Экологическая физиология

Адаптация организма человека к природно-климатическим и социальным условиям. Экологические аспекты хронобиологии. Влияние на организм вибраций, гравитации, излучения, звуковых нагрузок, катастроф. Гипоксия, гиперкапния и декомпрессионные расстройства.

Рубрика Биология и естествознание
Вид учебное пособие
Язык русский
Дата добавления 19.08.2017
Размер файла 616,8 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Другой физиологический барьер, препятствующий погружению человека на большие глубины, - обеспечение температурного гомеостаза организма при погружении в барокамере и особенно при выходе водолазов в окружающую толщу воды. В настоящее время известно, что по мере повышения давления зона температурного комфорта все более сужается, по величине приближаясь к температуре тела.

При высоких давлениях в гелио-кислородной среде для создания комфортных условий требуется значительно большее повышение окружающей температуры, чем в обычных условиях. В последнее время получены данные о неадекватности теплоощущений человека в гипербарической среде относительно реального теплового состояния организма. Кроме того, известно, что зоны комфортных температур значительно изменяются в условиях покоя или работы. Они в большей мере зависят также от уровня энергопродукции человека, т.е. от характера его деятельности. В связи с этим по море увеличений барометрического давления или глубины погружения все более актуальной становится проблема оценки истинного теплового состояния организма и оперативного регулирования микроклимата водолазных барокамер.

Несмотря на более чем столетнюю историю изучения, до настоящего времени не решена проблема декомпрессии. Она, по-видимому, будет актуальной до тех пор, пока применяются методы погружения человека, при которых дыхание происходит при давлениях, соответствующих глубине погружения. Первые исследования возможностей дыхания жидкими смесями были встречены с энтузиазмом, однако до реального использования их человеком еще далеко. В связи с этим актуальными остаются исследования, направленные на сокращение периодов декомпрессии после пребывания под давлением, раннюю диагностику, лечение и профилактику заболеваний, связанных с декомпрессией. В поисках способов сокращения декомпрессии исследуются механизмы сатурации и десатурации тканей организма при гипербарии с целью разработки режимов плавной, близкой к физиологической кривой десатурации. Большое внимание уделяется исследованиям возможностей сокращения периода декомпрессии за счет периодического переключения человека на дыхание различными инертными газами. Представляются актуальными также исследования, направленные на создание аппаратуры, позволяющей следить за ходом индивидуального процесса десатурации с: последующей корректировкой режима декомпрессии. Последнее имеет также большое значение для профилактики и ранней диагностики заболеваний, связанных с декомпрессией.

Таким образом, возможности преодоления физиологическими системами организма воздействия факторов гипербарии далеко не исчерпаны.

Для оптимизации реакций организма были предложены разные методы. Во-первых, это рациональный подбор газовой среды.

В. П. Николаев показал, что важнейшие требования, предъявляемые к искусственной дыхательной среде при различных давлениях, - обеспечение нормального снабжения организма кислородом и нормальная плотность - могут быть выполнены путем создания газовых смесей того или иного состава.

В отношении содержания кислорода вопрос решается сравнительно просто. Обычно стремятся сохранить напряжение этого газа в среде близким к нормальному, лишь немного увеличивая его с учетом возникающих при высоких давлениях среды нарушений диффузионного процесса. Предлагается, правда, корректировать РО2 в соответствии с метаболическими потребностями. На основе принципа максимально возможного уменьшения напряжения функций дыхания и кровобращения была создана математическая модель, позволившая вывести оптимальные концентрации вдыхаемого кислорода в газовой смеси для мышечных нагрузок разной мощности. Полученные таким путем величины РО2, расположились в диапазоне от 0,021 до 0,033 МПа. Более высокое парциальное давление кислорода в среде по расчетам должно выводить показатели легочной вентиляции и гемодинамики из оптимальности. Кроме того, значительная гипероксия (РО2 выше 0,040-0,050 МПа) при длительных экспозициях оказывает известное токсическое действие.

И снова приходится возвращаться к одной из сложнейших проблем гипербарической физиологии - затруднениям дыхания вследствие повышенной плотности дыхательной среды. Этот барьер к настоящему времени удалось значительно отодвинуть благодаря широкому применению гелиевых смесей. Еще большие преимущества сулит использование в качестве разбавителя кислорода самого легкого газа - водорода. Действительно, при давлении 0,71 МПа человек в условиях дыхания смесью 97% Н2 и 3% О2 мог развить максимальную вентиляцию легких, более чем в полтора раза большую, чем при дыхании воздухом.

Существенно облегчалось дыхание водолазов и улучшались их эргономические показатели, как было показано в эксперименте «Гидра-4», при использовании смеси 98% Н2 и 2% О2 (по сравнению с аналогичной гелио-кислородной смесью) под давлением 1,3-2,4 МПа. В частности, снижалось усилие, затрачиваемое на создание определенной скорости потоке. В результате, например, при давлении 1,3 МПа испытуемые справлялись с 10-минутной работой мощностью до 225 Вт.

Теоретически водородно-кислородные смеси должны позволить человеку дышать под огромным давлением 15 МПа, которое соответствует глубине 1500 м вод. ст. Взрывоопасность таких смесей легко устраняется низкими концентрациями кислорода. Однако исследователи встретились здесь с неприятным сюрпризом; неожиданно выраженным оказалось действие высокого парциального давления водорода на ЦНС. В экспериментах с мышами, экспонированными в барокамере, заполненной водородно-кислородной смесью, у животных при давлении 6-7 МПа появлялся тремор, а при 10,9 МПа - судороги. У обезьян судороги начинались при давлениях около 7 МПа.

Вместе с тем, водород проявляет наркотические свойства, которые выражены у данного газа всего лишь примерно в 4 раза слабее, чем у азота. Возможно, именно ао этой причине у кроликов при давлении 2,8 МПа водород вызывал снижение не только двигательной, но и дыхательной активности. Человек испытывал наркотическое состояние уже при давлении водородно-кислородной смеси всего 1,5-1,8 МПа: по свидетельству участников эксперимента в Гидра-4», этот эффект напоминал «азотный наркоз», хотя и несколько отличался от последнего - эйфория была «более приятна». Такое действие водорода удается преодолеть лишь путем добавления в дыхательную смесь других компонентов - комбинируя содержание различных газов таким образом, чтобы их неблагоприятные эффекты - наркоз и НСВД - по возможности взаимно компенсировались. Так, при давлении 3 МПа была успешно применена газовая смесь такого состава: 74% Н2, 24% Не, 2% О2. Предлагают, в частности, комбинации нескольких газов - гелия и водорода с неоном и азотом, - позволяющие, кроме того, смягчить также неблагоприятное влияние «легких» газов на терморегуляцию организма и разборчивость речи.

Известно, что вследствие затруднения дыхания и (или) малой чувствительности к гиперкапническому стимулу у человека в гипербарической среде зачастую проявляется тенденция к за-держ.ке С03 в организме. Кроме того, в условиях работы при повышенном давлении с использованием респираторной аппаратуры может повышаться концентрация двуокиси углерода. Вместе с тем, гиперкапнии значительно усиливает наркотический эффект высокого парциального давления азота, а также токсического действия кислорода, и это может привести к развитию порочного круга, рокового для функции дыхания и чреватого дыхательной недостаточностью. Поэтому меры по возможному предотвращению накопления С02 в дыхательной смеси служат неотъемлемым элементом оптимизации гипербарической среды.

Устранению одышки и тем самым повышению работоспособности способствует создание небольшого положительного давления (+ 10 см вод. ст.) в дыхательных путях. Принципиально новым способом разгрузки дыхательной мускулатуры от тяжелой работы по преодолению сопротивления, обусловленного повышенной плотностью газовой среды, является применение искусственной или вспомогательной вентиляции легких. Пока такой способ в основном находится на стадии экспериментирования. С этой целью для опытов на лабораторных животных разработан специальный поршневой респиратор, осуществляющий вентиляцию через эндотрахеальный катетер, причем газовая смесь в фазу вдоха нагнетается в легкие, а выдох (он в полтора раза длительнее вдоха) осуществляется пассивно. Теоретически возможно использование и другого способа, основанного на создании колебаний давления в емкости (барокамере или «подводном доме»), где находится человек. Перспективность этого пути весьма вероятна.

В настоящее время получила развитие идея создания так называемой активной газовой среды, которая стимулировала бы формирование активных адаптивных реакций организма к неблагоприятным условиям. В этом плане кажется перспективным использование нестационарной искусственной атмосферы с циклично изменяющимся газовым составом. Можно думать, что исследования, развернувшиеся в этом направлении помогут в ближайшем будущем решить данную проблему.

Другим методом повышения толерантности организма к гипербарической среде может быть дыхательная тренировка.

В условиях плотной газовой среды уменьшению затрат энергии на вентиляцию в легких способствует переход на медленное и глубокое дыхание. В частности, И. О. Вреславом (1975) показано, что обучение такому режиму дыхания позволяет успешно выполнить мышечную работу в условиях значительного сопротивления инспираторным и экспираторным потокам. Подобную тренировку проходят водолазы.

Представляется целесообразной предварительная тренировка к искусственному сопротивлению вдоху. Увеличение работоспособности дыхательных мышц получали и с помощью систематической произвольной гипервентиляции легких, особенно в сочетании с резистивной нагрузкой.

В литературе встречаются сообщения о том, что у профессиональных водолазов дыхание и без какой-либо специальной тренировки медленное и глубокое, что у них значительно больше средние легочные объемы и, наконец, что у них и в нормальных условиях ослаблена реакция дыхания на гиперкаппию - уменьшен наклон кривых (параметр Sn) роста вентиляции и окклюзионного давления в ответ на прогрессивное увеличение РСО2, и повышено пороговое значение РСО2. В связи с этим у водолазов альвеолярное напряжение двуокиси углерода выше, чем у представителей других профессий - и не только в гипербарической, но и в обычной cреде, а при мышечной работе может даже превышать 80 мм рт. ст. Здесь, правда, у некоторых авторов возникает сомнение: не является ли это следствием профессионального отбора людей для работы под водой по каким-то признакам, с которыми указанные особенности связаны? Тем более, что, как выяснилось, многие из этих особенностей не коррелируют с водолазным опытом. Предлагалось даже специально отбирать индивидов с уменьшенной реакцией дыхания на физическую нагрузку, поскольку высокий уровень легочной вентиляции в плотной газовой среде, естественно, резко увеличивает энерготраты на работу дыхательных мышц, а снижение усилия, затрачиваемого этими мышцами, уменьшает выраженность одышки.

По другому пути пошли исследователи, в течение 5 месяцев тренировавшие респираторную мускулатуру водолазов с помощью дыхания через добавочное сопротивление (диафрагма с отверстием 8-6,5 мм): тренированные таким способом люди показали в условиях давления гелиокислородной смеси 4,6 МПа более высокие уровни легочной вентиляции, чем нетренированные. И все же по крайней мере часть функциональных сдвигов в системе дыхания является несомненным результатом систематического воздействия факторов гипербарии. Сюда можно отнести уменьшение максимальных экспираторных потоков с одновременным увеличением форсированной жизненной емкости легких, повышение силы дыхательных мышц и т.д. Правда, со временем подобные перестройки могут терять свое приспособительное значение и приобретать патологический характер.

Некоторые исследователи наблюдали в ходе пребывания в гипербарической среде повышение максимальной произвольной вентиляции. Это явление частично можно объяснить уменьшением сопротивления дыханию вследствие бронходилятации, рефлекторво наступающей при тяжелой работе и гиперкапнии, а частично - тренировкой дыхательной мускулатуры. В свою очередь, увеличение функционального резерва аппарата дыхания оказывает положительное влияние на работоспособность. Мы упоминали «азотный наркоз» в качестве неблагоприятного фактора, который может усугубить эффекты, связанные с затруднением дыхания из-за повышенной плотности дыхательной среды. При повторных экспозициях влияние этого фактора на физиологические функции удается значительно ослабить: улучшается способность человека к самоконтролю. В условиях использования гелиокислородных дыхательных смесей под высоким давлением водолазы научаются подавлять мышечный тремор. Вместе с тем для работы в таких условиях предлагалось отбирать индивидов, мало подверженных проявлениям нервного синдрома высоких давлений. Кроме того, возбуждающее действие этого синдрома на ЦНС может способствовать повышению активности центрального дыхательного механизма. То же может происходить в начальных стадиях «азотного наркоза». Аналогичное действие могут оказывать факторы неспецифического характера стрессорное состояние, эмоциональный подъем, сопряженный с пребыванием в необычных условиях, хотя в некоторых случаях те же факторы могут отрицательно сказаться на работоспособности. В этом, надо думать, заключается причина того, что МВЛ обычно оказывается выше расчетной для данной плотности. Сообщалось, что выше расчетной оказывались и максимально выполнимые кратковременные мышечные усилия нагрузки.

Таким образом, профессиональный отбор и соответствующая подготовка человека может повысить его устойчивость к неблагоприятным аффектам гипербарии.

3.15 Искусственная газовая атмосфера

Нормальная жизнедеятельность и работоспособность человека в условиях космического полета обеспечивается благодаря использованию герметических кабин регенерационного типа, в которых до полета или во время полета устанавливается, а затем на протяжении всего полета поддерживается искусственная газовая атмосфера (ИГА). Нахождение во время космических полетов людей, а также животных и растений в среде с ИГА является непременным условием, так как ИГА защищает в полете живые организмы от неблагоприятного влияния космического пространства, и в первую очередь - от крайне опасного действия низкого барометрического давления. Одновременно ИГА является источником кислорода, необходимого для дыхания.

Использование ИГА в кабинах космических кораблей ставит перед специалистами - биологами, физиологами, врачами и инженерами - вопрос о том, какой должна быть ИГА. Каким физиолога-гигиеническим и техническим требованиям она должна прежде всего удовлетворять? Речь идет о рациональном выборе основных параметров ИГА, таких, как величина общего барометрического давления, химический ее состав: выбор газов-разбавителей, допустимый диапазон колебаний в пей парциального давления кислорода (РО2), углекислого газа (РСО2), температуры и других параметров.

Решение этих вопросов и, следовательно, всей проблемы рационального формирования ИГА возможно только при условии учета сложного взаимодействия многих физиологических и технических факторов. В итоге создание рациональной ИГА по существу является определенным компромиссом между медико-биологическим и техническим подходом к этой проблеме. Первый определяет стремление к созданию гигиенических условий, близких к комфортным; второй ограничивает это стремление и требует считаться с трудностями конструктивного порядка; с необходимостью ограничивать вес и габариты аппаратуры, опасностью возникновения взрыва и пожара, а также вероятностью возникновения различных аварийных ситуаций. Последнее обстоятельство приводит к необходимости при формировании ИГА оценивать ее и в случаях нарушения герметичности кабины. Важно также при создании ИГА учитывать и то, что в зависимости от задач полета космонавты могут покидать космический корабль осуществлять операции вне корабля или на поверхности небесных тел, вокруг которых практически отсутствует атмосфера (Луна) или где она крайне разрежена (Марс), или же, наоборот, имеет весьма высокую плотность (Венера). В таких случаях при создании ИГЛ следует, по-видимому, принимать во внимание конструктивный особенности (в первую очередь величину давления) скафандра, а также герметических отсеков транспортных средств и жилищ, которыми будут пользоваться космонавты (Малкин В. Б., 1975).

Несмотря на то, что отечественные и американские исследователи при создании искусственной газовой атмосферы (ИГА) в космических кораблях руководствовались в значительной степени общими принципами, практически вопрос о формировании ИГА был решен далеко не однозначно.

Отечественные исследователи избрали ИГА близкую по основным параметрам (давлению и газовому составу) к нормальной земной атмосфере, и тем самым создали для космонавтов при нормальных режимах полета достаточно хорошие условия обитания.

Американские исследователи из-за ряда технических выгод использовали также приемлемую для космонавтов моногазовую ИГА, состоящую из кислорода, под общим давлением 258 мм рт. ст. При этом они, по-видимому, учитывали и удобство использования ее в случаях выхода космонавтов из кабины в скафандрах с низким общим давлением.

Эти ИГА, успешно использованные в полетах, в общем отвечают основным физиологическим принципам формирования ИГА. Они обеспечивают экипажу в полете условия нормального газообмена, не вызывают сколько-нибудь значительного напряжения приспособительных механизмов и поэтому не снижают адаптационного резерва организма.

Как американские, так и российские специалисты продолжают исследовательскую работу по созданию ИГА для космических кораблей. Это свидетельствует о том, что используемые в настоящее время ИГА в свете перспективы полетов большой продолжительности, по-видимому, вряд ли являются оптимальными. В процессе разработки этой проблемы обсуждаются различные варианты ИГА.

Последовательное рассмотрение и оценку различных вариантов ИГА целесообразно провести в соответствии с определенной систематизацией различных возможных рецептов ИГА. В основу классификации ИГА могут быть положены ее химический состав, физические свойства и основные физиологические характеристики.

С точки зрения физиологической оценки ИГА по условиям газообмена и по величине РО.^ и РСО во внутренней среде (кровь, альвеолярный воздух) могут быть эквивалентными нормальной земной атмосфере и не полностью эквивалентными, содержащими некоторый избыток О2 и СО2 или дефицит О2. По химическому составу ИГА может состоять только из одного газа (О2), двух газов - О2 и какого-либо биологически индифферентного газа или, наконец, в ее состав, помимо О2, могут входить несколько индифферентных газов (N2, Не, Хе, Аr). Физические свойства ИГЛ помимо того, что они зависят от ее химического состава, зависят еще и от величины барометрического давления, которое также может широко варьировать.

Из сказанного становится очевидным, что число принципиально возможных для практического использования в космических полетах вариантов ИГА достаточно велико. Однако целесообразно ограничить их рассмотрение лишь теми, которые в настоящее время привлекают наибольшее внимание исследователей и были в связи с этим экспериментально изучены в лабораторных опытах, а некоторые из них были уже использованы в полетах (Малкин В. Б., 1975).

Сначала рассмотрим ИГА, имитирующие нормальную газовую атмосферу Земли. К ним относятся ИГА, которые в основном состоят тоже из двух газов: О2 и N2, содержание других газов в них невелико - порядка 1%". Следует сразу же заметить, что когда речь идет об имитации нормальной атмосферы Земли в кабинах космических кораблей, то при этом подразумевается создание комфортных условий, установленных гигиенистами для жилых помещений в географических районах, расположенных на уровне моря. Речь идет о воспроизведении хорошо изученных искусственных условий, которые условно мы обозначим термином «нормальная земная атмосфера» (НЗА).

Как считают многие специалисты, использование в кабинах наших космических кораблей ИГА, близкой к НЗА, было вполне оправданно, прежде всего в связи с тем, что такая ИГЛ с биологической точки зрения является наиболее адекватной для человека, исторически адаптировавшегося к ней. В принципе ИГА, близкая к НЗЛ, может быть использована в длительных космических полетах как один из наиболее надежных вариантов ИГА.

Некоторые исследователи полагают, что, несмотря на приемлемость использования НЗА в качестве ИГА в кабинах космических кораблей, все же в большинстве случаев применение ее нерационально.

По этому поводу О. Г. Газенко и А. М. Гения пишут: «...копирование земной атмосферы неоправданно ограничивает возможность вариаций ИГЛ, которые могут оказаться целесообразными с точки зрения техники и защиты человека в аварийной обстановке».

В связи с необходимостью при выборе ИГЛ считаться с весовыми параметрами (чем выше давление ИГА, тем соответственно толще должны быть стенки кабины и больше ее вес), вероятностью возникновения аварийных ситуаций многие исследователи указывают на теневые стороны использования НЗА. Они отмечают, что в случае нарушения герметичности кабины величина перепада барометрического давления будет значительной, что Может привести к. серьезному повреждающему действию при взрывной декомпрессии. Переход из НЗА в ИГЛ с низким давлением, например при переходе из одного корабля в другой или при пользовании скафандрами с низким давлением, чреват серьезной опасностью возникновения высотной декомпрессионной болезни. В случаях использования скафандров с низким давлением это может осложнить не только пребывание космонавтов в аварийной ситуации, но и оказать неблагоприятное влияние на выход их в «открытый» космос и па поверхность небесных тел, практически лишенных или имеющих крайне разреженную атмосферу. Здесь же следует отметить, что некоторые исследователи указывают на целесообразность использования НЗА в кабинах лишь в ограниченных случаях не только в связи с вероятностью возникновения аварийных ситуаций. Эту точку зрения они аргументируют тем, что сами условия полета большой продолжительности могут приводить к таким функциональным сдвигам в организме (к астенизации - развитию детренированности), при которых комфортные, остаточно стабильные параметры НЗА окажутся уже далеко не оптимальными.

В связи со всем сказанным исследователи отмечают, что в ряде случаев в кабинах космических кораблей целесообразно использовать двухкомпонентные ИГА, эквивалентные по газообмену НЗА, но имеющие более низкое, чем НЗА, барометрическое давление.

Максимально допустимое снижение давления ИГА лимитируется величиной порядка 190 мм рт. ст. При этом для сохранения нормального обеспечения организма О2 в случаях использования столь низких величин давления газовый состав ИГА должен практически состоять только из одного О2, т.е. газовая среда уже не может быть двухкомпонентной. В связи с этим при рассмотрении ИГА, состоящих из О2 и N2, остановимся лишь на четырех диапазонах пониженного давления: 526, 405, 308 и 267 мм рт. ст., соответствующих высотам: 3000, 5000, 7000 и 8000 м.

В работе Д.И. Иванова и др. были последовательно апробированы в условиях лабораторного эксперимента три перечисленных выше ИГА с общим давлением 525, 405 и 308 мм рт. ст. Исследования при меньших величинах давления этими авторами не проводились по двум соображениям: необходимости профилактики ВДВ, возникновение которой уже начиная с высот 7500-8000 м становится реальностью, и вследствие увеличения возможности возникновения пожара в связи с необходимостью значительного повышения содержания O2 в ИГА.

Результаты этой работы показали, что месячное пребывание испытуемых в условиях ИГА, эквивалентных по О2 НЗА, при давлениях, соответствующих высотам 3000-7000 м, не оказывает какого-либо неблагоприятного влияния на организм. Об атом можно было прежде всего судить но тому, что все три апробированных варианта ИГА с физиологической точки зрения оказались равноценными. Отмеченные у испытуемых в этом исследовании изменения некоторых физиологических параметров: снижение потребления О2 на 10-15%, повышение частоты сердечных сокращений, особенно отчетливое при проведении ортостатической пробы, изменение суточной периодики частотного спектра ЭЭГ, увеличение числа медленных волн в дневное время не - зависели от газового состава и давления ИГА, а были обусловлены влиянием гиподинамии и изменениями режима труда, отдыха и сна.

В дальнейшем эти исследования были продолжены А. Г. Кузнецовым и др., которые провели исследования с 2-месячным пребыванием испытуемых в ИГА с общим давлением газов 308 мм рт.ст. При этом у испытуемых также были обнаружены функциональные сдвиги, обусловленные в основном только влиянием гиподинамии. Значительное внимание, которое уделяют исследователи созданию ИГА с общим давлением газов порядка 300 мм рт. ст. и менее, не случайно. Некоторые авторы указывают, что давление 300 мм рт. ст. является оптимальным, так как, будучи еще достаточно высоким, практически надежно предохраняет от возникновения декомпрессионных явлений и поэтому не требует проведения десатурации организма от N2 при вхождении в ИГА. Оно также удобно и в случаях необходимости использования скафандров с низким давлением, так как практически исключает вероятность возникновения ВДБ (ВДБ может возникнуть только в крайне редких случаях при аварийной разгерметизации в первые часы полета). Кроме того, с технической точки зрения, использование двух компонентной ИГА с давлением 300 мм рт. ст. выгодно, поскольку позволяет снизить вес кабины.

Большинство исследователей полагают, что человек и животные могут нормально жить в ИГА, лишенных N2. Эта точка зрения аргументирована многочисленными экспериментальными данными, свидетельствующими о нормальном развитии беспозвоночных и позвоночных животных в условиях ИГА, в которой N2 полностью отсутствует. Биологическая роль N2 для человека сводится к тому, что он заполняет полости тела, и в первую очередь легкие, и тем самым поддерживает их определенный объем, препятствуя развитию ателектазов. Эту функцию N2 могут, по-видимому, выполнять и другие индифферентные газы, в том числе и Не, о котором речь будет идти ниже.

Для утверждения возможности использования Не в качестве одного из основных компонентов ИГА необходимы доказательства того, что сам по себе этот газ не оказывает какого-либо неблагоприятного влияния на организм.

Результаты исследований, проведенных на животных, а также с участием человека, в которых азот в условиях нормального и пониженного давления был в ИГА замещен гелием, дают основания считать, что последний не оказывает токсического влияния на организм и так же, как и N2, является биологически индифферентным газом. Следует лишь упомянуть, что некоторые функциональные сдвиги - увеличение потребления кислорода, снижение количества эритроцитов и гемоглобина и связанное с этим повышение суточного потребления железа, - которые были обнаружены в гелио-кислородной среде у кроликов Гамильтоном и др., как и изменения устойчивости животных к гипоксии, отмеченные А. Г. Диановым, обусловлены, вероятно, теплофизическими свойствами Не (Малкин В. Е., 1975).

После того, как принципиальная возможность использования Не вместо N2 в ИГА доказана, следует ответить на второй вопрос: насколько целесообразна такая замена? Авторы, которые указывают на целесообразность использования Не вместо N2 в ИГА, аргументируют свою точку зрения следующими соображениями. Так, согласно данным М. И. Якобсона, А. Г. Дианова и А. Г. Кузнецова, при использовании Не несколько уменьшается вероятность возникновения ВДБ и особенно ее тяжелых форм, которые могут иметь место у космонавтов после перехода их в условия низкого барометрического давления. Ото мнение основано, по-видимому, на том, что Бунзеновский коэффициент растворимости в жире N2 примерно в 4 раза выше, чем Не. В работах американских исследователей Берда и др. было, наоборот, установлено несколько более частое проявление «bends» мышечно суставной формы ВДВ у людей, находившихся в ИГА, в которой использовался Не. Вопрос же о частоте проявления тяжелых форм БДБ при использовании ИГА, содержащей Не, остается открытым.

Малая растворимость гелия в тканях и высокий коэффициент его диффузии лежат в основе того, как указывают А.Г. Дианов и др., что при дыхании кислородом время практически полной десатурации организма от Не значительно меньше, чем от N2. Это уже существенное и бесспорное преимущество использования Не в ИГА. В случаях повышения температуры в кабине благодаря высокой теплопроводности Не космонавты гораздо лучше будут переносить это воздействие в ИГА, в которой N2 заменен Не. В такой среде должна также повыситься устойчивость к гиперкапнии, интенсивным физическим нагрузкам и другим воздействиям, приводящим к значительному росту вентиляции. Этот эффект обусловлен тем, что при форсированном дыхании гелио-кислородной смесью сопротивление воздухоносных путей в связи с низкой плотностью Не сказывается меньше, чем при дыхании воздухом. При нормальном, спокойном дыхании этот эффект практически не проявляется, так как сопротивление воздухоносных путей определяется уже не плотностью, а в основном вязкостью вдыхаемого газа. Вязкость Не существенно не отличается от N2.

Одним из доводов, обосновывающих целесообразность замены азота в ИГА гелием, является высокая устойчивость атома Не к действию различных видов радиации. Это выгодно отличает Не от N2. Относительно большой вес N2 определяет его слабые защитные свойства по отношению к космическому излучению как с точки зрения поглощения первичных нуклонов, так и в отношении образования вторичных частиц. Согласно данным М. Г. Дмитриева, под действием ионизирующего излучения в воздухе образуются «возбужденные» атомы и ионы азота. Они вступают в химические реакции с О2, в результате чего образуются такие токсические соединения, как окись, закись и двуокись азота. Помимо перечисленных соображений, целесообразность замены азота в ИГА гелием обусловлена и с технической точки зрения. Плотность Не приблизительно в семь раз меньше плотности N2, в связи с чем использование гелио-кислородной атмосферы в космических кораблях приводит к снижению стартового веса, а также веса запасов газа, необходимых для восполнения атмосферы корабля. Данное преимущество гелио-кислородной ИГА не всегда может в полной мере проявляться в связи с высокой текучестью Не. Это является причиной сокращения резервного времени при утечке газов из кабины в случаях замены азота в ИГА гелием, что, несомненно, следует считать отрицательной стороной такой замены. К сказанному следует добавить, что замена азота в ИГА гелием должна также привести к снижению энергии, необходимой для вентиляции кабины. Несмотря на определенные выгоды использования Не в ИГА, экспериментальных исследований с участием человека, в которых бы изучался этот вопрос, сравнительно немного. В работах отечественных исследователей была экспериментально изучена ИГА, состоящая из О2, и Не при нормальном барометрическом давлении (1 атм).

Результаты работ этих авторов показали, что пребывание в гелио-кислородной среде не вызывает у испытуемых сколько-нибудь существенных изменений самочувствия, поведения и работоспособности. Однако замена азота в ИГА гелием все же сопровождалась некоторыми функциональными сдвигами. Наиболее важными из них были изменения теплообмена, речи и дыхания. Так, пребывание в гелио-кислородной ИГА при температурах, являющихся комфортными в условиях обычной воздушной атмосферы (18-24С), сопровождалось заметным охлаждением испытуемых. Например, при температуре 21°С у испытуемых быстро появлялись неприятные теплоощущения. При этом средневзвешенная температура кожи за 2 часа снижалась почти на 2°. В гелио-кислородной ИГА зона теплового комфорта оказалась заметно сдвинутой ч сторону более высоких температур и находилась в дневное время в пределах 24,5-27,5°С, а ночью в пределах 26-29С. При оценке этих данных обращает на себя внимание значительное сужение (на 3°С) зоны теплового комфорта в гелио-кислородыои среде по сравнению с аналогичной зоной в воздухе. Как уже отмечалось, этот эффект гелио-кислородной атмосферы связан с высокой теплопроводностью Не.

Замена азота воздуха гелием привела и к изменению речи испытуемых: в гелио-кислородной ИГА спектр речи сдвигался в сторону высоких частот на величину порядка 0,7 октавы. Разборчивость речи при этом несколько ухудшалась, но еще сохранялась на уровне допустимых величин (90-95%). Сразу после перехода на дыхание обычным воздухом речевая функция восстанавливалась. Согласно расчетным данным, скорость распространения звука в гелио-кислородной среде при давлении в 1 атм и температуре 27С в 1,85 раза выше, чем в воздухе. Это и является причиной искажения речи после замены азота воздуха гелием.

Функциональные изменения дыхания в гелио-кислородной среде проявлялись в увеличении максимально возможной вентиляции легких, что было обусловлено снижением сопротивления воздухоносных путей. Таким образом, результаты исследований, в которых азот воздуха замещался гелием, показали практическую возможность использования такой ИГА (Малкин В. Б., 1975).

Американские исследователи провели изучение гелио-кислородной ИГА с общим давлением 380 мм рт. ст., 360 мм рт. ст. и 258 мм рт. ст.

Анализ результатов этих работ позволяет считать, что длительное (до 56 дней) пребывание в гелио-кислородной среде не оказывает неблагоприятного влияния на обмен веществ, дыхание, кровообращение и центральную нервную систему. Отмеченные в этих исследованиях некоторые патологические сдвиги были обусловлены влиянием различных факторов, не связанных непосредственно с заменой азота в ИГЛ гелием. Так, например, в опытах, проведенных Цефтом и сотр., возникновение раздражения слизистой оболочки век - развитие конъюктивита - было обусловлено низкой влажностью ИГА (давление 380 мм рт. ст.); при повышении влажности эти нарушения исчезали. Снижение ортостатической устойчивости у одного из испытуемых, как и в большинстве исследований в имитаторах кабин, было обусловлено, по-видимому, развитием гиподинамии.

Сухость слизистых оболочек, развитие конъюнктивита, отмеченное у испытуемых при 56-суточном пребывании в гелио-кислородной ИГА с общим давлением 258 мм рт. ст. (РО2 - 175; РНе 74; Р N2 - 2) также были связаны с низкой влажностью. Жалобы испытуемых на боли в животе и повышенный метеоризм нельзя связывать с наличием Не в ИГЛ. Они были обусловлены, очевидно, другими причинами, возможно неудачным рационом питания. С наличием Не в ИГА были связаны в этих исследованиях лишь незначительные искажения речи и изменения температуры кожи при выполнении физических упражнений. Однако эти изменения существенного значения не имеют, так как искажения речи могут быть устранены с помощью соответствующих технических средств, равно как и все неприятные теплоощущения в гелио-кислородных средах легко устранимы путем повышения температуры ИГА.

При сравнительной оценке гелио-кислородных ИГА с низким давлением следует принимать во внимание, что при медленной утечке газов из кабины резервное время (то время, в течение которого давление снизится до критической величины, определяющей развитие острой гипоксии) у членов экипажа будет тем меньше сравнительно с ИГА, содержащими N2, чем выше процент содержания Не в ИГА. Следовательно, при наиболее низком общем давлении (258 мм рт. ст.) это различие между гелио- и азотно-кислородными ИГА будет уже относительно небольшим.

В заключение следует сказать, что если при подводных погружениях б ряде случаев целесообразность использования Не в ИГА доказана, то для ИГА кабин космических летательных аппаратов этот вопрос еще находится в стадии изучения (Малкин В. Б., 1975).

Вопрос о целесообразности использования чистого кислорода в кабинах высотных летательных аппаратов обсуждался еще до начала второй мировой войны В.А. Спасским. Он полагал, что в гермокабинах высотных самолетов, возможно, будет целесообразно использовать О2 при давлении порядка 230 мм рт. ст. Спасский считал, что до более низких величин давление не стоит снижать, так как при этом, с одной стороны, значительно возрастает вероятность возникновения ВДБ и высотного метеоризма, с другой - практически будет отсутствовать даже небольшой резерв О2 в случаях повышенной утечки газа из кабины.

Возможность длительного пребывания животных в моногазовой ИГА, эквивалентной по газообмену НЗА и составленной практически из одного только кислорода (РN2 < 10 мм рт. ст.) с давлением 190-200 мм рт. ст., была доказана роботами американских и российских ученых.

В этих работах было установлено, что в условиях моногазовой среды, эквивалентной по О2 НЗА, у некоторых подопытных животных может развиваться ателектаз легких. Согласно данным Макхаттла и Рана, возникновение ателектаза легких у мышей в первые 48 час. пребывания в моногазовой атмосфере явилось причиной гибели некоторых из них, хотя большинство животных, без видимых нарушений поведения и каких-либо повреждений пробыли весь срок экспериментов - 59 дней, В дальнейшем в опытах на крысах Н. А. Агаджанян и др., А. М. Гении, С. Г. Жаров и др. также наблюдали в первые дни пребывания в такой ИГА у некоторых животных развитие ателектазов, которые вскоре исчезали, после чего животные продолжительное время - до 100 суток - сохраняли нормальное физиологическое состояние. Этими авторами было лишь отмечено у животных развитие умеренной дегидратации, которая была обусловлена повышенным испарением жидкости в условиях пониженного (до 200 мм рт. ст.) давления в ИГА.

В работах Е. П. Хиатта и др., проведенных на молодых растущих крысах, не было выявлено развития ателектазов и какого-либо другого неблагоприятного влияния моногазовой ИГА (РО2 -- 196 мм рт. ст.). Пребывание в ней в течение 24 дней вызывало у подопытных животных лишь некоторое снижение выделения мочи. Авторы связали этот эффект с повышенной потерей жидкости, обусловленной ростом ее испарения в условиях разреженной атмосферы.

Наиболее обстоятельное изучение возможности длительного пребывания животных в условиях моногазовой среды проведено в США Пепелько, который для суждения о влиянии моногазовой среды использовал биологический критерий: способность к репродукции. Эксперимент продолжался 11 месяцев. Если учесть, что срок жизни крыс ограничен примерно 2,5 годами, то следует признать длительность этого эксперимента весьма большой. Согласно данным этого автора, моногазовая среда не оказывает какого-либо неблагоприятного влияния на физиологическое состояние и биологию белой крысы. В такой среде у животных нормально протекает беременность и нормально растет и развивается потомство. Единственный загадочный результат этой работы гибель некоторых рожденных в условиях моногазовой ИГА животных после перевода их через 21 день после рождения я условия НЗА. Можно предположить, что смерть животных в условиях НЗА была обусловлена какими-то побочными факторами, не связанными непосредственно с мопогазовой ИГА, в которой они ранее находились. Оценивая результаты экспериментов на животных, можно сделать заключение о том, что моногазовая среда является биологически приемлемой, хотя пребывание в ней и связано с определенным риском развития ВДВ и ателектаза легких.

Исследования влияния на организм человека ИГА. состоящей в основном из О2 с общим давлением порядка 190-200 мм рт. ст., проведенные в США Велчем и сотр., Морганом и сотр. и в нашей стране А. М. Гениным и С. Г. Жаровым, позволили установить, с одной стороны, возможность в случаях необходимости использования такой ИГА, с другой - были отмечены определенные неблагоприятные эффекты, которые могут возникнуть в таких условиях обитания. Так, в работе Велча и сотр. у одного из испытуемых в среде РО2 - 170 мм рт. ст. возникли загрудинные боли, которые, возможно, были связаны с развитием ателектазов легких. Боли исчезали при повышении давления ИГА. У некоторых развивался ушной ателектаз, и у всех были отмечены признаки дегидратации.

В исследованиях Моргана и сотр. у шести испытуемых обнаружены хрипы в легких, у одного - боль в суставе и у двух - небольшое снижение (до 90%) насыщения артериальной крови кислородом.

В исследованиях, проведенных А. М. Гениным и др., длительное (30-суточное) пребывание в моногазовой атмосфере (содержание N2 в ИГА от 5 до 10%) испытуемые перенесли хорошо, сохранив на высоком уровне физическую и интеллектуальную работоспособность. У них не было обнаружено ателектазов ни а легких, ни в полости среднего уха. Это, возможно, было обусловлено тем, что испытуемые при исследованиях периодически выполняли физические упражнения. Определенное значение могло иметь и то обстоятельство, что содержание N2 в ИГА было несколько выше, чем в опытах Велча и др. и Моргана и др. Авторы указали на некоторые отрицательные стороны испытанной ими ИГА. Прежде всего они отметили необходимость длительной десатурации организма от N2 перед началом эксперимента. Почти во всех случаях, когда время десатурации было меньше 8 час., переход испытуемых в моногазовую ИГА приводил к появлению у них симптомов ВДБ. Таким образом, исследования с участием людей показали, что при соблюдении определенных условий (предварительной десатурации, профилактики ателектазов легких посредством физических упражнений) моногазовая ИГА с общим давлением 200 мм рт. ст. может быть, по-видимому, использована и в полетах (Малкин В. Б., 1975).

Выгоды использования моногазовой ИГА определяются с технической стороны тем, что создается возможность упростить и сделать более надежной регуляцию систем жизнеобеспечения, уменьшить вес самой ИГА и кабины. Преимуществом такой ИГА является и то, что низкое давление снижает вероятность повреждений организма в случае взрывной декомпрессии; значительно упрощается и проблема использования скафандров с низким давлением. В то же время моногазовая ИГА имеет ряд серьезных теневых сторон. К ним следует отнести повышение пожарной опасности, которая резко возрастает в моногазовой ИГА. Последнее обусловлено прежде всего отсутствием в ИГА газов-разбавителей (N2, Не, Nе), снижающих скорость горения различных материалов. Большая опасность возникновения пожара определяет необходимость ограничить использование некоторых материалов в кабине и предъявляет высокие требования к пожарной безопасности.

Вторым серьезным недостатком моногазовой ИГА с давлением 200 мм рт. ст. является почти полное отсутствие «резерва времени» в случаях повышенной утечки газов из кабины. Падение давления на 70-80 мм рт. ст. представляет уже большую опасность для членов экипажа. К недостаткам рассматриваемой ИГА следует отнести необходимость длительной десатурации от N на старте и, наконец, возможность развития ателектазов легких, среднего уха, а также быстрое развитие дегидратации организма в случаях снижения содержания влаги в ИГА. Детально исследованная американскими специалистами моногазовая ИГА с общим давлением 258 мм рт. ст. успешно апробирована в полетах длительностью до 2-х недель. Перспектива ее дальнейшего использования в полетах большей продолжительности является предметом дискуссии (Малкин Б. В., 1975).

ГЛАВА IV. СОЦИАЛЬНАЯ АДАПТАЦИЯ

4.1 Адаптация к антропогенным факторам среды

С развитием науки и техники, ускорением процессов индустриализации и урбанизации, влияние человека на окружающую среду многократно возросло. Будучи неотъемлемой частью этой среды, человек подвергается воздействию различных экологических факторов (таких как свет, температура, атмосферное давление и другие), к которым у него в процессе эволюции выработались соответствующие адаптации. Но, ввиду усиливающегося прессинга человека на природную среду и ее изменение, на сцену вышли новые факторы, созданные деятельностью самого человека. К ним ом тоже должен приспосабливаться, чтобы выжить в быстро меняющихся условиях окружающей среды.

Антропогенными традиционно называют факторы среды, возникающие в результате хозяйственной деятельности человека. Чаще всего под ними понимают различные виды загрязнений окружающей среды, поскольку они имеют довольно отчетливые проявления в изменении функционального состояния организма. Так, при превышении предельно допустимых концентраций химических веществ в атмосфере я полтора раза регистрируют достоверные сдвиги иммунологических, биохимических и физиологических параметров, а при двух-трехкратном превышении предельно допустимых норм отмечают статистически значимые сдвиги показателей острой заболеваемости. Кроме того, данные многих исследований свидетельствуют о связи различных заболеваний даже с незначительным загрязнением окружающей среды. Например, выявлена зависимость между заболеваниями нервной системы и органов чувств и содержанием в воздухе угольной пыли, нарушениями зрения и концентрацией соединений фтора, наличием окиси марганца и аллергическими заболеваниями. Следует отметить, что химическое воздействие, обусловленное массовым загрязнением природной среды продуктами хозяйственной деятельности человека, является наиболее распространенной формой антропогенного воздействия.

Хотя наиболее высокий уровень загрязнений характерен для начальных стадий урбанизации и индустриализации, а принимаемые природоохранные меры во многих странах несколько улучшили ситуацию, увеличение бытовых загрязнений (в частности, из-за использования газа в бытовой технике для отопления, приготовления пищи повысился выброс вредных соединений, таких как СО и другие) и подверженность действию вредных веществ на рабочем месте (от одной трети до половины всех работающих в мире трудятся в условиях высокого содержания пыли и дыма в воздухе) способствуют развитию хронических заболеваний дыхательных путей.

Учащаясь вместе с загрязнением, заболевания приобретают особое значение. Они становятся фактором отбора. Результаты исследований указывают на значительное давление окружающей среды на загрязненных территориях з отношении генотипов с заболеваниями органов дыхания, сердечно-сосудистой системы, онкологическими заболеваниями, при том, что на менее загрязненных территориях уровень биологической приспособленности населения остается выше. Однако, эти же исследования показали, что жители самого загрязненного района оказались наиболее устойчивыми к воздействию окружающей среды. Этот факт объясняют тем, что а результате генетико-демографических процессов у населения, проживающего на более загрязненной территории, расширился диапазон адаптивной нормы. То есть, можно говорить об имеющем место процессе приспособления к условиям окружающей среды. Приспосабливаясь, человек напрягает свои адаптационные механизмы, что ведет к истощению физиологических резервов, перенапряжению и сбоям этих механизмов. В целом, ухудшение экологической ситуации приводит к выраженному напряжению демографических процессов, увеличению интенсивности миграции населения, неблагоприятным изменениям состояния здоровья всей популяции, проживающей в данных условиях.

Здоровье можно также рассматривать не только как отсутствие какой-либо патологии, но и как способность человека быстро адаптироваться к непрерывно меняющимся условиям окружающей среды для обеспечения оптимального выполнения его биологических и социальных функций. Здоровье индивида и отдельных групп населения зависит от совокупного воздействия на них разнообразных факторов природной и социальной среды, которое реализуется через физиологические, биохимические и биофизические механизмы регуляции и отражается на психофизиологическом статусе человека. Антропо-зкологическое воздействие приводит к напряжению и следующему за ним утомлению организма вследствие нарушения нормального функционирования регуляторных и гомеостатических систем и исчерпания их ресурсов. В ответ на утомление происходит направленная компенсация перераспределение резервных функций организма.

Таким образом, можно заключить, что на современном этапе развития человеческого общества загрязнения становятся одним из ведущих факторов изменений природы, а вместе с ней и самого человека. В связи с этим, проблемам антропогенных загрязнений и путям их предотвращения уделяется большое внимание.

Бурное развитие промышленности, урбанизация и интенсивная хозяйственная деятельность человека привели к масштабному загрязнению окружающей среды. Потребляя из окружающей среды вещества и энергию для своей жизнедеятельности, человек возвращает их обратно в преобразованном виде, тем самым вмешиваясь и изменяя естественные биосферные круговороты веществ. Так, ежегодное количество промышленных, транспортных, сельскохозяйственных и коммунально-бытовых выбросов оценивается более чем в 600 млн. тонн. С ними в окружающую среду попадает огромное количество химических соединений. В зависимости от свойств и условий среды, химические вещества транспортируются в ней, трансформируются и разлагаются, или аккумулируются, поскольку не могут быть утилизированы. Первичные токсичные элементы (ртуть, мышьяк, селен, хром), используемые в технологических процессах, и вторичные токсические соединения на основе азота, серы и некоторых других элементов, появляющиеся в результате сжигания и переработки отдельных видов промышленного сырья и отходов, загрязняют почвенно-растительный слой и, кроме того, могут переходить и аккумулироваться в растениях. Такое накопление вредных веществ в почве, тканях растений и животных, а соответственно и в пище людей является очень опасным, особенно учитывая тот факт, что человек в большинстве случаев занимает высшее звено в пищевых ценах. Миграция антропогенных загрязнений по неразрывным природным цепям способствует быстрому распространению и проникновению загрязняющих веществ во все компоненты окружающей среды. Таким образом, загрязнению подвержены все основные среды жизни.

Загрязнению почвы способствовали рост крупного промышленного производства, металлургии, добычи и переработки полезных ископаемых, развитие топливной энергетики, транспорта, нефтехимической промышленности. Нерациональное ведение сельского хозяйства, вынуждающее применять чрезмерное количество пестицидов, удобрений и других химикатов, также внесло свой вклад в загрязнение, изменило концентрацию микроэлементов в почве.

...

Подобные документы

  • Анатомия и физиология как науки. Роль внутренней среды, нервной и кровеносной систем в превращении потребностей клеток в потребности целого организма. Функциональные системы организма, их регуляция и саморегуляция. Части тела человека, полости тела.

    презентация [10,6 M], добавлен 25.09.2015

  • Физиологический механизм адаптации организма к условиям высокогорья, причины гипоксии (кислородной недостаточности). Аэробный и анаэробный пути добычи энергии, свободные радикалы. Различия адаптивных стратегий, гипоксическая тренировка, гипокситерапия.

    курсовая работа [43,7 K], добавлен 03.02.2012

  • Адаптация организма к условиям среды в общебиологическом плане, ее необходимость для сохранения как индивидуума, так и вида. Способы защиты от неблагоприятных условий окружающей среды. Анабиоз, оцепенение, зимняя спячка, миграция, активация ферментов.

    реферат [38,2 K], добавлен 20.09.2009

  • Развитие физиологических функций организма на каждом возрастном этапе. Анатомия и физиология как предмет. Организм человека и составляющие его структуры. Обмен веществ и энергии и их возрастные особенности. Гормональная регуляция функций организма.

    учебное пособие [6,1 M], добавлен 20.12.2010

  • Понятие адаптации - приспособительного процесса, возникающего в ходе индивидуальной жизни человека. Физиологические аспекты повышения устойчивости организма к действию факторов новых условий существования. Стрессорные факторы при ослаблении организма.

    презентация [144,6 K], добавлен 29.05.2019

  • Адаптация как одно из ключевых понятий в экологии человека. Основные механизмы адаптации человека. Физиологические и биохимические основы адаптации. Адаптация организма к физическим нагрузкам. Снижение возбудимости при развитии запредельного торможения.

    реферат [22,8 K], добавлен 25.06.2011

  • Социально-биологические основы физической культуры. Функциональные системы организма. Адаптация как процесс приспособления его строения и функций к условиям существования. Аэробная и анаэробная производительность организма. Обмен веществ (метаболизм).

    презентация [7,4 M], добавлен 16.03.2014

  • Характеристика процессов адаптации человека к условиям окружающей среды. Исследование основных механизмов адаптации. Изучение общих мер повышения устойчивости организма. Законы и закономерности гигиены. Описания принципов гигиенического нормирования.

    презентация [8,5 M], добавлен 11.03.2014

  • Описание строения клетки, а также некоторых органических соединений, использующихся в живых организмах. Физиология и анатомия человека, особенности функционирования ряда важнейших органов. Взаимодействие и обмен веществ в организме. Водная среда жизни.

    реферат [3,3 M], добавлен 02.12.2010

  • Экологические группы растений. Адаптации к стрессовым условиям обитания. Типы ареалов и факторы, обусловливающие их границы. Ботаническая и экологическая характеристика дикорастущих видов растений (Гравилат речной Geum rivale) семейство (Розоцветные).

    контрольная работа [1,3 M], добавлен 09.04.2019

  • Функциональные системы организма. Внешние и внутренние раздражители организма человека, восприятие состояния внешней среды. Особенности организма человека, феномен синестезии, экстрасенсы-синестетики. Особенности темперамента при выборе профессии.

    реферат [49,8 K], добавлен 06.02.2013

  • Признаки и общая характеристика процесса старения, его влияние на нейроэндокринные механизмы регуляции клетки. Возрастная периодизация функционирования организма человека. Сравнительная характеристика преждевременного и физиологического старения.

    презентация [7,6 M], добавлен 28.09.2014

  • Предмет и роль физиологии в системе медицинского образования, краткая история, современные тенденции и задачи физиологии. Организм и внешняя среда, исследование физиологии целостного организма. Метод графической регистрации и биоэлектрических явлений.

    курсовая работа [63,3 K], добавлен 02.01.2013

  • Анатомия и морфология почек человека. Физиология и функции. Почки как своеобразная железа внутренней секреции. Удаление из организма конечных продуктов обмена веществ. Регуляция водного баланса, кислотно-основного состояния, уровня артериального давления.

    курсовая работа [44,5 K], добавлен 08.08.2009

  • Общие закономерности онтогенеза и его периоды. Взаимоотношения материнского организма и плода. Роль наследственности и среды в онтогенезе. Тератогоенные факторы среды, влияние алкоголя на организм. Возрастные периоды организма и их характеристика.

    реферат [35,4 K], добавлен 17.06.2012

  • Исследование понятия биологических часов человека, способности организма чувствовать и измерять время. Ритм изменения функционального состояния человека. Адаптация организмов к смене дня и ночи. Обзор теории гормонального влияния на биоритмы человека.

    реферат [24,0 K], добавлен 08.03.2014

  • Экологические зоны Мирового океана. Свойства водной среды (звук, электричество и магнетизм; солевой, световой, температурный режим) и ее роль в жизни гидробионтов. Адаптация растительных и животных организмов среде обитания. Фильтрация как тип питания.

    курсовая работа [1,2 M], добавлен 16.12.2012

  • Изучение ритмов активности и пассивности, протекающих организме человека. Физический, эмоциональный и интеллектуальный ритмы организма. Значение критических дней для каждого биоритма человека. Солнечно-лунно-земные и космические влияния на организм.

    презентация [321,0 K], добавлен 17.04.2011

  • Медико-биологические исследования воздействия космофизических факторов среды на организм человека. Определение структурно-энергетических характеристик геомагнитного поля. Выявление степени индивидуальной чувствительности организма к действию вариаций ГМП.

    статья [104,9 K], добавлен 21.05.2015

  • Характеристика радиочастотных (РЧ) воздействий. Выводы ученых по исследованию популярных марок телефонов и их влияния на здоровье человека, системы организма человека, наиболее подверженные вредному влиянию. Меры по защите населения от РЧ-излучения.

    научная работа [21,5 K], добавлен 09.02.2009

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.