Экологическая физиология
Адаптация организма человека к природно-климатическим и социальным условиям. Экологические аспекты хронобиологии. Влияние на организм вибраций, гравитации, излучения, звуковых нагрузок, катастроф. Гипоксия, гиперкапния и декомпрессионные расстройства.
Рубрика | Биология и естествознание |
Вид | учебное пособие |
Язык | русский |
Дата добавления | 19.08.2017 |
Размер файла | 616,8 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Как на пороговых, так и на больших высотах первые симптомы ВДБ развиваются не сразу по достижению высоты, а через 3-5 мин. Пик частоты ВДБ приходится на 20-40 мин высотной экспозиции с постепенным понижением. Этот факт указывает, что на формирование в организме патогенных газовых пузырьков требуется определенное время, минимум 3-5 мин. И только при подъемах на высоту 10-12 км после предварительной экспозиции на меньших высотах (6-7 км) симптомы ВДБ могут развиться сразу или даже в процессе подъема. По-видимому, и этом случае в патогенные газовые пузырьки превращаются уже сформировавшиеся на допороговых высотах «немые», бессимптомные газовые зародыши.
Длительность экспозиции сказывается па линейном возрастании частоты ВДБ, особенно между 20 и 60 мин пребывания на высоте. Количество новых случаев ВДБ затем уменьшается. Суммарное количество всех случаев ВДБ даже при длительном пребывании на данной высоте (2-3 ч и более) может и не достигать 100% от всех высотных экспозиций. В барокамерных экспериментах установлена прямая зависимость частоты ВДБ от скорости подъема обследуемых на высоту. Однако в пределах вертикальной скорости современных самолетов этот фактор не имеет существенного значения, за исключением случаев взрывной декомпрессии. Повторные подъемы на высоту через 24 ч и менее резко увеличивают предрасположенность к ВДБ. Из этого следует, что интервал между высотными воздействиями должен быть не менее 2 сут.
К факторам, повышающим частоту и тяжесть ВДБ, следует, кроме того, отнести гипоксию, гиперкапнию и низкую окружающую температуру. Так же влияет и физическая работа. Установлено, что провоцирующий эффект интенсивных мышечных упражнений в отношении увеличения случаев ВДБ эквивалентен дополнительному подъему на высоту 1,5-1,6 км. Примечательно, что развившиеся во время работы высотные боли чаще поражают работающие мышцы и суставы.
В исследованиях с повторными подъемами различных лиц в одних и тех. же условиях отчетливо установлена индивидуальная предрасположенность к ВДБ.
Клиническая картина ВДБ отличается разнообразием форм и определяется размерами, количеством и локализацией газовых пузырьков в организме, действием провоцирующих факторов, развитием защитных и патологических реакций. Высотная декомпрессионная болезнь имеет несколько групп симптомов.
Кожные нарушения (зуд, парестезии, мраморность, отек) появляются из-за образования газовых пузырьков в сосудах кожи и потовых железах. Мышечносуставные боли, «бендз» (наиболее частый симптом ВДБ), возникают вследствие местной ишемии и механического раздражения газовыми пузырьками болевых рецепторов мышц, сухожилий, надкостницы. Чаще всего боли отмечаются в коленных и плечевых, реже в локтевых и голеностопных суставах. При образовании большого количества пузырьков газа в легочных сосудах наблюдается так называемый субстернальный дискомфорт, «чоукс» - боли и жжение за грудиной, особенно на вдохе, кашель, удушье, падение системного давления крови, брадикардия. Неврологические и циркуляторные нарушения (парезы, параличи, зрительные и вестибулярные расстройства, коллапс) наблюдаются при газовой эмболии сосудов головного и спинного мозга, коронарных сосудов.
По характеру и тяжести проявлений выделяют легкую, среднюю и тяжелую формы ВДБ. Легкая форма характеризуется кожными симптомами, нерезкими, легко переносимыми мышечно-суставными и костными болями. Симптомами ВДБ средней тяжести являются острые, трудно переносимые мышечно-сус-тавные боли, сопровождающиеся тахикардией и повышением АД. При тяжелой форме у пострадавших развиваются симптомы нарушения дыхания (боли за грудиной, кашель, удушье), деятельности сердечно-сосудистой системы (бледность, брадикардия, падение АД, обморок) и ЦНС (парезы и параличи конечностей, расстройства зрения).
Исход ВДБ в большинстве случаев благоприятный. Симптомы заболевания часто исчезают при увеличении давления в барокамере до 300 мм рт. ст. и более или снижении высоты полета менее 7 км. Однако в некоторых случаях они сохраняются и даже усиливаются после нормализации давления, т.е. в наземных условиях, кроме того, иногда появляются первичные признаки заболевания или рецидивируют исчезнувшие симптомы (так называемый постдекомпрессионный коллапс).
Стойкие формы ВДБ, которые не исчезают после нормализации окружающего давления, до недавнего времени лечили симптоматически, однако часто лечение было неэффективным. К настоящему времени экспериментально обоснована возможность в качестве радикального, этиопатогенетического средства купирования ВДБ, как и при баротравме легких, использовать дыхание кислородом под повышенным (до 2-3 атм) давлением, гипербарическую оксигенацию (ГБО). Повышенное давление, уменьшая размеры газовых пузырьков, способствует восстановлению нарушенной ими циркуляции крови. Резко оксигенированная при ГБО кровь эффективно устраняет местную гипоксию и ацидоз тканей. Дыхание кислородом вызывает десатурацию газовых пузырьков от азота, что ускоряет их рассасывание. В качестве симптоматического лечения при циркуляторном коллапсе назначают кровезаменители (декстран, плазма) и препараты, стабилизирующие системное АД.
Профилактика ВДБ обеспечивается применением герметических кабин с режимом давления 260-560 мм рт. ст., а также предварительной десатурацией организма от азота посредством достаточно длительного дыхания чистым кислородом перед подъемом на высоту или кислородно-воздушной газовой смесью на высотах до 7 км.
В заключение следует отметить, что в изучении теоретических и прикладных аспектов проблемы ВДБ в последние годы наметились перспективные направления. Создание и успешная экспериментальная апробация неинвазионного ультразвукового метода локации газовых пузырьков в крови позволяет с гораздо меньшим риском для здоровья обследуемых лиц проводить исследования с декомпрессионными воздействиями. Регистрация появления ультразвуковых сигналов газовых пузырьков в легочной артерии, возможность качественной и количественной оценки этих сигналов до развития отчетливых симптомов ВДБ позволяют изучать безопасность режимов высотной декомпрессии, эффективность профилактических и лечебных мероприятий, особенности развития ВДБ при действии различных факторов стратосферного и космического полетов.
3.7 Физиологические реакции организма на избыток кислорода
В последнее время в связи с широким применением кислорода в авиации, космических полетах, в водолазном деле, при освоении морских глубин и, наконец, в лечебной практике резко возрос интерес к изучению физиологического и отравляющего действия кислорода на организм человека и животных. Изучение проблемы гипероксии наряду с решением практических задач представляет также большой теоретический интерес в общебиологическом плане.
Широко известно, что почти все живые существа, обитающие на суше, приспособились к строго определенной постоянной концентрации кислорода в атмосфере нашей планеты - 20,9%, которая считается адекватной средой обитания и жизнедеятельности организмов. В связи с проникновением человека в космические высоты и морские глубины возникла необходимость создавать искусственные газовые смеси, искусственную атмосферу, в которой содержание кислорода не всегда разумно поддерживать на «земном» уровне.
Продолжаются поиски допустимых и наиболее адекватных для лечения различных заболеваний концентраций кислорода как при атмосферном, так и при повышенном давлении.
Оксигенированный воздух используется не только для лечебных целей, но и для профилактики утомления, повышения работоспособности, для нормализации физиологических функций в пожилом, старческом возрасте.
В ряде случаев возникает вопрос о неадекватности постоянного, неизменного содержания кислорода в окружающей нас атмосфере, о необходимости обоснования оптимального парциального давления кислорода для различных условий жизнедеятельности человека.
Чрезмерное увеличение кислорода в среде оказывает отрицательное действие на живые организмы. Кислород, необходимый для жизни, в то же время при его избытке в среде является ядом для различных представителей животного и растительного мира. Токсичность кислорода ставит серьезные преграды для его эффективного применения, особенно в водолазной практике, при освоении морских глубин, и в оксигенобаротерапии.
Токсическое действие кислорода проявляется в виде двух классических форм отравления: легочной и судорожной. В первом случае легочные явления: отек, ателектазы и другие признаки воспаления развиваются преимущественно при длительном вдыхании кислорода в условиях земного давления. Во втором - при давлении свыше 3 атм (атмосфера абсолютная) - действие кислорода направлено главным образом на центральную нервную систему, в сравнительно короткие сроки развиваются судороги характерный признак резкого возбуждения нервных центров. И тяжелых случаях обе эти формы заканчиваются летальным исходом.
Однако токсическое действие кислорода не ограничивается этими формами, кислород влияет на весь организм, что дало основание выделить отдельную, общетоксическую форму отравления кислородом (Жиронкин А. Г. и др., 1965).
Увеличение парциального давления кислорода и длительности экспозиции усиливает степень отравления, поэтому действие кислорода на организм является хроноконцентрационным. До начала проявления признаков отравления, в латентном периоде, кислород оказывает определенное влияние на различные функции организма, которое характеризуется как физиологическое. Правда, физиологическое влияние кислорода - несколько условное понятие, поскольку оно включает начальные, малозаметные, незначительные сдвиги, которые могут рассматриваться как патологические.
С другой стороны, реакции организма на избыток кислорода, возникающие в этом периоде, рассматривают как приспособительные, компенсаторные, направленные на снижение отравляющего действия кислорода, на восстановление постоянства внутренней среды организма. Нарушение этих компенсаторных реакций приводит к развитию патологических явлений.
При постепенном нарастании концентрации кислорода и длительности экспозиции легче проследить за развитием начальных реакций организма, имеющих в своей основе приспособительное значение.
При вдыхании обогащенного кислородом воздуха или кислорода в пределах атмосферного давления в течение сравнительно короткого времени реакции дыхания, сердечно-сосудистой системы, крови направлены на ограничение доставки этого газа тканям, особенно в головном мозге. Исключение составляют легкие, непосредственно соприкасающиеся с газообразным кислородом во вдыхаемом воздухе, что делает их весьма уязвимыми при более длительных экспозициях в кислороде и приводит в конце концов к патологии.
При более высоких давлениях (в пределах до 4 атм кислорода) все указанные реакции еще более выражены. Особенно заметно сужение сосудов в головном мозге, отчетливы процессы перераспределения крови (депонирование ее в паренхиматозных органах).
Согласно данным С. Ламбертсена, при давлениях 2,5 атм кислорода его напряжение в концевых отделах мозговых капилляров в 5 раз меньше, чем в почке или сердце. Этот факт свидетельствует о довольно эффективной защите клеток головного мозга от избытка кислорода путем сосудистой реакции и замедления кровотока, что обеспечивает поддержание оптимального кислородного режима мозговых центров, однако такие защитные реакции как сужение капилляров, замедление кровотока осложняются развитием противоположного процесса: задержкой углекислоты в тканях, которая усиливается затрудненным ее транспортом к легким венозной кровью, вследствие выключения нормальной функции гемоглобина. Гиперкапния способствует расширению сосудов и таким образом снимает защитную сосудистую реакцию на кислород.
При удлинении экспозиции в пределах давления до 4 атм кислорода развиваются признаки возбуждения вегетативной и гормональной систем, повышается кровяное давление, нарушаются системы регуляции дыхания, кровообращения и крови. В этот период может возникнуть внезапная потеря сознания без судорожных явлений. Легочная паренхима также повреждается. Наконец, при более высоких давлениях наблюдаются те же реакции, но они протекают быстрее и переходят в судорожный припадок либо в коматозное состояние.
Таким образом, по мере увеличения парциального давления кислорода и удлинения его действия наряду с реакциями приспособительными (1-я стадия) появляются реакции патологические (2-я стадия), которые, нарастая, приводят к типичной картине кислородного отравления.
Компенсаторной стадии, или латентному периоду наступления симптомов кислородного отравления, придают большое значение в повышении устойчивости к кислородному отравлению. Было обнаружено увеличение устойчивости к отравляющему действию кислорода путем прерывистых экспозиций в нем в пределах этой стадии, т.е. тогда, когда организм еще не успел пострадать от кислорода.
Несмотря на большое число исследований по изучению влияния кислорода на организм, механизм его физиологического и отравляющего действия оказался недостаточно изученным. Отставание глубокой разработки этой проблемы в теоретическом аспекте явилось причиной трудностей в решении ряда практических задач.
До настоящего времени нет четкости и окончательных критериев относительно сроков и величин безопасного дыхания кислородом для здорового человека и в использовании оксигенотералии больного организма. Большие колебания индивидуальной чувствительности к кислороду дают основания предполагать отсутствие порогов токсического действия этого газа, аналогично действию ионизирующей радиации. И кислород, и проникающая радиация являются вредящими факторами универсального действия на все живые организмы.
Адаптация организма к кислороду относительна и несовершенна по сравнению с адаптацией к гипоксии, что связывается со сравнительно молодым в эволюционном аспекте развитием антиокислительных защитных тканевых процессов, тормозящих высокий энергетический потенциал кислорода. Допустимо думать, что развитие этого механизма шло на фоне нарастающего на протяжении многих тысячелетий содержания кислорода в земной атмосфере, тогда как в основе приспособительного механизма к гипоксии лежат уже пройденные в эволюционном развитии фазы анаэробных окислительных процессов в гипоксической атмосфере.
В механизме действия кислорода на организм определенное значение имеет «молчание» рефлекторных синокаротидных зон при оксигенации артериальной крови, что сказывается на функции дыхания. Внесена некоторая ясность в понимание механизма сложного, в основном угнетающего, влияния кислорода на гемопоэз красной крови.
Значительный прогресс был достигнут при изучении механизма токсического действия кислорода на легкие и центральную нервную систему.
В первом случае были получены факты, указывающие на большое значение сурфактанта и процессов поверхностного натяжения пленки альвеол легких. Однако остается не вполне ясным, что является ведущим в легочных поражениях кислородом - локальное его действие на легочную ткань, гормональное или нервно-рефлекторные механизмы?
Более определенно обозначился при высоком давлении кислорода так называемый судорожный центр, находящийся в ретикулярной формации среднего мозга, нарушение целостной этой области полностью исключает возникновение кислородных судорог. В происхождении судорог большая роль принадлежит симпатоадреналовой системе и нарушению тканевого дыхания в различных отделах головного мозга.
Различают две классические формы кислородного отравления:
1) легочную - при продолжительных экспозициях в кислороде и небольшом его избыточном давлении;
2)судорожную - при коротких экспозициях под высоким давлением кислорода. В последнее время стали выделять третью, общетоксическую форму - преимущественно при давлениях от 1 до 4 атм, когда не успевают развиваться легочные и судорожные явления, но патологические нарушения в той или иной степени наблюдаются со стороны многих органов и тканей. Этот диапазон давлений менее всего изучен, хотя практическое значение его велико, особенно для оксигенобаротерапии.
В основе токсического действия кислорода во всех его формах лежат процессы угнетения тканевого дыхания, дыхательных ферментных систем. Из них наиболее чувствительными к кислороду оказались системы, содержащие SH-группы.
Кислородная интоксикация имеет много общих черт с уникальным действием проникающей радиации на все живые организмы. Подобно приспособлению к радиации, адаптация к кислороду относительна и несовершенна. Средства защиты против кислородного отравления и действия радиационного фактора очень близки по своему химическому составу, они в основном содержат группы антиокислителей.
Хотя в последнее время значительно возрос арсенал защитных средств против токсического действия кислорода, все же существующие способы не предотвращают полностью, а лишь ослабляют это действие.
В последнее время значительно увеличился перечень заболеваний, при которых показана оксигенотерапия и оксигенобаротерапия. Выяснилось, что эффективность применения кислорода связана с уровнем кислородного голодания организма. Наиболее хорошие результаты оксигенотерапии были получены при лечении заболеваний, в развитии которых гипоксический фактор является доминирующим.
Наряду с этим фактором представлены доказательства значительной роли нервно-рефлекторного звена в физиологическом и лечебном действии кислорода.
Поставлен вопрос об адекватности парциального давления кислорода как для лечебных целей, так и в жизнедеятельности организмов, находящихся в различных неблагоприятных условиях существования (освоение космоса и глубин, некоторые факторы производства и т.д.).
3.8 Гиперкапния
Гиперкапния - повышенное напряжение углекислого газа в артериальной крови и тканях организма.
Она может развиваться в космическом полете при повышении концентрации углекислого газа в атмосфере кабины или в гермошлеме скафандра вследствие частичного или полного нарушения работы системы удаления и поглощения углекислоты. Избыток углекислого газа в кабине может быть предусмотрен программой полета по соображениям экономии веса, уменьшения габаритов и энергоемкости системы жизнеобеспечения, а также с целью усиления регенерации кислорода, профилактики гипокапнии или для ослабления поражающего действия космической радиации.
В зависимости от вентилируемого объема скафандра и кабины, повреждения системы регенерации и количества продуцируемой экипажем углекислоты, ее концентрация во вдыхаемом воздухе может возрасти до токсического уровня (более 1 %, или 7,5 мм рт. ст. - 1 кПа) за несколько минут или часов. В этом случае развивается состояние острой гиперкапнии. Длительное (дни, недели, месяцы) пребывание в атмосфере с умеренным содержанием углекислого газа приводит к хронической гиперкапнии.
При отказе ранцевой системы поглощения углекислоты в космическом скафандре во время интенсивной работы концентрация углекислого газа а гермошлеме достигает токсического уровня за 1-2 мин. Б кабине корабля с 3 космонавтами, выполняющими обычную для них работу, это произойдет более чем через 7 ч после полного отказа системы регенерации.
Даже уморенная гиперкапния ухудшает самочувствие и общее состояние, истощает резервы основных жизненных функций организма. Поведение человека становится неадекватным, снижаются умственная, особенно физическая работоспособность, устойчивость организма к стрессовым факторам - перегрузкам, ортостазу, перегреванию, гипероксии, декомпрессии.
Важно, что гиперкапния в космическом полете чревата тяжелыми осложнениями и в связи с «обратным» действием углекислоты. После перехода с дыхания в гиперкапнической среде на нормальную газовую смесь, а также па воздух или кислород отмеченные нарушения в организме часто не только не ослабевают, но даже усиливаются или появляются новые симптомы отравления углекислотой. Такое состояние может сохраняться минуты, часы, а иногда и сутки после восстановления нормального газового состава вдыхаемого воздуха.
Повышение концентрации углекислого газа во вдыхаемом воздухе до 0,8-1% не вызывает нарушений физиологических функций и работоспособности при остром и хроническом действии. Допустимость больших концентраций определяют прежде всего с учетом длительности пребывания в такой атмосфере и интенсивности выполняемой работы. Если космонавту предстоит несколько часов работать в скафандре, содержание углекислого газа в гермошлеме не должно превышать 2% (РСО 15 мм рт. ст. - 2 кПа). По достижении такой концентрации углекислоты появятся жалобы на одышку и утомление, однако работа будет выполнена в полном объеме.
В кабине космического корабля с периодическим выполнением только легкой работы космонавт может справиться с заданием в течение нескольких часов при увеличении концентрации углекислоты до 3% (РСО , 22,5 мм рт. ст. - 3 кПа). Однако возникнут выраженная одышка и головная боль, которая может остаться и в последующем.
Повышение содержания углекислоты в гермошлеме скафандра или в кабине до 3% и более - тревожная ситуация, подлежащая немедленному устранению.
Признаки хронической гиперкапнии развиваются при длительном пребывании в атмосфере с содержанием углекислого газа от 0,9 до 2,9%. В этих условиях изменяются электролитный баланс и кислотно-щелочное состояние, происходят напряжение физиологических функций и истощение функциональных резервов, обнаруживаемые нагрузочными пробами.
Состояние острой гиперкапнии можно установить по увеличению РСО2 в артериальной крови (более 40 мм рт. ст,, или 5,33 кПа), а также по субъективным и клиническим признакам: одышка, особенно в покое, тошнота и рвота, усталость при работе, головная боль, головокружение, нарушения зрения, синюшность лица, сильная потливость. Хроническая гиперкапния сопровождается фазными изменениями психомоторной деятельности (возбуждение, сменяющееся депрессией), которые проявляются в поведении и во время умственной и мышечной работы. Головная боль, усталость, тошнота и рвота выражены меньше. Часто бывает стойкая гипотензия. Нарушение электролитного баланса и кислотно-щелочного состояния, а также напряжение функции коры надпочечников определяются только биохимическими методами.
Пока нет специфических методов лечения гиперкапнического ацидоза или способов повышения устойчивости организма к действию повышенных концентраций углекислого газа. Самой эффективной помощью космонавту при нарушении системы регенерации будет быстрейшее восстановление нормального газового состава вдыхаемого воздуха. Если нельзя устранить неполадки в основной системе регенерации, то следует использовать субсистемы и аварийные системы, а также аварийные запасы кислорода на борту или в скафандре.
В скафандре космонавт также может изолироваться от гиперкапнической среды кабины, закрыв смотровой щиток гермошлема. Для своевременного предупреждения гиперкапнии на борту корабля необходим прибор-сигнализатор опасного уровня углекислого газа.
3.9 Адаптация организма к условиям высоких и низких температур
Оптимальное тепловое состояние человека обеспечивается условиями теплового комфорта, не ограничиваемого по времени пребывания и не требующего включения дополнительных приспособительных механизмов организма.
В экстремальных условиях среды, сопровождаемых значительными перепадами температуры, включаются поведенческие, физиологические адаптивные реакции, а при резких иди длительных термических сдвигах могут развиваться патологические состояния, в крайних случаях приводящие к летальному исходу.
Исследователями предложены различные классификации тепловых состояний человека в зависимости от того, какие критерии были положены в основу. С точки зрения адаптации наибольший интерес представляет классификация, построенная на основании данных о характере изменений приспособительных механизмов системы терморегуляции, то есть основных приспособительных реакций, позволяющих организму бороться с действием высоких и низких температур окружающей среды.
При выборе физиологических показателей для оценки теплового состояния, очевидно, основное внимание необходимо уделять изменению таких показателей, которые наиболее полно отражают функциональное состояние организма при каждой степени нагревания или охлаждения человека. Так, в условиях, когда теплосодержание «сердцевины» значительно не изменяется, но нарушена структура теплового обмена, наиболее важны физиологические показатели, характеризующие тепловое состояние «оболочки» тела. К таким показателям относятся температура кожи, средняя температура тела, тепловые потоки с поверхности тела, внутренний градиент температур, разность температур туловища и конечностей, теплоизоляция поверхностных тканей. При повышенных температурах окружающей среды большое значение приобретает исследование потерь веса тела и теплоотдачи испарением влаги, при пониженных - тепловых потоков с поверхности тела, теплопродукции организма, биоэлектрической активности мышц. В условиях, когда значительно изменяется теплосодержание организма, оценка теплового состояния человека должна проводиться в основном по физиологическим показателям, характеризующим изменения теплового обмена и состояние сердечно-сосудистой системы (уровень теплоотдачи, минутный, систолический объем сердца и т.д.). Эти показатели позволяют контролировать состояние организма человека в условиях высоких и низких температур окружающей среды.
При перегревании и охлаждении человека наблюдается фазность изменений многих физиологических показателей, означающих в одном случае возможность сохранения теплового баланса, а в другом - угрозу срыва или срыв приспособительных реакций организма.
На первой стадии перегревания и охлаждения организма (устойчивое приспособление) наблюдаются явления, свидетельствующие о том, что организм успешно противостоит неблагоприятному действию окружающей среды. При высоких температурах происходит расширение периферических сосудов, увеличивается теплоотдача испарением влаги с поверхности тела и дыхательных путей. Последняя равна общей тепловой нагрузке - суммарной величине теплопродукции организма и внешней тепловой нагрузки. Действие низких температур окружающей среды приводит к сужению периферических сосудов и повышению теплопродукции организма вследствие мышечного термогенеза.
Следовательно, при первой степени перегревания и охлаждения реакция сосудов на воздействие тепла и холода играет весьма большую роль. Однако уже здесь играют роль механизмы химической терморегуляции, проявляющиеся в некотором снижении теплопродукции организма в условиях высоких температур и повышении - в условиях низких температур окружающей среды.
На первой стадии перегревания и охлаждения человека накопление или дефицит тепла в организме происходит в основном за счет изменений температуры «оболочки». Температура же «сердцевины» изменяется сравнительно немного (на 0,2-0,5). Работоспособность человека при таких воздействиях, по данным многих авторов, практически не изменяется.
При второй степени перегревания или охлаждения человека (частичное приспособление) терморегуляция не справляется с действием высоких и низких температур окружающей среды. Даже максимальное включение приспособительных механизмов терморегуляции (теплопродукции при охлаждении, теплоотдачи при перегревании) не дает возможность компенсировать тепловую нагрузку при высоких температурах и теплоотдачу при низких температурах окружающей среды. В этом случае значительно изменяется температура «сердцевины» (при высоких - на 1-1,5°С; при низких -- на 1,5-2,0°С),
При высоких температурах окружающей среды (45; 50; 55°С), несмотря на повышение теплоотдачи испарением влаги с поверхности тела и дыхательных путей, общая тепловая нагрузка не компенсируется, и перегревание организма происходит вследствие уменьшения или прекращения отдачи эндогенного тепла во внешнюю среду. В условиях низких температур окружающей среды при продолжающемся увеличении окислительных процессов r организме из-за мышечной дрожи теплопотери с поверхности тела и дыхательных путей превышают уровень теплопродукции.
В этих условиях снижаются отдельные показатели работоспособности, например, такие как качество управления в режиме слежения, способность к динамической и статической работе, выполнение тонких координированных движений. Многие показатели работоспособности, включая определение временных интервалов на световой и звуковой раздражители, скорость счета, познавательные и другие психические функции, по данным большинства авторов, не изменяются или даже несколько улучшаются.
Третья степень перегревания и охлаждения организма (срыв приспособления) характеризуется признаками, свидетельствующими о полной невозможности приспособления организма к условиям внешней среды. Приспособительные механизмы терморегуляции некоторое время остаются максимально напряженными, а затем их уровень начинает постепенно уменьшаться. Одновременно происходит снижение эффективности деятельности сердечно-сосудистой, дыхательной и мышечной систем.
На срыв приспособительных реакций организма в условиях высоких температур среды (60; 70; 80С) указывает снижение теплоотдачи испарением влаги, преобладание внешней тепловой нагрузки над теплоотдачей испарением влаги, снижение скорости секреции нота, уменьшение систолического и минутного объемов крови, мощности сокращения левого желудочка и скорости выброса крови.
В работах А. Бартона, О. Эдхолма и др. показано, что при ректальной температуре около 35° (после максимального увеличения теплопродукции организма наблюдается ее снижение. На основании этих сведений (по аналогии с характером изменений приспособительных реакций при высокой температуре), вторая стадия охлаждения заканчивается максимальным увеличением теплопродукции, в третьей стадии происходит снижение ее уровня, достигающего при температуре тела около 30% величин основного обмена и ниже.
Подобное деление стадий охлаждения по изменению приспособительных реакций организма, очевидно, является наиболее рациональным, так как характеризует компенсаторные возможности теплового обмена, сердечно-сосудистой и дыхательной систем.
При третьей степени перегревания и охлаждения организма наблюдается снижение всех показателей работоспособности человека. Выполнение заданной работы возможно только за счет максимального волевого усилия при включении дополнительных физиологических резервов организма.
И, наконец, четвертая степень перегревания и охлаждения организма характеризуется быстрым угнетением деятельности ЦНС, сердечно-сосудистой и дыхательной систем (коллапс, потеря сознания).
Таким образом, в рассмотренной классификации стадии и степени перегревания и охлаждения организма также различают не только по температуре тела и клиническим признакам, но и по изменению приспособительных реакций организма. По этим показателям первая, вторая, третья и четвертая стадии (степени) перегревания и охлаждения организма отличаются друг от друга степенью включения приспособительных механизмов в процесс терморегуляции. В первой стадии приспособительные реакции организма включены только частично, во второй стадии - включены до максимума, в третьей - частично отключены, в четвертой стадии - отключены полностью (до исходных и ниже).
Условия пребывания человека в окружающей среде, вызывающей первую, вторую и третью степени перегревания или охлаждения организма, расценены соответственно как допустимые, предельно допустимые и критические, или недопустимые.
При допустимом уровне перегревания или охлаждения человека наблюдается определенное напряжение механизмов терморегуляции организма. Однако при этом сохраняется термостабильное состояние «сердцевины» вследствие включения приспособительных реакций организма. Снижение при высоких температурах и повышение при низких температурах окружающей среды теплоотдачи радиацией и конвекцией компенсируется изменениями теплопродукции, теплоотдачи испарением влаги с поверхности тела и дыхательных путей. В этих условиях возможно продолжительное пребывание человека при отсутствии изменений работоспособности, опасности для здоровья и явлений кумуляции при повторном действии подобных условий внешней среды. Основными физиологическими показателями оценки теплового состояния человека являются средняя температура тела, средневзвешенная температура кожи, тепловые потоки с поверхности тела, внутренний градиент температур, теплоизоляция поверхностных тканей, структура теплового обмена.
Предельно допустимыми условиями перегревания и охлаждения считаются такие, которые, вследствие неполного приспособления организма к действию внешней среды, вызывают значительное напряжение терморегуляции и снижение некоторых показателей работоспособности, безопасны для здоровья, не приводят к кумуляции при повторном их действии и допускаются только на ограниченное время при постоянном медицинском контроле.
В условиях критического (недопустимого) перегревания и охлаждения человека наблюдается срыв приспособительных механизмов терморегуляции организма, снижение работоспособности, наличие опасности для здоровья и явлений кумуляции при повторном действии неблагоприятных условий микроклимата.
При предельно допустимом и критическом перегревании и охлаждении организма в качестве основных физиологических критериев принимаются потери веса и теплоотдача испарением влаги (при перегревании), средняя температура и температура тела, компоненты теплового обмена (теплоотдача, тепло продукция, изменения теплосодержания), показатели состояния сердечно-сосудистой системы (минутный и систолический объем крови и др.).
Таким образом, первая, вторая и третья степени воздействия высоких и низких температур окружающей среды могут быть расценены как допустимые, предельно допустимые и критические (или предельно переносимые) условия перегревания и охлаждения организма. Каждая из степеней дискомфорта характеризуется определенной величиной дефицита или накопления тепла в организме. При составлении классификации тепловых состояний учитывались общегигиенические подходы к нормированию микроклимата, возможность выполнения работы с необходимым объемом и качеством, степень влияния неблагоприятных условий на состояние здоровья при однократном и повторном действии окружающей среды.
Исследования, проводимыее экипажами летательных аппаратов, работающими в экстремальных условиях, свидетельствуют о необходимости разработки средств профилактики от перегревания и охлаждения организма человека.
Решение этой важной проблемы может осуществляться по трем направлениям:
Разработка средств индивидуальной защиты членов экипажей летательных аппаратов.
Нормирование микроклимата помещений с учетом теплозащитных свойств одежды, сезона года, уровней эмоциональной и физической нагрузки, метеорологических условий окружающей среды и других факторов, встречающихся в полете.
Физиолого-гигиеническая регламентация режима труда и отдыха экипажей летательных аппаратов.
Одним из важных условий при конструировании теплорегулирующих систем является принцип автоматического терморегулирования, применение которого позволяет поддерживать комфортные условия микроклимата воздуха при различной теплоизоляции одежды и тяжести физической работы.
3.10 Влияние электромагнитных излучений на организм
Электромагнитное поле (ЭМП) -- физическое поле движущихся электрических зарядов, а котором осуществляется взаимодействие между ними. Частные проявления ЭМП - электрическое и магнитное поля. Поскольку изменяющиеся электрическое и магнитное поля порождают в соседних точках пространства соответственно магнитное и электрическое поля, эти оба связанных между собой поля распространяются в виде единого ЭМП. ЭМП характеризуются частотой колебаний f (или периодом Т=1/f), амплитудой Е (или Н) и фазой j, определяющей состояние колебательного процесса в каждый момент времени. Частоту колебаний выражают в герцах (Гц), килогерцах (1 кГц = 103 Гц), мегагерцах (1 МГц=10 Гц) и гигагерцах (1 ГГц = 109 Гц). Фазу выражают в градусах или относительных единицах, кратных к. Колебания электрического (Е) и магнитного (И) полей, составляющих единое ЭМП, распространяются в виде электромагнитных волн, основными параметрами которых являются длина волны (1), частота (f) и скорость распространения v. Формирование волны происходит в волновой зоне на расстоянии больше 1 от источника. В этой зоне Е и Н изменяются в фазе. На меньших расстояниях - в зоне индукции - Е и Н изменяются не в фазе и быстро убывают с удалением от источника. В зоне индукции энергия попеременно переходит то в электрическое, то в магнитное поле. Здесь раздельно оценивают Е и Н. В волновой зоне излучение оценивается в величинах плотности потока мощности - ваттах на квадратный сантиметр. В электромагнитном спектре ЭМП занимают диапазон радиочастот (частота от 3104 Гц до 31012 Гц) и подразделяются на несколько видов.
В экстремальных условиях, в частности, в условиях космического полета источником ЭМП различных характеристик становится радио- и телевизионная аппаратура.
В основе биологического действия ЭМП на живой организм лежит поглощение энергии тканями. Его величина определяется свойствами облучаемой ткани или ее электрическими параметрами - диэлектрической постоянной (е) и проводимостью (ы). Ткани организма в связи с большим содержанием в них воды следует рассматривать как диэлектрики с потерями. Глубина проникновения ЭМП в ткани тем больше, чем меньше поглощение. При общем облучении тела энергия проникает на глубину 0,1-0,001 длины волны. В зависимости от интенсивности воздействия и экспозиции, длины волны и исходного функционального состояния организма, ЭМГГ вызывают в облучаемых тканях изменения с повышением или без повышения их температуры.
При воздействии ЭМП сверх высокочастотного диапазона (микроволны) на экспериментальных животных выявлено две группы эффектов - тепловые, сопровождающиеся повышением температуры тела, и нетепловые - без общей температурной реакции организма. Тепловые эффекты наблюдаются при достаточно интенсивных воздействиях (условно выше 10 мВт/см2). По мнению большинства американских исследователей, термический эффект является единственным механизмом биологического действия микроволн. Отечественные исследователи признают существование специфического нетеплового действия. Эти эффекты наблюдаются при плотности потока мощностью меньше 10 мВт/см2.
При очень интенсивных воздействиях микроволн с повышением температуры тела на 4-5С у лабораторных животных развивается характерная реакция: резкое учащение дыхания и сердцебиения, нарушение сердечного ритма, повышение артериального давления, генерализованные судороги. При достижении критического уровня температуры тела животное погибает. При несмертельных тепловых воздействиях наблюдаются изменения разных систем организма. В определенной последовательности развиваются характерные изменения неврологического и вегетативного статуса. Отмечаются разнообразные изменения биоэлектрической активности мозга, не всегда четко связанные с характером и интенсивностью воздействия. На этом фоне изменяются реакции мозга на световые, звуковые и вестибулярные раздражения; обнаруживается резкое угнетение условно-рефлекторной деятельности. Существенно, что нарушения высшей нервной деятельности могут возникать у потомства при облучении самцов или беременных самок. Наблюдаются изменения кровообращения и дыхания, направленные на усиление теплоотдачи - резкое учащение дыхания, сердечного ритма, расширение кожных сосудов и сосудов внутренних органов. При менее интенсивных и более длительных воздействиях АД после кратковременного повышения снижается, урежается сердечный ритм, возникают экстрасистолия и изменения на ЭКГ. Имеются данные о нарушении нейрогуморальной регуляции вегетативных функций. При облучении области живота возникают язвы желудка, тонкого и толстого кишечника. У собак отмечается угнетение секреторной функции желудка и мочеотделения. В реакцию на микроволновое воздействие вовлекаются железы внутренней секреции - кора и мозговой слой надпочечников, щитовидная железа, половые железы, гипофиз, о чем свидетельствуют изменения содержания гормонов в биологических средах, некоторые функциональные пробы; морфологические данные. Изменения половых желез приводят к нарушению функции размножения.
Изменяется морфологический состав периферической крови и костного мозга. Снижается содержание эритроцитов, отмечается лейкопения или нейтрофильный лейкоцитоз, лимфоцитопения, эозинопения. Эффекты хронических воздействий микроволн неоднозначны. После длительных воздействий микроволн учащались случаи лейкозов.
Разнонаправленные изменения претерпевал процесс свертывания крови.
Определенные сдвиги отмечаются в обмене веществ. Снижается интенсивность окислительных процессов и связанный с ними энергетический метаболизм. Изменения углеводного обмена выражаются в повышении уровня сахара а крови, сдвиге сахарной кривой вправо, снижении уровня фосфора и молочной кислоты в крови. Нарушается белковый обмен - повышается содержание альфа-, бета- и гамма-глобулинов в сыворотке крови, а также обмен нуклеиновых кислот, электролитов, витаминов .
Имеются указания на нарушения тканевой проницаемости, в частности гематоэнцефалического барьера, с которыми связывают изменения функции мозга при микроволновых воздействиях. При интенсивных, преимущественно локальных, облучениях глаз возможно образование катаракт.
Воздействие микроволн нетепловой интенсивности вызывает реакции тех же систем организма, что и тепловые воздействия. Однако, эти реакции, как правило, остаются в пределах физиологических колебаний, выявляются преимущественно при хронических воздействиях.
Сведения о влиянии микроволн на организм человека получены главным образом при обследовании контингентов лиц, работающих в условиях воздействия ЭМП. Установлено, что наиболее чувствительны к воздействию нервная и сердечнососудистая системы. Обнаруживаются изменения эндокринной системы, обменных процессов, функции почек, желудочно-кишечного тракта, системы крови, органа зрения. Ряд исследователей предложили классификации сверхвысокочастотных поражений по основному клиническому синдрому и длительности контакта с источниками излучения. Однако изменения, наблюдаемые при воздействии на организм человека микроволн низкой интенсивности, не специфичны, они являются адаптивными и укладываются в рамки физиологических колебаний. Кроме того, неубедительна связь некоторых симптомов с воздействием ЭМП, поскольку в производственной обстановке человек подвергается одновременно воздействию комплекса факторов.
В настоящее время введены нормативы, регламентирующие уровни микроволновых воздействий. Различные принципиальные подходы к механизму действия микроволновых излучений обусловливают различия в предельно допустимых уровнях воздействий, принятых в различных странах. В нашей стране в диапазоне сверхвысоких частот они составляют 10 мкВт/см2, в США в качестве базовой нормативной величины принята 10 мВт/см2.
Влияние на организм низкочастотных ЭМП изучено значительно меньше. Известно, что воздействие ЭМП частотой 1-350 Гц влияет на нервную систему. В эксперименте наблюдаются маловыраженные и нестойкие нарушения двигательно-пищевых условных рефлексов, главным образом в виде растормаживания дифференцировок, торможение выработанного у животных инструментального навыка и условно-рефлекторной реакции активного избегания у мышей в Т-образном лабиринте. В зависимости от условий воздействия изменения биоэлектрических процессов в мозге характеризуются десинхронизацией биотоков коры больших полушарий, появлением медленных высокоамплитудных колебаний, либо увеличением числа медленных волн и веретен или увеличением частоты и амплитуды биопотенциалов, иногда появлением эпилептиформных разрядов. Воздействие импульсным ЭМП вызывает у кошек дремотное состояние или сон, проявление на ЭКГ веретен или синхронизированной медленной активности. При воздействии низкочастотных ЭМП отмечается реакция сердечно-сосудистой системы и дыхания - урежение дыхания, снижение АД, урежение сердечных сокращений, а также отклонение электрической оси сердца влево, увеличение систолического показателя, желудочкового комплекса и интервала Q-T, снижение вольтажа зубцов Р и R на ЭКГ.
Наблюдаются усиление прямых и рефлекторных парасимпатических влияний на сердце и изменения функции эндокринных желез. Гематологические сдвиги выражаются в увеличении числа эритроцитов в крови и содержания в них гемоглобина, умеренном увеличении числа ретикулоцитов, преимущественно нейтрофильном лейкоцитозе. При хронических воздействиях отмечаются сдвиги в системе свертывания крови - подавление тромбопластической и повышение антикоагуляционной активности крови, увеличение содержания фибриногена в крови. Изменяется обмен углеводов, белков, нуклеиновых кислот, азота. В зависимости от частоты ЭМП увеличивается или уменьшается содержание сахара в крови, изменяется гликолитическое превращение углеводов в некоторых органах. Снижается общее содержание белка в сыворотке, альбумина и глобулина (без изменений альбумино-глобулинового коэффициента). При локальных воздействиях увеличивается сосудисто-тканевая проницаемость.
Одним из основных способов защиты от электромагнитных излучений (ЭМИ) является физическая защита. Обычно подразумевается два типа экранирования: экранирование источника (обычно излучающего радиоволны в эфир) от населенных пунктов или обслуживающих помещений; экранирование людей (групп или отдельных лиц) от источников ЭМИ. Во всех случаях используются радиопоглощагощие или радиоотражающие материалы, конструкции, сооружения или естественные экраны (лесонасаждения, заглубление источников и т.д.). При выборе материалов обычно учитывают сквозное и дифракционное затухание. Последнее учитывается в создании экранов на открытой местности при экранировании от радиоизлучающих установок. Искусственные и естественные лесонасаждения дают наибольшие величины затухания - 3-10 дБ. Сквозное затухание увеличивается с ростом частоты поля, толщины и магнитной проницаемости материала. Нанесение тонких проводящих прозрачных пленок (в частности, двуокиси олова) позволяет получить ослабление ЭМИ до 30 дБ.
Многие радиопоглощающие материалы, которые интенсивно используют с целью обеспечить «невидимость» (маскировку) летательного объекта, с успехом могут быть применены в системах коллективной защиты человека от крайне интенсивных ЭМИ. В практике защиты от ЭМИ используют также сетчатые экраны. Размер ячеек и толщина проволоки изменяются с длиной волны.
К индивидуальным средствам защиты относят различные виды одежды {костюмы, фартуки, шлем, очки), созданные, как правило, на основе металлизированных материалов. Применение этой одежды целесообразно только в особых случаях и при ППЭ более 50 мВт/см2 (ремонтная работа с наладкой и проверкой оборудования, аварийные ситуации, работа в мощном антенном поле и т.д.). При повседневной работе (ППЭ менее 10 мВт/см2) ее применение нецелесообразно, к тому же она стесняет движения, ухудшает тепловой режим человека и снижает работоспособность. Оценка экранирующих свойств радиолетощающих и отражающих материалов - сложная задача. Это связано с различиями радиочастотных свойств стыков и различного рода конструктивных элементов, наличием неровностей, которые способствуют появлению резонансных явлений.
Организационные мероприятия защиты от ЭМИ включают чрезвычайно широкий круг вопросов, начиная от технического обеспечения персонала дозиметрами, вплоть до определения льгот по вредности. Прежде всего необходимо рациональное (с точки зрения безопасности) размещение излучающих объектов (РЛС, радиоэлектронные средства связи и т.д.), а также жилых объектов по отношению к источникам ЭМИ, коллективная и индивидуальная защиты и дозиметрический контроль.
Применительно к условиям профессиональной деятельности можно обозначить еще несколько организационных принципов радиационной безопасности.
Организация рабочего времени. Минимально возможный по времени контакт с ЭМИ.
Организация рабочего места. Нахождение в контакте с ЭМИ только по служебной необходимости; выполнение только того, что определено техническим или рабочим процессом; исключение влияния отражающих поверхностей и заземления оператора.
Организация работы при аварийной ситуации. Четкая регламентация по времени и пространству совершаемых действий. Часто аварийная ситуация может быть многофакторной: ЭМИ и ионизирующая радиация, электрически опасные ситуации и т.д. В этом случае должен выбираться главный фактор. В частности, из этих трех факторов ЭМИ РЧ менее опасный.
Летчики, инженеры, операторы и т.д. должны иметь четкое представление о границах вредного и невредного. Для этого необходимы четкая и объективная информация об абсолютно доказанных эффектах ЭМИ, а также о значении радиоизлучающих источников для безопасности полетов, эффективности пилотирования.
Особое внимание персонала, обеспечивающего безопасность работы с ЭМИ, должно быть обращено на случаи переоблучения, выяснение причин и клинических последствий. Широкое использование ЭМИ в технике, медицине и быту, неуклонный рост мощности источников вынуждают многих гигиенистов и экологов очень внимательно относиться к этому фактору внешней среды. Уместно подчеркнуть, что он не является для человека абсолютно чуждым. Так, естественный уровень ЭМИ в диапазоне 0,3 - 300 ГГц составляет около 30-40 мВт/м2: излучение Солнца -- 0,02, Земли = 3 и человека - 30-40 мВт/м2,
Люди должны знать о вреде и пользе применения ЭМИ, правильно представлять границы допустимого использования источников электромагнитных излучений, преступать которые нежелательно. Для этого необходимо понимании проблемы взаимодействия человека с электромагнитным фактором во всем его многообразии: биологическом, экологическом и социально-этическом.
3.11 Влияние ионизирующих излучений на организм
Ионизирующие излучения - это любые излучения, взаимодействие которых со средой приводит к образованию электрических зарядов разных знаков, т.е. ионизации атомов и молекул в облучаемом веществе. Кроме ионизации, все виды излучений вызывают возбуждение атомов и молекул путем передачи им части энергии, недостаточной для ионизации. Иначе говоря, ионизация и возбуждение являются главными процессами расходования всей анергии излучения, проникающего в облучаемый объект. Ионизирующие излучения подразделяются на электромагнитные и корпускулярные.
К электромагнитным относятся рентгеновские лучи, гамма-лучи радиоактивных элементов и тормозное излучение, испускаемое при изменении кинетической энергии заряженных частиц при прохождении через вещество. Эти разновидности излучений имеют ту же природу, что и видимый свет, радиоволны, но с меньшей длиной волны. Электромагнитные излучения не имеют массы покоя и заряда, а потому обладают наибольшей проникающей способностью. Пробег частиц электромагнитных излучений (фотонов) максимально сокращается в таких материалах, как свинец, что используется при конструировании защитных экранов.
...Подобные документы
Анатомия и физиология как науки. Роль внутренней среды, нервной и кровеносной систем в превращении потребностей клеток в потребности целого организма. Функциональные системы организма, их регуляция и саморегуляция. Части тела человека, полости тела.
презентация [10,6 M], добавлен 25.09.2015Физиологический механизм адаптации организма к условиям высокогорья, причины гипоксии (кислородной недостаточности). Аэробный и анаэробный пути добычи энергии, свободные радикалы. Различия адаптивных стратегий, гипоксическая тренировка, гипокситерапия.
курсовая работа [43,7 K], добавлен 03.02.2012Адаптация организма к условиям среды в общебиологическом плане, ее необходимость для сохранения как индивидуума, так и вида. Способы защиты от неблагоприятных условий окружающей среды. Анабиоз, оцепенение, зимняя спячка, миграция, активация ферментов.
реферат [38,2 K], добавлен 20.09.2009Развитие физиологических функций организма на каждом возрастном этапе. Анатомия и физиология как предмет. Организм человека и составляющие его структуры. Обмен веществ и энергии и их возрастные особенности. Гормональная регуляция функций организма.
учебное пособие [6,1 M], добавлен 20.12.2010Понятие адаптации - приспособительного процесса, возникающего в ходе индивидуальной жизни человека. Физиологические аспекты повышения устойчивости организма к действию факторов новых условий существования. Стрессорные факторы при ослаблении организма.
презентация [144,6 K], добавлен 29.05.2019Адаптация как одно из ключевых понятий в экологии человека. Основные механизмы адаптации человека. Физиологические и биохимические основы адаптации. Адаптация организма к физическим нагрузкам. Снижение возбудимости при развитии запредельного торможения.
реферат [22,8 K], добавлен 25.06.2011Социально-биологические основы физической культуры. Функциональные системы организма. Адаптация как процесс приспособления его строения и функций к условиям существования. Аэробная и анаэробная производительность организма. Обмен веществ (метаболизм).
презентация [7,4 M], добавлен 16.03.2014Характеристика процессов адаптации человека к условиям окружающей среды. Исследование основных механизмов адаптации. Изучение общих мер повышения устойчивости организма. Законы и закономерности гигиены. Описания принципов гигиенического нормирования.
презентация [8,5 M], добавлен 11.03.2014Описание строения клетки, а также некоторых органических соединений, использующихся в живых организмах. Физиология и анатомия человека, особенности функционирования ряда важнейших органов. Взаимодействие и обмен веществ в организме. Водная среда жизни.
реферат [3,3 M], добавлен 02.12.2010Экологические группы растений. Адаптации к стрессовым условиям обитания. Типы ареалов и факторы, обусловливающие их границы. Ботаническая и экологическая характеристика дикорастущих видов растений (Гравилат речной Geum rivale) семейство (Розоцветные).
контрольная работа [1,3 M], добавлен 09.04.2019Функциональные системы организма. Внешние и внутренние раздражители организма человека, восприятие состояния внешней среды. Особенности организма человека, феномен синестезии, экстрасенсы-синестетики. Особенности темперамента при выборе профессии.
реферат [49,8 K], добавлен 06.02.2013Признаки и общая характеристика процесса старения, его влияние на нейроэндокринные механизмы регуляции клетки. Возрастная периодизация функционирования организма человека. Сравнительная характеристика преждевременного и физиологического старения.
презентация [7,6 M], добавлен 28.09.2014Предмет и роль физиологии в системе медицинского образования, краткая история, современные тенденции и задачи физиологии. Организм и внешняя среда, исследование физиологии целостного организма. Метод графической регистрации и биоэлектрических явлений.
курсовая работа [63,3 K], добавлен 02.01.2013Анатомия и морфология почек человека. Физиология и функции. Почки как своеобразная железа внутренней секреции. Удаление из организма конечных продуктов обмена веществ. Регуляция водного баланса, кислотно-основного состояния, уровня артериального давления.
курсовая работа [44,5 K], добавлен 08.08.2009Общие закономерности онтогенеза и его периоды. Взаимоотношения материнского организма и плода. Роль наследственности и среды в онтогенезе. Тератогоенные факторы среды, влияние алкоголя на организм. Возрастные периоды организма и их характеристика.
реферат [35,4 K], добавлен 17.06.2012Исследование понятия биологических часов человека, способности организма чувствовать и измерять время. Ритм изменения функционального состояния человека. Адаптация организмов к смене дня и ночи. Обзор теории гормонального влияния на биоритмы человека.
реферат [24,0 K], добавлен 08.03.2014Экологические зоны Мирового океана. Свойства водной среды (звук, электричество и магнетизм; солевой, световой, температурный режим) и ее роль в жизни гидробионтов. Адаптация растительных и животных организмов среде обитания. Фильтрация как тип питания.
курсовая работа [1,2 M], добавлен 16.12.2012Изучение ритмов активности и пассивности, протекающих организме человека. Физический, эмоциональный и интеллектуальный ритмы организма. Значение критических дней для каждого биоритма человека. Солнечно-лунно-земные и космические влияния на организм.
презентация [321,0 K], добавлен 17.04.2011Медико-биологические исследования воздействия космофизических факторов среды на организм человека. Определение структурно-энергетических характеристик геомагнитного поля. Выявление степени индивидуальной чувствительности организма к действию вариаций ГМП.
статья [104,9 K], добавлен 21.05.2015Характеристика радиочастотных (РЧ) воздействий. Выводы ученых по исследованию популярных марок телефонов и их влияния на здоровье человека, системы организма человека, наиболее подверженные вредному влиянию. Меры по защите населения от РЧ-излучения.
научная работа [21,5 K], добавлен 09.02.2009