Экологическая физиология

Адаптация организма человека к природно-климатическим и социальным условиям. Экологические аспекты хронобиологии. Влияние на организм вибраций, гравитации, излучения, звуковых нагрузок, катастроф. Гипоксия, гиперкапния и декомпрессионные расстройства.

Рубрика Биология и естествознание
Вид учебное пособие
Язык русский
Дата добавления 19.08.2017
Размер файла 616,8 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Эффективность реакция повышения теплопродукции при защите от холода зависит от величины теплоизоляции. Обнаженный человек в воде с температурой 10-15С теряет в единицу времени количество тепла в 10-15 раз больше, чем на воздухе при такой же температуре. Для поддержания нормальной температуры тела в таких условиях ему необходимо повысить теплопродукцию соответственно в 10-15 раз. Между тем максимальная мощность химической терморегуляции у человека невелика. Как уже упоминалось выше, она способна увеличить теплопродукцию по сравнению с уровнем основного обмена всего в 2,5-3 раза. Следовательно, химическая терморегуляция может лишь замедлить охлаждение тела, но не предотвратить гипотермию.

Таким образом, пределы адаптации к холоду за счет химической терморегуляции в воде достигаются очень быстро. Далее происходит неизбежное снижение температуры центральных областей тела. При этом при температуре тела в прямой кишке ниже 32С человек, как правило, теряет способность к самостоятельному разогреванию и восстановлению физиологических функций, хотя слабое легочное дыхание может сохраняться при температуре тела 24-26С, а слабые сокращения сердца с частотой 8-10 в мин иногда определяются и при температуре тела 20С. Такое сохранение жизнедеятельности при минимуме физиологических функций тоже можно квалифицировать как результат адаптации организма к. низкой и сравнительно очень низкой температуре тела. Предел этого вида адаптации достигается при полном выключении основных жизнеобеспечивающих физиологических функций.

Существует мнение, что главным первичным механизмом нарушения физиологических функций при постепенно развивающейся гипотермии является недостаток кислорода. Действительно, резкий сдвиг кривой диссоциации оксигемоглобин а (КДО) влево, замедление кровотока и ослабление дыхания при гипотермии дают веские основания для таких предположений. Однако резкое уменьшение потребностей в кислороде при понижении температуры тканей и явления ацидоза н крови в принципе могут компенсировать ухудшение транспорта кислорода. Решение этой проблемы давно имеет принципиальное значение как для теории, так и для практики неотложной медицины.

Непосредственно у жертв морских катастроф определить состояние кислородного баланса в мозге и в миокарде вплоть до остановки спонтанного дыхания практически невозможно. Недавно исследователи попытались решить эту проблему на животных с помощью измерения РО2 в коре мозга крыс с помощью кислородного ультрамикроэлектрода с диаметром 3-5 мкм, включая изоляцию. Такие электроды практически не повреждают ткани и позволяют измерять РО2 в точечных их участках между микрососудами. Из-за сложности методики такие электроды редко применяются в научных исследованиях. Е. Л. Вовенко (1993) произвел соответствующие измерения с помощью кислородных ультрамикроэлектродов и установил, что при охлаждении в воде белых крыс величина РО2 в коре головного мозга остается на исходном или даже повышенном уровне вплоть до момента полной остановки дыхания, которая происходит при температуре мозга около 17С. Н. А. Слепчук (1995) показала, охлаждаемых крыс после полной остановки дыхания при температуре мозга около 17°С нагревание специальным миниатюрным термодом продолговатого мозга на 2-3С приводит к восстановлению дыхательных движений, хотя тело еще продолжает охлаждаться. Эти опыты имеют важное значение, так как показывают, что выключение важнейших центров мозга при охлаждении организма происходит не в результате гипоксии, а в результате прямого действия па нервную ткань низкой температуры. Можно предположить, что постепенное уменьшение частоты сокращений сердца при гипотермии имеет аналогичный механизм. Такой вывод и такое предположение имеют важное значение в разработке методов неотложной медицины для спасения человека при глубокой гипотермии в результате несчастных случаев.

Каков механизм действия холода, нарушающего физиологические функции?

Согласно теории П. Хочачка (1986), в основе действия холода на клетку так же, как и при недостатке кислорода, лежит повышение концентрации ионов кальция в цитозоле, что дезорганизует биохимические реакции и ведет к разрушению клеточных структур. Причина повышения концентрации ионов кальция аналогична - недостаток энергии, однако происхождение энергетической недостаточности при действии холода иное и заключается в утрате под действием холода четвертичной структуры и распада на субъединицы важнейших ферментов клетки - митохондриальной АТФ-азы, Ацетил-КоА-карбоксилазы, пируваткарбоксилазы и др. Энергетические циклы в клетке нарушаются и возникает энергетическая недостаточность. Недостаток энергии для удаления из цитозоля избытка ионов кальцин приводит к увеличению его концентрации з клетке и к дезорганизации обмена веществ, которая практически идентична происходящей при гипоксии. Понятно, что при гипотермии все эти процессы развиваются чрезвычайно медленно, по сравнению с гипоксией при нормальной температуре тела.

В таком случае развитие физиологической адаптации к острому охлаждению и достижение ее пределов представляется следующим образом.

В соответствии с современными данными, при внешнем охлаждении организма сигналы от Холодовых терморецепторов кожи и от термочувствительных нейронов разных отделов центральной нервной системы конвергируют к интегративным нейронам в ядрах заднего гипоталамуса. В этих нейронах вырабатывается «управляющий» сигнал, который способствует резкому сужению кожных сосудов и вызывает повышение теплопродукции благодаря интенсивной холодовой мышечной дрожи. Происходящее при этом повышение потребностей в кислороде путем физиологической регуляции усиливает легочную вентиляцию и увеличивает МОК. У человека при эксидентальной гипотермии максимум теплопродукции, легочной вентиляции и МОК достигается при температуре в прямой кишке порядка 34-35°С и температуре кожи около 25-30С.

При дальнейшем охлаждении тела холодовая дрожь ослабевает и уровень теплопродукции снижается. Частично это объясняется угнетением деятельности Холодовых терморецепторов кожи, которая охлаждается очень быстро. При температуре кожи 10-12°С частота импульсации терморецепторов резко снижается. При температуре 5С многие терморецепторы перестают им пульсировать, а при температуре 0-2°С парализуются почти все холодовые терморецепторы. При падении температуры центра терморегуляции на 6-8°С резко угнетается частота импульсации схолодовых нейронов. Недавно К. П. Ивановым и др. (1995) был установлен следующий факт: при введении животному в вену терапевтической дозы ЭДТА, которая стимулирует отток ионов кальция из цитозоля рецепторов в межклеточную среду, частота импульсации холодовых рецепторов быстро восстанавливается даже при температуре кожи около 0С, что расширяет представления о пределах адаптации нервных структур к холоду.

Первоначальное уменьшение легочной вентиляции и МОК в определенной стадии гипотермии можно было бы трактовать как результат физиологической регуляции в ответ на уменьшение потребностей организма в кислороде. Однако при этом развиваются специфические нарушения функций. Они состоят в падении температурного коэффициента Q10. В нашем случае это отношение уменьшения частоты дыхания или сокращений сердца к понижению температуры тела. У крыс падение частоты сокращений сердца, например, при уменьшении температуры миокарда при гипотермии от 37 до 27°С происходит при коэффициенте Q10 порядка 1,8-2,2. При температуре миокарда ниже 23С он увеличивается до 9,5. У человека тяжелые нарушения обмена веществ в сердце, которые приводят к фибрилляции желудочков, могут наступить при температуре тела 25-26°С. У человека, извлеченного из воды при морских катастрофах, при наличии легочного дыхания малейшее мышечное напряжение или слишком быстрое отогревание, увеличивая нагрузку на сердце, может превзойти энергетические возможности охлажденного сердца и вызывать опасную фибрилляцию желудочков. Успешная реализация механизмов предельной адаптации к холоду (выживания) зависит от режима отогревания.

У человека остановка дыхания происходит, очевидно, при температуре тела 25-26°С, хотя при эксидептальной гипотермии этот момент установить трудно, так как при оказании помощи пациента прежде всего переводят на искусственную вентиляцию легких, даже если спонтанное дыхание еще сохранено. Возможно, однако, что слабое дыхание у некоторых людей сохраняется и при более низкой температуре. У незим-неспящих животных остановка дыхания происходит при разной температуре в зависимости от вида животного и от способа охлаждения. У крыс при иммерсионной гипотермии полная остановка дыхании наступает при температуре головного мозга в среднем 17°С. Индивидуальные вариации заключены между 16 и 18С.

После остановки дыхания наступает аноксическая фаза гипотермии. Это отражается, прежде всего, на системе терморегуляции, которая, как хорошо известно, особенно чувствительна к недостатку кислорода. Так, был показан процесс угнетения импульсации отдельных нейронов центра терморегуляции под влиянием гипоксии. После остановки дыхания у человека и животных немедленно исчезают даже слабые приступы холодовой дрожи и явления терморегуляционного тонуса мышц. Происходит расширение кожных сосудов. Сердце еще продолжает работать и иногда довольно долго. Однако сразу после остановки дыхания наступают резкие нарушения функции миокарда. Коэффициент Q10 повышается до 200-270. Сокращения прогрессивно ослабляются, кровяное давление быстро падает. Как уже было показано, механизмы нарушения функций и структуры клетки при гипотермии и аноксии сходны. При температуре тела, вызывающей гипотермическую остановку дыхания, потребности клетки в энергии еще довольно высоки. Сочетание гипотермии, аноксии и резкого ослабления кровообращения быстро приводят к необратимым изменениям в клетках дыхательного центра. Вот почему аноксическую фазу гипотермии квалифицируют как предел физиологической адаптации к острому охлаждению организма человека и животных.

Случаи восстановления физиологических функций у жертв аксидентальной гипотермии в клинических условиях при температуре тела 26-22°С можно объяснить сохранением каких-то важных биохимических процессов в клетке, которые обеспечивают сохранение клеточных структур, а также сохранением хотя бы очень слабых функций легочного дыхания и общего кровообращения. Этим же можно объяснить и случаи самостоятельного восстановления физиологических функций при очень глубокой эксидентальной гипотермии у людей, оставленных без помощи. Такой случай самостоятельного разогревания при понижении температуры в прямой кишке до 18°С известен.

С развитием и усовершенствованием техники искусственного кровообращения были получены важные факты с точки зрения биологии, физиологии и неотложной медицины. Оказалось, что при понижении температуры мозга человека до 10-12° и даже до 6С мозг определенное время сохраняет жизнеспособность и его функции в полном объеме могут быть восстановлены с помощью искусственного дыхания и кровообращения. Хотя мозг при температуре 12-13С нуждается в минимуме энергии и потребление кислорода им находится почти на уровне ошибки измерения, в нем происходит обмен веществ, соответствующий такой низкой температуре. Этот тип обмена можно назвать адаптивным, так как он позволяет сохранять жизнеспособность. При этом если полное прекращение кровообращения при 37"С не лишает мозг жизнеспособности в течение 30 и даже 60 мин, можно предполагать, что при 5-10°С особенности его обмена позволят сохранить жизнеспособность в течение многих часов и, может быть, даже суток. Реализация таких предполагаемых возможностей в результате упорных глубоких исследований будет иметь огромное значение для науки и, конечно, для медицины катастроф.

Гипертермия и непосредственные термические поражения организма могут иметь место при различных техногенных катастрофах и несчастных случаях. Однако перегревание сразу множества людей и гибель их от гипертермии может быть следствием погодных условий. Такие случаи относят к природным катастрофам. По свидетельству специалистов з США ежегодно погибает до 4 тыс. человек от тепловых ударов или по причинам, так или иначе связанным с гипертермией. Как свидетельствует статистика, для нашего времени характерно учащение такого рода катастроф. Они начали затрагивать страны с относительно умеренным климатом, где жители не имеют большого опыта эффективно адаптироваться к жаре, что увеличивает число жертв.

Один из принципов адаптации к перегреванию состоит в усилении транспорта тепла из организма в среду. Организм обменивается теплом со средой благодаря теплопроведению (кондукции) через ткани и благодаря тепломассопереносу кровью (конвекция тепла кровью). Оба этих механизма хорошо известны, но количественные соотношения между ними до сих пор неясны. Даже новейшие математические исследования, хотя и дают весьма интересный материал, не решают проблему полностью. Серьезным препятствием в решении этого вопроса является сложность ангиоархитектуры кожи. В общем можно сказать, что в диапазоне некоторых «средних» температур среды, несколько ниже термонейтральной зоны для животных или зоны температурного комфорта для человека, наибольшее значение в передаче тепла в среду имеет теплоперенос кровью. При повышении внешней температуры или при повышенной теплопродукции кровообращение в коже человека может увеличиться в 7-10 раз и составить значительную часть МОК. Такая реакция имеет важное физиологическое значение, когда температура среды ниже температуры крови; при сухой коже она становится бесполезной, если температура среды достигает температуры крови и, наконец, может вызвать обратный эффект, если температура среды превышает температуру крови. Однако у человека (и у некоторых животных) благодаря потоотделению усиленное кожное кровообращение играет важную роль при любой температуре среды, поскольку испарение пота охлаждает кожу. В таком случае кровь отдает тепло не в среду, а в кожу, которая элиминирует тепло, переводя его в скрытую теплоту испарения воды. Эта реакция, как известно, может достигать большой мощности. Выделение пота у человека до 2 л в час и более позволяет ему определенное время выполнять напряженную мышечную работу даже при температуре среды выше температуры тела. Конечно, адаптация к высокой температуре у аборигенов жарких регионов планеты не основывается на обильном потоотделении, так как они приспосабливаются за счет особенностей поведения, одежды, конструкции жилищ, питания. Физиологическая адаптация состоит в уменьшении количества солей в поте, повышении интенсивности потоотделения при вынужденном пребывании под солнцем или при физической работе и др.

Пределы физиологической адаптации к высокой температуре среды или к сочетанию высокой температуры среды с повышением теплопродукции тела (например при мышечной работе) всегда связаны с повышением температуры тела. Для каждого вида гомойотермных животных известна температура, при которой наступает смерть. Есть основания полагать, что они не прекращают борьбу с перегреванием вплоть до смертельного перегревания, так что предел адаптации почти совпадает с пределом выживаемости. У человека отмечается сходная ситуация. В своей работе по данной проблеме, опубликованной в 1987 г., X. Бриннель и др., отмечают, что по ряду данных у человека при внешнем нагревании защитные реакции терморегуляции сохраняются вплоть до температуры тела 42°С. Так как при этой температуре практически не возможна жизнь человека, во всяком случае в течение более или менее продолжительного времени, то и для человека достижение пределов адаптации практически совпадает с пределом выживаемости. Правда, по чувствительности к перегреванию человек отличается от животных значительной вариабельностью. Анализ большого числа случаев гибели от гипертермии показывает, что у 3,5% людей, пострадавших от теплового удара, предел адэптапии наступает еще при температуре тела несколько ниже 4СгС. В 40% случаев это происходит при температуре тела 40-42С. В 1,5% случаев тепловой удар наступает у человека при температуре тела 44°С и даже выше. Отсюда возникает вопрос о клеточной адаптации гомойотермных организмов к гипертермии, так как в широком биологическом плане эта проблема, конечно, существует. Птицы, например воробьи, постоянно живут при температуре тела 42-43С, которая несовместима с жизнью для человека. Однако возможность индивидуальной адаптации на клеточном уровне в течение жизни организма пока остается под вопросом. Многие ученые отрицают такую возможность. Однако в указанном выше обзоре X. Бриннеля и соавт. приводятся данные, согласно которым у гомойотермных организмов под влиянием высокой температуры в клетках образуются особые полипептиды с молекулярным весом от 70 до 100 килодальтон, которые способны отодвинуть границу тепловой смерти до более высоких температур тела.

Существует множество ситуаций, при которых человек подвергается опасности перегревания. Очевидно, наиболее часто такая опасность возникает тогда, когда человек или группа людей в результате аварии транспортных средств оказываются без помощи в пустыне при интенсивной инсоляции. С точки зрения теории адаптации и медицины катастроф, представляется важным проанализировать причины и механизмы достижения пределов температурной адаптации и гибели организма.

Энергия межмолекулярных связей, которые обеспечивают нативные свойства белков, нуклеиновых кислот, клеточных мембран, составляет 1-7 ккал/моль. Тепловая энергия молекул при температуре 37°С близка к 1 ккал/моль. Следовательно, уже при физиологических условиях высшие структуры живой материи у гомойотермных организмов постоянно разрушаются и требуют обновления. При повышении температуры клеток темп разрушения живых структур может превзойти кинетические и термодинамические возможности биохимических реакций клетки для их восстановления. Для изолированных тканей различных органов, судя по снижению потребления кислорода, такое положение вещей достигается для млекопитающих при температуре клеток на уровне около 45С. Однако нарушение клеточных функций и работы физиологических систем млекопитающих животных и человека начинается при значительно более низкой температуре. Так, например, деструкция клеточных мембран и митохондрий в делом может быть замечена уже при температуре соответствующей ткани около 40С. Однако у человека при температуре тела 38,5-39,0С происходят функциональные нарушения, которые называются «синдромом теплового истощения» и проявляются в виде общей слабости, спутанности сознания, сердечной слабости, хотя и при сохранении потоотделения на пониженном уровне. Синдром теплового истощения сигнализирует о приближении к пределу физиологической адаптации и к тепловому удару. Имеются основания полагать, что такие явления вызываются не только прямым действием повышенной температуры на клетки мозга, но и определенными вторичными причинами. Важнейшая из них - нарушение функций кровообращения во внутренних органах, в сердце и в мозге. Зависит это от того, что с целью эффективной теплоотдачи при повышении температуры среды кожный кровоток возрастает в 7-10 раз, что уже отмечалось выше. Он, таким образом, составляет значительную часть МОК. В результате неизбежно уменьшается кровообращение в мозге, в почках, в кишечнике. Уменьшение снабжения кровью кишечной стенки ведет к повышению проницаемости ее сосудов и проникновению в кровь токсических продуктов из просвета кишки. Исследования показали, что соответствующие токсины снижают чувствительность центра терморегуляции к повышенной температуре, тормозят реакции теплоотдачи и ухудшают состояние организма.

Одной из важнейших причин ускоренного достижения пределов адаптации и возникновения теплового удара является мышечная работа. Во-первых, она резко повышает теплопродукцию, во-вторых, вызывает усиленный приток крови к мышцам, что уменьшает тепломассоперенос кровью к коже и еще более значительно нарушает кровоснабжение внутренних органов. Главным фактором, который приближает предел адаптации к высокой температуре, является недостаток воды и дегидратация организма. Снижение объема воды в теле человека на 10% является пределом адаптации. В этом случае человек в условиях катастрофы, оставленный без помощи, погибает. Порог летальной температуры снижается.

Нарушения физиологических функций человека даже при тепловом ударе в принципе обратимы. Первые неотложные меры состоят в борьбе с дегидратацией (введение в вену 1-1,5 л физиологического раствора), а также в снижении температуры тела. Последнее, однако, является сложной и даже опасной процедурой. Физически для этого наиболее эффективна холодная ванна. Однако такая мера приводит к возбуждению холодовых терморецепторов кожи, что может вызывать резкую холодовую дрожь, сужение кожных сосудов и привести к роковому исходу. Лучший метод - смачивание кожи «пылью» из ледяной воды. Особенно опасно фармакологическое «вмешательством в физиологию организма при перегревании. Такого рода попытки снизить теплопродукцию, увеличить расширение кожных сосудов или усилить потоотделение на пороге предела физиологической адаптации лишь ухудшают положение, так как в перегретом организме фармакологические препараты утрачивают свое действие или даже дают противоположный эффект. Отмечают, что смертность от тепловых ударов в случаях применения фармакологических средств оказывается выше, чем в случаях, когда их не применяют.

Приведенные выше данные не исчерпывают проблемы физиологической адаптации человека в условиях чрезвычайных ситуаций. Однако они могут изменить позиции неотложной медицины в некоторых практических проблемах и послужить основой для разработки новых способов восстановления жизнедеятельности жертв различных катастроф.

3.13 Проблема адапатации человека к условиям авиакосмических полетов

К. Э. Циолковский, размышляя о перспективах межпланетных полетов, пришел к выводу о возможном неблагоприятном воздействии на космонавтов таких факторов, как измененная гравитация (перегрузки и невесомость), дефицит кислорода, пищевых веществ, воды и т.п., и о необходимости изучения влияния факторов полета на организм. Примечательно, что рассуждения К.Э. Циолковского носили не только умозрительный характер. Они побудили его к проведению исследований на самом себе: «Подверг и себя экспериментам: по нескольку дней ничего не ел и не пил. Лишение воды мог вытерпеть только в течение двух дней. По истечении их я на несколько минут потерял зрение». Для повышения адаптационных возможностей человека К. Э. Циолковский предлагал два не исключающих друг друга пути: отбор и тренировку.

В области космической биологии и медицины в связи с перспективой полета человека на Марс вновь остро встает проблема адаптации. Изучение этой проблемы, в том числе ее общетеоретических аспектов, можно считать традиционным. Какие же аспекты адаптации важны для космической биологии и медицины?

Прежде чем ответить на этот вопрос, надо остановиться на том, чем занимаются эти научные направления.

Космическая биология и авиакосмическая медицина изучают особенности жизнедеятельности организма человека при действии факторов космического полета и космического пространства с целью разработки средств и методов сохранения здоровья и работоспособности членов экипажей космических кораблей и станций. Они исследуют влияние на организм человека факторов космического полета, разрабатывают соответствующие профилактические меры и способы защиты от их вредных влияний, предлагают физиологические и гигиенические обоснования требований к системам жизнеобеспечения, управления и к оборудованию космических летательных аппаратов, а также к средствам спасения экипажей в аварийных ситуациях, разрабатывают клинические и психофизиологические методы и критерии отбора и подготовки космонавтов к полету, контроля за экипажем в полете, изучают профилактику и лечение заболеваний в полете. В связи с этим космическая биология и авиакосмическая медицина являются единым комплексом различных разделов, таких как космическая физиология и психофизиология, космическая гигиена, космическая радиобиология, теоретическая и клиническая медицина, врачебная экспертиза.

Развитие этих направлений тесно связано с достижениями теоретической и практической космонавтики как в нашей стране (К. Э. Циолковский, Ф. Л. Цандер, С. П. Королев и др.), так и за рубежом (Н. Oberth, R. Goddart, R,Esnault-Pelterie и др.). Так, создание ракетно-космических летательных аппаратов позволило провести ряд важных исследований на животных в условиях космического полета. Результаты этих исследований в совокупности с данными наземных работ позволили обосновать возможность безопасного полета человека в космическое пространство. В свою очередь, на развитие космической биологии и авиакосмической медицины повлиял первый полет человека в Космос - полет Ю. А. Гагарина на космическом корабле «Восток» 12.04.61 г. Важными этапами в освоении Космоса явились первый выход человека в открытый Космос (А. А. Леонов, полет на космическом корабле «Восход-2» 18-19.03.65 г.); высадка американских космонавтов на поверхность Луны (N. Armstrong, E. Oldrin), космические полеты с длительным пребыванием на орбитальных станциях.

В космическом полете на организм человека могут влиять три основные группы факторов. Первая группа таких факторов характеризует космическое пространство как среду обитания: это высокая степень разрежения газовой среды, ионизирующее космическое излучение, особенности теплопроводности, присутствие метеорного вещества и т.д. Вторая группа объединяет факторы, связанные с динамикой полета летательных аппаратов: ускорение, вибрацию, шум, невесомость и др. Наконец, третью группу составляют факторы, связанные с пребыванием в герметическом помещении малого объема с искусственной средой обитания: своеобразный газовый состав и температурный режим в помещении, гипокинезия, изоляция, эмоциональное напряжение, изменение биологических ритмов и т.п. Перечисленные факторы оказывают комплексное влияние на организм человека, в связи с чем несомненный теоретический и практический интерес представляет изучение модифицирующего влияния каждого из указанных факторов.

Среди всех факторов космического полета уникальным и практически невоспроизводимым в лабораторных экспериментах является невесомость. Значение невесомости возросло с увеличением продолжительности полетов. Экспериментальные исследования при моделировании некоторых физиологических эффектов невесомости в земных условиях (гипокинезия, водная иммерсия), опыт длительных космических полетов позволили разработать общебиологические представления о генезе изменений в организме, обусловленных влиянием невесомости, и пути их преодоления. Доказано, что человек может существовать и активно функционировать в условиях невесомости. Однако длительное пребывание в невесомости приводит к детренированности сердечно-сосудистой системы. Длительная невесомость обусловливает потерю организмом солей кальция, фосфора, азота, натрия, калия и магния. Эти потери относят за счет уменьшения массы тканей вследствие их атрофии от бездействия и частичной дегидратации организма. Обусловленные невесомостью биофизические и биохимические сдвиги В организме (изменения гемодинамики, водно-солевого обмена, опорно-двигательного аппарата и др.), включая изменения на молекулярном уровне, направлены на приспособление организма к новым экологическим условиям.

Для предупреждения неблагоприятных реакций организма человека в период невесомости и реадаптации применяется широкий комплекс профилактических мероприятий и средств (велоэргометр, бегущая дорожка, тренировочно-нагрузочные костюмы и т.д.). Их эффективность была убедительно продемонстрирована в многосуточных полетах.

Высокая биологическая активность различных видов космического излучения определяет их поражающее действие. В связи с этим определяют допустимые дозы лучевого воздействия, разрабатывают средства и методы профилактики и защиты космонавтов от космической радиации.

Важно определить радиочувствительность организма при длительном пребывании в условиях космического полета, оценить реакцию облученного организма на действие других факторов космического полета. Перспектива использования ядерных источников энергии на космических кораблях и орбитальных станциях требует надежной защиты человека в радиационных убежищах, электромагнитной и электростатической защиты, экранирования наиболее чувствительных органов и систем организма и т.д. Специальные исследования посвящены биологическому эффекту радиоизлучений, магнитных и электрических полей, возникающих в среде обитания от бортовой аппаратуры. Обеспечение радиационной безопасности приобретает особое значение с увеличением дальности и продолжительности полетов. Очевидно, что в длительных полетах обеспечить безопасность экипажа с помощью лишь пассивной защиты обитаемых отсеков корабля невозможно. Изыскание биологических методов защиты человека от проникающих излучений является важным направлением исследований в этой области.

Разработка искусственной газовой атмосферы для обитаемых кабин летательных аппаратов предполагает изучение физиологических эффектов длительного пребывания в атмосфере различного газового состава, как эквивалентной земной атмосфере, так и при замене азота гелием или в моногазовой искусственной атмосфере.

Космическая биология и авиакосмическая медицина изучают также влияние перепадов барометрического давления, изменений РО в атмосфере. Представляют интерес исследования по использованию искусственной газовой атмосферы для стимуляции адаптивных реакций организма на различные неблагоприятные условия полета. Такая атмосфера получила название активной.

Формирование газовой среды кабин летательных аппаратов в процессе полета непосредственно связано с вопросами ее загрязнения. Источниками загрязнения могут быть конструкционные материалы, технологические процессы, а также продукты жизнедеятельности человека. В этой связи изучение биологического воздействия загрязнений атмосферы космического корабля представляет важное звено в общем комплексе физиологических и гигиенических исследований. Полученные данные позволяют установить предельно допустимые концентрации ряда загрязняющих (токсических) веществ, изыскать технические решения очистки от них атмосферы летательного аппарата.

Обеспечение пилотируемых полетов базируется на результатах предварительных исследований в наземных условиях (стендовые и модельные исследования на животных, эксперименты с участием человека в макетах космических объектов). Решающее значение имеют исследования непосредственно на космических летательных аппаратах. Жизнедеятельность человека на пилотируемых космических кораблях и орбитальных станциях обеспечивает комплекс оборудования и бортовых запасов для поддержания постоянного состава газовой среды, снабжения человека питьевой водой, продуктами питания, санитар но-техническими средствами. Так, система регенерации и кондиционирования воздуха на космических кораблях предполагает запасы химически связанного кислорода на борту в виде надперекиси щелочных металлов и сорбентов, поглощающих водяные пары и углекислый газ.

Для обеспечения жизнедеятельности экипажа в случае аварийного приземления спускаемого аппарата в безлюдной местности в носимом аварийном запасе (НАЗ) предусмотрены продукты питания с максимальной энергетической и биологической ценностью при минимальных массе и объеме.

Увеличение продолжительности пилотируемых космических полетов требует надежного обеспечения санитарно-гигиенических условий в кабине корабля, личной гигиены космонавта, тщательного контроля за состоянием кожных покровов, их микрофлорой, загрязнением, а также совершенствования полной и локальной обработки покровов тела. Особое внимание уделяется одежде космонавтов (полетный костюм, нательное белье, теплозащитный костюм, головной убор, обувь).

Специальное значение имеют сбор, хранение и удаление отбросов жизнедеятельности человека и отходов от бортового оборудования и аппаратуры.

Особое место занимают исследования условий и характера взаимообмена микроорганизмами между членами экипажа путем возможных аутоинфекций и инфекций, что особенно важно в условиях герметических кабин ограниченного объема в сочетании со снижением иммунорезистентности в космическом полете.

Важное значение для разработки перспективных систем жизнеобеспечения имеют длительные медико-технические эксперименты. В них определяют возможность длительного поддержания нормальной работоспособности человека при изоляции в герметической камере ограниченного объема с использованием воды и кислорода, регенерируемых из отходов, и практически полностью обезвоженных продуктов питания. Изучают взаимодействие человека и окружающей среды в этих условиях, методы медицинского контроля, технологические режимы конструкций, отдельных блоков и другие вопросы. Эксперименты подтверждают возможность длительного существования и работы экипажа в системах с замкнутыми циклами, необходимыми для поддержания жизнедеятельности человека.

Для обеспечения работ вне корабля в открытом Космосе или на поверхности планет, а также для сохранения жизни в случае разгерметизации кабины космического корабля предназначены космические скафандры - индивидуальные средства обеспечения жизнедеятельности космонавтов.

Деятельность космонавта при подготовке и осуществлении полета сопровождается выраженным нервно-эмоциональным напряжением. Считают, что космические полеты практически всегда будут содержать элементы риска и вероятность непредвиденных ситуаций. В связи с этим динамический контроль за состоянием человека, профилактика и устранение неблагоприятных влияний являются предметом космической психофизиологии. Исследования в этой области охватывают влияние факторов космического полета на нервно-эмоциональную сферу космонавтов, психофизиологические механизмы эмоционального напряжения и их влияние на профессиональную деятельность, психологическую совместимость членов экипажа, особенно в длительных космических полетах.

Увеличение продолжительности полетов связано со смещением времени и его влиянием на биологические ритмы. Изучение процессов адаптации к этому неблагоприятному воздействию приводит к разработке режимов труда и отдыха в космических полетах. При этом исходят из представления, что изменения суточных режимов могут привести к десинхронизации физиологических процессов.

Медико-биологическое обеспечение полетов человека в Космос невозможно без отбора и подготовки космонавтов. Опыт космических полетов свидетельствует о том, что отбор космонавтов, основанный на врачебной экспертизе летного состава, полностью себя оправдывает. Требования к физическому состоянию и здоровью наиболее высоки у кандидатов для длительных космических полетов, что обусловлено весьма длительным действием факторов полета на организм, расширением обязанностей членов экипажа и взаимозаменяемостью в полете. Требования к состоянию здоровья космонавтов-исследователей несколько снизились. Более широкое привлечение специалистов различных профессий (геофизики, астрономы, врачи, биологи и др.) к космическим полетам требует новых медицинских и психологических критериев отбора. Отбор членов экипажа в соответствии с результатами медицинского контроля продолжается во время тренировок и подготовки к полету. При формировании специальных программ подготовки принимаются во внимание цели и задачи космических экспериментов, а также исходное состояние членов экипажа.

Вернемся к проблеме, адаптации человека к космическим полетам.

До последнего времени в космической физиологии адаптация человека рассматривалась лишь в онтогенетическом аспекте. Между тем физиологическая адаптация - понятие более широкое. Оно включает изучение явлений не только индивидуальных адаптации, но также видовых (наследственно закрепленных) и популяционных адаптации. Вместе с тем исследование механизмов адаптационных процессов указывает на то, что невозможно судить об адаптации человека только по физиологическим параметрам, не учитывая психологических, биохимических и других аспектов.

В настоящее время установлено, что в основе индивидуальной адаптации лежит генотип. При этом известно, что генетическая программа организма предусматривает не заранее сложившуюся адаптацию, а возможность ее реализации под влиянием среды, что соответствует представлениям И.И. Шмальгаузена о наследуемости нормы реакции. Этот важный постулат целесообразно учитывать при профессиональном отборе космонавтов. Определение наследственно заданной нормы реакции открывает возможность прогнозировать адаптационный резерв у претендентов на участие в космических полетах.

Кроме того, для космической физиологии, по-видимому, представляет интерес разработка гипотезы о стресс-норме, которая может быть применима, в частности, к адаптивным процессам в экстремальных условиях полета (при недостатке или избытке кислорода, повышенном содержании углекислого газа т.п.).

Адаптация, приобретаемая в ходе индивидуальной жизни организма при его взаимодействии с окружающей средой, определяется как фенотипическая адаптация. Именно она является основой для тренировки космонавтов к отдельно взятым факторам космического полета или к их комплексу.

Этапным моментом в изучении проблемы адаптации было выявление не специфической перекрестной адаптации. Действительно, использование неспецифической адаптации является важным компонентом системы подготовки космонавтов. Однако частные вопросы перекрестной адаптации оказались изученными недостаточно. Остается неясным, при каком сочетании факторов полета может возникнуть перекрестная адаптация, а при каком - «перекрестная сенсибилизация», о которой упоминал Г. Селье.

Выявление во многих исследованиях фазового течения адаптации и изучение ее механизмов свидетельствуют о том, что космическая биология и авиакосмическая медицина не могут обойтись без исследования таких типов адаптации человека, как социальная и биологическая адаптация. Социальная адаптация включает в себя прежде всего психологическую адаптацию. К биологической адаптации можно отнести физиологическую, биохимическую и морфологическую адаптацию.

Если не останавливаться подробно на описании достаточно известных механизмов формирования различных фаз адаптации, представляется существенным следующее. В космической физиологии много внимания уделяется оценке эффективности адаптационных процессов. Разработаны критерии и методы диагностики функциональных состояний организма и его работоспособности, В настоящее время ведутся исследования, направленные на создание измерительно-вычислительных комплексов, позволяющих осуществлять динамический контроль функционального состояния организма и прогнозировать его адаптационные возможности.

Одновременно совершенствуются и создаются новые методы повышения эффективности адаптации к различным неблагоприятным факторам. В их основе лежит представление о перспективной адаптации, в результате которой физиологическая перестройка организма приводит к углублению резервных возможностей организма и, по существу, является тренировкой.

Вместе с тем все острее становится проблема цены адаптации, в том числе отдаленных неблагоприятных последствий космических полетов. В силу того, что освоение человеком космического пространства началось сравнительно недавно, мы не имеем пока достаточного объема научных данных по этой проблеме. Ее актуальность объясняется перспективой осуществления все более длительных полетов, осложненных многочисленными выходами космонавтов в открытый космос и высадками на небесные тела. При этом наиболее информативными показателями биологической цены адаптации могут быть такие критерии, как способность к воспроизведению, темпы старения и продолжительность жизни.

Какова же перспектива разработки проблемы адаптации человека в условиях подготовки к более продолжительным космическим полетам, включая планируемый полет на Марс?

Здесь необходимо остановиться прежде всего на двух аспектах: резервах организма человека в плане не только адаптации, но и реадаптации и роли профилактики неблагоприятных воздействий таких полетов на организм. При этом уже на этапе отбора следует акцентировать внимание на индивидуальных особенностях космонавтов в плане их способности к кратковременной и долговременной адаптации. Так, было показано, что к непродолжительному воздействию неблагоприятных условий наиболее эффективно адаптируются люди с большими колебаниями фоновых показателей, чего нельзя сказать о лицах со стабильными фоновыми данными. К длительной адаптации более подходят люди, у которых организм способен продолжительное время поддерживать в напряжении необходимые адаптивные механизмы. Обращает на себя внимание то, что люди, хорошо адаптирующиеся к значительным колебаниям условий среды, выраженным в течение короткого времени, гораздо хуже переносят длительные неблагоприятные воздействия. И наоборот. Перечисленные особенности имеют существенное значение для прогнозирования развития адаптационного эффекта у разных людей.

Проблема обеспечения безопасности космических полетов и защиты от их возможных неблагоприятных влияний, в том числе отдаленных последствий, требует разработки все более совершенных методов профилактики. Работа в этом направлении входит в глобальную задачу создания искусственной среды обитания в космических аппаратах будущего.

В заключение следует отметить, что до сих пор в космической биологии и медицине проводились исследования адаптивных реакций лишь к воздействию отдельных факторов полета. Теперь этот этап в значительной степени уже завершен и все большее внимание привлекает изучение интегративного воздействия на организм. По образному выражению Дж. Баркрофта, приспособление есть сумма всех возможных приспособлений. Можно предположить, что адаптация к такому суммарному влиянию будет протекать медленнее и сложнее, чем адаптация к отдельным факторам.

Таким образом, в настоящее время назрела необходимость создания общей концепции адаптации к космическому полету как к комплексу факторов, оказывающих экстремальное воздействие на организм.

3.14 Влияние на организм подводных погружений

К настоящему времени сформировалась новая область естественных наук - подводная биология и медицина, изучающая функциональное состояние организма человека при воздействии комплекса факторов, возникающих при погружении в водную среду. Целью этих исследований является изыскание способов защиты, которые позволят человеку не только успешно трудиться в условиях повышенного давления, но и полностью сохранить свое здоровье.

Возникла подводная биология и медицина на базе классической физиологии во второй половине XIX в., когда появился особый вид трудовой деятельности человека - работа под повышенным давлением в кессонах и под водой.

В условиях повышенного атмосферного давления на организм влияет целый ряд факторов, с которыми в процессе эволюции человек не встречался: высокое гидростатическое давление, повышенное парциальное давление кислорода и других газов в среде для дыхания, повышенная плотность газов в дыхательной смеси.

Наиболее полные сведения об этом были впервые представлены в классической работе Поля Вера «Атмосферное давление» (1878 г.). Физиология человека обогатилась новыми данными о токсическом действии кислорода, о процессах сатурации и десатурации тканей организма инертными газами при изменении атмосферного давления, о нарушениях функций организма во время и после декомпрессии. В последующем гипербарическая физиология пополнилась представлениями о наркотическом действии инертных газов (азот, аргон, неон, криптон), о специфическом действии гелия, о безопасных границах применения азота и гелия а условиях повышенного давления, о возможности адаптации человека к длительному воздействию гипербарической среды.

От успехов подводной биомедицины зависит возможность освоения Мирового океана. Возрастающий интерес к гипербарической физиологии связан также с разработкой новых методов лечения, например оксигенобаротерапии, с перспективой полета человека на такие планеты солнечной системы, как Венера, где давление атмосферы у поверхности составляет около 98 кгс/см3.

Наиболее сложными биологическими проблемами, препятствующими в настоящее время погружению человека на большие глубины, являются проблемы преодоления нарушения функции дыхания и неврологических расстройств, возникающих при повышении давления воздуха более 6 кгс/см2, т.е. на глубинах свыше 60 м. На этих глубинах при дыхании водолазов воздухом возникает состояние так называемого азотного наркоза, которое характеризуется снижением работоспособности, сонливостью, галлюцинациями, потерей ощущения времени, пространства. Большинство исследователей считает основной причиной такого состояния специфическое действие повышенного парциального давления азота, однако показано также потенцирующее влияние на формирование азотного наркоза повышенного давления кислорода, углекислого газа и общего охлаждения организма. Одним из главных факторов, способствующих накоплению углекислого газа в организме и увеличению охлаждающих свойств газов в условиях гипербарии, является повышение плотности газов, влияющее на диффузию газов в легких и теплообмен.

При замене в составе дыхательной смеси азота на менее плотный газ - гелий - удается исключить явления азотного наркоза и благодаря этому значительно увеличить глубину погружения. Однако при большой скорости погружения на глубинах 300-350 м, у человека возникают неврологические расстройства, клиническое проявление которых отличается от состояния азотного наркоза. Эти нервные расстройства характеризуются комплексом симптомов, свидетельствующих о повышении возбудимости различных структур центральной нервной системы (тремор, гиперкинезы и др.). Возникновение состояния повышенной возбудимости в условиях гипербарии при дыхании гелио-кислородными смесями известно в настоящее время под названием нервного синдрома высокого давления (НСВД). Полагают, что причинами ЛСВД могут быть давление само по себе, действие гелия под повышенным давлением, тепловой стресс, а также накопление углекислого газа в тканях организма в условиях повышенной плотности дыхательной смеси. На основе результатов изучения НСВД некоторые исследователи сделали вывод, что предельная глубина погружения человека при применении смесей, содержащих гелий - 300 м, подобно тому как при дыхании газовыми смесями, содержащими азот, предельной является глубина в 60 м. Однако оказалось, что можно создать условия, отдаляющие неблагоприятное действие высокого давления. Таким образом, была обоснована возможность преодоления человеком НСВД на глубинах более 300 м.

За последнее столетие удалось увеличить глубину погружения человека с 10-30 до 501 м, а продолжительность нахождения под водой от нескольких минут до месяца.

Для профилактики НСВД при достижении рекордной глубины погружения 610м французским исследователям фирмы «СОМЕХ» потребовалось столь медленно погружать водолазов, что общее время компрессии составило 264 ч. Снижение скорости компрессии при погружении на большие глубины является в настоящее время наиболее распространенным методом предупреждения развития НСВД па глубинах более 200 м. Однако в поисках новых методов профилактики НСВД исследования проводятся и в других направлениях. Например, значительное сокращение периода компрессии водолазов при погружении на глубины 475 м без выраженных признаков НСВД было достигнуто при использовании для дыхания газовых смесей, компоненты которых обладают антагонистическим действием - гелий и азот в соотношении 10:1. Большое внимание в последнее время уделяется профилактике и терапии симптомов НСВД с помощью фармакологических средств. Применяя газы-антагонисгы и фармакологические средства, удалось довести глубину погружения высших животных (приматов) бел выраженных признаков НСВД до 1000 м. В последние годы в отделе подводной биомедиципы научно-исследовательского института гигиены водного транспорта Министерства здравоохранения РФ успешно развиваются нейрофизиологические исследования с целью выявления ранних признаков НСВД с помощью экспресс-диагностики состояния животных при разной скорости компрессии и в будущем управления на основе этих данных параметрами среды гипербарических камер. Многие исследователи полагают, что основную роль в решении проблемы преодоления НСВД будет играть отбор и тренировка людей, наиболее устойчивых к воздействиям гипербарии. Исследование механизмов развития и путей профилактики НСВД в настоящее время развивается достаточно быстро. Если проблема преодоления НСВД будет решена, то откроются реальные возможности погружения человека с использованием в качестве среды для дыхания газовых смесей с гелием на большие глубины. До недавнего времени такой прогноз был невозможен из-за отсутствия убедительных экспериментальных данных о возможностях преодоления человеком другого «физиологического барьера» - высокой плотности газовой смеси. Предполагалось, что функция дыхания человека и в состоянии покоя, и особенно при физических нагрузках, при увеличении плотности газовой среды более чем в 10 раз относительно обычной не сможет обеспечить адекватный газообмен. Такой величины плотность воздуха достигает при погружении человека на глубину 100 м, а плотность гелио-кислородных смесей -- при погружении на глубину 600 м. Па основании данных о физических закономерностях диффузии газов в условиях повышенной плотности, а также результатов экспериментальных исследований, была сформулирована теория, согласно которой гипоксические состояния в условиях гипербарии связаны с недостаточностью функции дыхания. Однако исследования, в которых водолазам предлагалось во время пребывания в камере при давлении 37 кгс/см8 переключаться на дыхание газовыми смесями, содержащими неон, показали отсутствие гипоксических состояний как в условиях покоя, так и при тяжелых мышечных нагрузках. В этих исследованиях при дыхании газовыми смесями, содержащими неон, плотность среды была увеличена более чем в 28 раз по сравнению с обычной. Таким образом были моделированы возможности респираторной системы человека успешно обеспечивать газообмен при плотности дыхательной смеси, эквивалентной той, которая возникает при дыхании гелио-кислородными смесями на глубине 1500 м.

До настоящего времени остается очень важной и сложной проблема преодоления токсического действия кислорода при гипербарии. Повышенное содержание кислорода в дыхательных смесях водолазов и кессонных рабочих впервые применил П. Бер. Гипероксические смеси он использовал для профилактики и лечения декомпрессионных расстройств, возникающих после работы в среде повышенного давления. В дальнейшем содержание кислорода в газовых смесях для дыхания водолазов стали повышать с целью снижения содержания в них инертных газов и сокращения режимов декомпрессии. Были установлены безопасные границы применения высоких концентраций кислорода при кратковременном действии повышенного давления. Однако при глубоководных погружениях и длительном пребывании человека в условиях гипербарии становится очевидным неблагоприятное влияние длительного воздействия и относительно малых величин повышения концентрации кислорода в дыхательной смеси, необходимых для обеспечения газообмена в среде повышенной плотности. Если до последнего времени при пребывании в газовой среде в условиях гипербарии считалось приемлемым повышение содержания кислорода до 0,35 кгс/см2, а при работе в водолазном снаряжении - увеличение содержания кислорода до 1 кгс/см2, то в настоящее время стало ясно, что содержание кислорода в среде для дыхания водолазов должно быть максимально приближено к нормальному. Было показано, что в результате гипероксического воздействия при гипербарии как в состоянии покоя, так и особенно во время мышечной деятельности возникает гиперкапния и дыхательный ацидоз вследствие изменения чувствительности дыхательного центра к рН и СО2 в гипероксической среде при повышенном атмосферном давлении, блокирования механизма элиминации СО2 гемоглобином и снижения эффективности кровообращения в легких. Таким образом, одним из главных вопросов, требующих своего разрешения, в настоящее время становится определение нижней границы токсического действия кислорода, особенно при длительном воздействии среды при повышенном атмосферном давлении. В этом плане перспективным направлением исследований является изучение возможностей ферментных систем и биологических антиоксидаптов организма.

...

Подобные документы

  • Анатомия и физиология как науки. Роль внутренней среды, нервной и кровеносной систем в превращении потребностей клеток в потребности целого организма. Функциональные системы организма, их регуляция и саморегуляция. Части тела человека, полости тела.

    презентация [10,6 M], добавлен 25.09.2015

  • Физиологический механизм адаптации организма к условиям высокогорья, причины гипоксии (кислородной недостаточности). Аэробный и анаэробный пути добычи энергии, свободные радикалы. Различия адаптивных стратегий, гипоксическая тренировка, гипокситерапия.

    курсовая работа [43,7 K], добавлен 03.02.2012

  • Адаптация организма к условиям среды в общебиологическом плане, ее необходимость для сохранения как индивидуума, так и вида. Способы защиты от неблагоприятных условий окружающей среды. Анабиоз, оцепенение, зимняя спячка, миграция, активация ферментов.

    реферат [38,2 K], добавлен 20.09.2009

  • Развитие физиологических функций организма на каждом возрастном этапе. Анатомия и физиология как предмет. Организм человека и составляющие его структуры. Обмен веществ и энергии и их возрастные особенности. Гормональная регуляция функций организма.

    учебное пособие [6,1 M], добавлен 20.12.2010

  • Понятие адаптации - приспособительного процесса, возникающего в ходе индивидуальной жизни человека. Физиологические аспекты повышения устойчивости организма к действию факторов новых условий существования. Стрессорные факторы при ослаблении организма.

    презентация [144,6 K], добавлен 29.05.2019

  • Адаптация как одно из ключевых понятий в экологии человека. Основные механизмы адаптации человека. Физиологические и биохимические основы адаптации. Адаптация организма к физическим нагрузкам. Снижение возбудимости при развитии запредельного торможения.

    реферат [22,8 K], добавлен 25.06.2011

  • Социально-биологические основы физической культуры. Функциональные системы организма. Адаптация как процесс приспособления его строения и функций к условиям существования. Аэробная и анаэробная производительность организма. Обмен веществ (метаболизм).

    презентация [7,4 M], добавлен 16.03.2014

  • Характеристика процессов адаптации человека к условиям окружающей среды. Исследование основных механизмов адаптации. Изучение общих мер повышения устойчивости организма. Законы и закономерности гигиены. Описания принципов гигиенического нормирования.

    презентация [8,5 M], добавлен 11.03.2014

  • Описание строения клетки, а также некоторых органических соединений, использующихся в живых организмах. Физиология и анатомия человека, особенности функционирования ряда важнейших органов. Взаимодействие и обмен веществ в организме. Водная среда жизни.

    реферат [3,3 M], добавлен 02.12.2010

  • Экологические группы растений. Адаптации к стрессовым условиям обитания. Типы ареалов и факторы, обусловливающие их границы. Ботаническая и экологическая характеристика дикорастущих видов растений (Гравилат речной Geum rivale) семейство (Розоцветные).

    контрольная работа [1,3 M], добавлен 09.04.2019

  • Функциональные системы организма. Внешние и внутренние раздражители организма человека, восприятие состояния внешней среды. Особенности организма человека, феномен синестезии, экстрасенсы-синестетики. Особенности темперамента при выборе профессии.

    реферат [49,8 K], добавлен 06.02.2013

  • Признаки и общая характеристика процесса старения, его влияние на нейроэндокринные механизмы регуляции клетки. Возрастная периодизация функционирования организма человека. Сравнительная характеристика преждевременного и физиологического старения.

    презентация [7,6 M], добавлен 28.09.2014

  • Предмет и роль физиологии в системе медицинского образования, краткая история, современные тенденции и задачи физиологии. Организм и внешняя среда, исследование физиологии целостного организма. Метод графической регистрации и биоэлектрических явлений.

    курсовая работа [63,3 K], добавлен 02.01.2013

  • Анатомия и морфология почек человека. Физиология и функции. Почки как своеобразная железа внутренней секреции. Удаление из организма конечных продуктов обмена веществ. Регуляция водного баланса, кислотно-основного состояния, уровня артериального давления.

    курсовая работа [44,5 K], добавлен 08.08.2009

  • Общие закономерности онтогенеза и его периоды. Взаимоотношения материнского организма и плода. Роль наследственности и среды в онтогенезе. Тератогоенные факторы среды, влияние алкоголя на организм. Возрастные периоды организма и их характеристика.

    реферат [35,4 K], добавлен 17.06.2012

  • Исследование понятия биологических часов человека, способности организма чувствовать и измерять время. Ритм изменения функционального состояния человека. Адаптация организмов к смене дня и ночи. Обзор теории гормонального влияния на биоритмы человека.

    реферат [24,0 K], добавлен 08.03.2014

  • Экологические зоны Мирового океана. Свойства водной среды (звук, электричество и магнетизм; солевой, световой, температурный режим) и ее роль в жизни гидробионтов. Адаптация растительных и животных организмов среде обитания. Фильтрация как тип питания.

    курсовая работа [1,2 M], добавлен 16.12.2012

  • Изучение ритмов активности и пассивности, протекающих организме человека. Физический, эмоциональный и интеллектуальный ритмы организма. Значение критических дней для каждого биоритма человека. Солнечно-лунно-земные и космические влияния на организм.

    презентация [321,0 K], добавлен 17.04.2011

  • Медико-биологические исследования воздействия космофизических факторов среды на организм человека. Определение структурно-энергетических характеристик геомагнитного поля. Выявление степени индивидуальной чувствительности организма к действию вариаций ГМП.

    статья [104,9 K], добавлен 21.05.2015

  • Характеристика радиочастотных (РЧ) воздействий. Выводы ученых по исследованию популярных марок телефонов и их влияния на здоровье человека, системы организма человека, наиболее подверженные вредному влиянию. Меры по защите населения от РЧ-излучения.

    научная работа [21,5 K], добавлен 09.02.2009

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.