Экологическая физиология
Адаптация организма человека к природно-климатическим и социальным условиям. Экологические аспекты хронобиологии. Влияние на организм вибраций, гравитации, излучения, звуковых нагрузок, катастроф. Гипоксия, гиперкапния и декомпрессионные расстройства.
Рубрика | Биология и естествознание |
Вид | учебное пособие |
Язык | русский |
Дата добавления | 19.08.2017 |
Размер файла | 616,8 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Изменения фазовой структуры сердечного цикла в исследованиях с имитацией невесомости часто укладываются в симптомокомплекс, который Карпман именует фазовым синдромом гиподинамии сердца. Отдельные сдвиги, свидетельствующие об уменьшении механической активности сердечной мышцы, выявлены и в условиях космического полета. К их числу относятся уменьшение амплитуды и продолжительности колебательных циклов сейсмокардиограммы, возрастание электромеханической задержки, механоэлектрического коэффициента и механосистолического показателя, а также увеличение периода напряжения и уменьшение периода изгнания. Вскоре после приземления у космонавтов в отдельных случаях зарегистрированы признаки ухудшения сократительной функции миокарда.
Изучение таких гемодипамических показателей, как величина систолического и минутного объемов крови, периферического сопротивления в условиях невесомости, было начато еще при полетах орбитальных станций «Салют». У космонавтов были отмечены признаки как уменьшения систолического и минутного объемов, так и увеличения их. Ранее при исследованиях, проведенных во время кратковременной невесомости па самолете, было обнаружено замедление скорости кровотока. При функциональных пробах с физической нагрузкой во время полета отмечены более низкие, чем до полета величины минутного объема крови.
В модельных экспериментах, по мнению большинства исследователей, систолический объем крови уменьшается. Периферическое сопротивление в условиях гиподинамии возрастает, но может и уменьшаться. В космических полетах сопротивление сосудов менялось в соответствии с динамикой выброса крови. Разноречивы сведения о скорости распространения пульсовой волны по аорте и артериям мышечного типа. Имеются сообщения об отсутствии закономерных изменений этого показателя, его увеличении или, наоборот, снижении. Следует отметить, что для большинства описанных изменений функционального состояния сердечно-сосудистой системы характерна фазовость, что отчасти объясняет разноречивость оценок относительно направленности некоторых сдвигов.
Основываясь на материалах, полученных в реальных космических полетах, различают несколько последовательных фаз адаптации сердечно-сосудистой системы к невесомости. Переходные реакции, связанные с нормализацией показателей после действия перегрузок, сменяются реакциями «разгрузочного» характера и последующей стабилизацией на уровне, отражающем преобладание парасимпатических эффектов в регуляции кровообращения. Однако, учитывая опыт лабораторных исследований и полетов, можно заключить, что на этом процесс адаптации не заканчивается. При длительных полетах возможно появление гинодинамически обусловленных реакций, включающих в себя преобладание симпатических эффектов, развитие фазового синдрома гиподинамии миокарда и детре-нированности сердечно-сосудистой системы.
Общие циркуляторные сдвиги, связанные с гиподинамией и снижением гидростатического давления крови, сопровождаются и изменениями регионарного кровообращения, в частности развитием венозного застоя. После полетов с помощью реографической методики обнаружена асимметрия тонуса мозговых артериол и вен. Нарушения мозговой гемоциркуляции рассматриваются в качестве причины ряда неврологических расстройств при длительной гиподинамии. Последние характеризуются симптомами межполушарной асимметрии и правосторонней пирамидной недостаточности. Асимметрия сухожильных рефлексов с правосторонним преобладанием выявлена и после космических полетов.
Изменяется и биоэлектрическая активность мозга, что авторы объясняют уменьшением функциональной подвижности корковых процессов и активирующего влияния ретикулярной формации. К числу других вероятных неврологических нарушений относят: вегетативно-сосудистую дисфункцию, астено-не-вротический синдром и синдром нейромышечных нарушений.
Условия реального космического полета ограничивают возможности проведения широких исследований обмена веществ, а также крови, мочи и других биологических субстратов. Чаще всего о воздействии невесомости судят по данным послеполетных обследований, хотя трактовка изменений, зарегистрированных после полета, в ряде случаев затруднена.
В длительных полетах на орбитальных станциях обнаружено снижение числа лейкоцитов и ретикулоцитов, а после приземления отмечались признаки торможения гемопоэза (уменьшение числа ретикулоцитов на 34%, эритроцитов на 15,2%, общей массы гемоглобина на 14-23, 6-34%). К 7-12 суткам ре адаптационного периода число ретикулоцитоа возрастало почти в 3,5 раза, что сопровождалось постепенным повышением числа эритроцитов и массы гемоглобина.
Увеличение СОЭ, возникновение нейтрофильного лейкоцитоза с лимфо- и эозинопенией, которые довольно часто регистрируются у космонавтов в послеполетном периоде, можно рассматривать как проявление ре адаптационного стресса. Об этом, в частности, свидетельствует увеличение концентрации корти-костероидов и катехоламинов в крови и повышение их экскреции с мочой после полета. Напротив, в состоянии невесомости и в процессе проведения модельных экспериментов обнаруживается снижение активности кортикоадреналовой системы.
Сведения о влиянии невесомости и имитирующих ее условий на свертываемость крови разноречивы.
Характер двигательной активности и питания в условиях невесомости влияет на состояние липоидного обмена, о чем можно судить по увеличению содержания в крови холестерина, лецитина и неэстерифицироваиных жирных кислот.
Изменения белкового обмена, обусловленные явлениями мышечной атрофии и связанные, по-видимому, со снижением ре-синтеза белка и скорости включения в него аминокислот, проявлялись у космонавтов в повышении содержания мочевины в крови и в усиленном выведении креатинина с мочой. Важным проявлением изменений белкового обмена служит и снижение синтеза гемоглобина в космическом полете.
Деминерализация костной ткани сопровождается усиленной экскрецией кальция в космическом полете и опытах с имитацией невесомости.
Общая астенизация и довольно выраженные изменения метаболизма, связанные с гиподинамией, сопровождаются снижением иммунологической резистентности и повышением вероятности заболеваний в космическом полете. Увеличение микробной обсемененности кожных покровов и слизистых оболочек создает дополнительные основания для подобных опасений.
Таким образом, снятие весовой нагрузки на костно-мышечный аппарат является самостоятельным и весьма важным пусковым механизмом в развитии разнообразных нарушений, обусловленных невесомостью. Целостная картина изменений, возникающих н состоянии организма человека под влиянием невесомости или имитирующих ее действие условий, включает в себя сложный комплекс реакций со стороны сердечно-сосудистой, костно-мышечной систем, системы крови, обменных функций, механизмов нервной и гуморальной регуляции, общей реактивности и иммунитета, состояния анализаторной и высшей нервной деятельности. Поскольку упомянутые реакции являются преимущественно выражением адаптационных сдвигов, они, как правило, не накладывают сколько-нибудь существенных ограничений на общее состояние и работоспособность космонавтов в процессе самого полета. Тем не менее имеющиеся научные данные не позволяют полностью исключить возможность развития более серьезных изменений при продолжительных полетах (большей выраженности деструктивных процессов, астенизации, возникновения заболеваний, требующих специализированной медицинской помощи, понижения физической и умственной работоспособности). Б настоящее время наиболее критической формой проявления сдвигов, обусловленных влиянием невесомости на организм человека, являются нарушения, которые возникают в ре адаптационном периоде. Основные из них состоят в снижении переносимости перегрузок, вертикальной позы, ухудшении физической работоспособности, координации ходьбы и других двигательных актов. Поэтому одной из важных в научно-практическом отношении задач медицинского обеспечения длительных космических полетов является разработка и внедрение системы мероприятий по профилактике расстройств, возникающих у космонавтов при возвращении на Землю.
Наиболее перспективные направления профилактических воздействий определяются механизмами формирования изменений, происходящих в невесомости. На достаточно упрощенной схеме патогенеза нарушений, обусловленных влиянием невесомости (рис. 15), показаны некоторые из возможных направлений и средств профилактики (звенья патогенеза и связь между ними обозначены тонкими линиями и стрелками, профилактические средства и направления их воздействия - жирными линиями и стрелками).
Наиболее естественным и практически осуществимым является применение профилактических воздействий на такие первичные, пусковые аффекты невесомости, как снятие гидростатического давления крови и весовой нагрузки на опорно-двигательный аппарат. В случае достаточно надежного блокирования этих первичных эффектов можно рассчитывать на прерывание цепи вторичнообусловленных сдвигов, в том числе и тех, которые вызывают наибольшую озабоченность в реадаптационном периоде. Значительно более сложен выбор метода профилактики тех сдвигов, которые связаны с изменениями в деятельности афферентных систем. Самым радикальным решением всех проблем выглядит введение искусственной гравитации на космических кораблях, однако в настоящее время еще не накоплено достаточного количества обоснований в пользу этого решения и не проведена оценка возможных побочных эффектов длительного пребывания в постоянно вращающейся системе, чтобы оправдать необходимость в ее разработке. Тем не менее поиски оптимальных параметров системы искусственной гравитации (радиуса, угловой скорости вращения, минимально эффективной величины радиального ускорения) проводятся.
Наиболее логичный путь профилактики последствий необычного распределения крови, связанного с отсутствием гидростатического давления, состоит в искусственном воспроизведении эффекта гидростатического давления. С этой целью в экспериментах с водной иммерсией и постельным режимом были испытаны следующие средства и методы: надувные манжеты на конечностях, дыхание под избыточным давлением и воздействие отрицательного давления на нижнюю половину тела.
Изучались также эффекты, достигаемые использованием центрифуги с коротким радиусом, где действие продольных перегрузок имитировало гидростатическое давление, но одновременно оказывало влияние на костно-мышечную систему и гравирецепцию. К рассматриваемой группе средств относятся также воздействия, обеспечивающие инерционные смещения крови вдоль магистральных сосудов при ударных нагрузках, действующих в направлении продольной оси тела.
Профилактические воздействия на некоторые промежуточные звенья этой патогенетической цепи могут осуществляться с помощью фармакологических и гормональных препаратов, а конечные эффекты (снижение ортостатической устойчивости после полета) - с помощью средств, оказывающих избыточное давление на нижнюю половину тела.
Таким образом, в отношении профилактики последствий ги-подинамического синдрома существует вполне реальная конструктивная основа, состоящая в создании постоянной (с помощью нагрузочных костюмов) и переменной (посредством выполнения комплексов упражнений на специальных тренажерах) нагрузки на костно-мышечный аппарат, использовании фармакологических препаратов и средств неспецифической профилактики.
Разумеется, действие большинства описанных выше профилактических средств не является строго избирательным, часто распространяется на смежные звенья патогенеза и, таким образом, выходит за рамки предложенной классификации, которая подчеркивает лишь преимущественные эффекты, на которые рассчитано то или иное средство. К примеру, действие отрицательного давления на нижнюю половину тела, помимо перераспределения крови, сопровождается также осевой нагрузкой на организм, величина и точки приложения которой определяются особенностями конструкции вакуумной емкости. Кроме того, декомпрессия нижней половины тела способна воспроизводить и ощущения, характерные для действия силы тяжести. Применение вакуумной емкости при постельном режиме вызывает, в частности, ощущение пребывания в вертикальной позе. Другим примером профилактического воздействия, обладающего широким спектром и адресованного по-существу ко всем пусковым механизмам изменений, связанных с невесомостью, служит применение бортовых центрифуг с коротким радиусом. Тем не менее, на современном уровне знаний, теоретической и технической вооруженности достижение относительно гармоничного профилактического эффекта может быть обеспечено лишь комплексом профилактических воздействий, адресованных различным звеньям патогенетической цепи.
3.3 Влияние на организм человека вибраций
Вибрация - механические колебания материальных точек или тел. Простейшим видом вибрации является гармоническое колебание, графически изображаемое синусоидой.
Вибрация характеризуется амплитудой и частотой, из которых выводят скорость и ускорение. Виброускорение, или виброперегрузка, - это максимальное изменение скорости колебаний в единицу времени, обычно выражается в см/с2. В практике авиационной и космической медицины чаще применяют единицы ускорения, кратные ускорению свободного падения d. Частота вибрации - число колебаний в единицу времени, измеряется в герцах. Важным параметром вибрации является ее интенсивность, или амплитуда. Если вибрация представляет собой простое синусоидальное колебание около неподвижной точки, то ее амплитуда определяется как максимальное отклонение от этой позиции (измеряется в миллиметрах).
Физические характеристики вибрации кабины космического корабля изучены недостаточно полно. Частота вибрации, возникающей на активном участке, составляет около 50 Гц. Виброперегрузка при этом не превышает 1 g. Главные частоты вибрации конструкций больших космических аппаратов обычно лежат в диапазоне от 2 до 15 Гц.
Вибрация может передаваться человеку непосредственно при прикосновении к вибрирующим предметам и через промежуточные среды достаточной плотности (жидкость, твердые тела). Она может воздействовать на человека непосредственно через опорные поверхности, например, ложемент космонавта, и через некоторые вторичные контактные предметы, такие как подголовник, рукоятки управления. Опосредованные воздействия вибрации проявляются в вибрации приборов и их стрелок в космическом корабле, что затрудняет считывание показаний во время запуска.
Считают, что вибрация воспринимается специфическими виброрецепторами во всех тканях тела и особенно в коже.
Тело человека - сложная вибрационная система с собственным резонансом. Некоторые анатомические структуры и органы на определенных частотах получают колебания большей амплитуды, чем другие. Установлено, что главный резонанс тела человека для вибрации в направлении вертикальной оси лежит в частотах 4-5 Гц. Различные ткани имеют резонансные частоты 12-24 Гц. Наиболее неприятны и даже опасны для здоровья вибрации резонансных частот. Усиление колебаний при резонансе обратно пропорционально демпфированию системы. При резонансе относительно малые силы на критической частоте вызывают большие колебания системы, что может привести к механическим повреждениям тканей и органов.
При длительном воздействии вибрации на организм человека развиваются местные и общие морфофункциональные изменения, что может обусловить так называемую вибрационную болезнь, при которой нарушаются функции различных систем организма.
По распространению в организме вибрации разделяются на общие и местные (локальные). В первом случае они вызывают заметное сотрясение всего организма, во втором - вовлекают в колебательные движения лишь его отдельные участки. Однако это не значит, что физиологическое действие локальных вибраций ограничивается участком их распространения в тканях. Поскольку колебательные движения раздражают периферические нервные образования, они неизбежно влияют на центральную нервную систему и рефлектор но могут изменять функции отдельных органов и тканей. Влияние на организм местной вибрации качественно отличается от воздействия общей вибрации.
Общая вибрация возникает на активном участке космического полета, когда колебания двигателя передаются на конструкцию ракеты, и иногда при аэродинамических воздействиях на космический корабль во время прохождения плотных слоев атмосферы.
Вибрация представляет собой общебиологический фактор, действующий на любые клетки организма, в том числе на кору головного мозга, Следовательно, чем шире распространяется вибрация по организму, тем больше тканевых, в частности нервных, элементов вовлекается в сферу ее воздействия.
Низкочастотные вибрации служат специфическим раздражителем вестибулярного аппарата, при длительном воздействии нарушающим его функции.
В ответ на постоянную низкочастотную вибрацию всего тела происходят разнообразные изменения в клетках и их биохимических компонентах, в моче и крови. Эти изменения, по-видимому, отражают неспецифическую реакцию на стресс-фактор. Адаптация к вибрационному фактору, вероятно, центральная, хотя возможно некоторое привыкание и на уровне рецепторов.
Вибрация близка к шуму не только по природе, но и по физиологическим эффектам. Она значительно отягощается действием шума.
Множество работ указывает на изменение под влиянием вибрации функций дыхания, сердечно-сосудистой системы, пищеварения, опорно-двигательного аппарата и т.д. Сердечнососудистые и сердечно-легочные реакции на вибрации средней интенсивности сводятся к таким же вегетативным сдвигам, как и при умеренной работе или эмоциональном напряжении: увеличение числа сердечных сокращений и дыхательных движений, легочной вентиляции и потребления кислорода.
Вибрации, действующие на организм в космическом полете, переносимы человеком. Виброперегрузка при этом обычно не превышает 0,1 g, лишь в редких случаях достигая 1 g. Отрицательные влияния вибрации на организм снижаются путем применения демпфирующих устройств.
При профессиональном отборе необходимо учитывать индивидуальную реакцию организма на вибрационное воздействие.
3.4 Влияние на организм человека длительных и интенсивных звуковых нагрузок
Шум - это беспорядочная совокупность звуковых волн различных частот и амплитуд, распространяющихся в воздухе и воспринимаемых ухом человека. Диапазон по частоте слышимых звуков для человека простирается от 16 до 20 000 Гц. (Герц (Гц) - единица частоты, равная одному колебанию в секунду). Для практических целей этот диапазон ограничен от 50 до 10 000 Гц, как наиболее важный для слухового восприятия. Ухо человека безболезненно воспринимает звуковое давление в диапазоне от 2-105 Н/м2 (порог слуха) до 20 Н/м2. Разница верхнего и нижнего пределов составляет миллион. Для удобства практического измерения и оценки шумов приняты не линейные единицы, а логарифмические - децибелы (дБ). Величина, характеризующая интенсивность шума или звука, получила название «уровень звукового давления шума» или уровень шума. Это десятичный логарифм отношения измеренного звукового давления к стандартному (близкому к порогу слышимости чистого тона на частоте 1000 Гц), принятому за единицу сравнения.
Однако неблагоприятное воздействие шума зависит не только от уровня шума, но и от частотного состава, т.е. от того, как распределяется интенсивность по частотам (спектр шума). Наконец, вредность шума зависит от степени равномерности его воздействия с течением времени.
Технический прогресс привел к усложнению шумовых характеристик, к распространению шумов различной временной структуры. Известно, что до сих пор измерения проводились исходя из стабильности шумового процесса. Исчерпывающими характеристиками при этом являлись уровнеграммы и спектрограммы, которые позволяли сопоставить измеренный спектр шума с гигиеническими нормами и при необходимости внести поправку на суммарное время его действия. Однако часто в современных условиях трудно правильно оценить шум одномоментным измерением. Шумы ударного происхождения, так называемые импульсные, оценивались теми же приборами и методами, что и стабильные, часто одномоментными измерениями оценивались прерывистые, флюктуирующие и прочие непостоянные шумы. Все это приводило к невозможности сравнения и обобщения результатов, к разноречивости и отсутствию единого мнения исследователей о степени влияния шума на организм. Возникла необходимость выбора и обоснования унифицированной гигиенической оценки шумов различного характера.
Исследованиями установлено, что адекватным критерием для характеристики колебательного процесса (шума), воздействующего на живой организм, является его мощность. Отсюда наиболее правильно непостоянные шумы оценивать эквивалентным по энергии уровнем.
В настоящее время все шумы подразделяются по характеру спектра на широкополосные и тональные. Широкополосные - с непрерывным спектром шириной более одной октавы, а тональные имеют в спектре слышимые дискретные тона; тональный характер шума устанавливается измерением в 1/3-октавных полосах частот по протяжению уровня в одной полосе над соседними не менее, чем на 10 дБ.
По временным характеристикам шумы подразделяются на постоянные и непостоянные. Постоянные - такие шумы, уровень звука которых за 8-часовой день меняется во времени не более, чем на 5 дБ, а непостоянные, уровень звука которых за 8-часовой день изменяется во времени более, чем на 5 дБ.
Слух, как основная функция звукового анализатора, изучается с различных точек зрения, однако в профпатологическом аспекте главная из них - это исследование состояния слуха как показателя вредного влияния шума. Не вызывает сомнения, что интенсивный шум при ежедневном воздействии медленно и необратимо влияет на звуковоспринимающий отдел анализатора, вызывая потерю слуха, прогрессирующую с увеличением времени экспозиции шума.
Достаточно полно изучена клиника профессиональных потерь слуха от шума (тугоухость), симптоматология этого поражения, ее дифференциальная диагностика. Основные симптомы профессиональной тугоухости - постепенная потеря слуха на оба уха, первоначальное ограничение слуха в зоне 4000 Гц с последующим распространением на более низкие частоты, определяющие способность восприятия речи. Дополнительными признаками тугоухости может бить ряд непостоянных симптомов: звон и шум в голове, гиперемия барабанной перепонки, ее втянутость и т.п.
Профессиональное снижение слуха связано с поражением слухового нерва, а его патологоанатомическая основа заключается в дегенеративных изменениях органа Корти и спирального ганглия.
Экспериментальные исследования последних десятилетий расширили и уточнили данные предыдущих исследований и показали, что под влиянием достаточно интенсивных и длительно действующих звуков, наступают дегенеративные изменения как в волосковых клетках кортиева органа, так и в первом нейроне слухового пути - спиральном ганглии, а также в волокнах кохлеарного нерва.
Однако единого мнения о патогенезе, приводящем к стойким и необратимым явлениям в рецепторном отделе анализатора, не существует. Можно выделить два главных направления. Одно направление исследований придает основное значение первичному механическому действию колебательной энергии (зависимость от звукового давления), приводящему к травматическому повреждению рецепторного отдела слухового анализатора, другое связывает первичные изменения с перераздражением определенных отделов центральной нервной системы, в результате чего возникают изменения во внутреннем ухе. Некоторые исследователи особую роль в патогенезе тугоухости отводят подкорковым центрам, регулирующим трофику слухового рецептора, другие же считают, что в основе поражения рецептора лежат изменения в центрах головного мозга. Существует точка зрения, указывающая, что тугоухость развивается на почве сосудистых расстройств, наступающих в рецепторном отделе анализатора под влиянием шума.
Исследования последних лет подтвердили связь между длительным шумовым воздействием и нарушениями в церебральном кровоснабжении. При этом было доказано, что вследствие нарушения нормального кровообращения в височной области создаются неблагоприятные условия для функционирования звукового анализатора, что приводит сначала к временным, а затем, в более поздние сроки, к стойким необратимым нарушениям, снижающим функцию слуха. Степень и скорость развития изменений зависят от количества звуковой энергии, воспринимаемой анализатором.
Многообразие и противоречивость мнений по вопросу патогенеза тугоухости можно объяснить сложностью путей воздействия шума и разнообразием действующих звуковых раздражителей. Действительно, мощные кратковременные акустические раздражители приводят к травматическим изменениям рецептора, тогда как при хроническом (длительном) воздействии менее интенсивного шума нагрузка приходится на центральные звенья звукового анализатора, т.е. механизм развития тугоухости при острой акустической травме и хроническом действии шумов неодинаков.
Максимум потерь слуха приходится на частоты на пол-октавы выше воздействующего тона, однако при длительном воздействии зона влияния расширяется для всех тонов выше воздействующего. Этими лее авторами показано, что наиболее неблагоприятными для слуха являются высокочастотные топы 4000, 2000 и 1000 Гц.
Стремление исследователей обнаружить наиболее ранние признаки действия шума на организм и, в частности, на звуковой анализатор, привело к выходу в свет большого числа исследований, относящихся к изучению функционального состояния анализатора. С этой целью использовались методы динамической аудиометрии, а также исследования звукового анализатора с помощью определения дифференциальных порогов после шумовых нагрузок. Наиболее широко, особенно за рубежом, используется метод определения временного смещения порогов слуха (ВСП) при различной длительности экспозиции и характере шума. Этот показатель положен в основу сравнения действия различных шумов как критерий для определения чувствительности к шуму, а также в качестве физиологического критерия риска глухоты.
Кроме того, этот показатель использовался в качестве прогнозирования потерь слуха на основании соотношения между постоянными потерями слуха от шума, действующего в течение всего времени работы в шуме, и временными потерями (ВСП) за время дневной экспозиции тем же шумом, измеренными спустя две минуты после экспозиции шумом.
Энергия шума через проводящие пути звукового анализатора трансформируется в различные отделы головного мозга, изменяя в них нормальные процессы динамики высшей нервной деятельности. Интенсивные шумы нарушают равновесие возбудительных и тормозных процессов: отмечаются фазовые состояния, вследствие чего нарушаются и вегетативные реакции при дисбалансе функций вагуса и симпатикуса, чрезмерный шум ведет к запредельному торможению клеток центральной нервной системы. Происходят нарушения высшей нервной деятельности.
Некоторые исследователи придают особое значение ретикулярной формации мозгового ствола. В начальный период воздействия шума активируются ее структуры и наблюдается повышенная активность органов и систем с последующим ослаблением влияния сетчатого образования, вследствие чего развивается тормозной процесс, ведущий к нарушению в деятельности центральной и вегетативной нервных систем организма, а также системы кровообращения. Некоторые исследователи отмечали изменения электрической активности мозга при шумовом воздействии: уплощение электроэнцефалограммы, депрессию альфа-ритма, появление низковольтной активности и другие изменения. От воздействия интенсивного шума повышается или понижается возбудимость рефлексов, наблюдаются изменения функционального состояния нервное системы в виде астенических реакций, астеновегетативного синдрома с характерными жалобами на раздражительность, апатию, ослабление памяти, потливость и т.д.
Исследования по неспецифичности шумового раздражения для клеточных образований звукового анализатора и других структур, например спинно-мозговых ганглиев, показывают, что шум может действовать как непосредственно на клетку, так и опосредованно через нервную систему на нее же и вызывать различные реакции (денатурацию нативных белков, изменение реактивности), приводящие к обратимым или необратимым состояниям клеток, что лежит в основе функциональных повреждений органов и систем.
Работы по изучению изменений в энергетическом обмене животных при хроническом шумовом воздействии с использованием биохимических, морфологических и электронно-микроскопических методов проведены в последние годы. Так, показано, что при длительном воздействии шума неблагоприятное влияние возрастает не только от уровня шума, но и от частотного его характера. Высокочастотные шумы (октавная полоса 4000 Гц) по сравнению с эквивалентными по энергии низкочастотными шумами {октавная полоса 125 Гц) вызывают более глубокие нарушения нервной трофики и синтеза макроэргических фосфорных соединений.
Результаты электронно-микроскопического исследования мозга животных, подвергавшихся хроническому (3-месячное воздействие по б ч ежедневно) влиянию интенсивного шума (97 дБ), показали значительные изменения ультраструктуры митохондрий и синаптических пузырьков нервных клеток. Синаптические пузырьки в пресинаптических отростках лежали чрезвычайно кучно возле синаптической щели. Пузырьки по размеру были меньше и количество их в радиусе 0,3 мкм от синаптической щели уменьшалось по сравнению с их количеством у контрольных животных. Эта картина свидетельствует о нарушении функциональной возможности синапса. Отмеченные изменения ультраструктуры митохондрий, а также наблюдаемое просветление цитоплазмы и неравномерное распределение хроматина в ядре свидетельствовали об угнетении окислительных процессов, о замедлении тканевого метаболизма. Эти изменения ультраструктуры клеток мозга согласуются с данными биохимических исследований, свидетельствующими о нарушении трофики и снижении синтетических возможностей организма.
Известно, что тканевое дыхание во многом зависит от состояния сосудистой сети и проницаемости клеточных мембран для нормального литания их кислородом. Как было сказано выше, при шумовом воздействии у людей наблюдается нарушение регуляции мозгового кровообращения, выражающееся в превалировании спастических реакций сосудов мозга. В последние годы получены новые экспериментальные данные нарушения микроциркуляции: и изменения реактивности терминальных сосудов я головном мозге. Так, было показано, что «белый» шум уровнем 100 дБ вызывает уже через 5 мин после начала озвучивания сосудосуживающую реакцию крупных артерий (более 40 мкм) мозга, реакция более мелких артериальных ветвей наступала позже (на 20-30 мин) и выражалась в увеличении их диаметра. К этому времени спазм крупных артерий проходил, и наблюдалось увеличение функционирования мелких артериальных и венозных сосудов, которые до действия шума оставались невидимыми.
Различие реакций на шум крупных и мелких артериальных сосудов объясняется особенностью регуляции их тонуса. Если реакция крупных сосудов обусловлена нервной регуляцией, то реакции со стороны мелких сосудов объясняются гуморальной регуляцией. Характер кровотока в артериолах и венулах мягкой мозговой оболочки под действием шума почти не меняется, он остается равномерным и ламинарным. Однако при этом происходит значительное уменьшение гематокрита притекающей по сосудам крови, наиболее выраженное в венулах и мелких венозных сосудах.
Эти данные свидетельствуют о быстрой и выраженной реакции сосудов мозга на действие шума, что может быть причиной циркуляторной гипоксии мозга. Представляется вероятным, что исключение из циркуляции части эритроцитов и уменьшение емкости функционирующего сосудистого русла является причиной наблюдаемой рядом авторов гипоксии, а расширение крупных артериальных сосудов на поверхности мозга и увеличение числа функционирующих артериол можно рассматривать как явление компенсаторное. Изучение особенностей реактивности пиальных сосудов при шумовом воздействии показало, что на фоне шумового воздействия происходят закономерные изменения реактивности сосудов головного мозга, выражающиеся в понижении реактивности мышечных элементов сосудов в ответ на ацетилхолин и повышении реактивности при действии адреналина. Эти разнонаправленные изменения реактивности и обусловливают спазм артериальных сосудов, отмечаемый при воздействии шума.
Таким образом, шумовое воздействие вызывает генерализованную реакцию в коре и подкорковых структурах мозга, усугубляющуюся сосудистыми нарушениями. Учитывая роль ретикулярной формации мозгового ствола в возникновении изменений в центральной нервной системе, в регуляции вазомоторных реакций и деятельности внутренних органов, становятся понятными изменения и нарушения многих физиологических функций, отмечаемые различными исследователями. Так, шум может нарушать функцию сердечно-сосудистой системы. Отмечены изменения в электрокардиограмме в виде уплощения зубца Т, изменения его величины.
Многочисленны исследования, констатирующие изменения в величине и направленности артериального давления от воздействующих шумов. Другие исследования показывают, что шум влияет на тонус периферических сосудов и особенно капилляров. Наиболее ценными в этой области являются работы, ставящие своей целью не просто констатировать изменение функционального уровня, но и показать связь определенных параметров шумов с качественным и количественным изменением физиологической функции. Например, было показано, что выраженность вегетативных реакций, в частности, периферического кровообращения, зависит от ширины спектра шума, т.е. широкополосный шум вызывает максимальные сдвиги в периферическом кровообращении, которые убывают при сужении ширины полосы от целой октавы к 1/3 и к чистому тону. Следует иметь в виду, что если к субъективному восприятию шума имеется привыкание (адаптация), то в отношении вегетативных реакций адаптации к нему не наблюдается. Так, Янсен, исследуя влияние шума на Вегетативные сосудистые реакции, приходит к выводу об отсутствии их «привыкания к шуму» и предлагает заменить термин «адаптация» на «постоянство реакций вегетативной нервной системы на шум».
Наконец, имеется многочисленная группа работ, касающихся изучения здоровья лиц, систематически работающих в условиях тех или иных шумов. Необходимо отметить, что при работе в шумах, интенсивность которых превышает 110 дБ, четко выступают как субъективные жалобы (головная боль, усталость, быстрая утомляемость и др.). Так и объективные расстройства со стороны всех систем организма. Причем астенические или невротические состояния устанавливаются после нескольких дней или недель работы в условиях таких шумов в противоположность тугоухости, которая развивается постепенно в более длительные сроки. Вместе с тем остается неясным, что происходит в дальнейшем: прогрессируют ли неспецифичсские нарушения с развитием тугоухости или последняя препятствует их развитию? Некоторые наблюдения показывают, что возникшие до развития тугоухости расстройства со стороны нервной регуляции не проходят с годами, когда к ним присоединяются и нарушения в органе слуха.
При работе в шумах более низких уровней может не быть четкой зависимости между субъективной реакцией людей и объективно выявленными нарушениями, особенно когда уровни шумов находятся между 70 и 90 дБ. Вредность шума подтверждается также тем, что у людей, находящихся постоянно в условиях шума, процент общих заболеваний выше, чем у лиц, находящихся в относительно тихих условиях.
Воздействие необычного по своей характеристике шумового фактора прежде всего вызывает ориентировочный рефлекс, который даже может «защитить» организм от вредного действия благодаря изменению поведения (выход из шумовой обстановки). Кроме того, для непосредственной защиты слухового анализатора от акустической перегрузки вступают в строй различные приспособительные механизмы.
Механизмы управления входными устройствами анализаторов, повышающими эффективность восприятия информации, достаточно хорошо изучены, равно как и механизмы улучшения восприятия и анализа слабых раздражителей, а также защиты органов чувств от перегрузки чрезмерно сильными раздражителями. Механизм защиты органа слуха от чрезмерно громких звуков, передаваемых в улитку, защищающий ее очень чувствительные структуры от разрушения, обусловлен особым видом нелинейности среднего уха. Так, при малых и нормальных интенсивностях стремечко вращается вокруг вертикальной оси, заставляя колебаться мембрану овального окна перпендикулярно ее плоскости. Но при больших амплитудах колебаний характер движения косточек меняется, и стремечко начинает вращаться вокруг горизонтальной оси, при этом смещения мембраны овального окна резко уменьшаются. Полагают, что этот механизм, присущий внутренней структуре входной части анализатора, действует без управления со стороны нервной системы, непосредственно под влиянием раздражителя. Еще в 1864 году было показано, что мышцы среднего уха защищают улитку от чрезмерно громких звуков. Мышцы обоих ушей оказывают противодействие даже в том случае, когда звук воздействует только на одно ухо. В дальнейшем было определено, что при действии сильных звуков происходит рефлекторное сокращение мышцы, напрягающей барабанную перепонку, и стремянной мышцы. Скрытый период этой реакции равен приблизительно 10 мс. Безусловный рефлекс не оказывает защитного действия против резких акустических щелчков.
Неожиданность внешнего воздействия существенно затрудняет организацию действий организма. И. П. Павлов отметил, что всякий новый раздражитель тотчас же ведет к появлению исследовательского рефлекса. П. К. Анохин указывал, что ориентировочная реакция, как и другие опережающие реакции, является результатом развития приспособительных актов живого организма, результатом приспособления организмов к цепям повторяющихся событий в окружающей организм среде. По мере повторения периодически следующих звуковых раздражителей отмечается развитие угасательного торможения, ориентировочной реакции, причем анализ этих раздражителей, не имеющих определенного сигнального значения, начинает протекать очень быстро и не связан с большим возбуждением анализаторной системы.
Однако ориентировочная реакция полностью угаснуть не может. Биологическое продолжение анализа раздражителей имеет вполне определенный смысл потому, что «индифферентный» в данный период времени раздражитель при других условиях может вдруг стать весьма значимым. Если бы анализ раздражителей не продолжался, то это могло бы иметь роковые последствия для организма. Как показали исследования, при строго периодически следующих раздражениях может иметь место отключение их анализа и вновь продолжение его при изменении ритма.
Наряду с ориентировочными рефлексами выделяют адаптационные рефлексы, обеспечивающие приспособление систем анализаторов к воздействиям раздражителей. Благодаря этому обеспечивается постоянная соразмерность отношений между физическими параметрами раздражителя и физиологическими параметрами воспринимающего прибора. Изменения функциональной настройки анализаторов при этом могут рассматриваться как выражение физиологической пластичности по отношению к слабым и нейтрализации - к сильным раздражителям.
По мере привыкания к шумовому раздражителю в нервных центрах развивается процесс торможения. Согласно концепции, которую выдвинул П. В. Симонов, живые реагирующие системы как бы защищены торможением с двух сторон: от очень сильных раздражителей - запредельным торможением и от очень слабых раздражителей - первичным, или адаптивным торможением. По его мнению, благодаря первичному торможению, живая реагирующая система не расходует свой энергетический потенциал «по пустякам» и отвечает возбуждением только на достаточно сильные раздражители. Если приток раздражающих импульсов сравнительно невелик, он постепенно оказывается недостаточным для поддержания возбуждающего состояния клетки, подавляется и угасает. При интенсивном и длительном шумовом воздействии приток раздражающих импульсов нарастает, тормозящие сигналы оказываются неспособными противодействовать возбуждению нервной клетки. И тогда включается более древний и универсальный механизм - запредельное торможение. Знаменательно, что при значительных шумовых воздействиях на организм торможение не сразу приобретает характер запредельного. Только после того, как защитные свойства превентивного торможения оказались недостаточными и возбуждение нервных клеток превысило предел их функциональных возможностей, в центральной нервной системе возникает запредельное торможение. Последовательно развертываются стадии запредельного торможения: уравнительная, парадоксальная, ультрапарадоксальная, тормозная. В аспекте современных биологических представлений системный подход позволяет рассматривать все процессы в организме как проявление адаптации на разных уровнях структурной организации. Рассматривая биологическую систему как иерархию подсистем и их целей, этот метод дает возможность представить биологическую систему как содержащую иерархию адаптации. Степень адаптационных возможностей организма в конечном счете выражает степень его организованности.
Сложность обнаружения места (уровня) той или иной организации в биологической системе заключается в том, что многие функциональные образования одновременно входят в различные виды иерархий и занимают в них различные уровни. Несмотря на эти трудности, в настоящее время выделяют пространственную иерархию биологических систем в виде простой линейной последовательности: мицелла коллоиды органелла (вироид) клетка ткань орган организм (индивид). Наряду с указанными основными уровнями в этой схеме не отражаются отдельные подуровни, так как не все они могут быть объединены в линейную иерархию. С позиции линейной последовательности в пространственной иерархии А. И. Опарин рассматривал адаптированность в виде соответствия организма (как целого) среде существования или одних подсистем другим, а также организму в целом, как выражение их функциональной зависимости.
Важным является то, что основу адаптации составляет соответствие в одном случае организма среде, в другом - части системы как целому. В проведенной линейной последовательности каждая подсистема может обладать адаптациями с внутренними и внешними целями. Адаптация с внутренними целями устанавливает соответствие подсистемы среде, ее окружающей, а с внешними целями обеспечивает соответствие вышестоящих подсистем (включая организм) внешней среде.
Любая физиологическая функция является целесообразной лишь постольку, поскольку она обеспечивает отправление внешней функции, способствует сохранению и развитию организма в целом. Все виды регуляции развития и сохранения наследственной конституции организма представляют различные уровни механизмов адаптации, находящиеся в иерархической зависимости друг от друга. Так, тканевая регуляция, представляющая микрорегуляцию в ответ на микровозмущения внешней среды, требует постоянного расхода энергии. Первый контур адаптации - это адаптация на тканевом уровне, преследующая две цели: внутреннюю - восстановление ткани и внешнюю поддержание функциональной организации органа. Такая биологическая система, как орган слуха, при помощи шумовой нагрузки должна выполнять две цели: обеспечивать организм сенсорной информацией, что позволяет ему приспособиться к окружающей обстановке (ориентирование, связь, избегание и т.п.) и обеспечить самосохранение, т.е. орган должен противостоять повреждающему воздействию входного сигнала. В условиях шума эти цели вступают в противоречие. С одной стороны, орган слуха должен обладать высокой разрешающей чувствительностью к полезным сигналам, с другой, с целью приспособления к шуму слуховая чувствительность должна снижаться. Это приводит к противоречию в обеспечении функций.
В шумовой обстановке организм вырабатывает компромиссное решение, что выражается в виде снижения слуховой чувствительности, временного смещения порогов, т.е. внутренней адаптации органа слуха с одновременным снижением адаптационной способности организма в целом.
Адаптирование любой системы, процесс перестройки, изменение свойств организма связано с потреблением энергии, причем внутренняя цель организма состоит в том, чтобы обеспечить минимальный расход энергии, наряду с возможностями ее восстановления.
Энергетические затраты адаптированной системы меньше, чем неадаптированной. Неадаптированная система связана с постоянным расходом энергии.
Так, сравнительные исследования адаптации органа слуха у людей, еще не адаптированных к интенсивному шуму и у работающих в шуме несколько лет, показали, что временное смещение порогов у последних менее выражено и наступает раньше. Нормально функционирующая система с хорошей подвижностью нервных процессов должна реагировать на звуковую нагрузку выраженным сдвигом порога. В этом плане низкий показатель - временное смещение порогов у лиц, впервые попавших в условия мощного шума, можно рассматривать как признак недостаточности или истощения нервной системы. Подобное явление отмечено у некоторых лиц, работающих длительное время в условиях шума, у которых наряду с неизменным слухом диагностируют все ведущие симптомы шумовой патологии (астено-вегетативный синдром, астеническое состояние и др.). Можно предположить, что для целесообразного функционирования и существования органа слуха в условиях меняющегося характера шумового раздражителя должны быть механизмы адаптации, которые являются более быстротечными, чем временное смещение порогов (к таким механизмам, вероятно, следует отнести и акустический рефлекс). Подобные процессы перестройки в органе слуха, отражающие действие нестационарного акустического раздражителя и соизмеримые с его нестационарностью (порядка 10-100 мс), можно назвать динамической адаптацией. Динамическая адаптация - показатель приспособленности органа слуха, она не противоречит целям сохранения жизнедеятельности, так как цели органа слуха и организма совпадают.
Постоянное смещение порога слуховой чувствительности не отражает приспособленность органа слуха к шумовому воздействию, а является проявлением адаптированности организма в целом. В этом случае страдает функция органа, остается только адаптация организма в целом.
Выделено три основных контура адаптивного поведения организма в целом, однако это не исключает наличия и других приспособительных механизмов. Так, утомление органа слуха можно рассматривать как промежуточное звено между временным смещением и постоянным смещением порогов. С. Н. Ржевкин следующим образом разграничил понятия «адаптация» и «утомление»: «Адаптация есть процесс, органически связанный с восприятием, он характеризует нормальное функционирование нервного аппарата, и поэтому не совсем правильно называть адаптацию к звуку - утомлением, а адаптацию к тишине - отдыхом, как это часто делают».
Утомлением какого-либо органа следует назвать процесс лишь в том случае, когда в нем происходят длительные изменения, нарушающие его нормальное функционирование. На этом же промежуточном уровне, как указывалось, отмечается «противоречие» органа организму в целом. Там, где затрагиваются интересы организма (происходят существенные затраты энергии), возникают расстройства его функций и могут развиваться неблагоприятные явления в организме в целом, такие как утомление, снижение работоспособности и т.н.
С позиций системного метода адаптационный процесс в организме необходимо связывать как с конкретной структурой, так и с функциями организма в целом. Продолжая и расширяя рассмотрение иерархии адаптации до уровня сообщества (коллектива людей), можно убедиться и том, что адаптация, которая сопровождается постоянной потерей слуха или утратой той или иной функции, находится в противоречии с целями общества, так как смещение порога слуховой чувствительности и другие последствия действия шума, такие как шумовая болезнь, связаны С большими материальными затратами (снижение производительности труда, лечение, раннее пенсионное обеспечение). Это нецелесообразно для общества. Отсюда следует, что борьба с шумом отвечает не только индивидуальным, но и общественным целям и способна дать большой социальный эффект.
В производственных и многих других условиях в настоящее время все чаще встречаются шумы непостоянного характера. Они подразделяются на колеблющиеся во времени, прерывистые и импульсные.
Колеблющимся во времени считается шум, уровень которого непрерывно меняется во времени. Этот вид шума встречается, когда одновременно работает несколько типов оборудования, включаемого на ограниченные промежутки времени, или при смене работы механизмов.
Прерывистый шум, уровень которого резко падает до уровня фонового, причем длительность интервалов, в течение которых уровень остается постоянным и превышающим уровень фонового шума, составляет 1 с и более, можно характеризовать длительностью отрезков шума, длительностью пауз, а также различием уровней импульс - фон.
Импульсный шум представляет собой последовательность звуковых сигналов длительностью менее 1 с, которые, помимо параметров, характерных для импульсов (длительность, время установления, уровень пика и амплитуда), можно оценивать по характеру распределения во времени и по различию уровней импульс - фон.
Изучение взаимодействия организма с непостоянным шумовым раздражителем остается до конца еще не исследованным. При воздействии прерывистого шума часто чередующиеся короткие звуки (шумы) считаются более неблагоприятными, чем продолжительные регулярно чередующиеся шумы с достаточно длительными паузами. Увеличение длительности пауз в этом случае приводит к менее выраженному воздействию шума.
Сравнительное изучение постоянного и непостоянного шумов показало, что на уровне целого организма импульсный шум вызывает более неблагоприятное действие, чем постоянный, в тех случаях, когда постоянная времени установления импульсов меньше 100 мс, при различии уровней импульс - фон более 5 дБ и при условии, что частота повторения импульсов менее 5 имп/с; особенно неблагоприятное действие наблюдается при экспозиции непериодической последовательности импульсов. Напротив, идентичное действие, т.е. соответствующее постоянному шуму или принципу равной энергии, наблюдается, когда постоянная времени установления импульсов превышает 100 мс, различия уровней импульс - фон менее 5 дБ, импульсы следуют с большой частотой или перекрываются.
Исследования, проведенные в этом направлении, показали, что эффективность воздействия меняющегося во времени шума выше, чем постоянного, что объясняется более значительным раздражающим эффектом и трудностью наступления адаптации к такого рода шумам. Действие непостоянного шума рассматривают как результат взаимодействия организма и меняющегося во времени раздражителя. В этом случае организм вырабатывает стратегию, обеспечивающую минимальное (суммарное) биологическое действие шума, используя для этой цели динамическую адаптацию. Действие непостоянного шума можно рассматривать как интегральный результат, которому может быть дана однозначная оценка, отражающая влияние не каждого отдельно взятого шумового воздействия, а всей его последовательности. Влияние на организм всех видов шума на основе этой концепции должно рассматриваться с единой энергетической позиции.
...Подобные документы
Анатомия и физиология как науки. Роль внутренней среды, нервной и кровеносной систем в превращении потребностей клеток в потребности целого организма. Функциональные системы организма, их регуляция и саморегуляция. Части тела человека, полости тела.
презентация [10,6 M], добавлен 25.09.2015Физиологический механизм адаптации организма к условиям высокогорья, причины гипоксии (кислородной недостаточности). Аэробный и анаэробный пути добычи энергии, свободные радикалы. Различия адаптивных стратегий, гипоксическая тренировка, гипокситерапия.
курсовая работа [43,7 K], добавлен 03.02.2012Адаптация организма к условиям среды в общебиологическом плане, ее необходимость для сохранения как индивидуума, так и вида. Способы защиты от неблагоприятных условий окружающей среды. Анабиоз, оцепенение, зимняя спячка, миграция, активация ферментов.
реферат [38,2 K], добавлен 20.09.2009Развитие физиологических функций организма на каждом возрастном этапе. Анатомия и физиология как предмет. Организм человека и составляющие его структуры. Обмен веществ и энергии и их возрастные особенности. Гормональная регуляция функций организма.
учебное пособие [6,1 M], добавлен 20.12.2010Понятие адаптации - приспособительного процесса, возникающего в ходе индивидуальной жизни человека. Физиологические аспекты повышения устойчивости организма к действию факторов новых условий существования. Стрессорные факторы при ослаблении организма.
презентация [144,6 K], добавлен 29.05.2019Адаптация как одно из ключевых понятий в экологии человека. Основные механизмы адаптации человека. Физиологические и биохимические основы адаптации. Адаптация организма к физическим нагрузкам. Снижение возбудимости при развитии запредельного торможения.
реферат [22,8 K], добавлен 25.06.2011Социально-биологические основы физической культуры. Функциональные системы организма. Адаптация как процесс приспособления его строения и функций к условиям существования. Аэробная и анаэробная производительность организма. Обмен веществ (метаболизм).
презентация [7,4 M], добавлен 16.03.2014Характеристика процессов адаптации человека к условиям окружающей среды. Исследование основных механизмов адаптации. Изучение общих мер повышения устойчивости организма. Законы и закономерности гигиены. Описания принципов гигиенического нормирования.
презентация [8,5 M], добавлен 11.03.2014Описание строения клетки, а также некоторых органических соединений, использующихся в живых организмах. Физиология и анатомия человека, особенности функционирования ряда важнейших органов. Взаимодействие и обмен веществ в организме. Водная среда жизни.
реферат [3,3 M], добавлен 02.12.2010Экологические группы растений. Адаптации к стрессовым условиям обитания. Типы ареалов и факторы, обусловливающие их границы. Ботаническая и экологическая характеристика дикорастущих видов растений (Гравилат речной Geum rivale) семейство (Розоцветные).
контрольная работа [1,3 M], добавлен 09.04.2019Функциональные системы организма. Внешние и внутренние раздражители организма человека, восприятие состояния внешней среды. Особенности организма человека, феномен синестезии, экстрасенсы-синестетики. Особенности темперамента при выборе профессии.
реферат [49,8 K], добавлен 06.02.2013Признаки и общая характеристика процесса старения, его влияние на нейроэндокринные механизмы регуляции клетки. Возрастная периодизация функционирования организма человека. Сравнительная характеристика преждевременного и физиологического старения.
презентация [7,6 M], добавлен 28.09.2014Предмет и роль физиологии в системе медицинского образования, краткая история, современные тенденции и задачи физиологии. Организм и внешняя среда, исследование физиологии целостного организма. Метод графической регистрации и биоэлектрических явлений.
курсовая работа [63,3 K], добавлен 02.01.2013Анатомия и морфология почек человека. Физиология и функции. Почки как своеобразная железа внутренней секреции. Удаление из организма конечных продуктов обмена веществ. Регуляция водного баланса, кислотно-основного состояния, уровня артериального давления.
курсовая работа [44,5 K], добавлен 08.08.2009Общие закономерности онтогенеза и его периоды. Взаимоотношения материнского организма и плода. Роль наследственности и среды в онтогенезе. Тератогоенные факторы среды, влияние алкоголя на организм. Возрастные периоды организма и их характеристика.
реферат [35,4 K], добавлен 17.06.2012Исследование понятия биологических часов человека, способности организма чувствовать и измерять время. Ритм изменения функционального состояния человека. Адаптация организмов к смене дня и ночи. Обзор теории гормонального влияния на биоритмы человека.
реферат [24,0 K], добавлен 08.03.2014Экологические зоны Мирового океана. Свойства водной среды (звук, электричество и магнетизм; солевой, световой, температурный режим) и ее роль в жизни гидробионтов. Адаптация растительных и животных организмов среде обитания. Фильтрация как тип питания.
курсовая работа [1,2 M], добавлен 16.12.2012Изучение ритмов активности и пассивности, протекающих организме человека. Физический, эмоциональный и интеллектуальный ритмы организма. Значение критических дней для каждого биоритма человека. Солнечно-лунно-земные и космические влияния на организм.
презентация [321,0 K], добавлен 17.04.2011Медико-биологические исследования воздействия космофизических факторов среды на организм человека. Определение структурно-энергетических характеристик геомагнитного поля. Выявление степени индивидуальной чувствительности организма к действию вариаций ГМП.
статья [104,9 K], добавлен 21.05.2015Характеристика радиочастотных (РЧ) воздействий. Выводы ученых по исследованию популярных марок телефонов и их влияния на здоровье человека, системы организма человека, наиболее подверженные вредному влиянию. Меры по защите населения от РЧ-излучения.
научная работа [21,5 K], добавлен 09.02.2009