоглобина (КДО) вправо. Такой сдвиг в сочетании с ускорением обращения крови создает, однако, определенные физиологические проблемы для насыщения крови кислородом в легких.

Эффективность компенсаторных реакций организма при падении кислородной емкости зависит от ряда переменных, таких как фактическое содержание гемоглобина в крови, величины МОК, положения КДО крови, фактической потребности в кислороде организма при данных конкретных условиях. Выяснение количественных отношений между этими параметрами представляет большой научный интерес с точки зрения анализа механизмов адаптации к снижению кислородной емкости крови, установления пределов их эффективности. Эмпирически указанные взаимоотношения проанализировать очень трудно из-за большой сложности и нелинейности взаимных влияний. Тем не менее для человека, который получил травму и потерял часть крови s результате несчастного случая или какой-либо катастрофы, необходима оценка эффективности механизмов физиологической адаптации с целью прогноза состояния и выбора мер по оказанию помощи.

Поэтому в настоящее время у больного срочно измеряют указанные выше параметры и определяют некоторые вспомогательные показатели, получая с помощью специальных программ на ЭВМ данные о состоянии и эффективности механизмов физиологической адаптации. Это новейший и весьма продуктивный метод изучения механизмов и пределов физиологической адаптации, который, несомненно, будет иметь широкое применение.

Особая проблема адаптации к снижению кислородной емкости крови состоит в восстановлении числа эритроцитов и содержания гемоглобина. У человека этот процесс протекает очень медленно, однако разработка новых, наиболее активных стимуляторов гемопоэза позволяет значительно ускорить его. Следует отметить, что при массивных кровопотерях такая стимуляция оказывается недостаточно эффективной, возможно, из-за недостаточного количества так называемых стволовых клеток костного мозга, которые являются предшественниками всех форменных элементов крови. В среднем на 100 тыс. клеток костного мозга приходится только одна стволовая клетка. Недавно был разработан метод быстрого автоматического выделения стволовых клеток из костного мозга и выделен фактор SCF (facteur des cellules souches), стимулирующий дифференцировку стволовых клеток. Под воздействием этого фактора каждая стволовая клетка, введенная в организм, воспроизводит около 20 млн. клеток крови за 24 ч. В принципе таким путем может быть решена проблема ускоренной адаптации к резкому снижению дыхательной емкости крови при массивных кровопотерях.

Аноксия мозга и пределы адаптации к ней - наиболее важная проблема неотложной медицины при различных катастрофах и отдельных несчастных случаях, которая тесно связана с целым рядом фундаментальных проблем физиологии и биологии. С точки зрения физиологии сущность проблемы состоит в следующем. Во-первых, каков механизм сохранения мозгом жизнеспособности в течение некоторого времени после полного лишения его кислорода и энергии окисления. Во-вторых, каков первичный физиологический механизм изменений и прекращения функций мозга при аноксии и каковы физиологические механизмы восстановления этих функций.

К середине нашего столетия в научной литературе распространилась точка зрения, согласно которой мозг человека сохраняет жизнеспособность (т.е. способность к восстановлению функций) в течение 4-6 мин после остановки дыхания или 3-4 мин после остановки сердца. Определение указанных сроков имеет исключительно важное значение для неотложной медицины, поэтому в 1966 г. специальная комиссия, созданная при Национальной Академии наук США, опубликовала рекомендации по методам реанимации человека при аноксии мозга. Врачам не рекомендовалось приступать к реанимации, если аноксия мозга длилась более 5-6 мин, так как по истечении этого срока восстановить физиологические функции мозга, как правило, не удается.

Мозг человека расходует в среднем примерно 1/5 часть энергетического бюджета организма в целом. Это составит примерно 14,5 Вт или 14,5 Дж/с. Энергетические резервы тканей мозга составляют небольшую величину. В основном это глюкоза, которая содержится в количестве 0,45 мкмоль/г, т.е. около 0,00063 М на мозг массой 1400 г. При окислении этого количества глюкозы до С02 и воды освободится примерно 1800 Дж, которые могут быть использованы для химической работы синтеза АТФ. Однако после прекращения доставки кислорода происходят только анаэробные превращения глюкозы. С точки зрения работы синтеза АТФ коэффициент полезного действия (КПД) анаэробиза уменьшается примерно в 15 раз. В таком случае легко рассчитать, что указанного количества глюкозы окажется достаточным всего на 8,2 с для работы нормальной интенсивности по синтезу АТФ из АДФ.

Креатинфосфат содержится в мозге в количестве примерно 3,8 мкмоль/г. Согласно расчетам, это количество креатинфос-фата теоретически способно обеспечить нормальную интенсивность синтеза АТФ из АДФ еще в течение примерно 30 с.

Хорошо известно, что после внезапного перехода на дыхание чистым азотом человек теряет сознание через 10-15 с. Следовательно, энергетическая недостаточность прежде всего сказывается на функциональной активности мозга. Сохранение жизнеспособности требует, очевидно, значительно меньшей энергии. Заметим, что по сделанным выше расчетам, энергетические резервы мозга могут быть израсходованы в течение 30-40 с. Однако следует помнить, что кровь еще обращается определенное время после остановки дыхания и глюкоза при этом в каком-то количестве будет утилизироваться из крови. Кроме того, надо учесть, что выключение функциональной активности при недостатке энергии (это условно можно отнести к явлениям адаптации) уменьшает потребности головного мозга в кислороде и энергии в 2-4 раза и более. Поэтому можно полагать, что в течение 3-4 мин после остановки дыхания мозг еще будет располагать некоторыми энергетическими резервами. Наступление необратимых изменений в мозге через 5-6 мин можно было бы объяснить полным исчерпанием энергетических ресурсов. С этой точки зрения установление предельных сроков сохранения жизнеспособности мозга при аноксии выглядит достаточно обоснованно.

Однако в 70-х годах были получены поразительные факты восстановления функций мозга у млекопитающих животных, вплоть до обезьян, после 30-и даже 45-60-минутной полной его ишемии. Оказалось, что длительная рециркуляция крови в мозге под повышенным давлением восстанавливает функции мозга животных после столь длительной ишемии. Эти факты позволяют сделать вывод, что мозг сохраняет жизнеспособность в течение довольно длительного времени при полном отсутствии Притока энергии.

Возникает чрезвычайно важный для физиологии и неотложной медицины вопрос: я чем причина противоречий между старыми и новыми данными?

В 1968 г. Л. Амес с сотр. описали явление no-reflow, которое возникает после ишемии мозга и заключается в стазе крови в микрососудах мозга даже после кратковременной ишемии. Это препятствует восстановлению микроциркуляции при низком, постепенно повышающемся кровяном давлении в процессе реанимации. Если после ишемии мозга стаз в крови в микрососудах преодолеть не удается, то мозг, длительное время сохраняя жизнеспособность, в конечном счете, гибнет в результате отсутствия кровообращения. Именно это и происходит при обычных методах реанимации. Если же микроциркуляцию удается возобновить, то функции мозга восстанавливаются даже через 30-60 мин полной ишемии, когда нервная ткань не получала кислорода и, возможно, энергию. Чрезвычайная важность этих данных для биологии, физиологии и неотложной медицины является бесспорной.

В чем причины явлений no-reflow? Часто их объясняют повреждением стенки капилляров вследствие резкого замедления кровотока, периваскулярным отеком тканей в результате повреждения капилляров, сгущением крови в капиллярах и т.п. Однако, по данным К. П. Иванова, в физиологических условиях можно наблюдать капилляры мозга с чрезвычайно низкой скоростью кровотока вплоть до полной его остановки на некоторое время. Между тем, при этом не отмечается явлений стаза или отека. Как при геморрагическом шоке, о чем уже говорилось выше, так и при ишемии, основной причиной остановки кровотока в капиллярах является, очевидно, массовая адгезия лейкоцитов к стенкам венул, реагрегация там эритроцитов и резкое сужение или закрытие просвета венул. Происходит это в результате нарушения динамической структуры кровотока в венулах, который предохраняет от этих явлений венозный кровоток в физиологических условиях. В последнее время были получены прямые экспериментальные подтверждения предположений этого автора.

Агрегация эритроцитов в венулах и адгезия лейкоцитов к их стенкам сами по себе не относятся к патологическим явлениям. В известной степени эти процессы происходят и в норме. Поэтому кровоток в венулах сравнительно быстро восстанавливается под влиянием повышенного кровяного давления.

Согласно экспериментальным данным К. П. Иванова (1997), восстановлению и поддержанию динамической структуры кровотока способствует гемоделюция примерно на 1/3, что препятствует агрегации эритроцитов и адгезии лейкоцитов в венулах. Гемоделюция вызывает также отчетливое увеличение скорости кровотока в микрососудах. Это подтверждает целесообразность клинических мероприятий в виде небольшой гемоделюции перед тяжелой операцией, что уменьшает вязкость крови и предупреждает гемокоагуляцию в микрососудах после кровопотери.

Адгезии лейкоцитов к стенкам венул в норме препятствует закись азота, которая выделяется эндотелием сосудов. Очевидно было бы целесообразно найти методы применения этого вещества для улучшения микроциркуляции в мозге после ишемии.

Теперь остановимся на причинах и механизмах адаптации к недостатку кислорода и ее пределах. В митохондриях при окислении энергетических субстратов электроны последовательно восстанавливают ряд специфических переносчиков, отдавая на каждом этапе часть своей энергии, которая используется для синтеза АТФ. Цепи переносчиков в виде дыхательных ансамблей встроены во внутреннюю мембрану митохондрий. Последним звеном цепи оказывается кислород. Он принимает электроны и восстанавливается в воду. Если кислород, как генеральный акцептор, отсутствует, то все переносчики восстанавливаются, передача электронов в дыхательных ансамблях прекращается и синтез АТФ за счет энергии окисления приостанавливается.

Такой процесс наглядно демонстрируется с помощью рисунка гидравлической модели переноса электронов а дыхательных ансамблях, который обычно присутствует в учебниках по биохимии. Это, однако, весьма упрощенная схема. Она хорошо объясняет механизм нарушения клеточного дыхания при полном отсутствии О2 когда синтез АТФ за счет анергии окисления прекращается полностью. Однако, как правило, не обсуждается процесс изменений синтеза АТФ при постепенном снижении содержания кислорода в клетке до критической его величины и ниже. Недавно X. Фукуда с сотр. (1989) с помощью спектральной техники и парамагнитного ядерного резонанса показали, что в миоцитах миокарда при постепенном снижении РО2 самой чувствительной реакцией оказывается синтез АТФ. Он заметно снижается еще до начала продукции лактата и понижения величины рН. Так как практически все виды биологической работы в клетке совершаются за счет энергии гидролиза АТФ, логично было бы предположить, что уменьшается интенсивность всех рабочих процессов. Однако ситуация оказывается значительно сложнее, поскольку энергетические требования к разным рабочим процессам разные. Это соображение и послужило основой новой концепции канадского физиолога П. Хочачка, которую он выдвинул в 1986 г. Концепция заключается в том, что первичным звеном нарушений функций клетки при недостатке кислорода и энергии окисления является изменение концентрации ионов кальция в цитозоле. Эта концепция получила дальнейшее подтверждение, развитие и нашла свое применение в клинике нарушений мозгового кровообращения у человека.

Сущность концепции состоит в следующем. Как известно, концентрация ионов кальция в цитозоле очень мала и составляет 10-7-10-8 М. При такой малой концентрации в 1 мкм3 массы цитозоля содержится всего несколько ионов кальция. Однако именно при такой концентрации ионы кальция регулируют важнейшие биохимические и биофизические процессы в клетке. В физиологических условиях «избыток» ионов транспортируется через клеточную мембрану и околоклеточную среду, в митохондрии, в ретикуло-эндотелиальную систему клетки. Низкая концентрация кальция в цитозоле поддерживается за счет некоторых других процессов, которые мы здесь не рассматриваем. Все эти процессы весьма энергоемки. Достаточно сказать, что перемещение одного иона кальция из цитозоля в околоклеточную среду, где концентрации ионов кальция почти в 10 тыс. раз больше, чем в цитозоле, требует гидролиза одной молекулы АТФ. Вот почему при уменьшении синтеза АТФ первично нарушаются процессы, которые поддерживают низкую концентрацию кальция в клетке. Повышение концентрации ионов кальция не только тормозит зависимые от кальция реакции, но вызывает их «дезорганизацию». Так, например, активизируются липазы, которые приводят к образованию активных радикалов, активизируются специфические фосфолипазы, которые начинают разрушать мембраны клетки и клеточных органелл. Подробная схема развития этих процессов приводится в цитированных выше исследованиях, в упрощенном виде она представлена в монографии К. П. Иванова (1993). Таким образом, можно сказать, что пределы адаптации к недостатку кислорода и энергии окисления в значительной мере зависят от развития описанных выше явлений. Различные фармакологические препараты, облегчающие или стимулирующие кальциевый обмен, оказывают довольно существенное благоприятное воздействие на восстановление функций нервных клеток после ишемии. На процесс развития гипоксии, аноксии или ишемии эти препараты оказывают лишь кратковременное влияние, так как их действие направлено не на причину нарушений, а лишь на их последствия.

Острое охлаждение человека в результате различного рода несчастных случаев называют обычно эксидентальной гипотермией. Она возникает при морских катастрофах. Эти случаи не так уж редки. По данным страховой компании Ллойда, в 70-х годах ежегодно терпели аварии и тонули в среднем 400 крупнотоннажных морских судов в год, а в настоящее время в связи с интенсификацией судоходства, увеличением числа кораблей и усложнением управления судами число катастроф резко возросло. В связи с высокой теплопроводностью воды охлаждение тела человека при морских катастрофах может развиваться очень быстро, что является важной особенностью такого рода гипотермии. Охлаждение организма при различных обстоятельствах затрудняет и нарушает процессы адаптации к травмам, кровопотерям, голоду.

Физиологическая адаптация к острому охлаждению осуществляется прежде всего за.счет уменьшения теплоотдачи тела в среду благодаря сужению кожных сосудов, что часто рассматривают как результат уменьшения теплопроводности периферических тканей. С точки зрения теплофизики теплопроводность тканей почти не меняется, поскольку она близка к теплопроводности воды. Сужение кожных сосудов уменьшает тепломассоперенос кровью, т.е. передачу тепла из центральных областей тела в среду кровяной конвекцией. Эффективность этой реакции, особенно в холодной воде, невелика и не превышает одной единицы КЛО (С1о), международной единицы теплоизоляции, равной:

На воздухе это соответствует, примерно, защите от холода, которую дает одна плотная хлопчатобумажная рубашка. В воде такая величина дает крайне малый эффект.

Другая линия защиты - повышение теплопродукции за счет терморегуляционного тонуса и мышечной дрожи. Теплопродукция при этом повышается не более, чем в 2,5-8 раза по сравнению с уровнем основного обмена. Столь низкая эффективность этих реакций объясняется тем, что мышцы не производят механической работы и источником тепла при терморегуляционном тонусе и дрожи является почти исключительно энергия активации, предшествующая сокращению мышечных волокон, что дает сравнительно мало тепла.

Мощным источником теплопродукции могла бы стать произвольная мышечная деятельность, которая повышает общую теплопродукцию организма в 10-15 раз. Однако приток крови к работающим мышцам резко увеличивает передачу тепла в среду. Поэтому использование интенсивной мышечной деятельности для предотвращения охлаждения тепла в холодной воде - весьма проблематично.

Человек, оказавшийся в воде при температуре 0С, выживает в течение 15-30 мин; при 5С - 15-60 мин; при 10С - 30-90 мин; при 15°С -- 2-7 часов; при 20С - 3-16 часов; при 25-26С - от 12 часов до нескольких суток.

Столь большие различия времени выживания для разных людей при одной и той же температуре воды могут объясняться разными факторами, главный из которых - индивидуальные различия эффективности и пределов адаптации к холоду, равно как и неодинаковые температурные пороги потери сознания и выключения важнейших физиологических функций.

Закономерности теплообмена между телом человека и водой разной температуры до сих пор предстаяляют собой сложную и нерешенную физическую и физиологическую проблему.

На воздухе спазм кожных сосудов снижает теплопотери едва на 8-13%, в поде соответствующее снижение будет еще меньше. Пределы адаптации достигаются очень быстро. При погружении человека в воду, температура которой составляет 6С, температура кожи человека становится равной температуре воды всего через 10-12 мин. Тепломассоперенос кровью из центральных областей тела к коже практически прекращается, в то время как потеря тепла в результате кондукции резко возрастает в соответствии с увеличением температурного градиента между центром тела и средой.

...

Подобные документы

  • Анатомия и физиология как науки. Роль внутренней среды, нервной и кровеносной систем в превращении потребностей клеток в потребности целого организма. Функциональные системы организма, их регуляция и саморегуляция. Части тела человека, полости тела.

    презентация [10,6 M], добавлен 25.09.2015

  • Физиологический механизм адаптации организма к условиям высокогорья, причины гипоксии (кислородной недостаточности). Аэробный и анаэробный пути добычи энергии, свободные радикалы. Различия адаптивных стратегий, гипоксическая тренировка, гипокситерапия.

    курсовая работа [43,7 K], добавлен 03.02.2012

  • Адаптация организма к условиям среды в общебиологическом плане, ее необходимость для сохранения как индивидуума, так и вида. Способы защиты от неблагоприятных условий окружающей среды. Анабиоз, оцепенение, зимняя спячка, миграция, активация ферментов.

    реферат [38,2 K], добавлен 20.09.2009

  • Развитие физиологических функций организма на каждом возрастном этапе. Анатомия и физиология как предмет. Организм человека и составляющие его структуры. Обмен веществ и энергии и их возрастные особенности. Гормональная регуляция функций организма.

    учебное пособие [6,1 M], добавлен 20.12.2010

  • Понятие адаптации - приспособительного процесса, возникающего в ходе индивидуальной жизни человека. Физиологические аспекты повышения устойчивости организма к действию факторов новых условий существования. Стрессорные факторы при ослаблении организма.

    презентация [144,6 K], добавлен 29.05.2019

  • Адаптация как одно из ключевых понятий в экологии человека. Основные механизмы адаптации человека. Физиологические и биохимические основы адаптации. Адаптация организма к физическим нагрузкам. Снижение возбудимости при развитии запредельного торможения.

    реферат [22,8 K], добавлен 25.06.2011

  • Социально-биологические основы физической культуры. Функциональные системы организма. Адаптация как процесс приспособления его строения и функций к условиям существования. Аэробная и анаэробная производительность организма. Обмен веществ (метаболизм).

    презентация [7,4 M], добавлен 16.03.2014

  • Характеристика процессов адаптации человека к условиям окружающей среды. Исследование основных механизмов адаптации. Изучение общих мер повышения устойчивости организма. Законы и закономерности гигиены. Описания принципов гигиенического нормирования.

    презентация [8,5 M], добавлен 11.03.2014

  • Описание строения клетки, а также некоторых органических соединений, использующихся в живых организмах. Физиология и анатомия человека, особенности функционирования ряда важнейших органов. Взаимодействие и обмен веществ в организме. Водная среда жизни.

    реферат [3,3 M], добавлен 02.12.2010

  • Экологические группы растений. Адаптации к стрессовым условиям обитания. Типы ареалов и факторы, обусловливающие их границы. Ботаническая и экологическая характеристика дикорастущих видов растений (Гравилат речной Geum rivale) семейство (Розоцветные).

    контрольная работа [1,3 M], добавлен 09.04.2019

  • Функциональные системы организма. Внешние и внутренние раздражители организма человека, восприятие состояния внешней среды. Особенности организма человека, феномен синестезии, экстрасенсы-синестетики. Особенности темперамента при выборе профессии.

    реферат [49,8 K], добавлен 06.02.2013

  • Признаки и общая характеристика процесса старения, его влияние на нейроэндокринные механизмы регуляции клетки. Возрастная периодизация функционирования организма человека. Сравнительная характеристика преждевременного и физиологического старения.

    презентация [7,6 M], добавлен 28.09.2014

  • Предмет и роль физиологии в системе медицинского образования, краткая история, современные тенденции и задачи физиологии. Организм и внешняя среда, исследование физиологии целостного организма. Метод графической регистрации и биоэлектрических явлений.

    курсовая работа [63,3 K], добавлен 02.01.2013

  • Анатомия и морфология почек человека. Физиология и функции. Почки как своеобразная железа внутренней секреции. Удаление из организма конечных продуктов обмена веществ. Регуляция водного баланса, кислотно-основного состояния, уровня артериального давления.

    курсовая работа [44,5 K], добавлен 08.08.2009

  • Общие закономерности онтогенеза и его периоды. Взаимоотношения материнского организма и плода. Роль наследственности и среды в онтогенезе. Тератогоенные факторы среды, влияние алкоголя на организм. Возрастные периоды организма и их характеристика.

    реферат [35,4 K], добавлен 17.06.2012

  • Исследование понятия биологических часов человека, способности организма чувствовать и измерять время. Ритм изменения функционального состояния человека. Адаптация организмов к смене дня и ночи. Обзор теории гормонального влияния на биоритмы человека.

    реферат [24,0 K], добавлен 08.03.2014

  • Экологические зоны Мирового океана. Свойства водной среды (звук, электричество и магнетизм; солевой, световой, температурный режим) и ее роль в жизни гидробионтов. Адаптация растительных и животных организмов среде обитания. Фильтрация как тип питания.

    курсовая работа [1,2 M], добавлен 16.12.2012

  • Изучение ритмов активности и пассивности, протекающих организме человека. Физический, эмоциональный и интеллектуальный ритмы организма. Значение критических дней для каждого биоритма человека. Солнечно-лунно-земные и космические влияния на организм.

    презентация [321,0 K], добавлен 17.04.2011

  • Медико-биологические исследования воздействия космофизических факторов среды на организм человека. Определение структурно-энергетических характеристик геомагнитного поля. Выявление степени индивидуальной чувствительности организма к действию вариаций ГМП.

    статья [104,9 K], добавлен 21.05.2015

  • Характеристика радиочастотных (РЧ) воздействий. Выводы ученых по исследованию популярных марок телефонов и их влияния на здоровье человека, системы организма человека, наиболее подверженные вредному влиянию. Меры по защите населения от РЧ-излучения.

    научная работа [21,5 K], добавлен 09.02.2009

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.